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susceptibility genes for breast cancer
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Abstract:

Breast cancer risk variants identified in genome-wide association studies explain only a small

fraction of familial relative risk, and genes responsible for these associations remain largely

unknown. To identify novel risk loci and likely causal genes, we performed a transcriptome-wide

association study evaluating associations of genetically predicted gene expression with breast

cancer risk in 122,977 cases and 105,974 controls of European ancestry. We used data from the

Genotype-Tissue Expression Project to establish genetic models to predict gene expression in

breast tissue and evaluated model performance using data from The Cancer Genome Atlas. Of

the 8,597 genes evaluated, significant associations were identified for 48 at a Bonferroni-

corrected threshold of P < 5.82×10-6, including 14 genes at loci not yet reported for breast

cancer. We silenced 13 genes and showed an effect for 11 on cell proliferation and/or colony

forming efficiency. Our study provides new insights into breast cancer genetics and biology.
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Breast cancer is the most common malignancy among women in many countries1. Genetic

factors play an important role in its etiology. Since 2007, genome-wide association studies

(GWAS) have identified approximately 170 genetic loci harboring common, low-penetrance

variants for breast cancer6-13, but these variants explain less than 20% of familial relative risk7.

Most disease-associated risk variants identified by GWAS are located in non-protein coding

regions and are not in linkage disequilibrium (LD) with any nonsynonymous coding single

nucleotide polymorphisms (SNPs)14. Many of these susceptibility variants are located in gene

regulatory elements15,16, and it has been hypothesized that many GWAS-identified associations

may be driven by the regulatory function of risk variants on the expression of nearby genes. For

breast cancer, recent studies have already shown that GWAS-identified associations at more than

15 loci are likely due to the effect of risk variants at these loci on regulating the expression of

either nearby or more distal genes7,9,10,13,17-22. However, for the large majority of the GWAS-

identified breast cancer risk loci, the genes responsible for the associations remain unknown.

Several studies have reported that regulatory variants may account for a large proportion of

disease heritability not yet discovered through GWAS23-25. Many of these variants may have a

small effect size, and thus are difficult to identify in individual SNP-based GWAS, even with a

large sample size. Applying gene-based approaches that aggregate the effects of multiple

variants into a single testing unit may increase study power to identify novel disease-associated

loci. Transcriptome-wide association studies (TWAS) systematically investigate the association

of genetically predicted gene expression with disease risk, providing an effective approach to

identify novel susceptibility genes26-29. Recently, Hoffman et al performed a TWAS including

15,440 cases and 31,159 controls and reported significant associations for five genes with breast
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cancer risk30. However, the sample size of that study was relatively small and several reported

associations were not significant after Bonferroni correction. Herein, we report results from a

larger TWAS of breast cancer that used the MetaXcan method26 to analyze summary statistics

data from 122,977 cases and 105,974 controls of European descent from the Breast Cancer

Association Consortium (BCAC).

Results

Gene expression prediction models

The study design is shown in Supplementary Figure 1. We used transcriptome and genotyping

data from 67 women of European descent included in the Genotype-Tissue Expression (GTEx)

project to build genetic models to predict RNA expression levels for each gene expressed in

normal breast tissues, by applying the elastic net method (α=0.5) with ten-fold cross-validation. 

Genetically regulated expression was estimated using variants within a 2 MB window flanking

the respective gene boundaries, inclusive. SNPs with a minor allele frequency of at least 0.05 and

included in the HapMap Phase 2 were used for model building. Of the models built for 12,696

genes, 9,109 showed a prediction performance (R2) of at least 0.01 (≥10% correlation between 

predicted and observed expression). For genes for which the expression could not be predicted

well using this approach, we built models using only SNPs located in the promoter or enhancer

regions, as predicted using three breast cell lines in the Roadmap Epigenomics

Project/Encyclopedia of DNA Elements Project. This approach leverages information from

functional genomics and reduces the number of variants for variable selection, therefore

potentially improving statistical power. This enabled us to build genetic models for additional

3,715 genes with R2≥0.01. Supplementary Table 1 provides detailed information regarding the
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performance threshold and types of models built. Overall, genes that were predicted with

R2≥0.01 in GTEx data were also predicted well in The Cancer Genome Atlas (TCGA) tumor-

adjacent normal tissue data (correlation coefficient of 0.55 for R2 in two datasets;

Supplementary Figure 2). Based on model performance in GTEx and TCGA, we prioritized

8,597 genes for analyses of the associations between predicted gene expression and breast cancer

risk using the following criteria: 1) genes with a model prediction R2≥0.01 in the GTEx set (10% 

correlation) and a Spearman’s correlation coefficient of >0.1 in the external validation

experiment, 2) genes with a prediction R2≥0.09 (30% correlation) in the GTEx set regardless of 

their performance in the TCGA set, 3) genes with a prediction R2≥0.01 in the GTEx set (10% 

correlation) that could not be evaluated in the TCGA set because of a lack of data.

Associations of predicted expression with breast cancer

Using the MetaXcan method26, we performed association analyses to evaluate predicted gene

expression and breast cancer risk using the meta-analysis summary statistics of SNPs generated

for 122,977 cases and 105,974 controls of European ancestry included in BCAC. For the

majority of the tested genes, most of the SNPs selected for prediction models were used for the

association analyses (e.g., ≥80% predicting SNPs used for 95.6% of the tested genes). Lambda 

1,000 (λ1,000), a standardized estimate of the genomic inflation scaling to a study of 1,000 cases

and 1,000 controls, was 1.004 in our study (Quantile-quantile (QQ) plot presented in

Supplementary Figure 3 (a)). Of the 8,597 genes evaluated, we identified 179 whose predicted

expression was associated with breast cancer risk at P<1.05×10-3, a FDR-corrected significance

level (Figure 1, Supplementary Table 2). Of these, 48 showed a significant association at the

Bonferroni-corrected threshold of P≤5.82×10-6 (Figure 1, Tables 1-3), including 14 genes
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located at 11 loci that are 500 kb away from any risk variant identified in previous GWAS

(Table 1). An association between lower predicted expression and increased breast cancer risk

was detected for LRRC3B (3p24.1), SPATA18 (4q12), UBD (6p22.1), MIR31HG (9p21.3),

RIC8A (11p15.5), B3GNT1 (11q13.2), GALNT16 (14q24.1) and MAN2C1 and CTD-2323K18.1

(15q24.2). Conversely, an association between higher predicted expression and increased breast

cancer risk was identified for ZSWIM5 (1p34.1), KLHDC10 (7q32.2), RP11-867G23.10

(11q13.2), RP11-218M22.1 (12p13.33) and PLEKHD1 (14q24.1). The remaining 34 associated

genes are located at known breast cancer susceptibility loci (Tables 2-3). Among them, 23 have

not yet been implicated as genes responsible for association signals identified at these loci

through expression quantitative trait loci (eQTL) and/or functional studies, and do not harbor

GWAS or fine-mapping identified risk variants (Table 2), while the other eleven (KLHDC7A7,

ALS2CR1231, CASP831,32, ATG109, SNX3233, STXBP434,35 , ZNF4048, ATP6AP1L9, RMND117,

L3MBTL36, and RCCD110) had been reported as potential causal genes at breast cancer

susceptibility loci or harbor GWAS or fine-mapping identified risk variants (Table 3). Except for

RP11-73O6.3 and L3MBTL3, there was no evidence of heterogeneity (I2<0.2) across the iCOGS,

OncoArray, and GWAS datasets included in our analyses (Supplementary Table 3). Overall,

we identified 37 novel susceptibility genes for breast cancer and confirmed eleven genes known

to potentially play a role in breast cancer susceptibility.

To determine whether the associations between predicted gene expression and breast cancer risk

were independent of GWAS-identified association signals, we performed conditional analyses

adjusting for the GWAS-identified risk SNPs closest to the TWAS-identified gene

(Supplementary Table 4)36. We found that the associations for 11 genes (LRRC3B, SPATA18,
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KLHDC10, MIR31HG, RIC8A, B3GNT1, RP11-218M22.1, MAN2C1, CTD-2323K18.1 (Table

1), ALK, CTD-3051D23.1 (Table 2)) remained statistically significant at P<5.82×10-6 (Tables 1-

3). This suggests the expression of these genes may be associated with breast cancer risk

independent of the GWAS-identified risk variant(s). For nine of the genes (SPATA18,

KLHDC10, MIR31HG, RIC8A, RP11-218M22.1, MAN2C1, CTD-2323K18.1 (Table 1), ALK,

and CTD-3051D23.1 (Table 2)), the significance of the association remained essentially

unchanged, suggesting these associations may be entirely independent of GWAS-identified

association signals.

Of the 131 genes showing an association at 5.82×10-6 < P <1.05×10-3 (significant after FDR-

correction but not Bonferroni-correction), 38 are located at GWAS-identified risk loci (Table 4).

Except for RP11-400F19.8, there was no evidence of heterogeneity in TWAS association

(I2<0.2) across the iCOGS, OncoArray, and GWAS studies (Supplementary Table 3). After

adjusting for the risk SNPs, associations for MTHFD1L, PVT1, RP11-123K19.1, FES, RP11-

400F19.8, CTD-2538G9.5, and CTD-3216D2.5 remained significant at p≤1.05×10-3, again

suggesting that the association of these genes with breast cancer risk may be independent of the

GWAS-identified association signals (Table 4).

For 41 of the 48 associated genes that reached the Bonferroni-corrected significant level, we

obtained individual-level data from subjects included in the iCOGS (n=84,740) and OncoArray

(n=112,133) datasets, which was 86% of the subjects included in the analysis using summary

statistics (Supplementary Table 5). The results from the analysis using individual-level data

were very similar to those described above using MetaXcan analyses (Pearson correlation of z-
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scores was 0.991 for iCOGS data and 0.994 for OncoArray data), although not all associations

reached the Bonferroni-corrected significant level, possibly due to a smaller sample size

(Supplementary Table 5). Conditional analyses using individual level data also revealed

consistent results compared with analyses using summary data. We found that for several genes

within the same genomic region, their predicted expression was correlated with each other

(Tables 1-3). The associations between predicted expression of PLEKHD1 and ZSWIM5 and

breast cancer risk were largely influenced by their corresponding closest risk variants identified

in GWAS, although these risk variants are >500 kb away from these genes (Table 1). There were

significant correlation of rs999737 and rs1707302 with genetically predicted expression of

PLEKHD1 (r = -0.47 in OncoArray dataset and -0.48 in iCOGS dataset) and ZSWIM5 (r = 0.50

in OncoArray dataset and 0.51 in iCOGS dataset), respectively.

INQUISIT algorithm scores

For the 48 associated genes after Bonferroni correction, we assessed their integrated expression

quantitative trait and in silico prediction of GWAS target (INQUISIT) scores7 to assess whether

there are other evidence beyond the scope of eQTL for supporting our TWAS-identified genes as

candidate target genes at GWAS-identified loci. The detailed methodology for INQUISIT scores

have been described elsewhere7. In brief, a score for each gene-SNP pair is calculated across

categories representing potential regulatory mechanisms - distal or proximal gene regulation

(promoter). Features contributing to the score are based on functionally important genomic

annotations such as chromatin interactions, transcription factor binding, and eQTLs. Compared

with evidence from eQTL only, INQUISIT scores incorporate additional lines of evidence,

including distal regulations. The INQUISIT scores for our identified genes are shown in
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Supplementary Table 6. Except for UBD with a very low score in the distal regulation category

(0.05), none of the genes at novel loci (Table 1) showed evidence to be potential target genes for

GWAS-identified breast cancer susceptibility loci. This is interesting and within the expectation

since these genes may represent novel association signals. There was evidence suggesting that

RP11-439A17.7, NUDT17, ANKRD34A, BTN3A2, AP006621.6, RPLP2, LRRC37A2, LRRC37A,

KANSL1-AS1, CRHR1 and HAPLN4 listed in Table 2, and all eleven genes listed in Table 3, may

be target genes for risk variants at these loci (Supplementary Table 6). For NUDT17,

ANKRD34A, RPLP2, LRRC37A2, LRRC37A, KANSL1-AS1, CRHR1, HAPLN4, KLHDC7A,

ALS2CR12, CASP8, ATG10, ATP6AP1L, L3MBTL3, RMND1, SNX32, RCCD1, STXBP4 and

ZNF404, the INQUISIT scores were not derived only from eQTL data, providing orthogonal

support for these genes. For these loci, the associations of candidate causal SNPs with breast

cancer risk may be mediated through these genes. This is in general consistent with the findings

from the conditional analyses.

Pathway enrichment analyses

Ingenuity Pathway Analysis (IPA)37 suggested potential enrichment of cancer-related functions

for the identified protein-coding genes (Supplementary Table 7). The top canonical pathways

identified included apoptosis related pathways (Granzyme B signaling (p=0.024) and cytotoxic T

lymphocyte-mediated apoptosis of target cells (p=0.046)), immune system pathway

(inflammasome pathway (p=0.030)), and tumoricidal function of hepatic natural killer cells

(p=0.036). The identified pathways are largely consistent with previous findings 7. For the

associated lncRNAs, pathway analysis of their highly co-expressed protein-coding genes also

revealed potential over-representation of cancer-related functions (Supplementary Table 7).
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In vitro assays of gene functions

To assess the function of genes whose high predicted expression were associated with increased

breast cancer risk, we selected 13 genes for knockdown experiments in breast cells: ZSWIM5,

KLHDC10, RP11-218M22.1 and PLEKHD1 (Table 1), UBLCP1, AP006621.6, RP11-467J12.4,

CTD-3032H12.1 and RP11-15A1.7 (Table 2), and ALS2CR12, RMND1, STXBP4 and ZNF404

(Table 3). As negative controls, we selected B2M, ARHGDIA and ZAP70 using the criteria: 1)

≥2 MB from any known breast cancer risk locus; 2) not an essential gene in breast cancer38,39;

and 3) not predicted to be a target gene in INQUISIT. In addition, as positive controls, we

included PIDD1 (Table 4)7, NRBF220 and ABHD822, which have been functionally validated as

target genes at breast cancer risk loci. We performed quantitative PCR (qPCR) on a panel of

three ‘normal’ mammary epithelial and 15 breast cancer cell lines to analyze their expression

levels (Supplementary Figure 4 and Supplementary Table 8). All 19 genes were expressed in

the normal mammary epithelial line 184A140 and the luminal breast cancer cell lines, MCF7 and

T47D, so we used these cell lines for the proliferation assay, and MCF7 for the colony formation

assay41. We also evaluated SNX32, ALK and BTN3A2 by qPCR, but they were not expressed in

T47D and MCF7 cells; therefore they were not evaluated further. It was difficult to design

siRNAs against RP11-867G23.1 and RP11-53O19.1 because they both have multiple transcripts

with limited, GC-rich regions in common. We did not include RPLP2 because it is already

known to be an essential gene for breast cancer survival42. Knockdown of the 19 tested genes

was achieved by small short interfering RNA (siRNA) (Supplementary Table 9) and the

knockdown efficiency was calculated in 184A1, MCF7 and T47D for each siRNA pair. Robust
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knockdown of the gene of interests (GOI) was validated by qPCR with the majority of the

siRNAs (Supplementary Figure 5).

To evaluate the survival and proliferation ability of cells following gene interruption, we used an

IncuCyte to quantify cell proliferation in real time and quantified the corrected proliferation of

cells with knocking down of GOI in comparison to that of cells with non-target control (NTC)

siRNA). As expected, knockdown of the three negative control genes (B2M, ARHGDIA and

ZAP70) did not significantly change cell proliferation in any of the three cell lines (Figure 2A,

Supplementary Figure 6). However, with the exception of UBLCP1, RMND1 and STXBP4,

knockdown of all other genes (11 TWAS-identified genes along with two known genes, ABHD8

and NRBF2) resulted in significantly decreased cell proliferation in 184A1 normal breast cells,

with KLHDC10, PLEKHD1, RP11-218M22.1, AP006621.6, ZNF404, RP11-467J12.4, CTD-

3032H12.1 and STXBP4 showing a similar effect in one or both cancer cell lines. Down-

regulation of three lncRNAs (RP11-218M22.1, RP11-467J12.4 and CTD-3032H12.1) resulted in

significant reduction in cell proliferation in all three cell lines. We also evaluated the effect of

inhibition of these genes on colony forming ability in MCF7 cells. Knockdown of the three

negative control genes did not significantly affect colony forming efficiency (CFE). By contrast,

knockdown of PIDD1, RP11-15A1.7, RP11-218M22.1, AP006621.6, ZNF404, RP11-467J12.4

and CTD-3032H12.1 resulted in significantly decreased CFE in MCF7 cells compared to the

NTC (Figure 2B, Supplementary Figure 7).

Discussion

This is the largest study to systematically evaluate associations of genetically predicted gene
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expression across the human transcriptome with breast cancer risk. We identified 179 genes

showing a significant association at the FDR-corrected significance level. Of these, 48 genes

showed an association at the Bonferroni-corrected threshold, including 14 at genomic loci that

have not previously been implicated for breast cancer risk. Of the 34 genes located at known risk

loci, 23 have not previously been shown to be the targets of GWAS-identified risk SNPs at

corresponding loci and not harbor any risk SNPs. Our study provides substantial new

information to improve the understanding of genetics and etiology for breast cancer.

It is possible that TWAS-identified genes may be associated with breast cancer through their

correlation with disease causal genes. To determine the potential functional significance of

TWAS-identified genes and provide evidence for causal inference, we knocked down 13 genes

for which high predicted levels of expression were associated with an increased breast cancer

risk, in one normal and two breast cancer cell lines, and measured the effect on proliferation and

CFE. Although there was some variation between cell lines, knockdown of 11 of the 13 genes

showed an effect in at least one cell line, particularly on proliferation in 184A1 normal breast

cells; the effects were strongest and most consistent for the lncRNAs, RP11-218M22.1, RP11-

467J12.4 and CTD-3032H12.1. The observation of a more consistent effect in the normal breast

cell line compared with the cancer cell lines is not surprising as cancer cell lines have increased

capacity to handle gene interference through mutations which enhance cell survival. Rewiring of

pathways and compensatory mechanisms is a hallmark of cancer. Knockdown of PIDD1, NRBF2

and ABHD8¸ for which breast cancer risk associated haplotypes have been shown to be

associated with increased expression in reporter assays7,20,22, affected either proliferation or

colony forming efficiency, supporting the results from this study.
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Some of the genes with strong functional evidence from our study have been reported to have

important roles in carcinogenesis. For example, RP11-467J12.4 (PR-lncRNA-1) is a p53-

regulated lncRNA that modulates gene expression in response to DNA damage downstream of

p5343. STXBP4 encodes Syntaxin binding protein 4, a scaffold protein that can stabilise and

prevent degradation of an isoform of p63, a member of the p53 tumor suppressor family44.

KLHDC10 encodes a member of the Kelch superfamily that can activate apoptosis signal-

regulating kinase 1, contributing to oxidative stress-induced cell death45. Notably, another

member of this superfamily, KLHDC7A, has recently been identified as the target gene at the

1p36 breast cancer risk locus7.

SNX32, ALK and BTN3A2 are also likely susceptibility genes for breast cancer risk. However,

their low or absent expression in our chosen breast cell lines prevented further functional

analysis. ALK (Anaplastic lymphoma kinase) copy number gain and overexpression have been

reported in aggressive and metastatic breast cancers46. Therapeutic targeting of ALK

rearrangement has significantly improved survival in advanced ALK-positive lung cancer47,

making it an attractive target for breast and other cancers. BTN3A2 is a member of the

B7/butyrophilin-like group of Ig superfamily receptors modulating the function of T-

lymphocytes. Over-expression of BTN3A2in epithelial ovarian cancer is associated with higher

infiltrating immune cells and a better prognosis48.

Our analyses identified multiple genes with reduced expression associated with increased breast

cancer risk. Among them, LRRC3B and CASP8 are putative tumor suppressors in multiple

cancers, including breast cancer. Leucine-rich repeat-containing 3B (LRRC3B) is a putative
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LRR-containing transmembrane protein, which is frequently inactivated via promoter

hypermethylation leading to inhibition of cancer cell growth, proliferation, and invasion49.

CASP8 encodes a member of the cysteine-aspartic acid protease family, which play a central role

in cell apoptosis. Previous studies have suggested that caspase-8 may act as a tumor suppressor

in certain types of lung cancer and neuroblastoma, although this function has not yet been

demonstrated in breast cancer. Notably, several large association studies have identified SNPs at

the 2q33/CASP8 locus associated with increased breast cancer risk31,50. Consistent with our data,

eQTL analyses showed that the risk alleles for breast cancer were associated with reduced

CASP8 mRNA levels in both peripheral blood lymphocytes and normal breast tissue31.

For seven of the genes listed in Tables 1 and 2, we found some evidence from studies using

tumor tissues, in vitro or in vivo experiments linking them to cancer risk (Supplementary Table

10), although their association with breast cancer has not been demonstrated in human studies.

