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ABSTRACT 

Refractive errors, including myopia, are the most frequent eye disorders worldwide and an increasingly 

common cause of blindness. This genome-wide association meta-analysis in 160,420 participants and 

replication in 95,505 participants, increased the established independent signals from 37 to 161 and 

revealed high genetic correlation between Europeans and Asians (>0.78). Expression experiments and 

comprehensive in silico analyses identified retinal cell physiology and light processing as prominent 

mechanisms, and functional contributions to refractive error development in all cell types of the 

neurosensory retina, retinal pigment epithelium, vascular endothelium and extracellular matrix. Newly 

identified genes elicited novel mechanisms such as rod and cone bipolar synaptic neurotransmission, 

anterior segment morphology, and angiogenesis. Thirty-one loci resided in or near regions transcribing 

small RNAs, suggesting a role for post-transcriptional regulation. Our results support the notion that 

refractive errors are caused by a light-dependent retina-to-sclera signaling cascade, and delineate potential 

pathobiological molecular drivers. 

 



INTRODUCTION 

 
Refractive errors are common optical aberrations determined by mismatches in the focusing power of the 

cornea, lens and axial length of the eye. Their distribution is rapidly shifting towards myopia, or 

nearsightedness, all over the world. The myopia boom is particularly prominent in urban East Asia where 

up to 95% of twenty-year-olds in cities such as Seoul and Singapore have this refractive error1-4. Myopia 

prevalence is also rising throughout Western Europe and the USA, affecting ~50% of young adults in 

these regions5,6. While refractive errors can be optically corrected, even at moderate values they carry 

significant risk of ocular complications with high economic burden7-9. One in three individuals with high 

myopia (-6 diopters or worse) will develop irreversible visual impairment or blindness, mostly due to 

myopic macular degeneration, retinal detachment, or glaucoma10,11. At the other extreme, high hyperopia 

predisposes to strabismus, amblyopia and angle-closure glaucoma10,12.  

 Refractive errors result from a complex interplay of lifestyle and genetic factors. The most 

established lifestyle factors for myopia are high education, lack of outdoor exposure, and excessive near 

work3. Recent research has identified many genetic variants for refractive errors, myopia, and axial 

length13-25. Two large studies, the international Consortium for Refractive Error and Myopia (CREAM)26 

and the personal genomics company 23andMe, Inc.17,27 have provided the most comprehensive results. 28 

  Given that only 3.6% of the variance of the refractive error trait was explained by the identified 

genetic variants26, we presumed a high missing heritability. We therefore combined CREAM and 

23andMe, and expanded the study sample to 160,420 individuals from a mixed ancestry population with 

quantitative information on refraction for a genome-wide association (GWAS) meta-analysis. Index 

variants were tested for replication in an independent cohort consisting of 95,505 individuals from the UK 

Biobank. We conducted systematic comparisons to assess differences in genetic inheritance and 

distribution of risk variants between Europeans and Asians. Polygenic risk analyses were performed to 

evaluate the contribution of the identified variants to the risk of myopia and hyperopia. Finally, we 



integrated expression data and bioinformatics on the identified genes to gain insight into the possible 

mechanisms underlying the genetic associations.  

   

 RESULTS 

Susceptibility loci for refractive error  

We performed a GWAS meta-analysis on adult untransformed spherical equivalent (SphE) using 

summary statistics from 37 studies from CREAM and on age of diagnosis of myopia (AODM) from two 

cohorts from 23andMe (Supplementary Figure 1, Supplementary Table 1a)26,27. Analyses were based on 

~11 million genetic variants (SNPs, insertions and deletions) genotyped or imputed to 1000 Genomes 

Project Phase I reference panel (version 3, March 2012 release29) that passed extensive quality control 

(Supplementary Figures 2-4, Supplementary Table 1b).  

 Meta-analyses were conducted in three stages: Stage 1 CREAM (CREAM-EUR, N=44,192; 

CREAM-ASN, N=11,935); Stage 2 23andMe (N=104,293; Online Methods); Stage 3 joint meta-analysis 

of Stage 1 and 2. As CREAM and 23andMe applied different phenotype measures, we used signed Z-

scores as the mean per-allele effect size and assigned equal weights to CREAM and 23andMe. We 

identified 7,967 genome-wide significant genetic variants clustering in 140 loci (Figure 1a,b; 

Supplementary Figure 5-6, Supplementary Table 2-5, Supplementary Data 1-2), replicating all 37 

previously discovered loci and finding 104 novel loci. We applied genomic control at each stage and 

checked for population stratification using LD score regression30 (Stage 1-2  inflation factors (λGC) <1.1 

and  LD score regression intercepts (LDSCintercept) 0.892-1.023; Supplementary Table 6; Supplementary 

Figure 6- 7). At Stage 3, we observed a genomic inflation (λGC=1.129; Supplementary Figure 6), 

probably due to true polygenicity rather than population stratification or cryptic relatedness31. LDSCintercept 

remained undetermined due to mixed ancestry. 



To detect the presence of multiple independent signals at the discovered loci, a stepwise 

conditional analysis was performed with GCTA-COJO32 on summary statistics from all European cohorts 

(N=148,485) using the Rotterdam Study I-III (RS I-III) as a reference panel for LD structure (NRSI-

III=10,775). This analysis yielded 27 additional independent variants, resulting in a total of 167 loci 

(Supplementary Table 2).  

We advanced these loci for replication in a GWAS of refractive error carried out by the UK 

Biobank Eye & Vision (UKEV) Consortium (N=95,505) 33 (Online Methods). Six out of the 167 variants 

were not considered for replication analysis. One of these five variants (rs3138141, RDH5) was identified 

previously and therefore still considered as a refractive error risk variant26,27. The remaining 161 genetic 

variants were tested for replication. 86% (138/161) of the candidate variants replicated significantly: 104 

(65%) replicated surpassing genome-wide significance and 34 replicated surpassing Bonferroni 

correction (P<3.0x10-4; 21.1%); another 12 showed nominal evidence for replication (0.05<P<3.0x10-4; 

7.5%) and only 11 (7%) did not replicate at all (Table 1, Supplementary Table 2). 

 As CREAM and 23andMe employed different phenotypic outcomes, we evaluated consistency of 

genotypic effects by comparing marker-wise additive genetic effect sizes (in units diopters per risk allele 

variant) for SphE from CREAM-EUR against those (in units log(HR) per risk allele variant) for AODM 

from 23andMe. All variants strongly associated with either outcome (P<0.001) were concordant in 

direction-of-effect, and had highly correlated effect sizes (Figure 2a,b; Supplementary Figure 8). For 

these variants a 10% decrease in log(HR) for AODM, indicating an earlier age-at-myopia onset, was 

associated with a decrease of 0.15 diopters in SphE. A quantitative analysis for all common SNPs 

(MAF>0.01; HapMap3) using LD score regression yielded a genetic correlation of 0.93 (95% CI 0.86-

0.99; P=2.1x10-159), confirming that effect sizes for both phenotypic outcomes were closely related.  

 

Gene annotation of susceptibility loci 



We annotated all genetic variants with wANNOVAR using the University of California Santa Cruz 

(UCSC) Known Gene database34,35. The identified 139 genetic loci were annotated to 208 genes and 

known transcribed RNA genes (Table 1, Supplementary Table 2, Online Methods). The physical 

positions of the lead genetic variants relative to protein-coding genes are shown in Figure 1c. 86% of the 

identified variants were either intragenic or less than 50 kb from the 5’or 3’ end of the transcription start 

site. We found seven exonic variants (Supplementary Table 7) of which two had MAF≤0.05: rs5442 

(GNB3) and rs17400325 (PDE11A). The index SNP in the GNB3 locus with MAF 0.05 in Europeans is a 

highly conserved missense variant (G272S) predicted to be damaging by PolyPhen-236 and SIFT37. 

