Supplementary Tables and Figures

Table S1. Association between 5 categories of systolic blood pressure and incidence of dementia.

Table S2. Age \& threshold of systolic/diastolic blood pressure: association between hypertension and incidence of dementia.

Table S3. Age \& threshold of systolic blood pressure: association between hypertension (systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication) and incidence of dementia.

Table S4. Estimation of trajectories of blood pressure: model fit statistics (group based trajectory models).

Table S5. Duration of hypertension (systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Antihypertensive medication) trajectories with incidence of dementia.

Figure S1. Trajectory of global cognitive score in dementia cases in the years leading to dementia diagnosis and dementia free participants until end of follow-up.

Figure S2. Threshold: association of diastolic blood pressure at age 50 (Panel A), 60 (Panel B), and 70 years (Panel C) with dementia.

Figure S3. Trajectories of hypertension (data from 1985, 1991, 1997, 2003), defined using systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$.

Table S1. Association between 5 categories of systolic blood pressure and incidence of dementia.

N dementia / N total	HR* (95\% CI)
Systolic blood pressure at age $\mathbf{5 0}(\mathbf{m m H g})$	
<110	$56 / 1,735$
$110-119$	$91 / 2,272$
$120-129$	$81 / 2,159$
$130-139$	$83 / 1,420$
≥ 140	$74 / 1,053$

[^0]Table S2. Age \& threshold of systolic/diastolic blood pressure: association between hypertension and incidence of dementia. ${ }^{\text {a }}$

	N cases/N total	Model 1 HR (95\% CI)	Model 2 HR (95\% CI)	Model 3 HR (95\%CI)
Hypertension at age 50 Years ($\mathrm{N}=8,639$)				
Systolic blood pressure $\geq \mathbf{1 4 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$				
No	287/7,046	1.00	1.00	1.00
Yes	98/1,593	1.34 (1.07, 1.69)	1.35 (1.08, 1.70)	1.26 (0.99, 1.59)
Systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$				
No	222/5,984	1.00	1.00	1.00
Yes	163/2,655	1.45 (1.18, 1.78)	1.45 (1.18, 1.78)	1.37 (1.11, 1.69)
Systolic blood pressure $\geq \mathbf{1 2 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$				
No	147/3,985	1.00	1.00	1.00
Yes	238/4,654	1.19 (0.97, 1.47)	1.18 (0.95, 1.45)	1.09 (0.88, 1.35)

Hypertension at age 60 Years ($\mathrm{N}=7,558$)
Systolic blood pressure $\geq \mathbf{1 4 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$

No	$254 / 5,979$	1.00	1.00	1.00
Yes	$86 / 1,579$	$1.18(0.92,1.52)$	$1.17(0.91,1.51)$	$1.15(0.89,1.49)$

Systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$

No	$202 / 4,743$	1.00	1.00	1.00
Yes	$138 / 2,815$	$1.11(0.89,1.39)$	$1.11(0.90,1.40)$	$1.08(0.85,1.36)$

Systolic blood pressure $\geq \mathbf{1 2 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$

No	$131 / 2,929$	1.00	1.00	1.00
Yes	$209 / 4,629$	$1.06(0.85,1.33)$	$1.07(0.85,1.34)$	$1.05(0.83,1.33)$

Hypertension at age 70 Years ($\mathrm{N}=4,989$)
Systolic blood pressure $\geq \mathbf{1 4 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$

No	$175 / 3,696$	1.00	1.00	1.00
Yes	$70 / 1,293$	$0.97(0.71,1.33)$	$0.96(0.70,1.32)$	$1.02(0.73,1.42)$

Systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$

No	$121 / 2,687$	1.00	1.00	1.00
Yes	$124 / 2,302$	$1.06(0.80,1.40)$	$1.05(0.79,1.41)$	$1.14(0.84,1.53)$

Systolic blood pressure $\geq \mathbf{1 2 0} \mathbf{~ m m H g}$ OR Diastolic blood pressure $\geq \mathbf{9 0} \mathbf{~ m m H g}$

No	$69 / 1,463$	1.00	1.00	1.00
Yes	$176 / 3,526$	$1.07(0.78,1.46)$	$1.06(0.78,1.45)$	$1.19(0.86,1.64)$

${ }^{\text {a }}$ Analysis using inverse probability weighting in Cox regression.
Model 1: Adjusted for age, sex, education, ethnicity, marital status, occupational position.
Model 2: Model $1+$ smoking, alcohol consumption, fruit \& vegetable consumption, physical activity.
Model 3: Model 2 + BMI, diabetes at start of follow-up + time-dependent cardiovascular disease (coronary heart disease, stroke), atrial fibrillation, heart failure and cardiovascular disease medication.

