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Abstract—Web-caches play an important role in the archi-
tecture of a Dynamic Adaptive Streaming over HTTP (DASH)
system, which can bring video files near to the clients. In such
systems, the placement of the caches affects the performance
of the video streaming applications. In this paper we select
the optimal network nodes for cache placement by taking into
account characteristics such as the bandwidth of the paths, the
places, and the number of the online clients, for a given network
graph. For this purpose, we use a placement algorithm which is
enhanced version of the Pressure algorithm proposed by Clegg
which we call PressureCache, in an implementation of virtualized
DASH Aware Network Elements (vDANEs). The results show
that the proposed approach gives better performance in terms
of received quality than random cache placement.

I. INTRODUCTION

Adaptive video streaming over HTTP has become quite
popular among video streaming systems recently, since HTTP
provides mechanisms to utilize web caches and HTTP traffic
can pass easily through firewalls. In HTTP Adaptive Streaming
(HAS) systems, more than one representation of the media,
each with different qualities, are encoded and kept on the
server, thereby providing clients with an ability to adapt video
quality by requesting the different representations over time.
Dynamic Adaptive Streaming over HTTP (DASH) has been
standardized by MPEG group, and it defines common formats
for storing files with information about representations plus
parser functions on the client side.

In DASH systems, quality adaptation is done by a client
rate adaptation algorithm. The inputs to the algorithm are the
network parameters observed by the clients, such as average
throughput, delay, and jitter. If the clients can be assisted by
network elements, the Quality of Experience (QoE) achieved
by the clients can be further enhanced. For this purpose, the
MPEG group started working on the standardization of Server
and Network Assisted DASH (SAND) [1]. In the SAND ar-
chitecture, some network elements have the information about
DASH characteristics and are called DASH Aware Network
Elements (DANEs). These DANEs help to increase the QoE
by providing network related information to the clients.

Software Defined Networking (SDN) was introduced as a
network architecture proposing to decouple the data plane
from the control plane of computer networks [2]. This ap-
proach provides mechanisms to design and implement new

routing algorithms, as well as providing information about
the network topology and network conditions to applications.
As a complementary technology to SDN, Network Function
Virtualization (NFV) virtualizes the network functions of the
conventional physical hardware [3], providing a wide range
of implementations that can be instantiated on-demand at run-
time and can be used to improve both network management
capabilities and the performance of Internet applications.

SDN and NFV technologies can be utilized together by
using them as components of a video streaming system archi-
tecture. Today, the biggest video streaming companies deploy
Content Delivery Networks (CDN) servers in order to bring
video content closer to their customers. The virtualization of
CDN servers can be performed by defining CDN functions as
VNFs that run on top of the physical elements within ISPs
[4]. Based on the co-operation between ISPs and Over the
Top (OTT) video service providers, vCDN instances can be
created in several points in the network in order to create a
streaming service infrastructure that can deliver video packets
to the clients efficiently [5].

Caches in the form of HTTP/web-caches play an important
role in the architecture of a DASH system, and they can bring
video files nearer to the clients than the original source. In such
systems, the placement of the caches affects the performance
of the video streaming applications.

In this paper, we propose a SAND video streaming archi-
tecture utilizing both SDN and NFV concepts, whereby virtual
cache instances are created on-demand by considering the live
DASH attributes and characteristics. These virtual caches are
defined as DANEs, and using such an approach gives the right
level of flexibility and control. vDANEs are the virtualized
caches with the knowledge of DASH characteristics, which
uses NFV hosted by the servers connected to the switches.
We select close to optimal network nodes for virtual cache
placement by taking into account characteristics such as the
bandwidth of the paths, the places, and the number of the
online clients, for a given network graph.

The rest of the paper is organized as follows. In section 2,
we give the related works with the information of SAND. The
details of the proposed architecture and vDANE placement
algorithm are given in section 3. Performance evaluations are
presented in section 4 and we conclude in section 5.



II. RELATED WORK

The co-operation of CDN companies and ISP network
providers can be beneficial for DASH applications [6]. The
SAND architecture introduces a message exchange between
DASH clients and network aware elements. Parameters En-
hancing Delivery (PED) and Parameters Enhancing Reception
(PER) exchanges between DANEs and DANE to DASH client
respectively [1]. Also, SAND enables clients to send status
message to the DANEs. Content providers can leverage SAND
in order to conduct the DASH client to specific CDN servers.