PDE11A is presumed to play a role in tumorigenesis, brain function, and inflammation38. The index SNP 

in the PDE11A locus with MAF 0.03 in Europeans is also a highly conserved missense variant (Y727C); 

this variant was predicted to be damaging by PolyPhen36, SIFT39 and align GVGD40,41.The other exonic 

variants, rs1064583 (COL10A1), rs807037 (KAZALD1), rs1550094 (PRSS56), rs35337422 (RD3L), and 

rs6420484 (TSPAN10) were not predicted to be damaging. 

 The most significant variant (Stage 3; rs12193446, P=4.21x10-84) resides on chromosome 6 

within a non-coding RNA, BC035400, in an intron of the LAMA2 gene. This locus had been identified 

previously, but our current fine mapping redefined the most associated variant. The function and potential 

downstream target sites for BC035400 are currently unknown. The previously most strongly associated 

variant, rs524952 on chromosome 15 near GJD2, was the second most significant variant (P=2.28x10-65).  

Post-GWAS analyses 

We performed two gene-based tests, fastBAT42 and EUGENE43, and applied a functional enrichment 

approach using fgwas44 (Online Methods). With fastBAT, we identified 13 genes at P <2.0x10-6, one of 

which (CHD7) had been identified previously26,27. Using EUGENE, we found 7 genes at P <2.0x10-6 after 

incorporation of blood eQTLs. With fgwas, we identified 6 loci, which could be annotated to 9 genes, at 

posterior probability >0.9. Two genes (HMGN4 and TLX1) showed significant associations in two or 



more approaches. Taken together, these post-GWAS approaches resulted in a total of 22 additional 

candidate loci for refractive error, annotated to 25 genes (Supplementary Table 8). This increases the 

overall number of significant genetic associations to 161 candidate loci. 

Polygenic risk scores 

We calculated polygenic risk scores (PGRS)45 per individual at various P thresholds (Online Methods) for 

Rotterdam Study I-III (RS I-III; N=10,792) after recalculating P and Z-scores of variants from Stage 3 

excluding RS I-III. We found the highest fraction of phenotypic variance (7.8%) explained with 7,307 

variants at P value threshold 0.005 (Supplementary Table 9). A PGRS based on these variants 

distinguished well between individuals with hyperopia and myopia at the lower and higher deciles (Figure 

3); those in the highest decile had a 40-fold increased risk of myopia. When the PGRS was stratified for 

the median age (<63 or >63+ yrs), we found a significant difference in the variance explained (<63 yrs 

8.9%; 63+ yrs 7.4%; P 0.0038). The variance explained by PGRS was not significantly different between 

males and females (8.3% vs 7.5%; P 0.13). The predictive value (area under the receiver operating 

characteristic curve, AUC) of the PGRS for myopia versus hyperopia adjusted for age and gender was 

0.77 (95% CI=0.75–0.79), a 10% increase compared to previous estimations46.  

Trans-ethnic comparison of genotypic effects 

To explore potential ancestry differences in the identified refractive error loci, we calculated the 

heritability explained by common genetic variants (SNP-h2) for Europeans and Asians using LD score 

regression47. SNP-h2 was 0.214 (95% CI 0.185- 0.243) and 0.172 (95% CI 0.154- 0.190) in the European 

samples (CREAM-EUR and 23andMe), while it was only 0.053 (95% CI -0.025- 0.131) in the Asian 

sample (CREAM-EAS). Next, we estimated the genetic correlation between Europeans and Asians by 

comparing variant effect size for common variants using Popcorn48 (Online Methods). Two genetic 

correlation metrics were calculated T; First, a genetic effect correlation (ρge) that quantifies the 



correlation in SNP effect sizes between Europeans and Asians without taking into account ancestry-

related differences in allele frequency; and second, a genetic impact correlation (ρgi) that estimates the 

correlation in variance-normalized SNP effect sizes between the two ancestry groups (Table 2). Estimates 

of ρge were high between Europeans and Asians, but significantly different from 1 (0.79 and 0.80, 

respectively at P <1.9x10-6; Table 2), indicating a clear genetic overlap but a difference in per allele effect 

size. Estimates of ρgi were similarly high (>0.8), but not significantly different from 1 for the correlation 

between CREAM-EUR and CREAM-ASN (P=0.065), indicating that the genetic impact of these alleles 

may still be similar.  

 

In silico pathway analysis 

We used an array of bioinformatics tools to investigate potential functions and pathways of the associated 

genes. We first employed DEPICT49 to perform a gene set enrichment analysis, a tissue type enrichment, 

and a gene prioritization analysis, on all variants with P <1.00x10-5 from Stage 3. The gene set 

enrichment analysis resulted in 66 reconstituted gene sets, of which 55 (83%) were eye-related. To reduce 

redundancies between pathways, we clustered the significant pathways into 13 meta gene sets (false 

discovery rate (FDR) <5% and a P <0.05) (Supplementary Note, Figure 4, Supplementary Table 10). The 

most significant gene set was the ‘abnormal photoreceptor inner segment morphology’ (MP:0003730; 

P=1.79x10-7). The eye-related meta gene sets consisted of the ‘thin retinal outer nuclear layer’ 

(MP:0008515; 27 (55%) gene sets), ‘detection of light stimulus’ (GO:0009583; 13 (24%) gene sets), 

‘nonmotile primary cilium’ (GO:0031513; 4 (6%) gene sets), and ‘abnormal anterior eye segment 

morphology’ (MP:0005193; 4 (6%) gene sets). The first three meta gene sets had a Pearson’s correlation 

> 0.6. Interestingly, RGR, RP1L1, RORB and GNB3 were present in all of these meta gene sets. Retina 

was the most significant tissue of expression according to the tissue enrichment analysis (P=1.11 x 10-4, 

FDR <0.01). From the gene prioritization according to DEPICT, 7 genes were highlighted as the most 

likely causal genes at P<7.62x10-6 and FDR<0.05: ANO2, RP1L1, GNB3, EDN2, RORB and CABP4.  



 Next, we performed a canonical pathway analysis on all genes annotated to the variants of Stage 

3 using Ingenuity Pathway Analysis (See URLs). All genes were run against the IPA database 

incorporating functional biological evidence on genomic and proteomic expression based on regulation or 

binding studies. IPA identified “Glutamate Receptor Signaling” with central player Nf-kB gene as the 

most significant pathway after correction for multiple testing (ratio of the number of molecules 8.8% and 

Fisher's Exact test P=1.56x10-4; Supplementary Figure 9).  

 

From disease-associated loci to biological mechanisms 

We adapted the scoring scheme designed by Fritsche et al.50 to highlight genes for which there is 

biological plausibility for a role in eye growth50. We used 10 equally rated categories (Online Methods; 

Figure 5; Supplementary Table 11; Supplementary Note). One-hundred-and-nine index variants replicated 

in two or more individual cohorts; we found evidence for seven genetic variants with eQTL effects in 

multiple tissue types; nine exonic variants, of which seven predicted protein-alterations (Supplementary 

Table 7); 31 RNA genes, five located in the 3’ or 5’UTR (Supplementary Table 12, Supplementary Figure 

10), 84 genes resulting in an ocular phenotype in humans (Supplementary Table 13) and 36 in mice 

(Supplementary Table 14); 172/212 (81%) genes expressed in human ocular tissue (Supplementary Note, 

Supplementary Table 15); 41 genes identified by DEPICT at P <5.4x10-4 and FDR<0.05 and 45 genes 

contributed to the most significant canonical pathways of IPA. Notably, 48 of the associated genes encode 

known drug targets (Supplementary Table 16). 