For five of them, including LRRC3B, SPATA18, RIC8A, ALK and CRHR1, previous in vitro and

in vivo experiments and human tissue studies showed a consistent direction of the association as

demonstrated in our studies. For two other genes (UBD and MIR31HG), however, results from

previous studies were inconsistent, reporting both potential promoting and inhibiting effects on

breast cancer development. Future studies are needed to evaluate functions of these genes.

We included a large number of cases and controls, providing strong statistical power for the

association analysis. This large sample size enabled us to identify a large number of candidate

breast cancer susceptibility genes, much larger than the number identified in a TWAS study with

a sample size of about 20% of ours30. The previous study included subjects of different races,
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which could affect the results as linkage disequilibrium (LD) patterns differ by races. Of the five

genes reported in that smaller TWAS that showed a suggestive association with breast cancer

risk, the association for the RCCD1 gene was replicated in our study (Table 3). The other four

genes (ANKLE1, DHODH, ACAP1 and LRRC25) were not evaluated in our study because of

unsatisfactory performance of our breast specific models for these genes which were built using

the GTEx reference dataset including only female European descendants.

A substantial proportion of SNPs included in the OncoArray and iCOGS were selected from

breast cancer GWAS and fine-mapping analyses, and thus these arrays were enriched for

association signals with breast cancer risk. As a result, the overall λ value for the BCAC 

association analyses of individual variants is 1.26 after adjusting for population stratifications

(QQ plot in Supplementary Figure 3 (b))7. The λ value for the associations of the ~257,000 

SNPs included in the gene expression prediction models of the 8,597 genes tested in our

association analysis is 1.40 (QQ plot in Supplementary Figure 3 (c)). This higher λ value is 

perhaps expected because of a potential further enrichment of breast cancer associated signals in

the set of SNPs selected to predict gene expression. There could be additional gain of power (and

thus a higher λ value) in TWAS as it aggregates the effect of multiple SNPs to predict gene 

expression and use genes as the unit for association analyses. The lambda (λ) for our associated 

analyses of 8,597 genes was 1.51 (QQ plot presented in Supplementary Figure 3 (a)) likely due

to the potential enrichment and power gain as well as our large sample size, and the highly

polygenic nature of the disease7,51. Interestingly, high λ values were also found in recent large 

studies of other polygenic traits, such as body mass index (BMI) (λ = 1.99) and height (λ = 
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2.7)52,53. The λ1,000, a standardized estimate of the genomic inflation scaling to a study of 1,000

cases and 1,000 controls, is 1.004 in our study.

The statistical power of our study is very high to detect associations for genes with a relatively

high cis-heritability (h2) (Supplementary Figure 8). For example, our study has 80% statistical

power to detect an association with breast cancer risk at P<5.82×10-6 with an OR of 1.07 or

higher per one standard deviation increase (or decrease) in the expression level of genes with an

h2 of 0.1 or higher. One limitation of our study is the small sample size for building gene

expression prediction models, which may have affected the precision of model parameter

estimates. We expect that models built with a larger sample size will identify additional

association signals. We used samples from women of European origin in model building, given

differences in gene expression patterns between males and females and in genetic architecture

across ethnicities54. We also used gene expression data of tumor-adjacent normal tissue samples

from European descendants in TCGA as an external validation step to prioritize genes for

association analyses. Given potential somatic alterations in tumor-adjacent normal tissues, we

retained all models showing a prediction R2 of at least 0.09 in GTEx, regardless of their

performance in TCGA. Not all genes have a significant hereditary component in expression

regulation, and thus these genes could not be investigated in our study. For example, previous

studies have provided strong evidence to support a significant role of the TERT, ESR1, CCND1,

IGFBP5, TET2 and MRPS30 genes in the etiology of breast cancer. However, expression of

these genes cannot be predicted well using the data from female European descendants included

in the GTEx and thus they were not included in our association analyses. Supplementary Table
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11 summarizes the performance of prediction models and association results for breast cancer

target genes reported previously at GWAS-identified loci.

In summary, our study has identified multiple gene candidates that can be further functionally

characterized. The silencing experiments we performed suggest that many of the genes identified

are likely to mediate risk of breast cancer by affecting proliferation or CFE, two hallmarks of

cancer. Further investigation of genes identified in our study will provide additional insight into

the biology and genetics of breast cancer.

URLs. GTEx protocol, http://www.gtexportal.org/home/documentationPage; Gencode V19

annotation file, http://www.gencodegenes.org/releases/19.html; HaploReg,

http://archive.broadinstitute.org/mammals/haploreg/data/; OncoArray,

http://epi.grants.cancer.gov/oncoarray/;
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Figure Legends

Figure 1. Manhattan plot of association results from the breast cancer transcriptome-wide

association study. Results are based on 122,977 cases and 105,974 controls. The red line represents

P = 5.82 × 10-6. The blue line represents P = 1.00 × 10-3.

Figure 2. Heat maps of proliferation and colony formation efficiency in breast cells. (a)

Proliferation efficiency. (b) colony formation efficiency. Error bars, SD (N=2). P-values were

determined by one-way ANOVA followed by Dunnett’s multiple comparisons test: *P-value <

0.05. NTC: non-target control.



Wu et al. – Page 32

Table 1. Fourteen expression-trait associations for genes located at genomic loci at least 500 kb away from any GWAS-identified
breast cancer risk variants

Region Genea Typeb
Z

score P valuec R2c
Closest risk

SNPd

Distance to
the closest
risk SNP

(kb)

P value after
adjusting for

adjacent risk SNPse

1p34.1 ZSWIM5 Protein 5.26 1.43 × 10-7 0.17 rs1707302 829 0.006
3p24.1 LRRC3B Protein -9.57 1.11 × 10-21 0.17 rs653465 591 1.60 × 10-6

4q12 SPATA18 Protein -4.62 3.86 × 10-6 0.11 rs6815814 14,101 3.98 × 10-6

6p22.1 UBD Protein -4.87 1.10 × 10-6 0.13 rs9257408 597 0.94
7q32.2 KLHDC10 Protein 5.21 1.92 × 10-7 0.14 rs4593472 892 2.90 × 10-7

9p21.3 MIR31HG lncRNA -5.02 5.22 × 10-7 0.12 rs1011970 502 1.23 × 10-7

11p15.5 RIC8A Protein -5.27 1.40 × 10-7 0.15 rs6597981 588 4.95 × 10-6

11q13.2 B3GNT1 Protein -5.85 4.88 × 10-9 0.09 rs3903072 530 3.50 × 10-6

11q13.2 RP11-867G23.10 transcript 4.71 2.49 × 10-6 0.03 rs3903072 594 2.61 × 10-4

12p13.33 RP11-218M22.1 lncRNA 5.02 5.27 × 10-7 0.19 rs12422552 13,641 5.17 × 10-7

14q24.1 GALNT16 Protein -8.27 1.38 × 10-16 0.04 rs999737 691 8.57 × 10-4

14q24.1 PLEKHD1 Protein 7.50 6.55 × 10-14 0.02 rs999737 917 0.12
15q24.2 MAN2C1 f Protein -5.32 1.02 × 10-7 0.39 rs2290203 15,851 9.56 × 10-8

15q24.2 CTD-2323K18.1 f lncRNA -4.65 3.27 × 10-6 0.07 rs2290203 15,619 3.16 × 10-6

a Genes that were siRNA-silenced for functional assays are bolded; SNPs used to predict gene expression are listed in the Supplementary Table 13
b Protein: protein coding genes; lncRNA: long non-coding RNAs; transcript: processed transcript
c P value: derived from association analyses of 122,977 cases and 105,974 controls; associations with p≤5.82×10-6 considered statistically
significant based on Bonferroni correction of 8,597 tests (0.05/8,597); R2: prediction performance (R2) derived using GTEx data.
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and
their distances to the genes are presented in the Supplementary Table 4
e Use of COJO method36

f Predicted expression of MAN2C1 and CTD-2323K18.1 was correlated (spearman R=0.76)
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Table 2. Twenty-three expression-trait associations for genes located at genomic loci within 500 kb of any previous GWAS-identified
breast cancer risk variants but not yet implicated as target genes of risk variants#

Region Genea Typeb Z score P valuec R2c
Closest risk

SNPd

Distance to
the closest

risk SNP (kb)

P value after
adjusting for
adjacent risk

SNPse

1p11.2 RP11-439A17.7 lncRNA -5.34 9.07 × 10-8 0.22 rs11249433 442 0.02
1q21.1 NUDT17 Protein -6.27 3.58 × 10-10 0.01 rs12405132 56 0.08
1q21.1 ANKRD34A Protein -5.05 4.42 × 10-7 0.01 rs12405132 169 4.28 × 10-5

2p23.1-2p23.2 ALK Protein 4.67 3.06 × 10-6 0.06 rs4577244 295 2.70 × 10-6

3p21.31 PRSS46 Protein -5.83 5.68 × 10-9 0.13 rs6796502 89 0.002
3q12.2 RP11-114I8.4 lncRNA -5.84 5.19 × 10-9 0.02 rs9833888 356 0.09
5p12 RP11-53O19.1 lncRNA 10.38 2.94 × 10-25 0.03 rs10941679 39 7.46 × 10-4

5q33.3 UBLCP1 Protein 5.93 3.04 × 10-9 0.07 rs1432679 446 0.37
5q33.3 RP11-32D16.1 lncRNA -5.41 6.37 × 10-8 0.09 rs1432679 283 1.32 × 10-4

6p22.2 BTN3A2 Protein 4.61 3.97 × 10-6 0.28 rs71557345 229 0.72
6q23.1 RP11-73O6.3 f lncRNA -6.61 3.74 × 10-11 0.11 rs6569648 105 0.41
11p15.5 AP006621.6 g lncRNA 5.61 2.01 × 10-8 0.34 rs6597981 21 0.52
11p15.5 RPLP2 g Protein 4.64 3.46 × 10-6 0.27 rs6597981 7 0.51
14q32.33 CTD-3051D23.1 lncRNA -5.06 4.21 × 10-7 0.05 rs10623258 97 7.05 × 10-7

16q12.2 RP11-467J12.4 lncRNA 8.04 9.02 × 10-16 0.23 rs3112612 434 0.79
16q12.2 CTD-3032H12.1 lncRNA 4.92 8.58 × 10-7 0.03 rs28539243 290 0.006
17q21.31 LRRC37A g Protein -5.89 3.85 × 10-9 0.43 rs2532263 118 0.79
17q21.31 KANSL1-AS1 g lncRNA -5.58 2.44 × 10-8 0.62 rs2532263 18 0.95
17q21.31 CRHR1 g Protein -5.29 1.22 × 10-7 0.22 rs2532263 339 0.99
17q21.31 LINC00671 lncRNA -5.85 4.95 × 10-9 0.07 rs72826962 190 0.26
17q21.31 LRRC37A2 Protein -5.77 7.93 × 10-9 0.46 rs2532263 336 0.93
19p13.11 HAPLN4 Protein -7.13 9.88 × 10-13 0.02 rs2965183 172 0.22
19q13.31 RP11-15A1.7 h lncRNA 5.45 5.06 × 10-8 0.02 rs3760982 215 0.28

# not yet reported from eQTL and/or functional studies as target genes of GWAS-identified risk variants and not harbor GWAS or fine-mapping
identified risk variants
a Genes that were siRNA-silenced for functional assays are bolded; SNPs used to predict gene expression are listed in the Supplementary Table 13
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b Protein: protein coding genes; lncRNA: long non-coding RNAs
c P value: nominal P value from association analysis of 122,977 cases and 105,974 controls; the threshold after Bonferroni correction of 8,597 tests
(0.05/8,597=5.82×10-6) was used; R2: prediction performance (R2) derived using GTEx data
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and
their distances to the genes are presented in the Supplementary Table 4
e Use of COJO method36; all index SNPs in the corresponding region were adjusted in the conditional analyses
f Predicted expression of RP11-73O6.3 and L3MBTL3 was correlated (spearman R=0.88)
g Predicted expression of AP006621.6 and RPLP2 was correlated; predicted expression of LRRC37A, KANSL1-AS1, and CRHR1 was correlated
(spearman R>0.1)
h Predicted expression of RP11-15A1.7 and ZNF404 was correlated (spearman R=0.64)
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Table 3. Eleven expression-trait associations for genes previously reported as potential target genes of GWAS-identified breast cancer
risk variants or genes harboring risk variants

Region Genea Typeb
Z

score P valuec R2c
Closest risk

SNPd

Distance to the
closest risk SNP

(kb)

P value after
adjusting for
adjacent risk

SNPse

Association
direction
reported

previouslyf Reference
1p36.13 KLHDC7A Protein -5.67 1.40 × 10-8 0.04 rs2992756 0.085 0.06 - 7

2q33.1 ALS2CR12 Protein 6.70 2.11 × 10-11 0.10 rs1830298 intron of the gene 0.17 NA 31

2q33.1 CASP8 Protein -8.05 8.51 × 10-16 0.22 rs3769821 intron of the gene 0.16 - 31,32

5q14.1 ATG10 Protein -6.65 2.85 × 10-11 0.51 rs7707921 intron of the gene 0.21 NA 9

5q14.2 ATP6AP1L Protein -4.98 6.32 × 10-7 0.63 rs7707921 37 0.98 NA 9

6q23.1 L3MBTL3 g Protein -6.69 2.27 × 10-11 0.10 rs6569648 208 0.44 NA 6

6q25.1 RMND1 Protein 4.76 1.95 × 10-6 0.13 rs3757322 169 1.11 × 10-4 mixed 17

11q13.1 SNX32 Protein 4.70 2.60 × 10-6 0.19 rs3903072 18 0.17 NA 33

15q26.1 RCCD1 Protein -7.18 7.23 × 10-13 0.13 rs2290203 6 1.66 × 10-4 - 10

17q22 STXBP4 Protein 6.69 2.21 × 10-11 0.03 rs6504950 intron of the gene 0.90 + in GTEx 34,35

19q13.31 ZNF404 h Protein 7.42 1.15 × 10-13 0.15 rs3760982 90 0.005 NA 8

a Genes that were siRNA silenced for functional assays are bolded; SNPs used to predict gene expression are listed in the Supplementary Table 13
b Protein: protein coding genes; lncRNA: long non-coding RNAs; NA: not available
cP value: nominal P value from association analysis of 122,977 cases and 105,974 controls; the threshold after Bonferroni correction of 8,597 tests
(0.05/8,597=5.82×10-6) was used; R2: prediction performance (R2) derived using GTEx data .
d Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and
their distances to the genes are presented in the Supplementary Table 4
e Use of COJO method36; all index SNPs in the corresponding region were adjusted for the conditional analyses
f -: inverse association; +: positive association; mixed: both inverse and positive associations reported; NA: not available
g Predicted expression of L3MBTL3 and RP11-73O6.3 was correlated (spearman R=0.88)
h Predicted expression of ZNF404 and RP11-15A1.7 was correlated (spearman R=0.64)
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Table 4. Genes at GWAS-identified breast cancer risk loci (± 500kb of the index SNPs) whose predicted expression levels were
associated with breast cancer risk at p-values between 5.82×10-6 and 1.05×10-3 (FDR corrected p-value≤0.05) 

Region Gene Typea Z
score

P valueb R2b Closest risk
SNPc

Distance to the
closest risk SNP

(kb)

P value after
adjusting for
adjacent risk

SNPsd

1p34.1 UQCRH Protein -3.90 9.51 × 10-5 0.12 rs1707302 168 0.06
1p22.3 LMO4 Protein -3.76 1.73 × 10-4 0.09 rs12118297 15 0.002
2p23.3 DNAJC27-AS1 lncRNA 3.84 1.24 × 10-4 0.03 rs6725517 65 0.13
4p14 KLHL5 Protein 3.52 4.35 × 10-4 0.13 rs6815814 230 0.03
5q11.2 AC008391.1 miRNA -4.03 5.60 × 10-5 0.13 rs16886113 242 0.76
6p22.1 HCG14 lncRNA -3.47 5.19 × 10-4 0.11 rs9257408 61 0.03
6p22.2 TRNAI2 miRNA -3.71 2.09 × 10-4 0.02 rs71557345 307 0.007
6q25.1 MTHFD1L Protein 3.85 1.17 × 10-4 0.10 rs3757318 491 2.36 × 10-4

8q24.21 PVT1 transcript 3.85 1.20 × 10-4 0.03 rs11780156 81 1.09 × 10-4

9q33.3 RP11-123K19.1 lncRNA -4.10 4.05 × 10-5 0.05 rs10760444 20 1.26 × 10-4

10q25.2 RP11-57H14.3 lncRNA 3.42 6.16 × 10-4 0.08 rs7904519 108 0.002
10q26.13 RP11-500G22.2 lncRNA 4.48 7.54 × 10-6 0.15 rs2981582 336 0.91
11p15.5 PTDSS2 Protein -3.47 5.16 × 10-4 0.04 rs6597981 312 0.02
11p15.5 AP006621.5 Protein 4.35 1.37 × 10-5 0.51 rs6597981 19 0.01
11p15.5 PIDD1 Protein 4.24 2.28 × 10-5 0.45 rs6597981 intron of the gene 0.12
11p15.5 MRPL23-AS1 lncRNA -3.86 1.12 × 10-4 0.10 rs3817198 95 0.06
11q13.1-11q13.2 PACS1 Protein -3.59 3.36 × 10-4 0.06 rs3903072 255 0.001
12p11.22 RP11-860B13.1 lncRNA 3.46 5.42 × 10-4 0.17 rs10771399 221 0.86
13q22.1 KLF5 Protein -4.08 4.44 × 10-5 0.22 rs6562760 306 NA
14q24.1 CTD-2566J3.1 lncRNA -3.84 1.22 × 10-4 0.04 rs2588809 64 0.55
14q32.33 C14orf79 Protein 4.37 1.22 × 10-5 0.11 rs10623258 240 0.91
15q26.1 FES Protein 4.37 1.26 × 10-5 0.21 rs2290203 73 3.04 × 10-6

16q12.2 BBS2 Protein 3.97 7.23 × 10-5 0.26 rs2432539 80 0.36
16q12.2 CRNDE lncRNA 3.28 1.05 × 10-3 0.02 rs28539243 271 0.69
16q24.2 RP11-482M8.1 lncRNA 3.32 9.16 × 10-4 0.02 rs4496150 441 0.19
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17q11.2 GOSR1 Protein 3.79 1.51 × 10-4 0.10 rs146699004 376 0.04
17q21.2 ATP6V0A1 Protein 3.61 3.02 × 10-4 0.03 rs72826962 162 0.01
17q21.2 RP11-400F19.8 transcript -3.96 7.65 × 10-5 0.01 rs72826962 122 6.62 × 10-4

17q21.31 RP11-105N13.4 transcript -4.51 6.46 × 10-6 0.02 rs2532263 359 NA
17q25.3 CBX8 Protein 4.38 1.16 × 10-5 0.05 rs745570 6 0.99
19p13.11 CTD-2538G9.5 lncRNA 3.56 3.76 × 10-4 0.01 rs8170 432 4.38 × 10-4

19p13.11 HOMER3 Protein -3.87 1.08 × 10-4 0.10 rs4808801 469 0.18
20q11.22 CTD-3216D2.5 lncRNA 4.03 5.60 × 10-5 0.16 rs2284378 281 9.24 × 10-4

22q13.1 TRIOBP Protein 3.34 8.34 × 10-4 0.07 rs738321 396 0.003
22q13.1 RP5-1039K5.13 lncRNA 3.73 1.93 × 10-4 0.01 rs738321 99 0.053
22q13.1 CBY1 Protein 3.91 9.34 × 10-5 0.05 chr22:39359355 289 0.06
22q13.1 APOBEC3A Protein -4.11 3.98 × 10-5 0.07 chr22:39359355 0.2 0.02
22q13.2 RP1-85F18.6 lncRNA 3.52 4.28 × 10-4 0.12 rs73161324 460 0.72

a Protein: protein coding genes; lncRNA: long non-coding RNAs; transcript: processed transcript
bP value: nominal P value from association analysis of 122,977 cases and 105,974 controls; R2: prediction performance derived using GTEx data.
c Risk SNPs identified in previous GWAS or fine-mapping studies. The risk SNP closest to the gene is presented. A full list of all risk SNPs, and
their distances to the genes are presented in the Supplementary Table 4
d Use of COJO method36; all index SNPs in the corresponding region were adjusted for the conditional analyses
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Methods

The key elements of the study design, statistical parameters, materials and reagents, and human

subjects are included in the Life Sciences Reporting Summary.

Building of gene expression prediction models

We used transcriptome and high-density genotyping data from the Genotype-Tissue Expression

(GTEx) study to establish prediction models for genes expressed in normal breast tissues. Details

of the GTEx have been described elsewhere55. Genomic DNA samples obtained from study

subjects included in the GTEx were genotyped using Illumina OMNI 5M or 2.5M SNP Array

and RNA samples from 51 tissue sites were sequenced to generate transcriptome profiling data.