The approach presented in [7], combines the SAND stan-
dard with CDN management features for DASH video stream-
ing by implementing content aware-caching and by deploying
content and service-aware networks elements. In the proposed
model, a Monitoring and Management Server(MMS) receives
metric signals from clients and communicates with CDN
servers via PER messages in order to inquire status of the
servers and network conditions. Nevertheless, CDN server
placement and SDN/NFV related solutions was not studied in
this work. Although there are several SAND architecture uti-
lizing SDN advantages proposed in the literature [8], [9], our
study differs from these studies since virtualization concepts
and cache placement problems are not previously considered.

Virtualized networking such as NFV/SDN is good for
addressing high demand of resources, unpredictable traffic
patterns, and agility in network configuration. In [10], the au-
thors introduce OpenCache (or cache as a service) architecture
which leverage SDN and OpenFlow to provide a control plane
that orchestrates caching and steers the content to the clients as
close as possible. The objective of OpenCache is more related
to what content should be cached, but the proposed method
does not consider cache placement, network bandwidth, or
traffic patterns. Optimal cache placement based on several
constraints such as server load, link capacity, and migration
cost is proposed in [5]. The authors do not focus on adaptive
video streaming, selection of paths between clients, and the
caches and cache selection considering the number of clients.

Leveraging NFV increases network flexibility and reduces
cost by having the displacement of network functions over
virtual instances deployed on generic servers. However, NFV
is not only available in the data center, and NFV can be
deployed in core networks where bandwidth is more valuable.
Efficient placement of NFV functions is discussed in [11]. In
the proposed solution of [12], when the network load rises up
the base load is handled by physical hardware while virtual
instances deal with the overflow. However, this study does
not elaborate on the specific data and traffic in practice. NFV
based multimedia delivery is reported in [4]. This study more
focus on optimal allocation of the data center and intention to
find the trade-off between distributed and centralized topology
and less attention to real multimedia traffic.

The impact of CDN and Information-Centric Networks
(ICN) for DASH streaming has been investigated by Zhe et
al. in [13]. The authors present a network friendly DASH
architecture under joint management of both CDNs and ISPs,

Fig. 1: vDANE Architecture

and propose a communication protocol between virtual and
original CDN. However, proposed architecture does not aim
at determining the location of Cache server or proxy, but
determining a copy of requested content.

III. SYSTEM DESIGN

The system design for vDANEs is presented here, showing
the overall architecture and the cache selection and cache
placement algorithm. The controller and the caches are setup
as DASH Aware Network Elements (DANEs) in this architec-
ture. We use NFV to create vDANE instances which are added
based on the output of the modules running on the controller.

A. System and Controller Architecture

The architecture is illustrated in Figure ??, and shows the
layering devised. The top layer consists of the Controller,
where DANE Orchestration and control plane functions related
to the proposed architecture are managed. This layer provides
all of the modules and functions for SDN / NFV – the Basic
Network Service Functions, and for managing DANEs – the
DANE Modules. This top layer also has a REST API that
can used by higher level Apps and Services. The modules
executing the Basic Network Service Functions include the
Link Manager that obtains the traffic statistics from switches
and a Host Manager which keeps the information about online
clients. There are three DANE Modules within the controller,
and these modules determine (i) if a new vDANE instance
should be added to the network, (ii) where it should be placed,
and (iii) to which one of clients it should connect.
The middle layer is represented by an abstraction of vDANEs,
made up from all the of the NFVs executing DANEs across
the network. The bottom layer is the physical infrastructure,
which consists of OpenFlow enabled switches and links.

B. Cache Selection and Cache Placement

vDANEs are designed to be aware of the DASH system
and its application specific parameters, such as the number and



the bitrates of the media representations. vDANEs periodically
send the average quality of the received video representation
requested by the clients back to the Controller. This informa-
tion is retrieved by the Cache requirement detection module
running in the controller. The Cache requirement detection
module checks if the average quality, received by the clients,
is under a specific threshold, called the quality threshold. This
threshold can be specified by either the network operator or
the video streaming system company. For example, it can be
selected as the bitrate of the representation having moderate
quality. If the average requested quality is under the quality
threshold, the controller then decides to create of a new
vDANE instance. The placement of the new vDANE is deter-
mined by the Cache placement module of the controller. When
the Cache requirement detection module triggers, it signals the
Cache placement module, and the placement process starts.