  The gene with the highest biological plausibility score (score=8) was GNB3, a highly conserved 

gene encoding a guanine nucleotide-binding protein expressed in rod and cone photoreceptors and ON-

bipolar cells51. GNB3 participates in signal transduction through G-protein-coupled receptors and 

enhances the temporal accuracy of phototransduction and ON-center signaling in the retina51. As 

described above, the index SNP harbors a missense variant associated with refractive errors. Non-

synonymous mutations within GNB3 are known to cause syndromic congenital stationary night 



blindness52 in humans, progressive retinopathy and globe enlargement in chickens51, and abnormal 

development of the photoreceptor-bipolar synapse in knock-out mice53,54.  

Other genes highly ranked (score=7) include CYP26A1, GRIA4, RDH5, RORB, and RGR, all 

previously associated with refractive error, and one newly identified gene: EFEMP1. EFEMP1 encodes a 

member of the fibulin family of extracellular matrix glycoproteins, and is found pan-ocularly including in 

the inner nuclear layer and Bruch’s membrane. Mutations in this gene lead to specific macular 

dystrophies55, while variants have also been shown to co-segregate with primary open-angle glaucoma56 

and associate with optic disc cup area57.  

 Several other genes are noteworthy for their function. CABP4, a calcium-binding protein 

expressed in cone and rod photoreceptor cells, mediates Ca2+-influx and glutamate release in the 

photoreceptor-bipolar synapse58. Mutations in this gene have been described in congenital cone-rod 

synaptic disorder59, a retinal dystrophy associated with nystagmus, photophobia, and, remarkably, high 

hyperopia. KCNMA1 encodes pore-forming alpha subunits of Ca2+-activated K+ (BK) channels. These 

channels regulate synaptic transmission exclusively in the rod pathway60. ANO2 is a Ca2+-activated Cl- 

channel recently reported to regulate retinal pigment epithelial (RPE) cell volume in a light-dependent 

manner64. EDN2 is a potent vasoconstrictor that binds to two G-protein-coupled receptors, EDNRA, which 

resides on bipolar dendrites, and EDNRB, which is present on Mueller and horizontal cells. Both receptors 

are also present on choroidal vessels65, implying that the choroid as well as retinal cells are target sites for 

this gene. RP1L1 is expressed in cone and rod photoreceptors where it is involved in the maintenance of 

microtubules in the connecting cilium66. Mutations in this gene cause dominant macular dystrophy and 

retinitis pigmentosa67. We replicated two genes known to cause myopia in family studies. FBN1 harbors 

mutations causing with Marfan (OMIM #154700) and Weil Marchesani (OMIM #608328) syndrome; 

PTPRR was one of the candidates in the MYP3 locus, which was found by linkage in families with high 

myopia68.  

 The location of rs7449443 (P=3.58x10-8) is notable as it resides in between DRD1 and FLJ16171. 

DRD1 encodes dopamine receptor 1 and is known to modulate dopamine receptor 2-mediated events69,70. 

https://www.omim.org/entry/154700
https://www.omim.org/entry/608328


The dopamine pathway has been implicated in myopia pathogenesis in many studies69,71. SNPs in and 

near other genes involved in the dopamine pathway (dopamine receptors, synthesis, degradation, and 

transporters)72-74 did not reveal genome-wide significant associations (Supplementary Note, 

Supplementary Table 17; Supplementary Figure 11). 

There were 31 genetic variants in or near DNA structures transcribing RNA genes (non coding 

RNA, linc RNAs, tRNAs, snoRNas, rRNAs). Notably, five were in the transcription region and thirteen 

were in the vicinity (>0 kb and ≤50 kb) of start or end of the RNA gene transcription region. They 

received low scores, since many have no reported function or disease association to date (Figure 5, 

Supplementary Figure 10, Supplementary Table 12). Our ranking of genes based on functional 

information existing in the public domain does not necessarily represent the true order of importance for 

refractive error pathogenesis. The observation that genes with strong statistical association were 

distributed over all scores supports this concept. Nevertheless, this list may help to select genes for 

subsequent functional studies. 

Finally, integration of all our findings, supported by literature, allowed us to annotate a large 

number of genes to ocular cell types (Figure 6). Remarkably, all cell types of the retina harbored 

refractive error genes, as well as the RPE, vascular endothelium, and extracellular matrix.  

  

Genetic pleiotropy  

We performed a GWAS catalogue look up using FUMA to investigate overlap of genes with other 

common traits (Supplementary Figure 12)75. Refractive error and hyperopia were replicated significantly 

after correcting for multiple testing (adjusted P value=1.44x10-52 and 9.34x10-9, respectively). We found 

significant overlap with 74 other traits, of which height (adjusted P value=1.11x10-10), obesity (adjusted 

P=1.38x10-10), and BMI (adjusted P=4.05x10-7) were most important. Ocular diseases significantly 

associated were glaucoma (optic cup area, intraocular pressure; adjusted P=2.69x10-5 and 3.01x10-5, 

respectively) and age-related macular degeneration (adjusted P value=1.27x10-3). 



 

DISCUSSION 

Myopia may become the leading cause of world blindness in the near future, a grim outlook for which 

current counteractions are still insufficient11,76. To improve understanding of the genetic landscape and 

biology of refractive error, we conducted a large GWAS meta-analysis in 160,420 participants of mixed 

ancestry and replicated in 95,505 participants. This led to the identification of 139 independent 

susceptibility loci by single variant analysis and 22 additional loci through post-GWAS methods, a four-

fold increase in refractive error genes. The majority of annotated genes were found to be expressed in the 

human posterior segment of the eye. Using in silico analysis, we identified significant biological 

pathways, of which retinal cell physiology, light processing, and, specifically, glutamate receptor 

signaling were the most prominent mechanisms. Our integrated bio-informatic approach highlighted 

known ocular functionality for many genes.  

  To ensure robustness of our genetic associations, we included studies of various designs and 

populations, sought replication in an independent cohort of significant sample size, and stringently 

accounted for population stratification by performing genomic control at all stages of the meta-analysis77. 

We combined studies with outcomes based on actual refractive error measurements as well as on self-

reported age-of-myopia-onset, and found the direction-of-effect of the associated variants, as well as their 

effect size, to be remarkably consistent. Combining two different outcome measures may appear 

unconventional, but age of onset and refractive error have been shown to be very tightly 

correlated11,28,78,79. 78,79Moreover, the high genetic correlation (93%) of common SNPs between the two 

phenotypes underscores their similarity. Most compelling evidence was provided by replication of 86% of 

the discovered variants in the independent UKEV which also used conventional refractive error 

measurements. This robustness indicates that both phenotypic outcomes can be used to capture a shared 

source of genetic variation. In addition, we found trans-ethnic replication of significant loci, and a high 

correlation of genetic effects of common variants in the Europeans and Asians. Our findings support a 



largely shared genetic predisposition to refractive error and myopia in the two ethnicities, although 

ancestry-specific allelic effects may exist. The low heritability estimate in Asians may, in part, be 

explained by the low representation of this ethnicity in our study sample. Alternatively, it may imply that 

environmental factors explain a greater proportion of the phenotypic risk and recent rise in myopia 

prevalence in this ancestry group80.  

 Limitations of our study were the possibility of false negative findings due to genomic control, 

and underrepresentation of studies with Asian ancestry. Heterogeneity of observed effect estimates was 

large for several associated variants, but not unexpected, given the large number of collaborating studies 

with varying methodology.  

 Although neurotransmission was previously suggested pathway26,27, our current pathway analyses 

provide more in-depth insights into the retinal circuitry driving refractive error. DEPICT identified ‘thin 

retinal outer nuclear layer’, ‘detection of light stimulus’, and ‘nonmotile primary cilium’ as the most 

important meta-gene sets. These are the main characteristics of photoreceptors, which are located in the 

outer retina and contain cilia. These photosensitive cells drive the phototransduction cascade in response 

to light, which in turn induces visual information processing. IPA pointed towards glutamate receptor 

signaling as the most significant pathway. Glutamate is released by photoreceptors and determines 

conductance of retinal signaling to the ON and OFF bipolar cells81. Our functional gene look ups provide 

evidence that rod (CLU) as well as cone (GNB3) bipolar cells play a role. Taken together, these findings 

strongly suggest that light response and light processing in the retina are initiating factors leading to 

refractive error. 