Genotype data were processed according to the GTEx protocol (see URLs). SNPs with a call rate

< 98%, with differential missingness between the two array experiments (5M/2.5M Arrays), with

Hardy-Weinberg equilibrium p-value < 10-6 (among subjects of European ancestry), or showing

batch effects were excluded. One Klinefelter individual, three related individuals, and a

chromosome 17 trisomy individual were also excluded. The genotype data were imputed to the

Haplotype Reference Consortium reference panel56 using Minimac3 for imputation and

SHAPEIT for prephasing57,58. SNPs with high imputation quality (r2 ≥ 0.8), minor allele 

frequency (MAF) ≥ 0.05, and included in the HapMap Phase 2 version, were used to build 

expression prediction models. For gene expression data, we used Reads Per Kilobase per Million

(RPKM) units from RNA-SeQC59. Genes with a median expression level of 0 RPKM across

samples were removed, and the RPKM values of each gene were log2 transformed. We

performed quantile normalization to bring the expression profile of each sample to the same

scale, and performed inverse quantile normalization for each gene to map each set of expression
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values to a standard normal. We adjusted for the top ten principal components (PCs) derived

from genotype data and the top 15 probabilistic estimation of expression residuals (PEER)

factors to correct for batch effects and experimental confounders in model building60. Genetic

and transcriptome data from 67 female subjects of European descent without a prior breast

cancer diagnosis were used to build gene expression prediction models for this study.

We built an expression prediction model for each gene by using the elastic net method as

implemented in the glmnet R package, with α=0.5, as recommended by Gamazon et al27. The

genetically regulated expression for each gene was estimated by including variants within a 2

MB window flanking the respective gene boundaries, inclusive. Expression prediction models

were built for protein coding genes, long non-coding RNAs (lncRNAs), microRNAs (miRNAs),

processed transcripts, immunoglobulin genes, and T cell receptor genes, according to categories

described in the Gencode V19 annotation file (see URLs). Pseudogenes were not included in the

present study because of potential concerns of inaccurate calling61. Ten-fold cross-validation was

used to validate the models internally. Prediction R2 values (the square of the correlation

between predicted and observed expression) were generated to estimate the prediction

performance of each of the gene prediction models established.

For genes that cannot be predicted well using the above approach, we built models using only

SNPs located in predicted promoter or enhancer regions in breast cell lines. This approach

reduces the number of variants for model building, and thus potentially improves model

accuracy, by increasing the ratio of sample size to effective degrees of freedom.
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SNP-level annotation data in three breast cell lines, namely, Breast Myoepithelial Primary Cells

(E027), Breast variant Human Mammary Epithelial Cells (vHMEC) (E028), and HMEC

Mammary Epithelial Primary Cells (E119) in the Roadmap Epigenomics Project/Encyclopedia

of DNA Elements Project16, were downloaded from HaploReg (Version 4.0, assessed on

December 6, 2016) (see URLs). SNPs in regions classified as promoters (TssA, TssAFlnk),

enhancers (Enh, EnhG), or regions with both promoter and enhancer signatures (ExFlnk)

according to the core 15 chromatin state model16 in at least one of the cell lines were retained as

input SNPs for model building.

Evaluating performance of gene expression prediction models using The Cancer Genome

Atlas (TCGA) data

To assess further the validity of the models, we performed external validation using data

generated in tumor-adjacent normal breast tissue samples obtained from 86 European-ancestry

female breast cancer patients included in the TCGA. Genotype data were imputed using the same

approach as described for GTEx data. Expression data were processed and normalized using a

similar approach as described above. The predicted expression level for each gene was calculated

using the model established using GTEx data and then compared with the observed level of that

gene using the Spearman’s correlation.

Evaluating statistical power for association tests

We conducted a simulation analysis to assess the power of our TWAS analysis. Specifically, we

set the number of cases and controls to be 122,977 and 105,974, respectively, and generated the

gene expression levels from the empirical distribution of predicted gene expression levels in the



Wu et al. – Page 41

BCAC. We calculated statistical power at P<5.82×10-6 (the significance level used in our

TWAS) according to cis-heritability (h2) which we aim to capture using gene expression

prediction models (R2). The results based on 1000 replicates are summarized in Supplementary

Figure 8. Based on the power calculation, our TWAS analysis has 80% power to detect a

minimum odds ratio of 1.11, 1.07, 1.05, 1.04, or 1.03 for breast cancer risk per one standard

deviation increase (or decrease) in the expression level of a gene whose cis-heritability is 5%,

10%, 20%, 40%, or 60%, respectively.

Association analyses of predicted gene expression with breast cancer risk

We used the following criteria to select genes for the association analysis: 1) with a model

prediction R2 of ≥ 0.01 in GTEx and a Spearman’s correlation coefficient of ≥ 0.1 in TCGA, 2) 

with a prediction R2 of ≥ 0.09 in GTEx regardless of the performance in TCGA, 3) with a 

prediction R2 of ≥ 0.01 in GTEx but unable to be evaluated in TCGA. The second group of genes 

was selected because some gene expression levels might have changed in TCGA tumor-adjacent

normal tissues, and thus it is anticipated that some genes may show low prediction performance

in TCGA data due to the influence of tumor growth62,63. Overall, a total of 8,597 genes met the

criteria and were evaluated for their expression-trait associations.

To identify novel breast cancer susceptibility loci and genes, the MetaXcan method, as described

elsewhere, was used for the association analyses26. Briefly, the formula:

ܼ ≈  ݓ

∈ ୭ୢ ୪ୣ

ොߪ
ොߪ

መߚ

se(ߚመ)
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was used to estimate the Z-score of the association between predicted expression and breast

cancer risk. Here ݓ is the weight of SNP f݈or predicting the expression of gene ݃, መandߚ

se(ߚመ) are the GWAS association regression coefficient and its standard error for SNP ,݈ and ොߪ

andߪ�ො are the estimated variances of SNP ݈and the predicted expression of gene ݃ respectively.

Therefore, the weights for predicting gene expression, GWAS summary statistics results, and

correlations between model predicting SNPs are the input variables for the MetaXcan analyses.

For this study we estimated correlations between SNPs included in the prediction models using

the phase 3, 1000 Genomes Project data focusing on European population.

For the association analysis, we used the summary statistics data of genetic variants associated

with breast cancer risk generated in 122,977 breast cancer patients and 105,974 controls of

European ancestry from the Breast Cancer Association Consortium (BCAC). The details of the

BCAC have been described elsewhere7,9,13,64,65. Briefly, 46,785 breast cancer cases and 42,892

controls of European ancestry were genotyped using a custom Illumina iSelect genotyping array

(iCOGS) containing ~211,155 variants. A further 61,282 cases and 45,494 controls of European

ancestry were genotyped using the OncoArray including 570,000 SNPs (see URLs). Also

included in this analysis were data from nine GWAS studies including 14,910 breast cancer

cases and 17,588 controls of European ancestry. Genotype data from iCOGS, OncoArray and

GWAS were imputed using the October 2014 release of the 1000 Genomes Project data as

reference. Genetic association results for breast cancer risk were combined using inverse

variance fixed effect meta-analyses7. For our study, only SNPs with imputation r2 ≥ 0.3 were 

used. All participating BCAC studies were approved by their appropriate ethics review boards.



Wu et al. – Page 43

Relevant ethical regulations had been complied. This study was approved by the BCAC Data

Access Coordination Committee.

Lambda 1,000 (λ1,000) was calculated to represent a standardized estimate of the genomic

inflation scaling to a study of 1,000 cases and 1,000 controls, using the following formula:

λ1,000=1+(λobs-1) × (1/ncases+1/ncontrols)/(1/1,000cases+1/1,000controls)66,67. We used a Bonferroni

corrected p threshold of 5.82×10-6 (0.05/8,597) to determine a statistically significant association

for the primary analyses. To identify additional gene candidates at previously identified

susceptibility loci, we also used a false discovery rate (FDR) corrected p threshold of 1.05×10-3

(FDR ≤ 0.05) to determine a significant association. Associated genes with an expression of >0.1 

RPKM in less than 10 individuals in GTEx data were excluded as the corresponding prediction

models may not be stable.

To determine whether the predicted expression-trait associations were independent of the top

signals identified in previous GWAS, we performed GCTA-COJO analyses developed by Yang

et al36 to calculate association betas and standard errors of variants with breast cancer risk after

adjusting for the index SNPs of interest. We then re-ran the MetaXcan analyses using the

association statistics after conditioning on the index SNPs. This information was used to

determine whether the detected expression-trait associations remained significant after adjusting

for the index SNPs.

For 41 identified associated genes at the Bonferroni-corrected threshold, we also performed

analyses using individual level data in iCOGS (n=84,740) and OncoArray (n=112,133) datasets.
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We generated predicted gene expression using predicting SNPs (Supplementary Table 12), and

then assessed the association between predicted gene expression and breast cancer risk adjusting

for study and nine principal components in iCOGS dataset, and country and the first ten principal

components in OncoArray dataset. Conditional analyses adjusting for index SNPs were

performed to assess potential influence of reported index SNPs on the association between

predicted gene expression and breast cancer risk. Furthermore, we evaluated whether the

predicted expression levels of genes within a same genomic region were correlated with each

other by using the OncoArray data.

INQUISIT algorithm scores for TWAS-identified genes

To evaluate whether there are additional lines of evidence supporting the identified genes as

putative target genes of GWAS identified risk SNPs beyond the scope of eQTL, we assessed

their INQUISIT algorithm scores, which have been described elsewhere7. Briefly, this approach

evaluates chromatin interactions between distal and proximal regulatory transcription-factor

binding sites and the promoters at the risk regions using Hi-C data generated in HMECs68 and

Chromatin Interaction Analysis by Paired End Tag (ChiA-PET) in MCF7 cells. This could detect

genome-wide interactions brought about by, or associated with, CCCTC-binding factor (CTCF),

DNA polymerase II (POL2), and Estrogen Receptor (ER), all involved in transcriptional

regulation68. Annotation of predicted target genes used the Integrated Method for Predicting

Enhancer Targets (IM-PET)69, the Predicting Specific Tissue Interactions of Genes and

Enhancers (PreSTIGE) algorithm70, Hnisz71 and FANTOM72. Features contributing to the scores

are based on functionally important genomic annotations such as chromatin interactions,

transcription factor binding, and eQTLs. The detailed information for the INQUISIT pipeline and
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scoring strategy has been included in a previous publication7. In brief, besides assigning integral

points according to different features, we also set up-weighting and down-weighting criteria

according to breast cancer driver genes, topologically associated domain (TAD) boundaries, and

gene expression levels in relevant breast cell lines. Scores in the distal regulation category range

from 0-7, and in the promoter category from 0-4. A score of "none" represents that no evidence

was found for regulation of the corresponding gene.

Functional enrichment analysis using Ingenuity Pathway Analysis (IPA)

We performed functional enrichment analysis for the identified protein-coding genes reaching

Bonferroni corrected association threshold. To assess potential functionality of the identified

lncRNAs, we examined their co-expressed protein-coding genes determined using expression

data of normal breast tissue of European females in GTEx. Spearman’s correlations between

protein-coding genes and identified lncRNAs of ≥ 0.4 or ≤ -0.4 were used to indicate a high co-

expression. Canonical pathways, top associated diseases and biofunctions, and top networks

associated with genes of interest were estimated using IPA software37.

Gene expression in breast cell lines

Total RNA was isolated from 18 cell lines (Supplementary Table 8) using the RNeasy Mini Kit

(Qiagen). cDNA was synthesized using the SuperScript III (Invitrogen) and amplified using the

Platinum SYBR Green qPCR SuperMix-UDG cocktail (Invitrogen). Two or three primer pairs

were used for each gene and the mRNA levels for each sample was measured in technical

triplicates for each primer set. The primer sequences are listed in Supplementary Table 13.

Experiments were performed using an ABI ViiA(TM) 7 System (Applied Biosystems), and data
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processing was performed using ABI QuantStudio™ Software V1.1 (Applied Biosystems). The

average of Ct from all the primer pairs for each gene was used to calculate ΔCт. The relative 

quantitation of each mRNA normalizing to that in 184A1 was performed using the comparative

Ct method (ΔΔCт) and summarized in Supplementary Figure 4.

Short interfering RNA (siRNA) silencing

184A1, MCF7 and T47D cells were reverse-transfected with siRNAs targeting genes of interest

(GOI) or a non-targeting control siRNA (consi; Shanghai Genepharma) with RNAiMAX

(Invitrogen) according to the manufacturer’s protocol. Verification of siRNA knockdown of gene

expression by qPCR was performed 36 hours after transfection.

Proliferation and colony formation assays

For proliferation assays, MCF7 and T47D cells were trypsinized at 16 hours post-transfection

and seeded into 24 well plates to achieve ~10% confluency. Phase-contrast images were

collected with IncuCyte ZOOM (Essen Bioscience) for seven days. Duplicate samples were

assessed for each GOI siRNA transfected cells along with non-target control si (NTCsi) treated

cells in the same plate. 184A1 cells were reverse-transfected in 96 well plates to achieve 50%

confluence at 8 hours after transfection. Two independent experiments were carried out for all

siRNAs in all three cell lines. Each cell proliferation time-course was normalized to the baseline

confluency and analyzed in GraphPad Prism. The area under the curve was calculated for each

concentration (n=4) and used to calculate corrected proliferation (Corrected proliferation % =

100 +/- (relative proliferation in indicated siRNA - proliferation in NTC siRNA) / knockdown

efficiency (“+” if the GOI promotes proliferation and “-” if it inhibits proliferation)). For each
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gene, results from two siRNAs in two independent experiments were averaged and summarized

in Figure 2 and Supplementary Figure 6. For colony formation assays; the same number of

GOI siRNA transfected MCF7 cells was seeded in 6 well plates at 16 hours after transfection to

assay colony forming efficiency at two weeks. All siRNA-treated cells were seeded in duplicate.

Colonies (defined to consist of at least 50 cells) were fixed with methanol, stained with crystal

violet (0.5% w/v), scanned and counted using ImageJ as batch analysis by a self-defined plug-in

Macro. Correct CFE % = 100 +/- (relative CFE in indicated siRNA - CFE in NTC siRNA) /

knockdown efficiency (“+” if the GOI promotes CF and “-” if it inhibits CF). For each gene,

results from two siRNAs in two independent experiments were averaged and summarized in

Figure 2 and Supplementary Figure 7. P-values were determined by one-way ANOVA

followed by Dunnett’s multiple comparisons test.

Data availability

The GTEx data are publicly available via dbGaP (www.ncbi.nlm.nih.gov/gap; dbGaP Study

Accession: phs000424.v6.p1). TCGA data are publicly available via National Cancer Institute's

Genomic Data Commons Data Portal (https://gdc.cancer.gov/). A subset of the BCAC data that

support the findings of this study is publically available via dbGaP (www.ncbi.nlm.nih.gov/gap;

accession number phs001265.v1.p1). Most of the BCAC data used in this study are or will be

publicly available via dbGAP. Data from some BCAC studies are not publicly available due to

restraints imposed by the ethics committees of individual studies; requests for further data can be

made to the BCAC (http://bcac.ccge.medschl.cam.ac.uk/) Data Access Coordination Committee

(DACC). BCAC DACC approval is required to access data from studies ABCFS, ABCS,

ABCTB, BBCC, BBCS, BCEES, BCFR-NY, BCFR-PA, BCFR-UT, BCINIS, BSUCH, CBCS,
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CECILE, CGPS, CTS, DIETCOMPLYF, ESTHER, GC-HBOC, GENICA, GEPARSIXTO,

GESBC, HABCS, HCSC, HEBCS, HMBCS, HUBCS, KARBAC, KBCP, LMBC, MABCS,

MARIE, MBCSG, MCBCS, MISS, MMHS, MTLGEBCS, NC-BCFR, OFBCR, ORIGO,

pKARMA, POSH, PREFACE, RBCS, SKKDKFZS, SUCCESSB, SUCCESSC, SZBCS,

TNBCC, UCIBCS, UKBGS and UKOPS.

Code availability

The computer codes used in our study are available upon reasonable request.
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Gene Type* Z score P value R2