For the selection of the location of vDANE, we use a place-
ment algorithm which is a modified version of the Pressure
algorithm proposed by Clegg et al. [14] and extended in [15],
which we call the PressureCache algorithm. This algorithm
has never been used for determining cache placement in the
literature. In the PressureCache algorithm a score, called the
PressureCache score, is calculated for all potential switches
that can be selected as hosting a vDANE instance. The value
of the PressureCache score is calculated for switch i by
using formula (1) and (2), which are modified versions of
the score calculation formula given in [14]. P (i) refers to
PressureCache score of switch i.

avgbj =

Pk
c=1 b

c
j

k

(1)

P (i) =

Pn
j=1,i 6=j [max(1, avgbj � bij)]

n

(2)

The score calculation was modified in this study since the
formula in [14] only considers the number of hops between
the switches and does not consider the bandwidth values of the
paths. However, available bandwidth of the paths between the
clients and the server is the one of main criteria that directly
effects the performance of the video streaming application. In
addition, the number of clients connected to a switch, which
is also a criteria that effects available bandwidth of the paths
between clients and the caches, was not considered in the
calculation given in [14]. Also, the shortest path may not lead
to better performance because it rapidly changes to bottleneck
point while requests increase. In this paper, we consider the
available bandwidth of the paths as well as the number of
clients connected to the a switch when calculating the score
for the switches. In formula (1), b

c
j refers to bandwidth of

the path between switch j and the vDANE which the clients
transferred packets from, where c and k represent the clients
and number of the clients connected to switch j, respectively.
The formula gives the average bandwidth value for the paths
between the clients and their associated vDANEs. Note that, if
there is no client connected to a switch, the bandwidth values
related to that switch’s links are not used in the calculation

of the formula. In formula (2), bij is the bandwidth of the
path between the switch i and switch j, and n is the number
of clients connected to the switch j.

Algorithm 1: PressureCache Algorithm
Input: Set of switches

1 let selected nodes hosting vDANE function;
2 foreach switch j not in selected do
3 ComputePressureCacheScore();
4 end

Output: Select the switch with the lowest score

The PressureCache algorithm is given in Algorithm 1.
The algorithm selects an almost optimal point for vDANE
placement, by considering the bandwidth of the paths between
the vDANEs and the clients and also between potential places
for a new vDANE instance and the clients. While the Pressure
algorithm proposed in Tuncer [15] selects more than one
switch to connect local manager nodes to by considering the
number of hops between switches, the PressureCache algo-
rithm only selects the most optimal switch for vDANE place-
ment and makes this selection by using the PressureCache

score. After the placement of the new vDANE is determined,
the controller creates a new vDANE instance connected to the
specified switch. Creating a new instance of a vDANE brings
about the further problem of selecting the vDANE for each
client to connect to. vDANE selection for each client is done
by the Cache selection module of the Controller. This module
compares the maximum bandwidth of the paths between each
client and the vDANE instances and selects the vDANE with
maximum available bandwidth.

IV. PERFORMANCE EVALUATION

A. Testbed and Topology Setup

In order to evaluate the performance of the PressureCache

algorithm with respect to improving QoE, we applied our
experiments over three network topologies and used Elephants
Dream (ED-II) media dataset [16] for streaming video and
benefit from the network-friendly nature of the Scalable Video
Coding (SVC) which is an extension of the H.264 standard.
The SVC codec provides one base layer and one or more
enhancement layers. The base layer has the lowest quality
and can be decoded independently, but enhancement layers
depend on the base layer and previous layers to improve video
quality. Thus, clients need to receive the base layer and all the
enhancement layers to achieve topmost quality. As shown in
the representations Table I, there is one base layer (L0) and two
enhancement layers (L1 and L2). Each of the layers includes
327 video segments with equal length of two second video,

TABLE I: Elephants Dream(ED-II) representations

Name Base layer Enhancement 1 Enhancement 2
Synonym L0 L1 L2
Bitrate 2400 3417 5167



TABLE II: Testbed Data

(a) Network topologies

Topology # Nodes # Links
Custom 8 11
Compuserve 11 14
BellCanada 42 58

(b) Average received bitrate (kbps)

Topology PressureCache Random
Custom 4051 3546
Compuserve 4289 3784
BellCanada 4718 3313

(c) Outage duration (milliseconds)

Topology PressureCache Random
Custom 223 498
Compuserve 420 432
BellCanada 81 750

giving a total video length of 654 seconds. The base layer, L0,
has an encoding bitrate of 2400 kbps, L1 has bitrate of 3417
kbps, and L2 has bitrate of 5167 kbps.

For performance evaluation, we use the following QoE
metrics: (i) average received bitrate, (ii) outage duration, and
(iii) number of the video segments which received from each
quality layer. The three topologies used are two real world
topologies from the Internet Topology Zoo [17] and a custom
one. The number of nodes and links are presented in Table
IIa.