The genetic association with light-dependent pathways may also link to the well-established 

protective effect of outdoor exposure on myopia. We found suggestive evidence for a genetic association 

with DRD1. The dopaminergic pathway has been studied extensively in animal models for its role in 

controlling eye growth in response to light69,71,82-91. DRD1 was found to be a mediator in this process, as 

bright light increased DRD1 activity in the bipolar ON-pathway, and diminished form-deprivation 

myopia in mice. Blockage of DRD1 reversed this inhibitory effect92. We did not find evidence for direct 



involvement of other genes in the dopamine pathway, but GNB3 may be an indirect modifier as it is a 

downstream signaling molecule of dopamine and has been shown to influence availability of the 

dopamine transporter DAT93. Although a promising target for therapy, further evidence of DRD1 in 

human myopiagenesis is warranted.  

Novel pathways elicited by the newly identified genes are anterior segment morphology 

(TCF7L2, VIPR2, MAF) and angiogenesis (FLT1). In addition, the high number of variants residing near 

small RNA genes suggests that post-transcriptional regulation is an important mechanism, as these RNAs 

are known to play a distinct and central regulatory role in cells94. These findings will serve as leads for 

future studies performing detailed mapping of cellular networks, and functional studies on genes 

implicated in ocular phenotypes, harboring protein-altering variants, and proven drug targets.  

 Our evaluation of shared genetics between refractive error and other disease-relevant phenotypes 

highlighted overlap with anthropometric traits such as height, obesity, and body mass index. This could 

give valuable additional clues as to the phenotypic outcomes of perturbations of some of the networks 

identified. 

  Our genetic observations add credence to the current notion that refractive errors are caused by a 

retina-to-sclera signaling cascade that induces scleral remodeling in response to light stimuli. The concept 

of this cascade originates from various animal models showing that form deprivation, retinal defocus and 

contrast, ambient light, and wavelength can influence eye growth in young animals95-97. Cell-specific 

moieties in this putative signaling cascade in humans were largely unknown, although animal models 

implicated GABA, dopamine, all-trans-retinoic acid and TGF-β69,91,98,99. Our study provides a large 

number of new molecular candidates for this cascade, and clearly shows that a wide range of neuronal cell 

types in the retina, the RPE, the vascular endothelium, as well as components of the extracellular matrix 

are implicated. The many interprotein relationships exemplify the complexity of eye growth, and provide 

a challenge to develop strategies to prevent pathological eye elongation.  

 In conclusion, by using a cross-ancestry design in the largest study population on common 

refractive errors to date, we uncovered numerous novel loci and pathways involved in eye growth. Our 



multi-disciplinary approach incorporating GWAS data with in silico analyses and expression experiments 

provides an example for the design of future genetic studies for complex traits. Additional genetic insights 

into refractive errors will be gained by increasing sample size and genotyping depth, by performing 

family studies to identify rare alleles of large effects, and by evaluating population extremes. Our list of 

plausible genes and pathways provide a plethora of data for future studies focusing on gene-environment 

interaction, and on translation of GWAS findings into starting points for therapy.  
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Figure legends 

 

Figure 1. GWAS meta-analysis identifies 140 loci for refractive error (Stage 3) 

 

(a) We conducted a meta-analysis of genome-wide single-variant analyses for >10 million variants in 

160,420 participants of CREAM and 23andMe (Stage 3). Shown is the Manhattan plot depicting P for 

association, highlighting new (P < 5 × 10−8 for the first time; green) and known (dark grey) refractive error 

loci previously found using HapMap II imputations from Kiefer et al.27 and Verhoeven et al.26 (Table 1). 

The horizontal lines indicate suggestive significance (P=1×10−5) or genome-wide significance 

(P=5×10−8). (b) We compared the minor allele frequencies of the 140 discovered index variants based on 

1000G (blue: Europeans; red: Asians) to the minor allele frequencies of the previously found genetic 

variants based on HapMap II (green: Europeans; purple: Asians). Observed are an increase in genetic 

variants found across all minor allele frequency bins increase, including the lower minor allele frequency 

bins. (c) We annotated the 167 loci to genes using wANNOVAR. Shown are the distances between index 

variants from the nearest gene and its gene on the 5’ and/or 3’ site. The majority of index variants (84%) 

were at a distance of less than 50 kb up- or downstream from the annotated gene.  

 
 

Figure 2. Correlation of statistical significance and effect size of SNPs based on spherical equivalent 

(SphE) in diopters and age of diagnosis of myopia (AODM) in years. 

 

 (a) P comparison of all genetic variants with P < 1.0 x 10-3 (n=7249) between CREAM meta-analysis 

(Stage 1) and 23andMe (Stage 2) meta-analysis. Shown is the overlap (red) and the difference (green) in 

P signals per cohort for genetic variants. Green genetic variants are only genome wide significant in 

either CREAM or 23andMe. Blue: genetic variants with P between 5.0 x 10-8 and 1.0 x 10-3 in both 

CREAM and 23andMe. (b) Comparison of effects (SphE and logHR of AODM in years; P < 1.0 x 10-3; 

n=7249) between CREAM and 23andMe. Same color code was applied as in (a). The effects were 



concordant in their direction of effect on refractive error. We performed a simple linear regression 

between the effects of CREAM and 23andMe; the regression slope is -0.15 diopters per logHR of AODM 

in years.  

 

Figure 3. Risk of refractive error per decile of polygenic risk score (Rotterdam Study I-III, 

N=10,792) 

Distribution of refractive error in subjects from Rotterdam Study I–III (N=10,792) as a function 

of the optimal polygenic risk score (including 7,303 variants at P ≤ 0.005 explaining 7.8% of the variance 

of SphE; Supplementary Table 9). Mean OR of myopia (black line) was calculated per polygenic risk 

score category using the lowest category as a reference. High myopia (SphE ≤-6 D), moderate myopia 

(SphE >-6 D & ≤ −3 D), low myopia (SphE > −3 D & <-1.5 D), emmetropia (SphE ≥ −1.5 D and ≤ 1.5 

D), low hyperopia (SphE > 1.5 D & < 3 D), moderate hyperopia (SphE ≥ 3 D & 6 D), high hyperopia 

(SphE ≥ 6 D).  

 

Figure 4. Visualization of the DEPICT gene-set enrichment analysis based on loci associated with 

refractive error and the correlation between the (meta)gene sets 

(a) Shown are the 66 significantly enriched reconstituted gene sets clustered into thirteen meta gene sets 

based on the gene set enrichment analysis of DEPICT (pairwise Pearson correlations; P < 0.05). All 

genetic variants with a P < 1 × 10−5 in the GWAS meta-analysis of stage 3 (n=21,073) and an FDR < 

0.05 were considered. (b) Visualization of the interconnectivity between gene sets (n=13; pairwise 

Pearson correlations; P < 0.05) of the meta gene set ‘Detection of Light Stimulus’ (GO:0009583). (c) 

Visualization of the interconnectivity between gene sets (n=27; pairwise Pearson correlations; P < 0.05) 

of the largest meta gene set ‘Thin Retinal Outer Nuclear Layer’ (MP:0008515). In all panels, (meta)gene 

sets are represented by nodes colored according to statistical significance, and similarities between them 

are indicated by edges scaled according to their correlation; Pearson’s r ≥ 0.2 are shown in panel (a) and 

Pearson’s r ≥ 0.4 are shown in panel (b,c). 