RP11-53O19.1 lncRNA 10.38 2.94 × 10-25 0.03

LRRC3B Protein -9.57 1.11 × 10-21 0.17

GALNT16 Protein -8.27 1.38 × 10-16 0.04

CASP8 Protein -8.05 8.51 × 10-16 0.22

RP11-467J12.4 lncRNA 8.04 9.02 × 10-16 0.23

PLEKHD1 Protein 7.5 6.55 × 10-14 0.02

ZNF404 Protein 7.42 1.15 × 10-13 0.15

RCCD1 Protein -7.18 7.23 × 10-13 0.13

HAPLN4 Protein -7.13 9.88 × 10-13 0.02

ALS2CR12 Protein 6.7 2.11 × 10-11 0.1

STXBP4 Protein 6.69 2.21 × 10-11 0.03

L3MBTL3 Protein -6.69 2.27 × 10-11 0.1

ATG10 Protein -6.65 2.85 × 10-11 0.51

RP11-73O6.3 lncRNA -6.61 3.74 × 10-11 0.11

NUDT17 Protein -6.27 3.58 × 10-10 0.01

UBLCP1 Protein 5.93 3.04 × 10-9 0.07

LRRC37A Protein -5.89 3.85 × 10-9 0.43

B3GNT1 Protein -5.85 4.88 × 10-9 0.09

LINC00671 lncRNA -5.85 4.95 × 10-9 0.07

RP11-114I8.4 lncRNA -5.84 5.19 × 10-9 0.02

PRSS46 Protein -5.83 5.68 × 10-9 0.13

LRRC37A2 Protein -5.77 7.93 × 10-9 0.46

KLHDC7A Protein -5.67 1.40 × 10-8 0.04

AP006621.6 lncRNA 5.61 2.01 × 10-8 0.34

KANSL1-AS1 lncRNA -5.58 2.44 × 10-8 0.62

RP11-15A1.7 lncRNA 5.45 5.06 × 10-8 0.02

RP11-32D16.1 lncRNA -5.41 6.37 × 10-8 0.09

RP11-439A17.7 lncRNA -5.34 9.07 × 10-8 0.22

MAN2C1 Protein -5.32 1.02 × 10-7 0.39

CRHR1 Protein -5.29 1.22 × 10-7 0.22

RIC8A Protein -5.27 1.40 × 10-7 0.15

ZSWIM5 Protein 5.26 1.43 × 10-7 0.17

KLHDC10 Protein 5.21 1.92 × 10-7 0.14



CTD-3051D23.1 lncRNA -5.06 4.21 × 10-7 0.05

ANKRD34A Protein -5.05 4.42 × 10-7 0.01

MIR31HG lncRNA -5.02 5.22 × 10-7 0.12

RP11-218M22.1 lncRNA 5.02 5.27 × 10-7 0.19

ATP6AP1L Protein -4.98 6.32 × 10-7 0.63

CTD-3032H12.1 lncRNA 4.92 8.58 × 10-7 0.03

UBD Protein -4.87 1.10 × 10-6 0.13

RMND1 Protein 4.76 1.95 × 10-6 0.13

RP11-867G23.10 transcript 4.71 2.49 × 10-6 0.03

SNX32 Protein 4.7 2.60 × 10-6 0.19

ALK Protein 4.67 3.06 × 10-6 0.06

CTD-2323K18.1 transcript -4.65 3.27 × 10-6 0.07

RPLP2 Protein 4.64 3.46 × 10-6 0.27

SPATA18 Protein -4.62 3.86 × 10-6 0.11

BTN3A2 Protein 4.61 3.97 × 10-6 0.28

RP11-105N13.4 transcript -4.51 6.46 × 10-6 0.02

SLC39A9 Protein -4.48 7.32 × 10-6 0.03

RP11-500G22.2 lncRNA 4.48 7.54 × 10-6 0.15

FAT4 Protein 4.45 8.44 × 10-6 0.06

CRIP2 Protein 4.44 9.14 × 10-6 0.03

RP11-432I5.1 lncRNA 4.4 1.06 × 10-5 0.03

CBX8 Protein 4.38 1.16 × 10-5 0.05

C14orf79 Protein 4.37 1.22 × 10-5 0.11

RHOD Protein 4.37 1.23 × 10-5 0.03

FES Protein 4.37 1.26 × 10-5 0.21

AP006621.5 Protein 4.35 1.37 × 10-5 0.51

NUP107 Protein 4.3 1.69 × 10-5 0.14

GSTM4 Protein -4.29 1.78 × 10-5 0.06

YBEY Protein 4.26 2.01 × 10-5 0.4

PIDD1 Protein 4.24 2.28 × 10-5 0.45

RP11-126L15.4 lncRNA -4.19 2.74 × 10-5 0.05

AC010136.2 lncRNA -4.14 3.52 × 10-5 0.21

APOBEC3A Protein -4.11 3.98 × 10-5 0.07

RP11-123K19.1 lncRNA -4.1 4.05 × 10-5 0.05

GABPB1-AS1 transcript 4.1 4.21 × 10-5 0.45

CTD-3110H11.1 lncRNA 4.09 4.31 × 10-5 0.53



EDEM2 Protein 4.09 4.39 × 10-5 0.03

KLF5 Protein -4.08 4.44 × 10-5 0.22

HSF2 Protein -4.05 5.02 × 10-5 0.04

SMN2 Protein -4.04 5.44 × 10-5 0.19

XXbac-BPG170G13.32 lncRNA 4.03 5.50 × 10-5 0.14

AC008391.1 miRNA -4.03 5.60 × 10-5 0.13

CTD-3216D2.5 lncRNA 4.03 5.60 × 10-5 0.16

CPNE1 Protein -4.02 5.80 × 10-5 0.33

GSTM3 Protein -3.98 6.95 × 10-5 0.18

BBS2 Protein 3.97 7.23 × 10-5 0.26

RP11-400F19.8 transcript -3.96 7.65 × 10-5 0.01

PILRA Protein 3.94 8.16 × 10-5 0.54

STAG3L5P-PVRIG2P-

PILRB
transcript 3.91 9.27 × 10-5 0.32

CBY1 Protein 3.91 9.34 × 10-5 0.05

UQCRH Protein -3.9 9.51 × 10-5 0.12

ALS2CL Protein -3.9 9.69 × 10-5 0.23

ATF4 Protein -3.9 9.74 × 10-5 0.11

CCBL2 Protein 3.9 9.78 × 10-5 0.01

HOMER3 Protein -3.87 1.08 × 10-4 0.1

CMTR2 Protein -3.86 1.11 × 10-4 0.01

MRPL23-AS1 lncRNA -3.86 1.12 × 10-4 0.1

ARHGEF19 Protein -3.86 1.15 × 10-4 0.13

NNT-AS1 lncRNA 3.86 1.15 × 10-4 0.06

MTHFD1L Protein 3.85 1.17 × 10-4 0.1

PVT1 transcript 3.85 1.20 × 10-4 0.03

CTD-2566J3.1 lncRNA -3.84 1.22 × 10-4 0.04

PDLIM4 Protein -3.84 1.22 × 10-4 0.08

MYRF Protein 3.84 1.24 × 10-4 0.01

DNAJC27-AS1 lncRNA 3.84 1.24 × 10-4 0.03

ATP5I Protein -3.82 1.34 × 10-4 0.02

GOSR1 Protein 3.79 1.51 × 10-4 0.1

RP11-335O13.7 lncRNA -3.77 1.63 × 10-4 0.08

RP11-550I24.2 transcript -3.76 1.67 × 10-4 0.05

LMO4 Protein -3.76 1.73 × 10-4 0.09



RP5-1039K5.13 lncRNA 3.73 1.93 × 10-4 0.01

TRNAI2 miRNA -3.71 2.09 × 10-4 0.02

RP4-625H18.2 lncRNA -3.7 2.12 × 10-4 0.02

ZNF334 Protein -3.69 2.22 × 10-4 0.12

PILRB Protein 3.68 2.29 × 10-4 0.3

METTL10 Protein -3.68 2.35 × 10-4 0.17

SH3TC2 Protein 3.67 2.42 × 10-4 0.09

CTD-2026K11.3 lncRNA 3.67 2.46 × 10-4 0.01

CTD-2026K11.2 lncRNA 3.66 2.52 × 10-4 0.12

TMC4 Protein 3.66 2.54 × 10-4 0.21

RP5-1139B12.4 lncRNA -3.66 2.55 × 10-4 0.17

TBX5 Protein 3.64 2.73 × 10-4 0.11

SNUPN Protein -3.63 2.86 × 10-4 0.03

RP11-1055B8.4 lncRNA 3.62 2.92 × 10-4 0.2

PSORS1C2 Protein 3.62 2.96 × 10-4 0.41

IST1 Protein 3.62 3.00 × 10-4 0.01

ATP6V0A1 Protein 3.61 3.02 × 10-4 0.03

KLC1 Protein -3.61 3.08 × 10-4 0.07

GPR144 Protein 3.59 3.31 × 10-4 0.12

PACS1 Protein -3.59 3.36 × 10-4 0.06

ECT2L Protein 3.58 3.47 × 10-4 0.14

CTD-2538G9.5 lncRNA 3.56 3.76 × 10-4 0.01

AZGP1 Protein -3.55 3.79 × 10-4 0.03

OXLD1 Protein 3.55 3.86 × 10-4 0.15

CPLX1 Protein -3.54 4.03 × 10-4 0.05

DGKQ Protein 3.54 4.06 × 10-4 0.25

RP11-757G1.6 lncRNA 3.53 4.17 × 10-4 0.19

CTA-109P11.4 lncRNA -3.52 4.26 × 10-4 0.1

RP1-85F18.6 lncRNA 3.52 4.28 × 10-4 0.12

TBX5-AS1 lncRNA 3.52 4.31 × 10-4 0.09

KLHL5 Protein 3.52 4.35 × 10-4 0.13

MUTYH Protein 3.51 4.47 × 10-4 0.04

TRIM4 Protein -3.5 4.64 × 10-4 0.43

MIR1909 miRNA 3.5 4.68 × 10-4 0.04

SLC22A5 Protein -3.5 4.72 × 10-4 0.19

CCDC18 Protein -3.48 5.08 × 10-4 0.38



PTDSS2 Protein -3.47 5.16 × 10-4 0.04

HCG14 lncRNA -3.47 5.19 × 10-4 0.11

SMIM8 Protein 3.47 5.20 × 10-4 0.06

MAP3K14-AS1 lncRNA -3.46 5.31 × 10-4 0.04

FAM149B1 Protein -3.46 5.35 × 10-4 0.03

RP11-860B13.1 lncRNA 3.46 5.42 × 10-4 0.17

PAIP1 Protein -3.45 5.67 × 10-4 0.02

GSTM5 Protein -3.44 5.92 × 10-4 0.28

RP11-57H14.3 lncRNA 3.42 6.16 × 10-4 0.08

BRMS1 Protein -3.4 6.62 × 10-4 0.05

KDM6B Protein -3.4 6.73 × 10-4 0.07

IGKV2D-24 IG_gene -3.4 6.74 × 10-4 0.02

RP11-174G6.5 lncRNA 3.39 7.00 × 10-4 0.05

POLR2J Protein -3.39 7.01 × 10-4 0.28

RP11-580I16.2 lncRNA 3.38 7.17 × 10-4 0.04

RP13-20L14.1 lncRNA -3.37 7.52 × 10-4 0.02

RP11-553A10.1 Protein 3.36 7.76 × 10-4 0.03

RP11-363E6.3 lncRNA -3.36 7.83 × 10-4 0.05

TSPAN5 Protein -3.35 8.11 × 10-4 0.04

PSORS1C1 Protein 3.34 8.28 × 10-4 0.35

TRIOBP Protein 3.34 8.34 × 10-4 0.07

CLEC18A Protein -3.34 8.37 × 10-4 0.43

DFNA5 Protein -3.33 8.55 × 10-4 0.19

TMEM136 Protein 3.33 8.56 × 10-4 0.07

C9orf3 Protein 3.33 8.64 × 10-4 0.03

GPR156 Protein 3.33 8.67 × 10-4 0.19

IL10RB-AS1 lncRNA -3.33 8.68 × 10-4 0.17

BDH2 Protein -3.33 8.72 × 10-4 0.23

ZNF165 Protein 3.33 8.76 × 10-4 0.06

LINC00092 lncRNA -3.32 9.03 × 10-4 0.08

RP11-482M8.1 lncRNA 3.32 9.16 × 10-4 0.02

USP19 Protein -3.31 9.28 × 10-4 0.02

MMP24 Protein -3.31 9.40 × 10-4 0.13

CTD-2196P11.2 lncRNA 3.29 1.01 × 10-3 0.04

NR1H3 Protein 3.29 1.01 × 10-3 0.17

FLOT1 Protein -3.28 1.03 × 10-3 0.1



BAZ1B Protein -3.28 1.04 × 10-3 0.14

AHI1 Protein 3.28 1.05 × 10-3 0.23

CRNDE lncRNA 3.28 1.05 × 10-3 0.02

AL450992.2 lncRNA -3.28 1.05 × 10-3 0.03

* Protein: protein coding genes; lncRNA: long non-coding RNAs; miRNA: microRNA; transcript: processed transcript;

P value: nominal p value from association analysis of 122,977 cases and 105,974 controls; R

MetaXcan was used for the association analyses



No. of predicting

variants used

No. of predicting

variants in model

Proportion of

predicting variants

used (%)

8 15 53

46 46 100

53 53 100

15 15 100

142 142 100

6 6 100

32 32 100

22 22 100

53 53 100

4 4 100

58 60 97

5 5 100

57 61 93

26 26 100

7 7 100

2 3 67

31 32 97

26 27 96

1 1 100

14 14 100

45 46 98

120 121 99

15 15 100

41 41 100

70 72 97

2 2 100

44 46 96

93 94 99

27 27 100

31 31 100

15 15 100

67 67 100

52 53 98



25 26 96

1 1 100

1 1 100

47 48 98

64 67 96

23 23 100

31 31 100

91 91 100

5 5 100

17 17 100

47 48 98

23 23 100

45 45 100

43 43 100

66 66 100

15 16 94

24 24 100

8 8 100

42 54 78

12 12 100

11 14 79

12 12 100

5 5 100

24 24 100

23 23 100

46 46 100

4 4 100

9 9 100

27 27 100

61 61 100

59 59 100

1 1 100

33 33 100

21 21 100

28 28 100

25 26 96



58 59 98

30 30 100

45 45 100

33 34 97

50 56 89

7 7 100

57 57 100

36 36 100

23 23 100

20 20 100

22 26 85

25 25 100

42 43 98

19 21 90

35 35 100

1 3 33

95 97 98

13 17 76

16 16 100

22 38 58

13 14 93

95 96 99

40 40 100

24 24 100

14 17 82

16 16 100

42 43 98

10 10 100

22 22 100

9 9 100

13 13 100

34 34 100

61 61 100

1 1 100



37 38 97

12 12 100

5 5 100

55 55 100

70 71 99

25 25 100

42 43 98

20 20 100

109 130 84

6 6 100

47 47 100

85 85 100

4 4 100

5 5 100

29 32 91

18 18 100

98 99 99

37 37 100

53 75 71

49 49 100

3 3 100

7 7 100

5 5 100

31 31 100

17 17 100

85 85 100

33 33 100

10 10 100

88 88 100

55 61 90

106 109 97

12 12 100

72 74 97

33 34 97

28 28 100

94 94 100



31 31 100

2 2 100

20 20 100

3 3 100

12 12 100

14 14 100

2 2 100

20 20 100

2 2 100

7 7 100

36 52 69

1 1 100

26 27 96

86 86 100

4 4 100

8 9 89

31 33 94

37 37 100

12 12 100

17 20 85

22 23 96

32 32 100

28 28 100

68 78 87

23 26 88

69 71 97

91 92 99

41 41 100

17 17 100

43 43 100

37 37 100

5 6 83

2 2 100

28 29 97

52 53 98

60 63 95



63 63 100

13 14 93

22 25 88

6 6 100

transcript: processed transcript; IG_gene: immunoglobulin genes.

value from association analysis of 122,977 cases and 105,974 controls; R2: prediction performance (R2) derived using GTEx data.



OncoArray OncoArray iCOGS

z-score p- value z-score

ZSWIM5 2.98 0.003 4.32

LRRC3B -7.48 7.19 × 10-14 -4.89

SPATA18 -3.09 0.002 -2.59

UBD -1.55 0.12 -4.07

KLHDC10 2.15 0.03 4.39

MIR31HG -4.35 1.35 × 10-5 -2.9

RIC8A -3.28 0.001 -3.12

B3GNT1 -2.7 0.007 -5

RP11-867G23.10 2.78 0.005 3.13

RP11-218M22.1 3.84 1.22 × 10-4 3.33

GALNT16 -4.45 8.74 × 10-6 -6.17

PLEKHD1 5.21 1.85 × 10-7 3.96

MAN2C1 -4.08 4.47 × 10-5 -3.49

CTD-2323K18.1 -3.69 2.23 × 10-4 -2.62

RP11-439A17.7 -4.35 1.37 × 10-5 -3.39

NUDT17 -3.53 4.19 × 10-4 -4.99

ANKRD34A -4.27 1.97 × 10-5 -2.54

ALK 3.84 1.23 × 10-4 3.23

PRSS46 -4.33 1.51 × 10-5 -3.51

RP11-114I8.4 -4.2 2.66 × 10-5 -3.15

RP11-53O19.1 8.29 1.17 × 10-16 5.75

UBLCP1 4.72 2.34 × 10-6 3.12

RP11-32D16.1 -3.75 1.75 × 10-4 -3.66

BTN3A2 3.16 0.002 2.74

RP11-73O6.3 -5.34 9.31 × 10-8 -2.24

AP006621.6 3.58 3.40 × 10-4 3.92

RPLP2 3.43 5.93 × 10-4 2.77

CTD-3051D23.1 -2.6 0.009 -3.36

RP11-467J12.4 5.75 8.73 × 10-9 5.41

CTD-3032H12.1 2.93 0.003 2.95

LRRC37A -4.13 3.56 × 10-5 -3.08

KANSL1-AS1 -3.83 1.28 × 10-4 -3.17

CRHR1 -3.58 3.39 × 10-4 -2.81

Gene name

Table 1

Table 2



LINC00671 -4.4 1.11 × 10-5 -4.15

LRRC37A2 -3.93 8.47 × 10-5 -3.18

HAPLN4 -5.49 4.01 × 10-8 -5.1

RP11-15A1.7 3.65 2.59 × 10-4 4.26

KLHDC7A -4.69 2.77 × 10-6 -3.53

ALS2CR12 4.98 6.25 × 10-7 2.8

CASP8 -5.97 2.42 × 10-9 -3.63

ATG10 -3 0.003 -5.83

ATP6AP1L -2.4 0.02 -4.24

L3MBTL3 -5.42 5.89 × 10-8 -2.38

RMND1 3.14 0.002 2.76

SNX32 2.41 0.02 3.8

RCCD1 -5.58 2.36 × 10-8 -4.08

STXBP4 4.77 1.85 × 10-6 4.01

ZNF404 4.76 1.96 × 10-6 5.28

UQCRH -3.13 0.002 -2.14

LMO4 -2.42 0.02 -2.53

DNAJC27-AS1 3.41 6.47 × 10-4 1.37

KLHL5 2.34 0.02 1.96

AC008391.1 -2.84 0.004 -3

HCG14 -2.65 0.008 -2.54

TRNAI2 -2.26 0.02 -2.46

MTHFD1L 2.26 0.02 2.81

PVT1 2.12 0.03 2.73

RP11-123K19.1 -3.8 1.42 × 10-4 -1.49

RP11-57H14.3 3.54 3.98 × 10-4 1.5

RP11-500G22.2 3.09 0.002 3.15

PTDSS2 -1.69 0.09 -2.98

AP006621.5 2.8 0.005 3.13

PIDD1 1.61 0.11 3.7

MRPL23-AS1 -2.29 0.02 -2.04

PACS1 -1.4 0.16 -3.53

RP11-860B13.1 2.86 0.004 2.15

KLF5 -2.16 0.03 -2.38

CTD-2566J3.1 -2.53 0.01 -2.65

C14orf79 3.6 3.17 × 10-4 1.89

FES 3.48 4.95 × 10-4 1.82

Table 4

Table 3



BBS2 2.65 0.008 3.08

CRNDE 2.82 0.005 0.5

RP11-482M8.1 2.54 0.01 1.82

GOSR1 2.87 0.004 1.61

ATP6V0A1 2.23 0.03 2.74

RP11-400F19.8 -4.18 2.91 × 10-5 0.36

RP11-105N13.4 -2.92 0.004 -2.64

CBX8 1.82 0.07 3.61

CTD-2538G9.5 1.61 0.11 3.17

HOMER3 -1.67 0.09 -2.92

CTD-3216D2.5 1.4 0.16 3.1

TRIOBP 3.77 1.63 × 10-4 0.55

RP5-1039K5.13 2.43 0.02 1.68

CBY1 2.13 0.03 2.6

APOBEC3A -3.44 5.87 × 10-4 -1.37

RP1-85F18.6 1.68 0.09 2.94

sample sizes (n): 61,282 cases and 45,494 controls for OncoArray; 46,785 cases and 42,892 controls for iCOGS; and 14,910 cases and 17,588 controls for GWAS
MetaXcan was used for the association analyses



iCOGS GWAS GWAS

p- value z-score p-value

1.57 × 10-5 1.39 0.17 0.32

1.02 × 10-6 -3.61 3.11 × 10-4 2.09

0.01 -2.33 0.02 0.21

4.67 × 10-5 -3.46 5.48 × 10-4 1.54

1.16 × 10-5 2.87 0.004 0.92

0.004 -0.53 0.6 0.98

0.002 -2.71 0.007 0.17

5.83 × 10-7 -2.38 0.02 0.82

0.002 2.18 0.03 0.04

8.82 × 10-4 0.86 0.39 0.35

6.82 × 10-10 -3.67 2.40 × 10-4 0.38

7.43 × 10-5 3.96 7.36 × 10-5 0.9

4.88 × 10-4 -0.86 0.39 0.43

0.009 -1.27 0.21 0.42

6.90 × 10-4 -0.32 0.75 0.88

5.91 × 10-7 -1.98 0.047 0.3

0.01 -1.13 0.26 0.94

0.001 -0.08 0.94 0.84

4.41 × 10-4 -1.78 0.08 0.31

0.002 -2.74 0.006 0.48

8.85 × 10-9 3.23 0.001 2.16

0.002 1.98 0.047 0.8

2.51 × 10-4 -1.53 0.13 0.09

0.006 2.06 0.04 0.12

0.03 -4.32 1.53 × 10-5 3.39

8.75 × 10-5 1.98 0.048 0.01

0.006 1.57 0.12 0.19

7.85 × 10-4 -3.34 8.30 × 10-4 0.45

6.28 × 10-8 1.93 0.054 0.38

0.003 2.6 0.009 0.15

0.002 -3.07 0.002 0.58

0.002 -2.61 0.009 0.27

0.005 -2.93 0.003 0.45

Cochran's Q



3.32 × 10-5 -0.25 0.8 0.82

0.001 -2.96 0.003 0.39

3.46 × 10-7 -0.31 0.75 1.28

2.00 × 10-5 0.78 0.44 0.38

4.11 × 10-4 -0.62 0.53 0.91

0.005 4.24 2.21 × 10-5 2.09

2.78 × 10-4 -4.66 3.20 × 10-6 2.3

5.60 × 10-9 -2.65 0.008 1.27

2.20 × 10-5 -1.87 0.06 0.51

0.02 -4.13 3.65 × 10-5 3.13

0.006 2.41 0.02 0.18

1.45 × 10-4 1.78 0.08 0.27

4.56 × 10-5 -2.21 0.03 0.81

6.05 × 10-5 2.46 0.01 0.28

1.28 × 10-7 2.28 0.02 0.06

0.03 -1.19 0.23 0.32

0.01 -1.42 0.16 0.002

0.17 1.77 0.08 1.12

0.05 1.59 0.11 0.09

0.003 -0.36 0.72 0.27

0.01 0.02 0.99 0.37

0.01 -1.67 0.09 0.02

0.005 1.58 0.11 0.02

0.006 1.82 0.07 0.06

0.14 -1.44 0.15 1.37

0.13 0.09 0.93 1.31

0.002 1.01 0.31 0.1

0.003 -1.33 0.18 0.25

0.002 1.26 0.21 0.03

2.16 × 10-4 2.42 0.02 0.82

0.04 -2.89 0.004 0.48

4.19 × 10-4 -1.09 0.27 0.81

0.03 0.66 0.51 0.26

0.017 -3.16 0.002 0.54

0.008 -1.19 0.24 0.02

0.06 2.03 0.04 0.86

0.07 2.34 0.02 0.9



0.002 0.53 0.59 0.21

0.61 2.76 0.006 1.9

0.07 1.37 0.17 0.18

0.11 2.22 0.03 0.62

0.006 0.94 0.34 0.06

0.72 -3.47 5.28 × 10-4 5.84

0.008 -2.32 0.02 0.15

3.04 × 10-4 2.44 0.01 0.6

0.002 1.48 0.14 0.39

0.004 -2.45 0.01 0.41

0.002 3.18 0.001 0.98

0.58 0.92 0.36 2.46

0.09 2.67 0.008 0.56

0.009 2.29 0.02 0.14

0.17 -2.6 0.009 1.4

0.003 1.48 0.14 0.24

sample sizes (n): 61,282 cases and 45,494 controls for OncoArray; 46,785cases and 42,892 controls for iCOGS; and 14,910 cases and 17,588 controls for GWAS
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ZSWIM5 rs1707302