Table S3. Age \& threshold of systolic blood pressure: association between hypertension (high systolic blood pressure OR Anti-hypertensive medication) and incidence of dementia. ${ }^{\text {a }}$

	N cases/ \mathbf{N} total	Model 1 HR (95\%CI)	Model 2 HR (95\% CI)	Model 3 HR (95\% CI)
Hypertension at age 50 Years ($\mathrm{N}=\mathbf{8 , 6 3 9 \text {) }}$				
Systolic blood pressure $\geq \mathbf{1 4 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication				
No	293/7,223	1.00	1.00	1.00
Yes	92/1,416	1.43 (1.13, 1.81)	1.43 (1.13, 1.82)	1.32 (1.03, 1.69)
Systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication				
No	216/5,909	1.00	1.00	1.00
Yes	169/2,730	1.48 (1.21, 1.82)	1.48 (1.21, 1,82)	1.40 (1.14, 1.73)
Systolic blood pressure $\geq \mathbf{1 2 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication				
No	143/3,876	1.00	1.00	1.00
Yes	242/4,763	1.19 (0.96, 1.47)	1.17 (0.95, 1.45)	1.08 (0.87, 1.34)

Hypertension at age 60 Years ($\mathrm{N}=7,558$)
Systolic blood pressure $\geq \mathbf{1 4 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication

No	$225 / 5,069$	1.00	1.00	1.00
Yes	$115 / 2,489$	$1.37(1.09,1.72)$	$1.35(1.07,1.70)$	$1.36(1.07,1.74)$

Systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication

No	$173 / 3,964$	1.00	1.00	1.00
Yes	$167 / 3,594$	$1.26(1.02,1.57)$	$1.25(1.01,1.56)$	$1.24(0.98,1.56)$

Systolic blood pressure $\geq \mathbf{1 2 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication

No	$115 / 2,479$	1.00	1.00	1.00
Yes	$225 / 5,079$	$1.12(0.89,1.41)$	$1.12(0.90,1.42)$	$1.11(0.87,1.41)$

Hypertension at age 70 Years ($\mathrm{N}=\mathbf{4 , 9 8 9 \text {) }}$
Systolic blood pressure $\geq \mathbf{1 4 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication

No	$114 / 2,334$	1.00	1.00	1.00
Yes	$131 / 2,655$	$1.11(0.84,1.47)$	$1.08(0.81,1.43)$	$1.18(0.85,1.66)$

Systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication

No	$78 / 1,719$	1.00	1.00	1.00
Yes	$167 / 3,270$	$1.18(0.87,1.60)$	$1.15(0.85,1.56)$	$1.25(0.89,1.76)$

Systolic blood pressure $\geq \mathbf{1 2 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication

No	$47 / 952$	1.00	1.00	1.00
Yes	$198 / 4,037$	$1.16(0.82,1.64)$	$1.13(0.80,1.60)$	$1.23(0.84,1.81)$

[^1]Table S4. Estimation of trajectories of blood pressure: model fit statistics (group based trajectory models).

Group size ${ }^{\text {a }}$	Trajectory shape ${ }^{\text {b }}$	Allocated Group membership	$\begin{gathered} \text { BIC } \\ (\text { sample })^{\text {c }} \end{gathered}$	Average Posterior Probabilities ${ }^{\text {d }}$	$\mathrm{AIC}^{\text {e }}$	Odds correct classification ${ }^{f}$
1	2	100\%	-17795.34		-17784.80	
2	2	56.7\%	-15992.55	0.92	-15967.96	10.6
	2	43.3\%		0.89		8.8
3	2	61.8\%	-15835.09	0.91	-15796.44	6.7
	2	5.4\%		0.64		27.9
	2	32.8\%		0.90		17.5
4	2	33.9\%	-15838.96	0.75	-15786.26	5.8
	2	22.7\%		0.69		7.5
	2	16.6\%		0.71		12.0
	2	26.9\%		0.84		14.2
3	0	51.4\%	-15873.28	0.87	-15841.67	7.0
	2	16.0\%		0.68		12.0
	2	32.6\%		0.94		27.9
3	1	47.7\%	-15872.01	0.76	-15843.91	12.6
	1	18.9\%		0.83		15.0
	1	33.8\%		0.89		5.2
3	1	48.8\%	-15851.15	0.76	-15819.53	5.2
	1	19.1\%		0.82		11.7
	2	32.2\%		0.91		19.6
3	1	48.8\%	-15844.26	0.76	-15809.13	5.0
	2	18.6\%		0.78		11.2
	2	32.7\%		0.96		40.9

[^2]Table S5. Duration of hypertension (systolic blood pressure $\geq \mathbf{1 3 0} \mathbf{~ m m H g}$ OR Anti-hypertensive medication) trajectories ${ }^{\text {a }}$ with incidence of dementia. ${ }^{\text {b }}$