 

Figure 5. Genes ranked according to biological and statistical evidence 

Genes were ranked (orange) based on 10 equal categories which can be divided in four categories: 

internal replication of genetic variant in more than two cohorts (purple; CREAM-EUR, CREAM-ASN 

and/or 23andMe), annotation (light blue; genetic variant harboring an exonic protein altering variant or 

non-protein altering variant, genetic variant residing in a 5’ or 3’ UTR region of a gene or transcribing an 

RNA structure), expression (yellow; eQTL, expression in adult human ocular tissue, expression in 

developing ocular tissue), biology (dark yellow; ocular phenotype in mice, ocular phenotype in humans), 

pathways (green; DEPICT gene-set enrichtment, DEPICT gene prioritization analysis and canonical 

pathway analysis of IPA). We assessed genes harboring drug targets (salmon red), but did not assign a 

scoring point to this category. 

 

*Only one point can be assigned in the category ‘ANNOTATION’, even though it has four columns (i.e. 

a genetic variant is located in only 1 of these four categories). 

 

Figure 6. Schematic representation of the human eye, retinal cell types, and functional sites of 

associated genes  

We assessed gene expression sites and/or functional target cells in the eye for all genes using our 

expression data and literature and data present in the public domain. The genes appear to be distributed 

across virtually all cell types in the neurosensory retina, in the RPE, vascular endothelium and 

extracellular matrix; i.e., the route of the myopic retina-to-sclera signalling cascade. 
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Table 1. Results of the meta-analysis of CREAM and 23andMe for the previously-identified loci and a subset of the newly-identified loci, 1 

and replication in UK Biobank 2 
 3 

Table 1a Replication of the HapMap II index variants for refractive error per locus in the Stage 3 meta-analysis 4 
SNP Chr Position Nearest Loci And 

Gene(s) 
Effect 
Allele 

Other 
Allele 

EAF 
EUR 

EAF 
ASN 

Z-score Direction P value HetISq HetPVal Sample 
Size (N) 

P value 
Replication  

rs12193446 6 129820038 BC035400,  LAMA2 A G 0.906 NA -19.43 -- 4.21E-84 16.8 5.72E-15 150,26

9 

4.60E-106 
rs524952 15 35005886 GOLGA8B, GJD2 A T 0.475 0.507 -17.08 -- 2.28E-65 67.2 0.015 160,15

0 

1.60E-103 
rs7744813 6 73643289 KCNQ5 A C 0.591 0.602 -14.56 -- 5.43E-48 35 0.001 160,09

1 

1.00E-75 
rs11602008 11 40149305 LRRC4C A T 0.822 0.749 13.98 ++ 2.12E-44 22.5 1.56E-10 157,50

5 

2.90E-47 
rs3138141 12 56115778 BLOC1S1-

RDH5,RDH5 

A C 0.214 0.147 13.8 ++ 2.46E-43 3.2 5.05E-07 157,53

1 

2.30E-56 
rs10500355 16 7459347 RBFOX1 A T 0.354 0.133 -13.73 -- 6.49E-43 9.1 2.93E-07 160,13

9 

2.50E-48 
rs72621438 8 60178580 SNORA51, CA8 C G 0.642 0.609 -13.14 -- 2.03E-39 38.4 0.006 160,12

8 

1.80E-49 
rs1550094 2 233385396 CHRNG, PRSS56 A G 0.701 0.705 12.74 ++ 3.64E-37 26.3 0.003 159,42

2 

4.10E-59 
rs2908972 17 11407259 SHISA6 A T 0.415 0.484 -11.13 -- 9.46E-29 23 0.254 160,12

3 

6.10E-29 
rs7829127 8 40726394 ZMAT4 A G 0.792 0.897 -10.91 -- 1.02E-27 15.9 2.77E-04 160,13

2 

3.10E-22 
rs6495367 15 79375347 RASGRF1 A G 0.408 0.399 -10.2 -- 1.95E-24 0 0.667 160,14

4 

7.20E-37 
rs11145465 9 71766593 TJP2 A C 0.212 NA -9.55 -- 1.35E-21 46.3 0.1722 153,17

4 

1.00E-10 
rs1649068 10 60304864 BICC1 A C 0.475 0.504 -9.44 -- 3.77E-21 0 0.712 160,14

4 

7.50E-11 
rs7692381 4 81903049 C4orf22, BMP3 A G 0.763 0.63 9.4 ++ 5.55E-21 0 0.013 160,13

4 

7.50E-13 
rs56075542 2 146882415 BC040861, 

PABPC1P2 

T G 0.552 0.472 -8.99 -- 2.39E-19 13.9 0.001 159,47

8 

1.30E-18 
rs7895108 10 79061458 KCNMA1 T G 0.351 0.118 -8.87 -- 7.56E-19 32.8 0.021 160,14

0 

1.10E-27 
rs7624084 3 141093285 ZBTB38 T C 0.568 0.633 -8.81 -- 1.24E-18 18.5 0.018 160,15

1 

6.50E-17 
rs62070229 17 31227593 MYO1D, TMEM98 A G 0.807 0.874 8.58 ++ 9.64E-18 0 0.416 156,57

0 

1.30E-18 
rs2855530 14 54421917 BMP4 C G 0.507 0.474 -8.58 -- 9.87E-18 41.7 0.19 160,09

2 

4.80E-22 
rs7662551 4 80537638 LOC100506035, 

PCAT4 

A G 0.723 0.558 8.53 ++ 1.47E-17 19.4 0.265 160,14

7 

6.00E-12 
rs9517964 13 100717833 ZIC2,PCCA T C 0.589 0.786 8.42 ++ 3.68E-17 0 0.02 160,12

1 

3.40E-20 
rs1954761 11 105596885 GRIA4 T C 0.371 0.377 -8.4 -- 4.57E-17 0 0.911 160,12

2 

1.20E-16 
rs745480 10 85986554 LRIT2,LRIT1 C G 0.511 0.418 8.31 ++ 9.26E-17 67.3 0.081 159,50

4 

8.20E-18 
rs2573081 2 178828507 PDE11A C G 0.524 0.538 8.21 ++ 2.18E-16 47.6 0.167 160,12

6 

1.60E-29 
rs17428076 2 172851936 HAT1, METAP1D C G 0.768 0.854 -8.18 -- 2.77E-16 0 0.003 160,15

1 

7.50E-08 
rs2155413 11 84634790 DLG2 A C 0.482 0.655 -7.76 -- 8.85E-15 0 2.99E-04 159,50

4 

1.10E-17 
rs11178469 12 71275137 PTPRR T C 0.752 0.638 -7.4 -- 1.33E-13 0 0.6989 160,13

9 

2.60E-04 
rs1858001 1 207488004 C4BPA,CD55 C G 0.676 0.415 7.28 ++ 3.45E-13 59.6 0.02 160,14

9 

6.70E-20 
rs4793501 17 68718734 KCNJ2, BC039327 T C 0.575 0.444 -7.21 -- 5.53E-13 0 0.592 160,15

0 

3.70E-12 
rs7042950 9 77149837 RORB A G 0.732 0.392 6.8 ++ 1.07E-11 0 0.912 160,15

3 

2.90E-18 
rs4687586 3 53837971 CACNA1D C G 0.691 NA -6.55 -- 5.86E-11 0 0.605 150,21

7 

1.60E-08 
rs2753462 14 60850703 JB175233, C14orf39 C G 0.296 0.568 -6.49 -- 8.37E-11 73.9 0.05 157,35

2 

2.00E-15 
rs837323 13 101175664 PCCA T C 0.512 0.762 6.32 ++ 2.65E-10 35.6 0.213 160,14

2 

5.30E-16 
rs17382981 10 94953258 CYP26A1,MYOF T C 0.417 0.19 -6.31 -- 2.72E-10 67.9 0.077 155,33

2 

4.10E-07 
rs79266634 16 7309047 RBFOX1 C G 0.093 0.115 -5.93 -- 3.00E-09 0 0.561 156,26

8 

1.50E-08 
rs235770 20 6761765 BMP2 T C 0.372 0.388 -5.93 -- 3.11E-09 0 0.547 157,52