rs12493607

rs653465

rs4973768

SPATA18 rs6815814

UBD rs9257408

KLHDC10 rs4593472

MIR31HG rs1011970

rs6597981

rs3817198

B3GNT1 rs3903072

RP11-867G23.10 rs3903072

RP11-218M22.1 rs12422552

GALNT16 rs999737

PLEKHD1 rs999737

MAN2C1 rs2290203

CTD-2323K18.1 rs2290203

RP11-439A17.7 rs11249433

NUDT17 rs12405132

ANKRD34A rs12405132

ALK rs4577244

PRSS46 rs6796502

RP11-114I8.4 rs9833888

rs10941679

rs4415084

UBLCP1 rs1432679

RP11-32D16.1 rs1432679

BTN3A2 rs71557345

RP11-73O6.3 rs6569648

rs6597981

rs909116

rs3817198

rs6597981

rs909116

rs3817198

CTD-3051D23.1 rs10623258

rs12922061

rs17817449 rs11075995

rs3112612

rs3803662

rs28539243

rs12922061

Risk SNP(s)#Gene

Table 1

LRRC3B

RIC8A

Table 2

RP11-53O19.1

AP006621.6

RPLP2

RP11-467J12.4



rs17817449 rs11075995

rs3112612

rs3803662

rs28539243

LINC00671 rs72826962

LRRC37A rs2532263

KANSL1-AS1 rs2532263

CRHR1 rs2532263

LRRC37A2 rs2532263

rs8170

rs2363956

rs4808801

rs2965183

RP11-15A1.7 rs3760982

KLHDC7A rs2992756

rs3769821

rs13393577

rs1830298

rs3769821

rs13393577

ATG10 rs7707921

ATP6AP1L rs7707921

L3MBTL3 rs6569648

rs9383951

rs9485372

rs3757322

rs9397437

rs851984

rs9918437

rs2747652

rs3903072

rs75915166

rs78540526

RCCD1 rs2290203

rs6504950

rs2787486

ZNF404 rs3760982

UQCRH rs1707302

rs17426269

rs12118297

rs6725517

rs200648189

KLHL5 rs6815814

rs16886113

SNX32

STXBP4

Table 4

LMO4

DNAJC27-AS1

HAPLN4

Table 3

ALS2CR12

CASP8

RMND1

CTD-3032H12.1



rs16886181

rs16886397

rs2229882

rs7726354

rs62355902

HCG14 rs9257408

TRNAI2 rs71557345

rs3757318

rs2046210

rs9383938

rs11780156

rs13281615

rs1562430

RP11-123K19.1 rs10760444

RP11-57H14.3 rs7904519

rs2981582

rs11199914

rs35054928

rs45631563

PTDSS2 rs6597981

AP006621.5 rs6597981

PIDD1 rs6597981

MRPL23-AS1 rs3817198

PACS1 rs3903072

rs10771399

rs7297051

KLF5 rs6562760

rs2588809

rs999737

C14orf79 rs10623258

FES rs2290203

BBS2 rs2432539

CRNDE rs28539243

RP11-482M8.1 rs4496150

GOSR1 rs146699004

ATP6V0A1 rs72826962

RP11-400F19.8 rs72826962

RP11-105N13.4 rs2532263

CBX8 rs745570

rs8170

rs2363956

rs67397200

rs4808801

rs2965183

CTD-3216D2.5 rs2284378

TRIOBP rs738321

HOMER3

MTHFD1L

PVT1

RP11-500G22.2

RP11-860B13.1

CTD-2566J3.1

CTD-2538G9.5

AC008391.1



RP5-1039K5.13 rs738321

rs738321

chr22:39359355

rs738321

chr22:39359355

rs73161324

rs6001930

#
risk SNPs identified in previous GWAS or fine-mapping studies

CBY1

APOBEC3A

RP1-85F18.6



829

3931

591

705

14,101

597

892

502

588

1694

530

594

13,641

691

917

15,851

15,619

442

56

169

295

89

356

39

82

446

283

229

105

21

1160

1127

7

1129

1096

97

Distance to the risk SNP (kb)

434-1595



190

118

18

339

336

1977

1972

795

172

215

0.085

30

11075

inside the gene

inside the gene

11144

inside the gene

37

208

18

3755

3707

6

inside the gene

inside the gene

90

168

342

15

65

455

230

242

169-2117

290-2385



276

381

416

504

301

61

307

491

525

564

81

451

419

20

108

336

594

347

339

312

19

inside the gene

95

255

221

241

306

64

438

240

73

80

271

441

376

162

122

359

6

432

437

444

469

494

281

396



99

484

289

780

0.2

460

689



Gene(s) Top canonical pathways

Protein-coding

genes with

Bonferroni

corrected

significant

associations

Granzyme B Signaling (p =0.024);

Inflammasome pathway (p =0.030);

Tumoricidal Function of Hepatic

Natural Killer Cells (p =0.036);

Cytotoxic T Lymphocyte-mediated

Apoptosis of Target Cells (p =0.046)

CTD-2323K18.1

D-glucuronate Degradation I

(p =3.31 × 10-3); Methylglyoxal

Degradation III (p =0.012); Mevalonate

Pathway I (p =0.013);; Superpathway

of Geranylgeranyldiphosphate

Biosynthesis I (via Mevalonate)

(p =0.018);; Tryptophan Degradation X

(Mammalian, via Tryptamine)

(p =0.020);

RP11-439A17.7

Tetrahydrobiopterin Biosynthesis I

(p =2.21 × 10-3); Tetrahydrobiopterin

Biosynthesis II (p =2.21 × 10-3);

Relaxin Signaling (p =4.13 × 10-3);

Synaptic Long Term Depression

(p =4.38 × 10-3); Endothelin-1

MIR31HG

BER pathway (p =7.56 × 10-3);

Dermatan Sulfate Biosynthesis (Late

Stages) (p =0.026); Chondroitin Sulfate

Biosynthesis (Late Stages) (p =0.028);

Ephrin A Signaling (p =0.030);

Heparan Sulfate Biosynthesis (Late

Stages) (p =0.030)

RP11-218M22.1

Netrin Signaling (p =0.024); ATM

Signaling (p =0.037); Role of BRCA1

in DNA Damage Response (p =0.048)



RP11-114I8.4
ErbB2-ErbB3 Signaling (p =0.043);

ErbB4 Signaling (p =0.045)

RP11-53O19.1

Inosine-5'-phosphate Biosynthesis II

(p =5.44 × 10-3); Retinoate Biosynthesis

II (p =7.25 × 10-3); Purine Nucleotides

De Novo Biosynthesis II (p =0.020);

Cleavage and Polyadenylation of Pre-

mRNA (p =0.022); Epithelial Adherens

Junction Signaling (p =0.028)

(p =4.38 × 10-3); Endothelin-1

Signaling (p =6.60 × 10-3)



AP006621.6

Primary Immunodeficiency Signaling

(p =1.40 × 10-3); Acetate Conversion to

Acetyl-CoA (p =5.04 × 10-3); T Cell

Receptor Signaling (p =6.49 × 10-3);

G12/13 Signaling (p =9.50 × 10-3); Tec

Kinase Signaling (p =0.016)

RP11-32D16.1

AMPK Signaling (p =1.96 × 10-4);

Tyrosine Degradation I (p =2.20 × 10-

4); Phenylalanine Degradation IV

(Mammalian, via Side Chain)

(p =1.95 × 10-3); LPS/IL-1 Mediated

Inhibition of RXR Function

(p =3.11 × 10-3); Valine Degradation I

(p =3.23 × 10-3)

RP11-73O6.3

Pentose Phosphate Pathway (Oxidative

Branch) (p =5.88 × 10-3);

Selenocysteine Biosynthesis II

(Archaea and Eukaryotes)

(p =8.81 × 10-3); GDP-mannose

Biosynthesis (p =8.81 × 10-3); p53

Signaling (p =9.13 × 10-3); Tryptophan

Degradation to 2-amino-3-

carboxymuconate Semialdehyde

(p =0.010)



RP11-467J12.4

Glycerol-3-phosphate Shuttle

(p =2.32 × 10-3); Glycerol Degradation

I (p =5.78 × 10-3)

CTD-3032H12.1

ERK/MAPK Signaling (p =2.00 × 10-

4); FLT3 Signaling in Hematopoietic

Progenitor Cells (p =1.14 × 10-3); Acute

Myeloid Leukemia Signaling

(p =1.50 × 10-3); -Adrenergic Signaling

(p =1.92 × 10-3); Corticotropin

CTD-3051D23.1

Granulocyte Adhesion and Diapedesis

(p =0.039); Agranulocyte Adhesion and

Diapedesis (p =0.043); IL-22 Signaling

(p =0.045); Role of JAK family kinases

in IL-6-type Cytokine Signaling

(p =0.046); B Cell Development

(p =0.050)



Induction of Apoptosis by HIV1

KANSL1-AS1

Endoplasmic Reticulum Stress

Pathway (p =0.024); Tumoricidal

Function of Hepatic Natural Killer

Cells (p =0.027); Cytotoxic T

Lymphocyte-mediated Apoptosis of

Target Cells (p =0.035); TWEAK

Signaling (p =0.038)

LINC00671

Dolichyl-diphosphooligosaccharide

Biosynthesis (p =0.016); Hereditary

Breast Cancer Signaling (p =0.017);

Antiproliferative Role of TOB in T

Cell Signaling (p =0.037); Inhibition of

Angiogenesis by TSP1 (p =0.046)

(p =1.92 × 10 ); Corticotropin

Releasing Hormone Signaling

(p =3.69 × 10-3)



NA: not available

p-values calculated using the right-tailed Fisher Exact Test

RP11-15A1.7

Induction of Apoptosis by HIV1

(p =1.09 × 10-4); Docosahexaenoic

Acid (DHA) Signaling (p =1.72 × 10-3);

Molecular Mechanisms of Cancer

(p =2.33 × 10-3); CD27 Signaling in

Lymphocytes (p =2.93 × 10-3); Small

Cell Lung Cancer Signaling

(p =5.60 × 10-3)



Related diseases and disorders Molecular and Cellular Functions

Cancer; Developmental Disorder;

Hematological Disease; Hereditary Disorder;

Immunological Disease

Cell Death and Survival; Cell-To-Cell

Signaling and Interaction; Cellular

Compromise; Cell Cycle; Cellular

Morphology

Cancer; Cardiovascular Disease;

Dermatological Diseases and Conditions;

Endocrine System Disorders; Hereditary

Disorder

DNA Replication, Recombination, and

Repair; Post-Translational Modification;

Carbohydrate Metabolism; Cell Morphology;

Cellular Assembly and Organization

Developmental Disorder; Hereditary Disorder;

Metabolic Disease; Neurological Disease;

Ophthalmic Disease

Cell Signaling; DNA Replication,

Recombination, and Repair; Nucleic Acid

Metabolism; Small Molecule Biochemistry;

Cell Morphology

Cardiovascular Disease; Connective Tissue

Disorders; Dermatological Diseases and

Conditions; Developmental Disorder;

Hereditary Disorder

Cell-To-Cell Signaling and Interaction;

Cellular Assembly and Organization; Cellular

Movement; Gene Expression; Molecular

Transport

Cancer; Dermatological Diseases and

Conditions; Developmental Disorder;

Hereditary Disorder; Neurological Disease

Cell Cycle; DNA Replication,

Recombination, and Repair; Cell Death and

Survival; Cell Morphology; Cellular

Assembly and Organization



Dermatological Diseases and Conditions;

Developmental Disorder; Hereditary Disorder;

Metabolic Disease; Organismal Injury and

Abnormalities

Cellular Function and Maintenance;

Molecular Transport; Cell Morphology; Gene

Expression; Protein Trafficking

Dermatological Diseases and Conditions;

Developmental Disorder; Hereditary Disorder;

Neurological Disease; Ophthalmic Disease

Cell Cycle; Cell Morphology; Cellular

Assembly and Organization; Cellular

Function and Maintenance; Nucleic Acid

Metabolism



Cancer; Cardiovascular Disease; Connective

Tissue Disorders; Dermatological Diseases

and Conditions; Developmental Disorder

Cellular Function and Maintenance; Cell

Death and Survival; Cell Morphology; Cell-

To-Cell Signaling and Interaction; Cellular

Development

Metabolic Disease; Endocrine System

Disorders; Gastrointestinal Disease; Hepatic

System Disease; Organismal Injury and

Abnormalities

Lipid Metabolism; Small Molecule

Biochemistry; Energy Production; Molecular

Transport; Carbohydrate Metabolism

Cardiovascular Disease; Connective Tissue

Disorders; Developmental Disorder;

Hematological Disease; Hereditary Disorder

Cell Death and Survival; Carbohydrate

Metabolism; Cell Cycle; Cell Morphology;

Cell-To-Cell Signaling and Interaction



Cancer; Organismal Injury and Abnormalities;

Reproductive System Disease; Cardiovascular

Disease; Developmental Disorder

Cell-To-Cell Signaling and Interaction;

Cellular Assembly and Organization; Cellular

Growth and Proliferation; Cell Morphology;

Cellular Development

Inflammatory Response; Cancer; Organismal

Injury and Abnormalities; Auditory Disease;

Cardiovascular Disease

Cell-To-Cell Signaling and Interaction; Cell

Death and Survival; Cell Cycle; Cell

Morphology; Cellular Function and

Maintenance

Cancer; Cardiovascular Disease;

Developmental Disorder; Endocrine System

Disorders; Hematological Disease

Cellular Development; Cell Morphology;

Cellular Growth and Proliferation; Lipid

Metabolism; Molecular Transport



Developmental Disorder; Hereditary Disorder;

Neurological Disease; Organismal Injury and

Abnormalities; Psychological Disorders

Cell Morphology; Cellular Function and

Maintenance; Lipid Metabolism; Molecular

Transport; Small Molecule Biochemistry

Inflammatory Response; Cancer;

Cardiovascular Disease; Developmental

Disorder; Gastrointestinal Disease

DNA Replication, Recombination, and

Repair; Cell-To-Cell Signaling and

Interaction; Cellular Function and

Maintenance; Cell Cycle; Cellular

Development



Infectious Diseases; Cancer; Cardiovascular

Disease; Dermatological Diseases and

Conditions; Developmental Disorder

Cellular Compromise; Cellular Assembly and

Organization; Cell Morphology; Cell Death

and Survival; Cell-To-Cell Signaling and

Interaction



Top networks

Cell Death and Survival, Cellular

Compromise, Nervous System Development

and Function; Cancer, Dermatological

Diseases and Conditions, Organismal Injury

and Abnormalities; Cardiovascular System

Development and Function, Cell Cycle,

Cellular Development; Cellular Assembly

and Organization, DNA Replication,

Recombination, and Repair, Cell Cycle;

Developmental Disorder, Hereditary

Disorder, Ophthalmic Disease

Cellular Assembly and Organization,

Hereditary Disorder, Organismal Injury and

Abnormalities; Cellular Development,

Cellular Growth and Proliferation, Cell Death

and Survival; Cell Morphology, Cellular

Function and Maintenance, Hematological

System Development and Function; Cell

Cycle, Cell Morphology, Organ Morphology

Cell Morphology, Gastrointestinal Disease,

Organismal Injury and Abnormalities;

Cellular Development, Reproductive System

Development and Function, Cell Cycle;

Organ Morphology, Reproductive System

Development and Function, Connective

Cancer, Organismal Injury and

Abnormalities, Reproductive System Disease;

Cell Cycle, Connective Tissue Disorders,

Dermatological Diseases and Conditions;

Cardiovascular Disease, Cellular

Development, Organismal Injury and

Abnormalities; Cancer, Gastrointestinal

Disease, Organismal Injury and

Abnormalities; Hereditary Disorder,
Cell Cycle, Cellular Development, Cellular

Growth and Proliferation; Cancer, Cell Death

and Survival, Organismal Injury and

Abnormalities; Developmental Disorder,

Hereditary Disorder, Organismal Injury and

Abnormalities



Cell Morphology, Cellular Compromise,

Cellular Function and Maintenance; Lipid

Metabolism, Small Molecule Biochemistry,

Dermatological Diseases and Conditions;

Hereditary Disorder, Nephrosis, Ophthalmic

Disease; Molecular Transport, Cellular

Assembly and Organization, Cell

Morphology; Cellular Assembly and

Organization, Cellular Function and

Maintenance, Cell Signaling

Cell Cycle, Cell-To-Cell Signaling and

Interaction, Cellular Growth and

Proliferation; Cell Death and Survival,

Neurological Disease, Organismal Injury and

Abnormalities; Cancer, Cell Death and

Survival, Cell-To-Cell Signaling and

Interaction; Cardiovascular Disease, Cell

Death and Survival, Cell Morphology;