		Model 1	Model 2	Model 3
$\mathbf{N = 8 , 3 1 3}$	\mathbf{N} cases/N total	HR (95\% CI)	HR (95\% CI)	HR (95\% CI)
Hypertension trajectories (data from 1985, 1991, 1997, 2003)				
Group 1: Low	$109 / 3,607$	1.00	1.00	1.00
Group 2: Increasing	$70 / 1,686$	$1.12(0.82,1.51)$	$1.13(0.83,1.54)$	$1.18(0.85,1.62)$
Group 3: High	$179 / 3,020$	$1.37(1.06,1.76)$	$1.36(1.06,1.76)$	$1.38(1.06,1.81)$

[^3]Figure S1. Trajectory of global cognitive score ${ }^{\mathrm{a}}$ in dementia cases in the years leading to dementia diagnosis and dementia free participants until end of follow-up.

Number of observations in the analysis

Years	$\mathbf{- 2 0}$ to $\mathbf{- 1 6}$	$\mathbf{- 1 6}$ to $\mathbf{- 1 2}$	$\mathbf{- 1 2 ~ t o - 8}$	$\mathbf{- 8}$ to-4	$\mathbf{- 4}$ to 0
Dementia free $(\mathrm{N}=7237)$	5136	5693	5130	5788	5768
Dementia cases $(\mathrm{N}=291)$	88	125	167	177	145

${ }^{\text {a }}$ Composed of tests of memory, reasoning, phonemic and semantic fluency administered to the participants in 1997, 2003, 2007, 2012, and 2015.

Figure S2. Threshold: association of diastolic blood pressure ${ }^{\text {a,b }}$ at age 50 (Panel A), 60 (Panel B), and 70 years (Panel C) with dementia.

${ }^{\text {a }}$ Diastolic blood pressure was modelled by both-tail restricted cubic splines with four age-specific Harrell knots in a Cox regression model adjusted for age, sex, education, ethnicity, marital status, and occupational position. ${ }^{\text {b }}$ The reference value for calculation of HRs is diastolic blood pressure 80 mmHg .

Figure S3. Trajectories of hypertension (data from 1985, 1991, 1997, 2003), defined using systolic blood pressure $\geq 130 \mathbf{~ m m H g}$. ${ }^{\text {a }}$

[^4]
[^0]: * Analysis using inverse probability weighting in Cox regression, adjusted for age, sex, education, ethnicity, marital status, occupational position.

[^1]: ${ }^{a}$ Analysis using inverse probability weighting in Cox regression.
 Model 1: Adjusted for age, sex, education, ethnicity, marital status, occupational position.
 Model 2: Model $1+$ smoking, alcohol consumption, fruit $\&$ vegetable consumption, physical activity.
 Model 3: Model $2+$ BMI, diabetes at start of follow-up + time-dependent cardiovascular disease (coronary heart disease, stroke), atrial fibrillation, heart failure and cardiovascular disease medication.

[^2]: ${ }^{\text {a }}$ Number of trajectory groups estimated ($\mathrm{N}=8,315$); ${ }^{\mathrm{b}}$ Polynomial function of time (0 intercept only, 1 linear, 2 quadratic);
 ${ }^{c}$ Bayesian Information Criterion (BIC), a difference of 10 is strong evidence that the model with the lowest BIC (compared to null) has best fit;
 ${ }^{\mathrm{d}}$ Posterior probabilities of group membership for individuals assigned to each group, an average >0.7 demonstrates good classification accuracy;
 ${ }^{\mathrm{e}}$ Akaike Information Criterion (AIC); ${ }^{\mathrm{f}}$ Odds of correct classification based on posterior probabilities and group membership, minimum threshold of 5
 Model selected based on fulfilment of criteria d \& f and evidence of improved fit using lowest BIC/AIC score.

[^3]: ${ }^{\text {a }}$ The trajectories over a mean 16 year period were again determined using a group based trajectory method $(1,2,2)$ as described previously.
 ${ }^{\mathrm{b}}$ Analysis using inverse probability weighting in Cox regression.
 Model 1: Adjusted for age, sex, education, ethnicity, marital status, occupational position.
 Model 2: Model $1+$ smoking, alcohol consumption, fruit \& vegetable consumption, physical activity.
 Model 3: Model $2+$ BMI, diabetes at start of follow-up + time-dependent cardiovascular disease (coronary heart disease, stroke), atrial fibrillation, heart failure and cardiovascular disease medication.

[^4]: ${ }^{a}$ Three group solution (1,2,2). $\mathrm{N}=8,313$ (excluding those who had dementia or who had died before 2003 and excluding those with only one blood pressure assessment between 1985 and 2003).