1 

4.80E-11 

 5 

 6 

 7 
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Table 1b Subset of the new loci harboring the smallest p-values for refractive error in the Stage 3 meta-analysis 8 
SNP Chr Position Nearest Loci And 

Gene(s) 
Effect 
Allele 

Other 
Allele 

EAF 
EUR 

EAF 
ASN 

Z-score Direction P value HetISq HetPVal Sample 
Size (N) 

P value 
Replication 

rs36024104 14 42294993 LRFN5 A G 0.823 NA 9.09 ++ 9.86E-20 15.9 0.01414 152,585 2.20E-12 
rs1556867 1 164213686 5S_rRNA, PBX1 T C 0.264 0.494 -8.81 -- 1.29E-18 71.1 0.06266 160,155 4.20E-17 
rs2225986 1 200311910 LINC00862 A T 0.381 0.169 -7.96 -- 1.68E-15 40.2 0.196 160,152 7.50E-17 
rs1207782 6 22059967 LINC00340 T C 0.577 0.265 -7.92 -- 2.47E-15 0 0.8946 160,149 4.90E-13 
rs72826094 10 114801488 TCF7L2 A T 0.799 0.838 7.88 ++ 3.20E-15 64.5 0.09323 156,825 4.90E-02 
rs297593 2 157363743 GPD2 T C 0.286 0.257 -7.82 -- 5.45E-15 0 0.5285 159,461 7.80E-11 
rs5442 12 6954864 GNB3 A G 0.068 NA -7.82 -- 5.48E-15 8.8 0.03693 146,217 1.20E-33 
rs10880855 12 46144855 ARID2 T C 0.507 0.464 -7.78 -- 7.35E-15 0 0.9683 160,144 4.80E-08 
rs2150458 21 47377296 PCBP3, COL6A1 A G 0.455 0.641 7.74 ++ 1.04E-14 55.7 0.1329 160,151 1.80E-13 
rs12898755 15 63574641 APH1B A G 0.245 0.456 7.53 ++ 4.98E-14 7.9 0.2974 159,506 1.40E-16 
rs7122817 11 117657679 DSCAML1 A G 0.507 0.662 7.51 ++ 5.73E-14 73.8 0.05077 160,147 1.10E-10 
rs10511652 9 18362865 SH3GL2, ADAMTSL1 A G 0.416 0.445 7.36 ++ 1.91E-13 44.8 0.1782 160,149 3.50E-18 
rs11101263 10 49414181 FRMPD2 T C 0.258 0.105 -7.33 -- 2.33E-13 0 0.3477 160,155 2.20E-13 
rs11118367 1 219790221 LYPLAL1 T C 0.482 0.630 -7.29 -- 3.16E-13 0 0.8576 160,141 1.20E-13 
rs9395623 6 50757699 TFAP2D, TFAP2B A T 0.315 0.381 7.25 ++ 4.16E-13 0 0.9579 160,151 2.20E-10 
rs284816 8 53362145 ST18, FAM150A A G 0.163 0.198 -7.21 -- 5.52E-13 0 0.9242 160,140 1.60E-08 
rs12965607 18 47391025 MYO5B T G 0.857 0.923 7.07 ++ 1.52E-12 20.8 0.01674 157,604 8.10E-16 
rs7747 4 80827062 ANTXR2 T C 0.202 0.093 7.03 ++ 2.05E-12 5.4 0.01267 150,327 7.70E-16 
rs12451582 17 54734643 NOG, C17orf67 A G 0.369 0.308 7.02 ++ 2.22E-12 0 0.5925 160,155 8.80E-18 
rs80253120 17 14138507 CDRT15 T C 0.626 0.723 6.97 ++ 3.25E-12 58.6 0.12 156,054 7.20E-11 
rs7968679 12 9313304 PZP A G 0.700 0.894 6.95 ++ 3.65E-12 0 0.01951 160,076 4.20E-10 
rs11202736 10 90142203 RNLS A T 0.717 0.762 -6.92 -- 4.53E-12 0 0.4007 160,150 9.40E-07 
rs72655575 8 60556509 SNORA51, CA8 A C 0.201 0.124 6.87 ++ 6.54E-12 0 0.8811 156,566 7.10E-07 
rs1790165 11 131928971 NTM A C 0.411 0.283 6.85 ++ 7.17E-12 0 0.003708 160,131 1.80E-10 
rs511217 11 30029948 METTL15, KCNA4 A T 0.738 0.729 -6.79 -- 1.10E-11 0 0.3626 160,143 1.40E-17 

 9 
We identified 140 loci for refractive error with genome-wide significance (P < 5 × 10−8) on the basis of the meta-analyses of the genome-wide 10 

single-variant linear regressions performed in 160,420 participants of mixed ancestries (CREAM-ASN, CREAM-EUR and 23andMe). Shown are 11 

the replication of the previously found loci from HapMap II and a subset of the new loci harboring the smallest P values. For each locus, 12 

represented by an index variant (the variant with smallest p-value in that locus), Effect Allele, Other Allele, effect allele frequencies per ancestry 13 

(EAF AZN and EAF EUR), effect size (Z-score), direction of the effect (Direction), the P value, heterogeneity I square (HetISq), heterogeneity P 14 

value (HetPval), Sample Size (N), and P value of the replication in UK Biobank are shown (Full table: Supplementary Table 2). Chr, 15 

chromosome; EAF, effect allele frequency; ASN, Asian; EUR, European; GWS, genome wide significant. 16 



3 

 

Table 2. Genetic correlation for refractive error between Europeans and East Asians 17 

Sample 1 Sample 2 Genetic effect 
correlation (pge) a 

Standard 
error pge 

P value 
pge 

Genetic impact 
correlation (pgi) a 

Standard error 
pgi 

P value 
pgi 

EUR CREAM 
EAS 
CREAM 

0.804 0.041 1.83E-06 0.888 0.061 0.065 

EUR 
23andMe  

EAS 
CREAM 

0.788 0.041 2.48E-07 0.865 0.054 0.014 

Abbreviations: EUR, European; EAS, East Asian. 

a P-value relates to a test of the null hypothesis that pge=1 or pgi=1. 

 18 

We calculated the genetic correlation of effect (pge) and impact (pgi) using Popcorn to compare the genetic associations between Europeans 19 

(CREAM-EUR, N= 44,192; 23andMe, N=104,292) and East Asians (CREAM-ASN, N= 9,826). Reference panels for Popcorn were constructed 20 

using genotype data for 503 EUR and 504 EAS individuals sequenced as part of the 1000 Genomes Project. SNPs used had a MAF of at least 5% 21 

in both populations, resulting in a final set of 3,625,602SNPs for the analyses using the 23andMe GWAS sample and 3,642,928 SNPs for those 22 

using the CREAM-EUR sample. These findings support a largely common genetic predisposition to refractive error and myopia in Europeans and 23 

Asians, although ancestry-specific risk alleles may exist.  24 
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ONLINE METHODS 

Ethics Statement 

All human research was approved by the relevant institutional review boards and conducted according 

to the Declaration of Helsinki. All CREAM participants provided written informed consent; all 

23andMe applicants provided informed consent online, and answered surveys according to 23andMe’s 

human subjects protocol, which was reviewed and approved by Ethical & Independent Review 

Services, an AAHRPP-accredited institutional review board. The UK Biobank received ethical 

approval from the National Health Service National Research Ethics Service (reference 11/NW/0382). 