Embryonic Development, Organismal

Development, Tissue Morphology

Development and Function, Connective

Tissue Disorders



Humoral Immune Response, Protein

Synthesis, Hematological System

Development and Function; Cellular

Compromise, Cell Cycle, Cellular Assembly

and Organization; Cell Cycle, Hereditary

Disorder, Neurological Disease; Embryonic

Development, Organismal Development,

Tissue Development

Lipid Metabolism, Molecular Transport,

Small Molecule Biochemistry; Cell Signaling,

Nucleic Acid Metabolism, Small Molecule

Biochemistry; Cell Cycle, Gene Expression,

Organ Morphology; Carbohydrate

Metabolism, Molecular Transport, Small

Molecule Biochemistry; Skeletal and

Muscular Disorders, Cell Morphology, Organ

Development

Cellular Development, Cellular Growth and

Proliferation, Reproductive System

Development and Function; Cell-mediated

Immune Response, Cellular Development,

Cellular Function and Maintenance



Cardiovascular System Development and

Function, Cellular Development, Cellular

Function and Maintenance; Cell Morphology,

Connective Tissue Development and

Function, Tissue Morphology

Embryonic Development, Organ

Development, Organismal Development; Cell

Morphology, Cell Death and Survival,

Cellular Development; Lipid Metabolism,

Molecular Transport, Small Molecule

Biochemistry; Post-Translational

Modification, Cell Morphology, Cellular

Function and Maintenance; Dermatological

Cell Cycle, Cell Death and Survival, Cellular

Compromise; Cellular Development, Cellular

Growth and Proliferation, Hematological

System Development and Function; Cellular

Assembly and Organization, Cellular

Function and Maintenance, Tissue

Morphology; Connective Tissue Disorders,

Organismal Injury and Abnormalities,

Reproductive System Development and

Function; Infectious Diseases, Cancer,

Organismal Injury and Abnormalities



Gene Expression, Cell Cycle, Lipid

Metabolism; Cell Cycle, Reproductive

System Development and Function,

Embryonic Development; Developmental

Disorder, Hereditary Disorder, Ophthalmic

Disease; Cell Cycle, Endocrine System

Development and Function, Lipid

Metabolism

Cell Death and Survival, Cancer, Organismal

Injury and Abnormalities; Cell Morphology,

Developmental Disorder, Digestive System

Development and Function; Cellular

Movement, Nervous System Development

and Function, Embryonic Development; Cell

Morphology, Cellular Function and

Maintenance, Cellular Movement; Organ

Morphology, Organismal Development,

Organismal Injury and Abnormalities

Function and Maintenance; Dermatological

Diseases and Conditions, Organismal Injury

and Abnormalities, Hair and Skin

Development and Function



Cell Morphology, Cellular Assembly and

Organization, Behavior; Cell Morphology,

Cellular Function and Maintenance, Cellular

Compromise; Cell Signaling, Nucleic Acid

Metabolism, Molecular Transport; Cell Death

and Survival, Cellular Development, Cellular

Growth and Proliferation



List of highly co-expressed genes for each long non-coding RNA

NA

STMN4,ROCK1,APOL2,PRSS35,RPP38,RPUSD3,HS3ST6,LRR1,DI

RC1,KLHL38,POLE,TREX2,CACNA1H,AC078883.4,RP5-

826L7.1,MYLKP1,TSSK1A,MTHFD1P1,RP11-527F13.1,RP11-

32B5.1,PRKCQ-AS1,RP11-834C11.3,CTD-2127H9.1,RP11-

454K7.1,CTD-2561B21.10

FFAR2,PKIB,TP53BP2,LSM14B,NSA2,SYAP1,ZNF738,MAGEF1,F

OXI2,DCC,NCR1,XRCC2,BLM,RP11-

94I2.1,LINC00160,AC092664.1,RP11-83M16.2,CTD-2325P2.4,CTD-

3099C6.7

VCAN,UBE2T,SUV39H1,MVK,AKR1A1,ZC3H13,MCM8,CASD1,CB

LN2,DTL,DGKQ,RPL7A,CCDC74B,CTRC,RHEBL1,SNUPN,PKIA,K

IF24,BMPR2,MUC19,LINC00612,RP11-157J24.1,LINC00035,RP11-

460N20.4,FTH1P1,HNRNPA1P27,FAM203A,RP5-903G2.2,RP11-

532F12.5,RP11-340F14.5,RP11-120M18.2,RP11-168F9.2

TBC1D23,SPR,GNA13,TRMT5,BAIAP2L2,GATA5,GUCY2D,NIPA2,

CEP170,ADAMTS16,GTF2H2C,CEND1,IFITM1,SRRM2-

AS1,AC091167.3,RP11-30P6.1,RP5-956O18.3,RP11-

137H2.4,COL6A4P1,RP5-836N10.1,VN1R20P,RP11-381E24.1,TET2-

AS1,RP11-361I14.2,RP11-732A19.9,CTD-2329K10.1,LA16c-

385E7.1,RN7SL15P,SH3GL1P2,MIR3942, RP11-820I16.1,



MCM10,RRP15,EPN2,MTMR3,CPSF6,RBBP5,FBXO30,PAICS,CAP

N11,RNF144B,HAUS2,KIF21A,FAM222A,CTDSPL,HNRNPU,TOM

M70A,RIBC1,RRP1B,RBP7,FUBP1,S100Z,C17orf66,NUDT4,DSG4,

MED16,OR10A6,GCNT4,TMEM139,ZNF320,C11orf72,CXorf38,ZN

F566,ZNF197,TNFRSF18,MAGI2,VWC2,GLRA4,AC104472.1,UBE2

Q2P2,AC073621.2,AC073850.6,FGF12-AS2,AC073342.12,RP11-

557H15.4,RP11-640M9.1,RN7SL331P,AP000322.53,RP11-

51J9.4,RP11-1055B8.4,RP11-135L13.4,RP11-64C12.8

TNMD,CX3CL1,DAPK2,HEBP2,TRAF3IP2,GYG2,LIPE,SEPHS1,F

MO2,APMAP,SLC6A2,FAH,ETFB,SH3D19,CPT1A,TMED5,ITGB1B

P1,KCNIP2,CAT,WIPF3,ACVR1C,PCK1,ARHGEF6,SLC7A10,INPP

5K,KL,TCN1,ADAM19,SDS,CD36,PPP1R1A,TTLL4,SLC19A3,RTN1

385E7.1,RN7SL15P,SH3GL1P2,MIR3942, RP11-820I16.1,

HMGB2P1,RP11-479O17.10

ARHGAP31,PEX3,DPP8,CPNE3,KDELR3,A4GNT,RIBC2,NCBP1,S

LC25A26,ANKAR,CERS3,CCDC28B,PRORSD1P,NRG4,FAM26F,Z

NF789,NFKBIL1,Y_RNA,RP1-

13D10.2,LINC00205,AC002117.1,RP13-216E22.4,MED4-

AS1,ZRANB2-AS1,AD000090.2,RP11-206L10.9,RP11-353N4.2,RP11-

499P20.2,TMEM161B-AS1,AC008592.4,RP11-15A1.2,CTD-

2639E6.9



BTK,HERPUD1,PRDM1,KCNAB2,ZFAND6,DERL3,SRRD,ACSS3,L

AX1,ZBP1,RGS13,TEC,DUOXA2,RPL11,UGCG,LPCAT1,GFI1B,RN

F187,SHCBP1,AP006621.1,PIDD,NUGGC,IGHA1,FIS1,IGLC6,RPL

32P1,RP11-162O12.2,LINC00568,GS1-

124K5.11,LINC00582,AC007285.7,AC005162.5, RP11-

181G12.4,LINC01010,RPS20P21, H2AFJ,RP11-510M2.2, RP11-

1084E5.1,AP006621.5,AC091171.1,RP11-554D14.4,RP11-

42I10.1,RP11-61A14.3,RP11-325K4.3,RP11-174G6.5,RP11-

849F2.8,RP4-713A8.1,STAG3L5P-PVRIG2P-PILRB

5K,KL,TCN1,ADAM19,SDS,CD36,PPP1R1A,TTLL4,SLC19A3,RTN1

,ETFA,ADAMTS18,SELENBP1,CDKN2B,TM7SF2,FLI1,PDE3B,PL

OD2,RWDD2B,NAA11,RPUSD3,C2CD2,HPD,PFKFB1,FBXO27,CC

DC51,CTSB,SUN1,NIPSNAP3B,AQP7,ZNF219,GPT2,PLIN1,ACAA2

,GPD1,PLIN4,ANGPTL4,GLYCTK,GSG1L,MRAP,FABP4,PFKFB3,

MUC7,AQPEP,DCTN2,FOXG1,CIDEA,PLA2G16,BOK,RPLP2,PNP

LA2,COX14,ADIPOQ,ABAT,TUSC5,NAT8L,CIDEC,DHRS4L2,MAO

A,MAN2A2,VKORC1L1,KCNRG,NUDT16,GJC2,LINC00222,PCDH

A7,AC022007.5,MIR135A1,ZNF259P1,KCNIP2-

AS1,AC022596.6,ADIPOQ-AS1,RP11-445L13__B.3,RP1-

28O10.1,AC008738.1,VN1R108P,RP11-573D15.1,RP5-

1172A22.1,RP1-293L6.1,LINC00263,TRHDE-

AS1,AC159540.2,VWFP1,GLYCTK-AS1,CEBPA,RP11-

768F21.1,CTD-2589H19.4,RP13-884E18.2,RP11-

1101K5.1,PAICSP4,AP006621.8,RP11-317P15.5,RP11-663N22.1

HIVEP2,LAMA3,SEPHS1,ARHGAP28,DHX32,GGA1,EIF3D,PSMD7

,GPI,URGCP,XPNPEP1,PPP1R9B,SMURF2,DDX25,NR5A1,TP53B

P2,PIK3R1,SYBU,CDYL,NCAM2,DHRS4,G6PD,ZER1,SHANK1,HA

AO,SH3TC2,PACS1,L3MBTL3,LINC00162,RP11-536C5.7,RP11-

213G2.2,AC002401.1,MTX1P1,RP11-247I13.11,LINC00461,RP11-

281P23.2,RP11-10A14.4,RP11-

578O24.2,FTLP14,AC005702.1,RP11-138E2.1,RP11-216P16.2



PREX2,CD82,MARCH2,INTS10,TPD52L1,MORN1,HSDL2,CHST8,

FGD3,IL17B,BTBD3,PRSS23,ANKFN1,ZKSCAN2,SUSD3,ALDH16A

1,HDAC11,GPD1,EMR1,CTDNEP1,SRGAP3,SFTA2,AC074391.1,A

L021068.1,RP11-553A21.3,RP4-669P10.16,LL0XNC01-

237H1.3,DPY19L2P4,AC007750.5,KRT8P36,RP11-368I23.2,RP11-

16P20.3,FMR1-AS1

MBTD1,AGA,CHI3L2,FNDC3B,GRHL2,CRLS1,ESR1,DHRS7,HTAT

SF1,DNAJB6,GATA3,ATE1,STC2,MOGS,PDCL3,SLC1A4,NR5A2,IP

O13,STAT5A,TRPV5,EPS15L1,YWHAH,RAF1,HRASLS2,GLCE,C1R

L,GRTP1,IGLON5,UCK2,TNFRSF21,RNF44,RASSF3,C17orf103,SH

3RF2,PLXDC1,ADCY9,C1orf50,MOCS2,FBP1,TAF1D,DEGS2,PLA

2G4F,C3orf33,IRX5,IRX3,SETD3,C1orf64,PIP5K1C,EIF4EBP1,HU

S1B,ZKSCAN7,CALM1,CAPN8,SPINK9,SNORA40,LINC00277,RP1

1-223A3.1,ATP8A2P2,AK3P3,RP11-

5P18.5,LINC00941,KIFC1,RP11-69L16.4,RP1-93H18.1,RP11-

64D22.2,RGAG1,CTB-33O18.1,RP11-

RC3H2,TDRD3,GPATCH2L,IL5RA,EZR,TFIP11,MIB1,CD79A,EPB

41L5,SLC1A4,STAT5A,CASZ1,VSTM2L,SPIRE1,KLF4,NAA30,TBX1

9,RNF145,AZGP1,SCIMP,PPP1R32,VANGL2,LEO1,LMAN2,SERPI

NA6,NAT1,NDUFA11,SOX11,TSSK6,PCED1B,CRELD2,LCN12,CC

DC157,NKAPL,TMEM240,IGLV2-23,IGLV3-19,IGLC3,CCL27,HLA-

F-AS1,RP11-216N14.5,AC068587.2,RP11-557J10.4,CTD-

2240H23.2,KB-1460A1.5,LA16c-431H6.6,RP11-283I3.6,RP11-

597M12.1,RP11-694I15.7,RP4-734G22.3



SLC25A13,BID,WAPAL,PBX4,RASD1,KLF9,ADCY7,ZNF211,TMEM

64D22.2,RGAG1,CTB-33O18.1,RP11-

676M6.1,POLG2,AC040173.1,RP11-

114F10.2,LINC00567,AC009133.20,RP11-106E15.1,CTD-

2206N4.4,CTD-3214H19.6,CTD-3099C6.11,CTD-2376I4.2,RP11-

383I23.2

BTN3A1,MRPL43,USP14,KANSL1,EMC6,NLGN4X,TMEM219,CDC

42SE2,ZNF230,NEU3,CASP7,TRAPPC2L,ACYP2,LRRC37A,CECR6

,FAM227A,NUDT17,EPHB4,CRHR1-

IT1,ARHGAP19,LRRC37A4P,MICD,RP4-

782L23.1,FAM215B,AC007386.4,LRRC37A2,DECR2,CCDC153,BA

NF1P1,AC004449.6,CTD-2555A7.3,RP11-259G18.2,RP11-

259G18.3,RP11-1055B8.8,DND1P1,RP11-798G7.8,RP11-622C24.1

RHBDF1,NCAPD2,UBE2D1,PALB2,PHF14,EHD1,AMOTL2,CHST1

0,TXLNG2P,KDELC1,TUFT1,TRIM50,CABYR,N6AMT1,SIGLEC11,

C2orf44,TGFBR2,MAP9,ARSK,WEE1,TEF,DPAGT1,C11orf68,HIC1

,LINC00670,CEP97,TNFAIP2,KTN1-

AS1,ZNF567,Y_RNA,LINC00449,LINC00963,SYNJ2BP,RPL39P5,LR

RC37A11P,U3,SMIM13,RP11-61N20.3,RP11-

222A11.1,RN7SL165P,RN7SL244P,RP11-463J10.3,RP11-

407G23.4,AOC4P,RP11-2I17.4,LINC00565,RP11-703I16.1,MIR24-

2,CLEC4GP1



SLC25A13,BID,WAPAL,PBX4,RASD1,KLF9,ADCY7,ZNF211,TMEM

115,CDKN2D,TULP4,WTAP,ZNF7,ANXA8L1,PAN3,ZNF761,UVSSA

,INTS1,FAM102A,BCL2L1,C19orf18,PER1,CDC42EP4,HKR1,GPR1

,ANKRD19P,ZNF34,DNM3,ZFP2,ZNF155,FAM71F2,AKR1C7P,RA

B1C,RP11-538P18.2,ZBED5-AS1,RP11-301H24.3,RP11-

420A23.1,RP11-521B24.5,CHMP4BP1,NT5CP1,RP11-

109N23.6,SMIM6,HCCAT3,RP11-727F15.13,RP11-130L8.2,RP11-

274B21.9,RP5-1024N4.4,RP11-434H6.7



RP11-439A17.7

ZSWIM5

KLHDC7A

ALK

CASP8

ALS2CR12

PRSS46

LRRC3B

NUDT17

ANKRD34A

RP11-114I8.4

SPATA18

RP11-53O19.1

ATG10



ATP6AP1L

UBLCP1

RP11-32D16.1

BTN3A2

L3MBTL3

RP11-73O6.3

RMND1

KLHDC10

MIR31HG

AP006621.6

RIC8A

RPLP2

SNX32

B3GNT1



RP11-867G23.10

RP11-218M22.1

GALNT16

PLEKHD1

CTD-3051D23.1

MAN2C1

CTD-2323K18.1

RCCD1

RP11-467J12.4

CTD-3032H12.1

LINC00671

LRRC37A

KANSL1-AS1

CRHR1



STXBP4

HAPLN4

ZNF404

RP11-15A1.7

UBD

LRRC37A2



rs17023394, rs12037207, rs838518, rs17023457, rs838522, rs699774, rs838532, rs838530, rs838528,

rs3820032, rs3753264, rs3753263, rs3753262, rs2185556, rs10754396, rs12405488, rs1417610,

rs1417609, rs12024495, rs2050892, rs10923824, rs4659178, rs10802098, rs10923836, rs2275609,

rs7547046, rs3949342, rs947130, rs4659182, rs7553527, rs6692504, rs4659200, rs346670,

rs2024838, rs10754414, rs12046880, rs10802122, rs4659221, rs10494228, rs347910, rs838990,

rs404937, rs380155, rs598100, rs12025390, rs4659226, rs663807, rs616111, rs539304, rs539426,

rs17258425, rs4391705, rs532208, rs17186233, rs753424, rs10923902, rs947269, rs3009197,

rs3009196, rs2994815, rs2994816, rs2994817, rs3009182, rs3009184, rs3009186, rs2487573,rs6690437, rs12754891, rs12091565, rs11210998, rs2120823, rs17386059, rs12732315, rs16832024,

rs12744658, rs12749754, rs1889759, rs6688710, rs7525308, rs6429550, rs7517439, rs7517639,

rs6692487, rs11579580, rs12733586, rs7528461, rs12139143, rs6703452, rs7531019, rs11211053,

rs11577974, rs12735637, rs12125367, rs12755554, rs11211059, rs7519454, rs263997, rs263992,

rs263991, rs263989, rs183809, rs11556200, rs264025, rs264022, rs12749130, rs12738542,

rs7553658, rs6692713, rs4399199, rs12126314, rs12126318, rs2202152, rs11579411, rs10789463,

rs6429566, rs12743512, rs937291, rs10789465, rs2275276, rs11580609, rs7903, rs11211129,
rs4920399, rs11203247, rs17435018, rs7517220, rs6665151, rs11261017, rs11261020, rs4920322,

rs4920323, rs11261021, rs2992745, rs3000058, rs2816030, rs2230705, rs6683394
rs4665406, rs7576048, rs13029274, rs12995493, rs10190267, rs2940806, rs12052472, rs1992810,

rs2276551, rs2276549, rs4666201, rs2293564, rs12997783, rs4666202, rs7561975, rs6731724,

rs12993746, rs12997218, rs11897665, rs7564775, rs7562088, rs6753532, rs4414641, rs4665485,

rs11127243, rs13010777, rs12476676, rs12465499, rs4233750, rs12478888, rs12478928, rs6547981,

rs7603844, rs7560160, rs4502372, rs5018731, rs11690664, rs7576793, rs12714298, rs829602,
rs6728002, rs3754935, rs7603014, rs6735656, rs6754084, rs1861270, rs2293554, rs10931936,

rs1035142, rs700635, rs6743068, rs13016963, rs9288316, rs7560328, rs2597900

rs1035142, rs13016963, rs9288316, rs7560328
rs11716028, rs6808473, rs7632165, rs11717357, rs9843503, rs4413345, rs12495098, rs10510751,

rs3918357, rs743661, rs916092, rs1520484, rs9819159, rs9836993, rs9880885, rs9829227,

rs9810013, rs3796367, rs3796369, rs3796370, rs9834713, rs9835025, rs11915788, rs9820361,

rs9820372, rs9820785, rs9820845, rs9820861, rs9821418, rs9841203, rs9841229, rs9864097,

rs9868357, rs7632176, rs7623501, rs7626129, rs7428736, rs7428787, rs7639979, rs12489663,rs2052760, rs11711082, rs11719046, rs11715434, rs10510576, rs11719770, rs11719901,

rs17018100, rs994169, rs973603, rs11712421, rs17018155, rs1158545, rs1158544, rs12633309,

rs17018167, rs2036430, rs2036428, rs9820211, rs1602349, rs4435583, rs1907178, rs6808839,

rs1488240, rs9845198, rs6794554, rs6551142, rs7646852, rs1488215, rs17018761, rs1386884,

rs11717214, rs1915915, rs9841537, rs12495557, rs1522140, rs7618127, rs13080907, rs13098500,
rs9286836, rs11587364, rs12402787, rs12732381, rs2040085, rs2040086, rs34695381

rs704985
rs12639465, rs6441308, rs1287283, rs7616988, rs9873709, rs10511177, rs9875640, rs6807176,

rs6799379, rs6806178, rs9815439, rs1021341, rs9814359, rs6790535rs7440594, rs10012938, rs10434448, rs17577020, rs4864836, rs6856794, rs11724730, rs225160,

rs225163, rs13989, rs225165, rs225170, rs419792, rs17612170, rs11947242, rs4470701, rs7665551,

rs730284, rs4865271, rs12510605, rs9683559, rs7692441, rs7690931, rs1501614, rs1841263,

rs6858566, rs10517269, rs11939448, rs11938159, rs6838718, rs7693568, rs6835977, rs17644026,

rs11133238, rs4864440, rs11133239, rs11929934, rs13434989, rs10012324, rs17082294,rs80316101, rs150134525, rs7720551, rs76768074, rs148946381, rs181072007, rs186001811,

rs111765202, rs35601455, rs112494990, rs144785376, rs62366821, rs112679498, rs13179565,

rs201180654, rs191324191rs4703825, rs12187089, rs11738172, rs432872, rs457049, rs456778, rs463247, rs457700, rs386424,

rs462122, rs11740142, rs1384256, rs11741569, rs1485587, rs11740648, rs11741303, rs2860007,

rs11748868, rs12515069, rs1428939, rs178957, rs2407064, rs10068160, rs3857369, rs10061458,

rs17245188, rs9293290, rs4703537, rs891159, rs4703870, rs10066167, rs10065463, rs1543911,

rs2059891, rs6895884, rs6888977, rs6884232, rs1019806, rs4703879, rs2407153, rs11747683,

rs749402, rs749401, rs862240, rs146991557, rs226204, rs11743578, rs2407156, rs17247678,



rs6881927, rs12517153, rs13174473, rs10042996, rs12188888, rs2972230, rs10514220, rs1561150,

rs442417, rs461802, rs4703852, rs2406905, rs6892261, rs16899359, rs7727483, rs178957,

rs3857369, rs10061458, rs9293290, rs4703537, rs10066167, rs10065463, rs3738, rs226202,

rs226199, rs6880209, rs178931, rs226196, rs862240, rs146991557, rs862239, rs3756683, rs3734115,

rs224844, rs224843, rs6872917, rs12187334, rs4703894, rs905221, rs2385882, rs12153244,

rs10062095, rs2015904, rs2015911, rs4354012, rs4282294, rs16899813, rs924615, rs10514242,

rs10041952, rs16899864, rs9293313, rs17205439, rs10462383, rs6863549, rs13165887, rs13166060,
rs31199, rs10054046, rs10070382
rs11466807, rs11744671, rs11466784, rs3097837, rs254664, rs1896606, rs13155377, rs13159354,

rs7709209, rs2984629, rs17242576, rs11741271, rs2988321, rs1952657, rs12187534, rs10045014,

rs12188478, rs10515764, rs17055744, rs2419654, rs1317414, rs864821, rs824869, rs824871,

rs699083, rs10040448, rs13171583, rs11750665, rs11747709, rs11741746, rs13175305, rs11743605,

rs7715522, rs11748882, rs31193, rs13155183, rs1345721, rs7736575, rs2009612, rs1469070,rs9467504, rs13203202, rs2328879, rs6456693, rs10946795, rs6924948, rs9467701, rs6923139,

rs9467704, rs6903015, rs9467707, rs6939978, rs9366653, rs9379851, rs9348709, rs9393705,

rs9393706, rs9393707, rs9393708, rs9358932, rs9358934, rs9357006, rs9379855, rs9348712,

rs9379856, rs9379857, rs9379858, rs9393710, rs9379859, rs9358935, rs12173854, rs9379864,

rs12176317, rs12174602, rs12174631, rs13216828, rs9393713, rs9393714, rs9358937, rs2073529,

rs2073531, rs9348716, rs9366655, rs1977, rs1978, rs1979, rs3799380, rs4518487, rs6456728,
rs9321204, rs9388762, rs7754426, rs6569648, rs7740107
rs9388721, rs9372945, rs17755387, rs9402157, rs4499953, rs17811901, rs12191170, rs12202100,

rs6569644, rs9388762, rs7754426, rs7740107, rs4364506, rs9492440, rs10499172, rs7759381,