This study aims to find the optimal location for the next
incoming vDANE while number of the clients increases and
lead to decrease received bitrate in client side. As discussed
in Section 3, controller aligns with SAND estimate better
location for vDANE placement. We also choose random
feasible places-with maximal and minimum distance from the
current vDANE- which have adequate bandwidth for vDANE
placement in order to compare with optimal placement and
we refer this approach as random approach. Mininet emulator,
consists of OpenFlow enabled switches is adapted for simu-
lation. DASH clients joins to the network based on Poisson
distributions. The average interval time and number of the
clients is set to 15 and 10, respectively.

B. Experimental Results

In order to investigate the performance of the previously
described setup, we conduct a simulation which focus on
the QoE parameters during the streaming. Our experiment
includes close to optimal virtual server that is selected based
on the PressureCache algorithm. We compare those results
with an experiment using randomly placed servers which
are randomly distributed in overlay networks and have the
capability to serve DASH clients. In order to derive tolerable
and acceptable values, all of the topologies are simulated 5
times and the average value of the results are shown in the
tables and figures. Also, instead of reporting individual value
for each random server, we just gives average value due to the
space limitations.

We see in Figure 2 that the PressureCache algorithm
outperforms the random vDANE selection. In this figure, L0
refers to lower video quality, L1 the enhancement 1, and
L2 has higher bitrate or representation quality. A client who
receives more video from the L0 layer will be displaying video
with lower quality. In contrast, receiving more video segments
from layer L2 is proof that the client is experiencing better
quality video. It is clear that clients in the PressureCache

setup have received far more video segments of a higher
bitrate, while in the random approach, clients have received
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Fig. 2: Received video layer and playback quality

more segments from layer L0, the lower bitrate. We observe
that the BellCanada network shows particularly good video
quality using PressureCache. Table IIb show the average
received bitrate in both PressureCache and random vDANE
selection. The numbers show that in all the three topologies,
the PressureCache approach derives a better performance
since it has maximum received bitrate.

Increasing network traffic can result in reducing down-
load speed and can lead to draining a client’s buffer and
consequently pausing video playback. In Table IIc the total
outage duration (while the buffer is empty and client has
to wait) per client is presented for both PressureCache

and random selection. It is obvious from the data that the
PressureCache has less buffer outages in all topologies and
hence clients achieve an uninterrupted display. This is because
the PressureCache algorithms utilize the network links and
use bandwidth in a desirable manner. Forwarding a client’s
request to the qualified vDANE improves network bandwidth
utilization and reduce delay.

Figure 3 shows the first 60 segments of a single sample
of the requested layers during streaming, shown as a sample
time line. We see that the requested layer starts at Base layer
(L0), goes to Enhancement 1 (L1) and then to Enhancement
2 (L2). The requested layer is mostly at L2 but drops to L1,
and occasionally L0, depending on network conditions.

During the tests, the simulation is repeated 5 times for each
topology. In order to show the average values of the requested
layers across each of the runs, we have mapped the values
observed, which are from a discrete domain of L0, L1, L2,
into values in the continuous domain. We set L0 ! 0.0, L1
! 1.0, and L2 ! 2.0. Using this approach we can calculate the
average values of the mapped requested layers. The averaged
time-line trend of mapped values is depicted in Figure 4. As
shown, at the beginning of the streaming, the client gets a
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Fig. 4: Requested video layer per segment

lower bitrate layer in order to fill the buffer and get fast
startup. Then it adaptively downloads video segments from
the best layer as possible. In the PressureCache models,
clients request and received most of their video segments from
enhancement layers which have a higher bitrate, while in the
random case, the clients get a lower bitrate.

V. CONCLUSIONS

In this paper, we presented an architecture utilizing SDN
and NFV concepts as a proposal for SAND, which is a
standardization process managed by the MPEG Group. For
this purpose, we introduced a concept called vDANE, which
are virtual web-caches that are aware of DASH characteristics,
and we proposed a placement algorithm for those vDANEs. In
order to show the performance of the proposed architecture,
we comparatively tested the proposed algorithm over different
custom and real world topologies. The results show that the

proposed algorithm provides up to 42% increase in received
video bitrate and up to 90% decrease in outage durations. This
means that clients in the PressureCache approach receive
higher bit rate and experience better quality, while the average
of random vDANE placement drives to lower bit rates.

As future work, we plan to enhance our study by improving
the algorithm by considering dynamic network topologies. We
also plan to develop an approach for vDANE replacement.
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