Study data 

The study populations were participants of the Consortium for Refractive Error and Myopia 

(CREAM) comprising of 41,793 individuals with European ancestry from 26 cohorts (CREAM-EUR) 

and 11,935 individuals with Asian ancestry from 8 studies (CREAM-ASN); and customers of the 

23andMe genetic testing company who gave informed consent for inclusion in research studies 

consisting of 104,293 individuals (2 cohorts of individuals with European ancestry, N = 12,128 and N= 

92,165, respectively). All participants included in this analysis from CREAM and 23andMe were aged 

25 years or older. Participants with conditions that could alter refraction, such as cataract surgery, laser 

refractive procedures, retinal detachment surgery, keratoconus as well as ocular or systemic 

syndromes were excluded from the analyses. Recruitment and ascertainment strategies varied per 

study (Supplementary Table 1a,b, and Supplementary Note). Refractive error represented by 

measurements of refraction and analyzed as spherical equivalent (SphE =spherical refractive error + 

1/2 cylinder refractive error) was the outcome variable for CREAM; myopic refractive error 

represented by self-reported age of diagnosis of myopia (AODM) for 23andMe27. 

Genotype calling and imputation 



5 

 

Samples were genotyped on different platforms and study specific quality control measures of the 

genotyped variants were implemented before association analysis (Supplementary Table 1b). 

Genotypes were imputed using the appropriate ancestry-matched reference panel for all cohorts from 

the 1000 Genomes Project (Phase I version 3, March 2012 release) with either minimac100 or 

IMPUTE101. The metrics for pre-imputation quality control varied amongst studies, but genotype call 

rate thresholds were set at high level (≥0.95 for both CREAM and 23andMe). These metrics were 

similar to our previous GWAS analyses26,27; details per cohort can be found in Supplementary Table 

1b. 

GWAS per study  

For each CREAM cohort, a single marker analysis for the SphE (in diopters) phenotype was carried 

out using linear regression adjusting for age, sex and up to the first five principal components. All 

non-family-based cohorts removed one of each pair of relatives (after detection using either GCTA or 

IBS/IBD analysis). In family-based cohorts, a score test-based association was used to adjust for 

within-family relatedness102. For the 23andMe participants, Cox proportional hazards analysis testing 

AODM as the dependent variable were performed as previously described27, with P calculated using a 

likelihood ratio test for the single marker genotype term. We used an additive SNP allelic effect model 

for all analyses.  

 

Centralized quality control per study 

After individual GWAS, all studies underwent a second round of quality control (QC). Quantile-

quantile, effect allele frequency, P – Z test, standard error – sample size, and genomic control inflation 

factor plots were generated for each individual cohort using EasyQC103 (Supplementary Figure 2.1 ( 

Supplementary Figure 2.1.1 and 2.1.2), 2.2 (Supplementary Figure 2.2.1 – 2.2.5), 2.3 (Supplementary 

Figure 2.3.1 and 2.3.2). All analytical issues discovered during this QC step were resolved per 

individual cohort. 
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GWAS meta-analyses 

The GWAS meta-analyses were performed in three stages (Supplementary Figure 1). In Stage 1, 

European (CREAM-EUR, N=44,192) and Asian (CREAM-ASN, N=11,935) participants from the 

CREAM cohort were meta-analysed separately. Subsequently, all CREAM cohorts (CREAM-ALL) 

were meta-analysed. Variants with MAF < 1% or imputation quality score < 0.3 (info metric of 

IMPUTE) or Rsq < 0.3 (minimac) were excluded. A fixed effects inverse variance-weighted meta-

analysis was performed using METAL104. 1,063 variants clustering in 24 loci (Supplementary Table 2) 

were genome-wide significant (P=5.0x10-8). All 37 loci that were previously found by CREAM and 

23andMe using genotype data imputed to the HapMap II reference panel were replicated (pBonferroni 

1.85x10-3), and 36 of the 37 were genome-wide significant (Supplementary Table 2)26,27. In Stage 2, a 

meta-analysis of the two 23andMe cohorts (N23andMe_V2=12,128; N23andMe_V3=92,165) was performed, 

using similar filtering but a lower MAF threshold (< 0.5%). A total of 5,205 genome-wide significant 

variants clustered in 112 loci (Supplementary Table 2).  

In Stage 3, CREAM-ALL and 23andMe samples were combined using a fixed effects meta-

analysis based on P value and direction of effect. In all stages, each genetic variant had to be 

represented by at least half of the entire study population and at least represented by 13 cohorts in 

CREAM and one cohort in 23andMe. For SNPs with high heterogeneity (at P < 0.05), we also 

performed a random effects meta-analysis using METASOFT50. We chose a different weighting 

scheme due to the differences in effect size scaling; 23andMe used a less accurate phenotype variable 

(AODM); i.e. the effective sample size of the 23andMe was approximately equivalent to the effective 

sample size of CREAM-ALL (Figure 2b), thus weighting by (1/neffective) yielded a final weighting 

ratio of 1:1105. Genome-wide statistical significance was defined at P < 5.0 × 10-8 106.  

All three meta-analysis stages were performed under genomic control. Study specific and 

meta-analysis lambda (λ) estimates are shown in Supplementary Figure 6; to check for confounding 

biases (e.g. cryptic relatedness and population stratification), LD score intercepts from LD score 

regressions per ancestry were constructed (Supplementary Figure 7)30. To check the robustness of 

signals, we performed a conventional random effects models using METASOFT, fixed effects models 



7 

 

weighted on sample size and on weights estimated from standard error per allele tested using METAL 

(Supplementary Table 2 and Supplementary Table 3). 

Manhattan (modified version of package ‘qqman’), regional, box, and forest plots were made using R 

version 3.2.3 and LocusZoom107. An overview of the Hardy Weinberg P of all index variants per 

cohort can be found in Supplementary Table 4. The comparison between refractive error and age-of-

onset was performed using the LDSC program30.  

 

Population stratification and heritability calculations 

Each study assessed the degree of genetic admixture and stratification in their study participants 

through the use of principal components. Homogeneity of participants was assured by removal of all 

individuals whose ancestry did not match the prevailing ancestral group. We used genomic inflation 

factors to control for admixture and stratification, and performed genomic-controlled meta-analysis to 

account for the effects of any residual heterogeneity. To further distinguish between inflation from a 

true polygenic signal and population stratification, we examined the relationship between test statistics 

and linkage disequilibrium (LD) with LDSC. CREAM-EUR, CREAM-ASN and 23andMe were 

evaluated separately; variants not present in HapMap3 and MAF < 1% were excluded. SNP 

heritability estimates were calculated using LDSC for the same set of genetic variants. 

Locus definition and annotation 

All study effect size estimates were oriented to the positive strand of the NCBI Build 37 reference 

sequence of the human genome. The index variant of a locus was defined as the variant with the 

lowest P in a region spanning a 100 kb window of the most outer genome-wide significant variant of 

that same region. We annotated all index variants using the web-based version of ANNOVAR108 based 

on UCSC Known Gene Database35. For variants within the coding sequence or 5’ or 3’ untranslated 

regions of a gene, that gene was assigned to the index variant (note that this led to more than 1 gene 

being assigned to variants located within the transcription units of multiple, overlapping genes). For 

variants in intergenic regions, the nearest 5’ gene and the nearest 3’ gene were assigned to the variant. 
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Index variants were annotated to functional RNA elements when described as such in the UCSC 

Known Gene Database. We used conservation (PhyloP109) and prediction tools (SIFT39, Mutation 

Taster110, align GVGD40,41, PolyPhen-236) to predict the pathogenicity of protein-altering exonic 

variants.  

 

Conditional signal analysis 
 

We performed conditional analysis to identify additional independent signals nearby the index variant 

at each locus, using GCTA-COJO32. We transformed the Z-scores of the summary statistics to beta’s 

using the following formula: Standard Error = √1/2 ∗ 𝑁 ∗ 𝑀𝐴𝐹(1 − 𝑀𝐴𝐹) . We performed the 

GCTA-COJO analysis32, utilizing summary-level statistics from the meta-analysis on all cohorts. 