rs9492441, rs7769599, rs12190724, rs7764762, rs4548027, rs9492443, rs12198331, rs9492445,rs11759741, rs11751703, rs17800315, rs17800327, rs11759502, rs11757075, rs2223451, rs7451945,

rs742315, rs9371462, rs7769835, rs6557545, rs9384561, rs9371463, rs11752947, rs9383832,

rs11155740, rs7742124, rs4870532, rs17080057, rs17080062, rs17080069, rs17080087, rs17080089,

rs17080091, rs17080093, rs17080102, rs9372087, rs10872665, rs1494309, rs782665, rs803401,

rs2295083, rs9397029, rs742829, rs6902496, rs12203650, rs7349940, rs12205664, rs1575219,

rs2180927, rs9478167, rs730489, rs4869987, rs4869988, rs6923696, rs17362091, rs4869991,

rs6939639, rs2179544, rs12210237, rs3800270, rs6904364, rs6557140, rs9322321, rs9397050,

rs7752091, rs3736175, rs6557141, rs9383571, rs954238, rs2982558, rs2982556, rs1124674,rs4728160, rs721691, rs2896415, rs4731568, rs7800983, rs11764547, rs10246160, rs10225672,

rs2727455, rs10480805, rs1046691, rs10246707, rs17162050, rs10249037, rs17162123, rs9656386,

rs17162136, rs10273782, rs6467267, rs17162295, rs10500121, rs10253233, rs6962745, rs7803795,

rs7801603, rs7805980, rs10279425, rs12531444, rs12534580, rs901799, rs1488009, rs1574704,

rs6943386, rs7793239, rs2129902, rs6467309, rs10257888, rs10263075, rs1035596, rs10281580,

rs10272075, rs10272206, rs10248834, rs10248294, rs10279517, rs6969737, rs6945822, rs17165066,
rs10965219
rs6597947, rs12270802, rs7928098, rs7927765, rs4077757, rs3793964, rs7395835, rs7394830,

rs12801744, rs11037265, rs11038276, rs16927520, rs2292958, rs11246048, rs12801980, rs2242566,

rs909098, rs7396812, rs7481525, rs7395918, rs7481685, rs11246175, rs1056812, rs7942569,

rs7395822, rs4078520, rs10902208, rs11246300, rs7952095, rs6597984, rs11246311, rs7104929,

rs4963153, rs10902221, rs6597981, rs11246314, rs11246316, rs4131364, rs11246319, rs11246327,
rs3782116, rs7115703, rs11246062, rs7947900, rs7395319, rs7396812, rs10751657, rs7481525,

rs12361394, rs7484182, rs7102822, rs17585, rs7113204, rs12577324, rs35579818
rs11245936, rs7103978, rs28514396, rs2943510, rs11029039, rs6578471, rs4752763, rs11604009,

rs10400297, rs10838484, rs1038727, rs7110331, rs575488, rs2292958, rs2292963, rs1317356,

rs11041082, rs7127542, rs6598055, rs7925234, rs11246052, rs9737419, rs10902120, rs11602841,

rs7947900, rs7395116, rs11246068, rs4131942, rs7117996, rs10794314, rs10794315, rs11246108,

rs11246130, rs11246131, rs10902165, rs12806187, rs4963166, rs7635, rs10902208, rs7952095,
rs17304039, rs11601767, rs11227332, rs1939212, rs583887, rs596002, rs601863, rs658524,

rs645900, rs687672, rs658938, rs568617, rs694994, rs641018, rs656980, rs2231884, rs531784
rs694243, rs512715, rs674485, rs1194758, rs686320, rs1787666, rs616599, rs4102217, rs4099470,

rs11227226, rs2298615, rs491666, rs610497, rs684546, rs668210, rs539046, rs17307346, rs512421,

rs559298, rs10219183, rs1791682, rs2242663, rs7103627, rs7119426, rs7120256, rs3862391,



rs78407319, rs190536043, rs118019315, rs2270448, rs118151305

rs10849596, rs11064617, rs11614523, rs7967165, rs16932084, rs2286036, rs17223490, rs7973873,

rs2189669, rs11609462, rs7313155, rs10848486, rs7966350, rs4765827, rs4766400, rs7135126,

rs10505717, rs7967909, rs510714, rs1051104, rs542736, rs2075228, rs518685, rs2300127,

rs11062163, rs11063111, rs215227, rs215231, rs11063281, rs11063286, rs4980927, rs2286781,

rs1860612, rs756502, rs10849215, rs6489652, rs10849328, rs2607918, rs7955627, rs2075032,rs17105278, rs7150454, rs12889206, rs8003738, rs4902567, rs1810623, rs6573834, rs1570106,

rs17105586, rs916962, rs2247048, rs2525521, rs1476586, rs1859302, rs2525523, rs2525524,

rs2525525, rs2525526, rs2525527, rs2842331, rs7153476, rs8007194, rs2257111, rs2257116,

rs2257127, rs4899246, rs10137893, rs4902611, rs181464, rs17835996, rs1275195, rs1950712,

rs7143336, rs1890941, rs2185492, rs7155178, rs7151003, rs8008770, rs12889279, rs1958184,
rs9323513, rs11158749, rs10134446, rs2189517, rs7140266, rs2525530
rs8095, rs1053419, rs11850704, rs4906423, rs4555088, rs3809461, rs3809457, rs7144812,

rs4454893, rs7142224, rs10136937, rs4340263, rs10135130, rs3809454, rs2841214, rs2582559,

rs4983589, rs3825761, rs7151594, rs880616, rs10139596, rs1882848, rs10140111, rs11625865,rs2075589, rs4886649, rs1809714, rs1984586, rs1984587, rs7164976, rs3866545, rs7183520,

rs7166852, rs7164429, rs8028182, rs12708519, rs8029112, rs28610581, rs8030802, rs6495182,

rs8023268, rs8023815, rs11636031, rs11636199, rs12708520, rs7163907, rs28693593, rs4886716,

rs4075522, rs7184046, rs13380103rs17336243, rs2304900, rs12908919, rs1822324, rs12911696, rs12899456, rs12909554, rs8038911,

rs12905302, rs1809714, rs1984586, rs1984587, rs7164976, rs3866545, rs7183520, rs7166852,

rs7164429, rs9673084, rs5745935, rs8027749, rs11635996, rs3210683, rs1128585rs11855570, rs8030486, rs2227935, rs7167216, rs734252, rs2677744, rs1266489, rs1266483, rs4773,

rs1550636, rs2290202, rs2301825, rs3826033, rs4392040, rs7402585, rs12915069, rs9744944,

rs8028382, rs4583214, rs4244910, rs4932591, rs4306482rs17257857, rs12597737, rs7200881, rs17201162, rs12598784, rs1344490, rs3910446, rs9889099,

rs1362380, rs9936470, rs16950876, rs8048212, rs17268400, rs3095536, rs3095537, rs1076081,

rs1861315, rs16951015, rs1074734, rs16951035, rs1345312, rs16951056, rs12597728, rs4477699,

rs4480800, rs1362558, rs11075488, rs9921890, rs1861527, rs3095599, rs3095600, rs194392,

rs194394, rs12930211, rs7191789, rs1362553, rs8048309, rs1362554, rs1345389, rs2075236,

rs3095660, rs1420546, rs3095661, rs40841, rs1362560, rs3095616, rs1420548, rs8051542,

rs4784220, rs12922061, rs11647542, rs11866049, rs16951465, rs11867085, rs3104823, rs3112587,

rs16951525, rs12925035, rs4784253, rs12919531, rs4238756, rs4783785, rs1420257, rs6499105,

rs7205069, rs17298178, rs17370363, rs11639509, rs7500472, rs12919591, rs12922267, rs2387879,

rs551415417, rs9925367, rs9936502, rs10153135, rs16951919, rs4783804, rs9925003, rs7198530,

rs12933494, rs12919486, rs12930884, rs8058720, rs3760010, rs4456500, rs8051064, rs8047647,

rs1833205, rs1833207, rs12051480, rs8045574, rs2388117, rs9924562, rs2160290, rs3743772,rs6499657, rs17823199, rs17196003, rs748815, rs13333140, rs16953503, rs12926529, rs9926409,

rs1420289, rs2160294, rs933517, rs1420290, rs1420292, rs8059628, rs1186818, rs7205346,

rs16953806, rs12325292, rs7198507, rs4435250, rs4783866, rs2589010, rs8053467
rs72826975
rs12947718, rs12942666, rs7222389, rs34018943, rs11012, rs9730, rs17631303, rs2077606,

rs3946526, rs17631676, rs1880750, rs1358071, rs17690703, rs16940758, rs4510068, rs7225002,

rs2696531, rs538628, rs169201, rs199439, rs199457, rs199456, rs199451, rs199448, rs199445,

rs199443, rs199535, rs199534, rs9896243, rs199533, rs199498, rs199497rs1133458, rs7213493, rs9911183, rs11079502, rs2072090, rs16939943, rs7222751, rs7214661,

rs7222377, rs1059504, rs1230106, rs439558, rs17687796, rs1358071, rs1989480, rs8082105,

rs12953076, rs12938031, rs4076452, rs9892359, rs171441, rs242939, rs171443, rs17690703,

rs753235, rs2435205, rs3785883, rs2471738, rs2532345, rs2696531, rs148126555, rs538628,

rs169201, rs199439, rs199457, rs199456, rs199451, rs199448, rs199445, rs199443, rs199535,

rs199534, rs9896243, rs199533, rs35732828, rs2074404, rs199498, rs199497, rs3851781, rs7214920,

rs7213046, rs1004485, rs3851788, rs2317996, rs2317995, rs3851797, rs2316757, rs3851800,rs12942842, rs17544947, rs6503404, rs10853009, rs1071682, rs1000354, rs12947718, rs12942666,

rs7222389, rs34018943, rs11012, rs9730, rs17631303, rs2077606, rs3946526, rs17631676,

rs9890016, rs2435200, rs4630591, rs183211, rs199436, rs199438, rs142167, rs7224296, rs199453,

rs199452, rs199449, rs199444, rs199442, rs199524, rs199520



rs2164160, rs1434739, rs974588, rs11653274, rs11079129, rs17709877, rs17675596, rs7210359,

rs12952253, rs7209926, rs7208123, rs9916547, rs8065361, rs9891704, rs9900816, rs9907961,

rs17745183, rs2787497, rs2787481, rs244317, rs7218719, rs7223718, rs7213282, rs3931318,

rs11079178, rs7218226, rs8069305, rs8073227, rs4794602, rs17211444, rs11653426, rs906580,

rs12940838, rs8066578, rs11656691, rs12938239, rs12936661, rs8076964, rs7208778, rs13380851,

rs11656314, rs11656373, rs6504993, rs6504994, rs12951953, rs6504995, rs11658412, rs10515108,rs12976333, rs12985909, rs1363119, rs10415765, rs10423237, rs10415319, rs10401774, rs8102478,

rs3746183, rs3746181, rs1363120, rs888663, rs888669, rs35742476, rs10420384, rs2303692,

rs7246788, rs2891676, rs4808803, rs11672385, rs1971093, rs8111582, rs8111397, rs10426768,

rs4808807, rs2013069, rs11670392, rs7249760, rs10409346, rs10409408, rs4808135, rs1469412,

rs6512269, rs4580317, rs4808812, rs8106068, rs4808814, rs10422974, rs10415320, rs7249453,rs12610476, rs3786956, rs4803662, rs423765, rs376069, rs417699, rs407731, rs425221, rs388685,

rs388706, rs399098, rs378109, rs424729, rs423320, rs423752, rs375066, rs384329, rs17656688,

rs413093, rs403137, rs379785, rs454559, rs367741, rs373168, rs411803, rs10422017, rs12972550,

rs16989260, rs12459705, rs17714676, rs2965109, rs7254776
rs364691, rs349032
rs16894184, rs16894189, rs6909302, rs6941946, rs7768299, rs2394512, rs7741520, rs9461498,

rs9468471, rs9380105, rs9468473, rs7749435, rs6919044, rs9501291, rs6924824, rs6456886,

rs6456889, rs2064365, rs11758255, rs6917293, rs9295790, rs6456908, rs9380110, rs3749977,

rs6908651, rs9380111, rs4713203, rs9283885, rs238883, rs1419640, rs12110437rs241036, rs241035, rs241033, rs241031, rs241030, rs241027, rs241026, rs241023, rs241022,

rs241021, rs241020, rs17760577, rs17760631, rs17687462, rs17760733, rs17687504, rs17687534,

rs17687571, rs17687625, rs17687667, rs17687740, rs757502, rs757501, rs757500, rs735423,

rs4486953, rs17688032, rs17688056, rs17688068, rs17688090, rs17761387, rs17688205,

rs17688296, rs17688391, rs17688410, rs17688434, rs17688452, rs10491144, rs10491143,

rs17688534, rs17761838, rs12150141, rs12150610, rs12150547, rs17688682, rs12150454,

rs1526129, rs17762308, rs968028, rs968027, rs17762361, rs17689104, rs17689116, rs17689218,

rs17762535, rs1568949, rs1105571, rs1105569, rs17563433, rs17649019, rs17563501, rs10514879,

rs1358071, rs4401083, rs1880752, rs4617909, rs2902662, rs2864087, rs4471726, rs17563599,

rs17649138, rs4390635, rs17649162, rs17563683, rs17563718, rs1526125, rs1526126, rs17563787,

rs17563800, rs17563827, rs17563861, rs17563889, rs17563923, rs12150683, rs17334797,



Supplementary Figure 1

Study design flow chart



Supplementary Figure 2

Performance of expression prediction models in GTEx and TCGA datasets for genes with at least 10% correlation in GTEx
data

The x axis represents the prediction performance (R2) in GTEx dataset (n=67). The y axis represents the prediction performance in
TCGA dataset (n=86). Each dot represents the expression prediction model for one gene. There is a trend that genes with a high
internal prediction performance in GTEx data also have a high external prediction performance in TCGA data (Pearson's correlation
coefficient: 0.55).



(a) (b)

(c)

Supplementary Figure 3

Quantile-quantile plots

(a) Quantile-quantile plot of P values in –log scale of associations between genetically predicted expression levels of 8,597 genes and
breast cancer risk; (b) Quantile-quantile plot of P values in –log scale of associations between all 11.8 million SNPs and breast cancer
risk in BCAC; (c) Quantile-quantile plot of P values in –log scale of associations between the over 250,000 SNPs predicting expression
levels of the 8,597 genes and breast cancer risk in BCAC



Supplementary Figure 4

Heat map of log fold change (FC) of selected genes normalized to expression levels in 184A1 breast cells

Two or three primer sets were designed for each gene (y-axis) and mRNA levels quantified by qPCR in indicated cells lines (x-axis),
including 184A1. The FC of genes normalized to that in 184A1 = mRNA level in indicated cells / mRNA level in 184A1. The log2FC
over 184A1 is depicted as a heat map. An X represents “not detectable” with all primer sets. The experiment was repeated
independently twice with similar results.



Supplementary Figure 5

Validation of knockdown

184A1, MCF7 and T47D cells, transfected with the indicated siRNAs, were harvested after 36 hours for qPCR analysis to assess
knockdown efficiency. The fold changes over NTCsi-transfected parental cells were plotted. The experiment was repeated three times
independently with similar results.



Supplementary Figure 6

Proliferation in breast cells using two independent siRNAs (related to Figure 2(a))

(a) 184A1, (b) MCF7 or (c) T47D cells were transfected with indicated siRNAs over seven days and phase-contrast images collected
using an IncuCyte ZOOM. Each cell proliferation time-course was normalized to the baseline confluency and analyzed in GraphPad
Prism. Corrected proliferation % = 100 +/- (relative proliferation in indicated siRNA - proliferation in control siRNA (consi))/knockdown
efficiency.



Supplementary Figure 7

Colony formation efficiency in MCF7 cells using two independent siRNAs (related to Fig 2B)

MCF7 cells were transfected with indicated siRNAs, then reseeded after 16 hours for colony formation (CF) assays. At day 14, colonies
were fixed with methanol, stained with crystal violet, scanned and batch analyzed by ImageJ. Corrected CF efficiency (CFE) % = 100
+/- (relative CFE in indicated siRNA - CFE in control siRNA (consi))/knockdown efficiency. Error bars, SD (N=4). P-values were
determined by one-way ANOVA followed by Dunnett’s multiple comparisons test: *P-value < 0.05.



Supplementary Figure 8

Power calculation of the TWAS analysis

The simulation analysis is based on 122,977 cases and 105,974 controls. The gene expression was generated from the empirical
distribution of predicted gene expression levels in the BCAC. Statistical power was calculated at P<5.82×10-6 (the significance level
used in main TWAS analyses) according to cis-heritability (h2) which we aim to capture using gene expression prediction models (R2).
The figure shows results per one standard deviation increase (or decrease) in the gene expression based on 1000 replicates.
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Supplementary Table 1. Internal performance of gene expression prediction models built using GTEx data

Prediction performance (R2) All Protein lncRNAs miRNAs Others*
Number of genes 15,148 10,483 4,277 68 320

0.01# 12,824 8,874 3,628 57 265
0.04 7,655 5,244 2,200 38 173
0.09 3,818 2,601 1,106 19 92
0.16 1,573 1,035 479 8 51

Protein: protein coding genes; lncRNAs: long non-coding RNAs; miRNAs: microRNAs
* Including processed transcripts, immunoglobulin genes, and T cell receptor genes
# The R2 of 0.01 is the internal prediction performance threshold according to which the prediction models were retained for external
evaluation in the TCGA data
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Supplementary Table 5. In-depth individual level association analyses of predicted expression of 41 identified genes with breast
cancer risk in iCOGS and OncoArray datasets identified similar results to those obtained using summary statistics

Gene name

iCOGS dataset
individual level

analysis (n=84,740)

iCOGS dataset summary
statistics analysis

(n=89,677)

OncoArray dataset
individual level

analysis (n=112,133)

OncoArray dataset
summary statistics

analysis
(n=106,776)

z-
scorea p-valuea

z-
scorea p-valuea

z-
scoreb p-valueb

z-
scoreb p-valueb

Table 1
ZSWIM5 3.86 1.12 × 10-4 4.32 1.57 × 10-5 3.50 4.73 × 10-4 2.98 0.003
LRRC3B -4.76 1.95 × 10-6 -4.89 1.02 × 10-6 -7.44 1.04 × 10-13 -7.48 7.19 × 10-14

SPATA18 -2.02 0.04 -2.59 0.01 -2.89 3.90 × 10-3 -3.09 0.002
KLHDC10 3.53 4.12 × 10-4 4.39 1.16 × 10-5 2.39 0.02 2.15 0.03
MIR31HG -2.87 4.07 × 10-3 -2.90 0.004 -4.99 6.11 × 10-7 -4.35 1.35 × 10-5

RIC8A -3.11 1.86 × 10-3 -3.12 0.002 -4.15 3.26 × 10-5 -3.28 0.001
B3GNT1 -3.68 2.35 × 10-4 -5.00 5.83 × 10-7 -3.18 1.49 × 10-3 -2.70 0.007
RP11-218M22.1 2.82 4.82 × 10-3 3.33 8.82 × 10-4 3.58 3.47 × 10-4 3.84 1.22 × 10-4

GALNT16 -5.07 3.93 × 10-7 -6.17 6.82 × 10-10 -4.70 2.62 × 10-6 -4.45 8.74 × 10-6

PLEKHD1 2.92 3.50 × 10-3 3.96 7.43 × 10-5 5.73 1.01 × 10-8 5.21 1.85 × 10-7

MAN2C1 -3.24 1.19 × 10-3 -3.49 4.88 × 10-4 -3.69 2.24 × 10-4 -4.08 4.47 × 10-5

CTD-2323K18.1 -2.91 3.56 × 10-3 -2.62 0.009 -3.63 2.88 × 10-4 -3.69 2.23 × 10-4

Table 2
RP11-439A17.7 -3.37 7.61 × 10-4 -3.39 6.90 × 10-4 -3.51 4.50 × 10-4 -4.35 1.37 × 10-5

ALK 3.27 1.06 × 10-3 3.23 0.001 4.51 6.62 × 10-6 3.84 1.23 × 10-4

PRSS46 -3.22 1.26 × 10-3 -3.51 4.41 × 10-4 -5.00 5.80 × 10-7 -4.33 1.51 × 10-5

RP11-114I8.4 -3.22 1.28 × 10-3 -3.15 0.002 -3.77 1.65 × 10-4 -4.20 2.66 × 10-5

UBLCP1 2.17 0.03 3.12 0.002 5.10 3.44 × 10-7 4.72 2.34 × 10-6

RP11-32D16.1 -2.68 7.31 × 10-3 -3.66 2.51 × 10-4 -4.63 3.63 × 10-6 -3.75 1.75 × 10-4

BTN3A2 1.51 0.13 2.74 0.006 3.65 2.65 × 10-4 3.16 0.002
RP11-73O6.3 -1.62 0.11 -2.24 0.03 -5.72 1.08 × 10-8 -5.34 9.31 × 10-8