Linkage disequilibrium (LD) between variants was estimated from the Rotterdam Study I-III.  

 

Replication in UK Biobank  

The UK Biobank Eye & Vision (UKEV) Consortium performed a GWAS of refractive error in 95,505 

participants of European ancestry aged 37-73 year with no history of eye disorders33. Refractive error 

was measured using an autorefractor; SphE was calculated per eye and averaged between the two 

eyes. To account for relatedness a mixed model analysis with BOLT-LMM was used111, including age, 

gender, genotyping array, and the first 10 principal components as covariates. Analysis was restricted 

to markers present on the HRC reference panel112. We performed lookups for all independent genetic 

variants identified in our Stage 3 meta-analysis and conditional analysis. For 16 variants not present in 

UKEV, we performed lookups for a surrogate variant in high LD (r2 >0.8). When more than one 

potential surrogate variant was available, the variant in strongest LD with the index variant was 

selected. Six variants were not available for replication: one variant (rs188159083) was not present on 

the array nor was a surrogate available in UKEV and five variants showed evidence of departure from 

HWE (HWE exact test P<3.0x10-4). 

 

Post-GWAS analyses  
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We performed two gene-based tests to identify additional significant genes not found in the single 

variant analysis. First, we applied the gene-based test implemented in fastBAT42 to the per-variant 

summary statistics of the meta-analysis of all European cohorts (23andMe and CREAM-EUR). We 

used the default parameters (all variants in or within 50kb of a gene) and focused on variants with a 

gene-based P <2 x 10-6 (Bonferroni correction based on 25,000 genes) and the per-variant P >5 x 10-8. 

Secondly, we applied another gene-based test in EUGENE43 which only includes variants which are 

eQTLs (GTex, blood113). EUGENE tests an hypothesis predicated on eQTLs as key drivers of the 

association signal. eQTLs within 50kb of a gene were included in the test. Genes with EUGENE P <2 

x 10-6 (and not found in the single variant analysis) were considered to be significant. Finally, we used 

functional annotation information from genome-wide significant loci to reweigh results using fgwas 

(version 0.3.6444). Fgwas incorporates functional annotation (e.g. DNase I-hypersensitive sites in 

various tissues and 3’UTR regions) to reweight data from GWAS, and uses a Bayesian model to 

calculate a posterior probability of association. This approach is able to identify risk loci that 

otherwise might not reach the genome-wide significance threshold in standard GWAS. Details about 

this approach can be found in Supplementary Note.  

 

Refractive errors and myopia risk prediction 

To assess the risk of the entire range of refractive errors, we computed polygenic risk scores (PGRS) 

for the population-based Rotterdam Studies (RS) I, RS-II and RS-III using the P and Z scores from a 

meta-analysis on CREAM-ALL and 23andMe, excluding the RS I-III cohorts. Only variants with high 

imputation quality (IMPUTE info score > 0.5 or minimac Rsq > 0.8) and MAF > 1% were considered. 

P-based clumping was performed with PLINK114, using an r2 threshold of 0.2 and a physical distance 

threshold of 500 kb, excluding the MHC region. This resulted in a total of 243,938 variants. For each 

individual in RS-I, RS-II and RS-III (N = 10,792), PGRS were calculated using the --score command 

in PLINK across strata of P thresholds: 5.0 x 10-8, 5.0 x 10-7, 5.0 x 10-6, 5.0 x 10-5, 5.0 x 10-4, 0.005, 

0.01, 0.05, 0.1, 0.5, 0.8 and 1.0. The proportion of variance explained by each PGRS model was 
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calculated as the difference in the R2 between two regression models; one where SphE was regressed 

on age, sex, the first five principal components, and the other also including the PGRS as an additional 

covariate. Subsequently, AUCs were calculated for myopia (SphE ≤ -3 SD) versus hyperopia (SphE ≥ 

+3 SD). 

 

Genetic correlation between ancestries 

We used Popcorn48 to investigate ancestry-related differences in the genetic architecture of refractive 

error and myopia. Popcorn takes summary GWAS statistics from two populations and LD information 

from ancestry-matched reference panels, and computes genetic correlations by implementing a 

weighted likelihood function that accounts for the inflation of Z scores due to LD. Pairwise analyses 

were carried out using the GWAS summary statistics from 23andMe (N = 104,292), CREAM-EUR (N 

= 44,192) and CREAM-EAS (N = 9,826) meta-analyses. Only SNPs with MAF ≥ 5% were included, 

resulting in a final set of 3,625,602 SNPs for analyses involving 23andMe and 3,642,928 SNPs for the 

CREAM-EUR versus CREAM-EAS analysis. Reference panels were constructed using genotype data 

from 503 European and 504 East Asian individuals sequenced as part of the 1000 Genomes Project 

(release 2013-05-02 downloaded from: ftp.1000genomes.ebi.ac.uk). The reference panel VCF files 

were filtered using PLINK114 to remove indels, strand-ambiguous variants, variants without an “rs” id 

prefix, and variants located in the MHC region on chromosome 6 (chr6:25,000,000-33,500,000; Build 

37). 

  

Analysis between phenotypes 

To evaluate consistency of genotypic effects across studies that employed different phenotype 

definitions, we compared effect sizes from GWAS studies of either SphE or AODM in Europeans, i.e. 

CREAM-EUR (N = 44,192) or 23andMe (N = 104,293) respectively. Marker-wise additive genetic 

effect sizes (in units diopters per copy of the risk allele) for SphE were compared against those (in 

units log(HR) per copy of the risk allele) for AODM. Data was visualised using R. Genetic correlation 
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between the two phenotypes SphE and AODM was calculated using LD score regression. This 

analysis included all common SNPs (MAF > 0.01) present in HapMap3. 

 

Evidence for functional involvement 

In order to rank genes according to biological plausibility, we scored annotated genes based on our 

own findings and published reports for a potential functional role in refractive error. Points were 

assigned for each gene on the basis of 10 categories (details on the methodology per category are 

provided in Supplementary Note): internal replication of index genetic variants in the individual 

cohort GWAS analyses through Bonferroni corrections (CREAM-ASN, CREAM-EUR and 23andMe; 

pBonferroni 1.19 x 10-4), evidence for eQTL using the FUMA32 and extensive look-ups in GtEx, 

evidence of expression in the eye in developmental and adult ocular tissues, presence of an eye 

phenotype in knock-out mice (MGI and IMPC database), presence of an eye phenotype in humans 

(OMIM; see URLs, DisGeNET115), location in a functional region of a gene (wANNOVAR; see 

URLs), presence of the gene in a significant enriched functional pathway with false discovery rate < 

0.05 (DEPICT49), presence of the gene in the gene priority analysis of DEPICT with false discovery 

rate < 0.05 and the presence of the gene in the canonical pathway analysis of Ingenuity Pathway 

Analysis (IPA; See URLs). Furthermore, we performed a systematic search for each gene to assess its 

potential as a drug target (SuperTarget116, STITCH117, DrugBank118, PharmaGkb119). All information 

derived from this study and literature were used to annotate genes to retinal cell types. 

 

Genetic pleiotropy  

To investigate overlap of genes with other common traits, we performed a look-up in the GWAS 

catalog using FUMA. Multiple testing correction (i.e. Benjamini-Hochberg) was performed. Traits 

were significantly associated when adjusted P ≤ 0.05 and the number of genes that overlap with the 

GWAS catalog gene sets was ≥ 2.  

 

Data availability statement 
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The summary statistics of the Stage 3 meta-analysis are included in Supplementary Data 3 of this 

published article. In order to protect the privacy of the participants in our cohorts, further summary 

statistics of Stage 1 (CREAM) and Stage 2 (23andMe) will be available upon request. Please contact 

c.c.w.klaver@erasmusmc.nl (CREAM) and/or apply.research@23andMe.com (23andMe) for more 

information and to access the data.
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