AP006621.6 4.29 1.82 × 10-5 3.92 8.75 × 10-5 3.45 5.58 × 10-4 3.58 3.40 × 10-4
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RPLP2 2.93 3.44 × 10-3 2.77 0.006 3.39 6.92 × 10-4 3.43 5.93 × 10-4

CTD-3051D23.1 -2.83 4.62 × 10-3 -3.36 7.85 × 10-4 -2.64 8.39 × 10-3 -2.60 0.009
RP11-467J12.4 4.78 1.71 × 10-6 5.41 6.28 × 10-8 5.63 1.83 × 10-8 5.75 8.73 × 10-9

CTD-3032H12.1 3.79 1.50 × 10-4 2.95 0.003 3.33 8.60 × 10-4 2.93 0.003
LRRC37A -3.07 2.11 × 10-3 -3.08 0.002 -3.75 1.77 × 10-4 -4.13 3.56 × 10-5

KANSL1-AS1 -3.12 1.83 × 10-3 -3.17 0.002 -3.53 4.10 × 10-4 -3.83 1.28 × 10-4

CRHR1 -2.67 7.59 × 10-3 -2.81 0.005 -3.35 7.94 × 10-4 -3.58 3.39 × 10-4

HAPLN4 -4.73 2.26 × 10-6 -5.10 3.46 × 10-7 -5.87 4.44 × 10-9 -5.49 4.01 × 10-8

RP11-15A1.7 3.57 3.54 × 10-4 4.26 2.00 × 10-5 4.71 2.45 × 10-6 3.65 2.59 × 10-4

Table 3
KLHDC7A -2.87 4.06 × 10-3 -3.53 4.11 × 10-4 -4.51 6.54 × 10-6 -4.69 2.77 × 10-6

ALS2CR12 2.47 0.01 2.80 0.005 5.09 3.53 × 10-7 4.98 6.25 × 10-7

CASP8 -3.72 2.03 × 10-4 -3.63 2.78 × 10-4 -5.85 4.98 × 10-9 -5.97 2.42 × 10-9

ATG10 -4.55 5.28 × 10-6 -5.83 5.60 × 10-9 -4.04 5.44 × 10-5 -3.00 0.003
ATP6AP1L -3.33 8.80 × 10-4 -4.24 2.20 × 10-5 -3.72 2.02 × 10-4 -2.40 0.02
L3MBTL3 -1.77 0.08 -2.38 0.02 -5.77 8.06 × 10-9 -5.42 5.89 × 10-8

RMND1 2.44 0.01 2.76 0.006 3.64 2.68 × 10-4 3.14 0.002
SNX32 3.56 3.70 × 10-4 3.80 1.45 × 10-4 2.99 2.76 × 10-3 2.41 0.02
RCCD1 -3.49 4.92 × 10-4 -4.08 4.56 × 10-5 -5.76 8.26 × 10-9 -5.58 2.36 × 10-8

STXBP4 3.53 4.22 × 10-4 4.01 6.05 × 10-5 5.26 1.42 × 10-7 4.77 1.85 × 10-6

ZNF404 4.76 1.91 × 10-6 5.28 1.28 × 10-7 5.97 2.44 × 10-9 4.76 1.96 × 10-6

a logistic regression analyses adjusting for study, the first eight principal components, and a principal component derived specifically
for the study LMBC (set to zero for all other studies).
b logistic regression analyses adjusting for country and the first ten principal components.
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Supplementary Table 6. INQUISIT scores of the identified genes showing a significant association with breast cancer risk in the
TWAS (p≤5.82×10-6)

Gene Distal Promoter GTEx eQTL
From Table 1

ZSWIM5 none none
LRRC3B none none
SPATA18 none none

UBD 0.05 none
KLHDC10 none none
MIR31HG none none

RIC8A none none
B3GNT1 none none

RP11-867G23.10 none none
RP11-218M22.1 none none

GALNT16 none none
PLEKHD1 none none
MAN2C1 none none

CTD-2323K18.1 none none
From Table 2

RP11-439A17.7 none none yes
NUDT17 3 none

ANKRD34A 1 none
ALK none none

PRSS46 none none
RP11-114I8.4 none none
RP11-53O19.1 none none

UBLCP1 none none
RP11-32D16.1 none none

BTN3A2 none none yes
RP11-73O6.3 none none
AP006621.6 none none yes
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RPLP2 1 none
CTD-3051D23.1 none none
RP11-467J12.4 none none
CTD-3032H12.1 none none

LINC00671 none none
LRRC37A2 1 none
LRRC37A 1 none

KANSL1-AS1 3 none
CRHR1 1 none

HAPLN4 1 none
RP11-15A1.7 None none

From Table 3
KLHDC7A none 3
ALS2CR12 1 none

CASP8 3 none
ATG10 3 4

ATP6AP1L 0.1 none
L3MBTL3 2 2
RMND1 4 none
SNX32 2 none
RCCD1 5 none
STXBP4 1 none
ZNF404 2 none

The detailed methodology of INQUISIT algorithm scores was described in Michailidou, K. et al1
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Supplementary Table 8. Cell line and media information.
Cell Line Media constituents

MCF10A
DMEM/F12 + 5% Horse Serum + 20ng/mL EGF + 0.5µg/mL Hydrocortisone + 100ng/mL Cholera Toxin + 10
µg/mL Insulin from bovine pancreas + 1% Penicillin-Streptomycin

Bre80-Tert
DMEM/F12 + 5% Horse Serum + 20ng/mL EGF + 0.5µg/mL Hydrocortisone + 100ng/mL Cholera Toxin + 10
µg/mL Insulin from bovine pancreas + 1% Penicillin-Streptomycin

184A1
MEGM + BPE 52ug/mL + HC 500ng/mL + EGF 10ng/ml + I 5ug/ml + transferrin 5ug/mL + cholera toxin
1ng/mL

ZR751 RPMI-1640 + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin + 10 µg/mL Insulin from bovine pancreas

MCF7 RPMI-1640 + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

KPL1 DMEM + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

T47D RPMI-1640 + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

SKBR3 DMEM + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

BT474 RPMI-1640 + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

MDA-MB-453 DMEM/F12 + 20% Fetal Bovine Serum + 1% Penicillin-Streptomycin + 10 µg/mL Insulin from bovine pancreas

MDA-MB-231 DMEM + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

MDA-MB-436 DMEM + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin
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BT549 RPMI-1640 + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

MDA-MB-157 DMEM + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

HCC1937 RPMI-1640 + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

HS578T DMEM + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin

SUM159PT RPMI-1640 + 10% Fetal Bovine Serum + 1%Penicillin-Streptomycin

MDA-MB-468 DMEM + 10% Fetal Bovine Serum + 1% Penicillin-Streptomycin
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Supplementary Table 9. siRNA sequences.
Name Sense sequence (5'-3') Antisense sequence (5'-3')
RMND1-1 CCACGGAUAUGUUGAAGUATT UACUUCAACAUAUCCGUGGGA

RMND1-2 CAAACCAAAUCUGUUGGGUUCUAAA UUUAGAACCCAACAGAUUUGGUUUG

KLHDC10-1 CAACCUAUAUGUGUUUGGAGGUUAU AUAACCUCCAAACACAUAUAGGUUG

KLHDC10-2 GAGAUAUCUGGAAGUUGAAUCUGCA UGCAGAUUCAACUUCCAGAUAUCUC
ZSWIM5-1 GGGAAAGUGAAAGACUACUCUUUAA UUAAAGAGUAGUCUUUCACUUUCCC
ZSWIM5-2 CCUCAUUGGCCAUGAGCCAUCUUAA UUAAGAUGGCUCAUGGCCAAUGAGG

UBLCP1-1 GCACCUAAAUCGUGAUAAATT UUUAUCACGAUUUAGGUGCGC
UBLCP1-2 CAGGAGUAUUCAGUGACCACACUUU AAAGUGUGGUCACUGAAUACUCCUG

PLEKHD1-1 UCAAAGAGAGCUUUCUGCUUUACUA UAGUAAAGCAGAAAGCUCUCUUUGA

PLEKHD1-2 AAGAUGCCUUAAGGGUGUAGAACA UGUUCUACACCCUUAAGGCAUCUUG

ALS2CR12-1 AACUCCACAGGGAGUUCCAAGCUAA UUAGCUUGGAACUCCCUGUGGAGUU

ALS2CR12-2 CAGCAAGGCAAGAAGAGACUAAUAA UUAUUAGUCUCUUCUUGCCUUGCUG

STXBP4-1 (CCUGGAGGAGACUGUUAUA)dTdT (UAUAACAGUCUCCUCCAGG)dAdA

STXBP4-2 (GGACCUCAAGCCUCAACAU)dTdT (AUGUUGAGGCUUGAGGUCC)dAdT

ZNF404-1 UGCGUACCAUCAGGAGACAUGGAAA UUUCCAUGUCUCCUGAUGGUACGCA

ZNF404-2 GGGAAACGUUUAGAUUAUAUCGACA UGUCGAUAUAAUCUAAACGUUUCCC

PIDD-1 GACUGUUCCUGACCUCAGAtt UCUGAGGUCAGGAACAGUCtg
PIDD-2 AGGGCAGAAUCUGCUUUGUCUUCUA UAGAAGACAAAGCAGAUUCUGCCCU

NRBF2-1 UGUGAAAUGCGCUGCGUAUUU AUACGCAGCGCAUUUCACAUU

NRBF2-2 CCGGAGGAGGAAGUGGUGAGGUUGU ACAACCUCACCACUUCCUCCUCCGG

NRBF2-3 AGGAAGUGGUGAGGUUGUUGCUCCU AGGAGCAACAACCUCACCACUUCCU

ABHD8-1 GAGCAAUCUUCAAGCGCUAUGCCAA UUGGCAUAGCGCUUGAAGAUUGCUC

ABHD8-2 CAUUCCUACGGUGUCUCUUUCUGCA UGCAGAAAGAGACACCGUAGGAAUG

RP11-218M22-R1-1 UGAGCGCAGGAACCAUGGUCUUCAU AUGAAGACCAUGGUUCCUGCGCUCA

RP11-218M22-R1-2 CGCAGGAACCAUGGUCUUCAUUGCU AGCAAUGAAGACCAUGGUUCCUGCG

RP11-218M22-R2-1 CCAGUGGGUUUGGAUAUAAUCCUGA UCAGGAUUAUAUCCAAACCCACUGG

RP11-218M22-R2-2 CAGACUGCGAGACAAUCUCUCUUUA UAAAGAGAGAUUGUCUCGCAGUCUG

AP006621.6-1 GGGUACCUUCACCUGGGCGUCAGAA UUCUGACGCCCAGGUGAAGGUACCC
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AP006621.6-2 UCACCUGGGCGUCAGAAGCACUUGA UCAAGUGCUUCUGACGCCCAGGUGA

RP11-467J12.4-1 CACCAUAUCAUGGUUCCCACUAGCA UGCUAGUGGGAACCAUGAUAUGGUG

RP11-467J12.4-2 UAUGAGAGUUCCAGUUGCUCCACAA UUGUGGAGCAACUGGAACUCUCAUA

RP11-15A1.7-1 CACCCUCCUCAUACUUCCGUAGUUU AAACUACGGAAGUAUGAGGAGGGUG

RP11-15A1.7-2 GGAAUCCACCUAAGUGUCUAUCAAU AUUGAUAGACACUUAGGUGGAUUCC

CTD-3032H12.1-1 CAAGCUCCCGAGGCGAUCUGCUGUU AACAGCAGAUCGCCUCGGGAGCUUG

CTD-3032H12.1-2 AGGCCCAAGUCGCAGUUCUCGUGAA UUCACGAGAACUGCGACUUGGGCCU

B2M-1 CCAGCGUACUCCAAAGAUUTT AAUCUUUGGAGUACGCUGGTT

B2M-2 GGTTTACTCACGTCATCCATT TGGATGACGTGAGTAAACCTT

ARHGDIA-1 CCCGUCUAACCAUGAUGCCUUAACA UGUUAAGGCAUCAUGGUUAGACGGG

ARHGDIA-2 CCUUAACAUGUGGAGUGUACCGUGG CCACGGUACACUCCACAUGUUAAGG

ZAP70-1 UAACCUCCUCAUAGCUGACAUUGAA UUCAAUGUCAGCUAUGAGGAGGUUA

ZAP70-2 CCGAAUGCAUCAACUUCCGCAAGUU AACUUGCGGAAGUUGAUGCAUUCGG
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Supplementary Table 10. Literature reported link between genes identified in our study that have not been reported from eQTL
and/or following functional studies as target genes of risk variants (Tables 1-2) and breast cancer

Gene Reported link with breast cancer Study type Consistency
with the
direction of
effect identified
in our study

PMID of
literature

Table 1
ZSWIM5 NA NA NA NA

LRRC3B

inhibits bupivacaine-induced breast cancer cell invasion In vitro consistent 29085514
reduced expression in breast cancer tissues compared with
breast fibroma tissues;
low gene expression associated with higher tissue grade

Human tissues 24839112

methylated and/or deleted in ~32% breast carcinoma samples Human tissues 22321817

SPATA18
downregulated ~ 5-folds in human ductal breast carcinomas
compared with normal breast samples

Human tissues consistent 21300779;
16473279

UBD

inhibits growth in MCF-7 breast carcinoma cells In vitro consistent 12170760
increased expression in breast cancer tissues compared with
surrounding tissues;
expression correlated with triple-negative breast cancer
(TNBC)

Human tissues inconsistent 26185453

KLHDC10 NA NA NA NA

MIR31HG

down-regulated in TNBC cell lines of basal subtype;
heavily methylated in the TNBC cell lines

In vitro consistent 22289355

increased expression in breast cancer tissues compared with
normal control;
expression associated with advanced pathologic stage and
tumor size;
knockdown decreases breast cancer cell proliferation, induces
apoptosis, inhibits migration/invasion and impedes
tumorigenesis

In vitro, in
vivo, and
human tissues

inconsistent 24631686

RIC8A undergoes a classical double-hit genetic inactivation in a breast In vitro and in consistent 19432969
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cancer cell line;
loss of expression in a subgroup of aggressive TP53 mutant
breast cancers

vivo

B3GNT1 NA NA NA NA
RP11-
867G23.10

NA NA NA NA

RP11-
218M22.1

NA NA NA NA

GALNT16 NA NA NA NA
PLEKHD1 NA NA NA NA
MAN2C1 NA NA NA NA
CTD-
2323K18.1

NA NA NA NA

Table 2
RP11-439A17.7 NA NA NA NA
NUDT17 NA NA NA NA
ANKRD34A NA NA NA NA

ALK

overexpressed in 36% of breast cancer patients;
gene amplification present in 13.3 % of cases;
overexpression associated with aggressive behavior

Human tissues consistent 26384210

amplified in a large proportion of Inflammatory Breast Cancers
(IBC), a highly aggressive subtype of breast cancer

In vitro and
human tissues

22215853

copy number gain observed in 47.2% of IBC patients;
copy number gain associated with poorer recurrence free
survival

Human tissues 25803816

PRSS46 NA NA NA NA
RP11-114I8.4 NA NA NA NA
RP11-53O19.1 NA NA NA NA
UBLCP1 NA NA NA NA
RP11-32D16.1 NA NA NA NA

BTN3A2
higher expression associated with improved distant metastasis-
free survival in HR-/HER2+ breast cancer

Human tissues NA 28409241

RP11-73O6.3 NA NA NA NA
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AP006621.6 NA NA NA NA

RPLP2
differentially expressed for breast cancer apoptosis (both up-
and down-regulation)

In vitro NA 22133146

CTD-
3051D23.1

NA NA NA NA

RP11-467J12.4 NA NA NA NA
CTD-
3032H12.1

NA NA NA NA

LINC00671 NA NA NA NA
LRRC37A2 NA NA NA NA
LRRC37A NA NA NA NA
KANSL1-AS1 NA NA NA NA

CRHR1

encodes a receptor of corticotropin-releasing hormone (CRH),
which suppresses TGFβ1-induced Epithelial-Mesenchymal 
Transition in breast cancer cells

In vitro consistent 24412750
26138318

HAPLN4 NA NA NA NA
RP11-15A1.7 NA NA NA NA

NA: not available
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Supplementary Table 11. Performance of prediction models and association results for breast cancer target genes reported previously
at GWAS-identified loci

Chromosome
regions

Target
genes

Reference Evidence from original paper for supporting this
gene as the target gene

Performance of
expression

prediction model
(R2) in GTEx/TCGA

Association of
predicted expression

with breast cancer risk*

1p33 NSUN4 1 eQTL analyses in GTEx, TCGA (tumor tissue)
and METABRIC (tumor adjacent normal tissue),

prediction by ChIA-PET in MCF7 cells

0.01/0.006 p=1.95 × 10-4 (z:
negative)

1p36.22 PEX14 2 eQTL analyses in TCGA (tumor and adjacent
normal tissue)

0.02/0 p=0.002 (z: positive)

2p23.2 TRMT61B 3 eQTL analyses in TCGA (tumor tissue) and
Norwegian normal breast cohort (normal tissue)

0.23/0.33 p=0.30

2q33 PPIL3,
CASP8

3,4 eQTL analyses in TCGA (tumor tissue); eQTL
analyses in TCGA (tumor adjacent normal tissue)

and Westra et al. (peripheral blood samples)

0.44/0.59, 0.22/0.30 p=0.02 (z: positive),
p=8.51 × 10-16 (z:

negative)
2q35 IGFBP5 5 eQTL analyses in the Norwegian Breast Cancer

Study and METABRIC (tumor adjacent normal
tissue) (marginal significant associations with
levels of one of the tested probes, but not any

others)

0.04/0.004 NA

4q24 TET2 6 eQTL analyses in TCGA (tumor tissue) and
METABRIC (tumor adjacent normal tissue)

0.007/0.02 p=0.08

5p12 FGF10,
MRPS30

7 eQTL analyses in GTEx (normal tissue) and
Norwegian Breast Cancer Study (tumor and

tumor adjacent normal tissue); eQTL analyses in
GTEx (normal tissue), and Norwegian Breast

Cancer Study and TCGA (both tumor and tumor
adjacent normal tissue)

0.02/0, 0.006/0.16 p=0.26, p=1.43 × 10-25

(z: positive)

5p15.33 TERT 8 luciferase reporter assays NA NA
5q11.2 MAP3K1 9-11 Chromosome Conformation Capture and

luciferase reporter assays etc, while, no
0.06/0 p=0.32
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detectable differences in expression were found
across genotypes of the index SNPs

5q14 ATP6AP1L 12 eQTL analyses in TCGA (tumor tissue) 0.63/0.32 p=6.32 × 10-7 (z:
negative)

6p24.3 GCNT2 13 eQTL analyses in TCGA (tumor tissue) NA NA
6q25 ESR1,

RMND1,
CCDC170,
AKAP12

14,15 eQTL analyses in TCGA (tumor tissue) and
METABRIC (tumor and tumor adjacent normal
tissue); eQTL analyses in TCGA (tumor tissue);

eQTL analyses in TCGA (tumor tissue) and
GTEx (normal tissue); eQTL analyses in TCGA

(tumor tissue)

NA, 0.13/0.02,
0.02/NA, NA

NA, p=1.95 × 10-6 (z:
positive), p=0.002 (z:

negative), NA

7q35 OR2A7 10 eQTL analyses in TCGA (tumor tissue) 0.23/0.12 p=0.34
8q24 POU5F1B,

PVT1

16 eQTL analyses in TCGA (tumor tissue) NA, 0.03/0.01 NA, p=1.12 × 10-4(z:
positive)

9q31.2 KLF4 11,17 eQTL analyses in TCGA (tumor tissue) 0.02/0 p=0.007 (z: positive)
10q21.2 NRBF2 18 eQTL analyses in Normal breast I (normal tissue)

and Breast carcinomas I (tumor tissue)
NA NA

10q26.13 FGFR2 19 prediction by ChIA-PET in MCF7 cells, while no
association in eQTL analyses in METABRIC

(tumor tissue)

0.13/0.02 p=0.73

11p15.5 TH 10 eQTL analyses in TCGA (tumor tissue) NA NA
11q13.1 AP5B1 10 eQTL analyses in TCGA (tumor tissue) NA NA
11q13.3 CCND1 20 eQTL analyses in the Helsinki Breast Cancer

Study (tumor tissue) suggests borderline
association for one SNP rs554219 in a recessive
model; while there was no linear trend, and no
signal detected in analyses of 40 normal breast

tissue samples or TCGA tumor samples

NA NA

15q26.1 RCCD1 21 eQTL analyses in TCGA (tumor and adjacent
normal tissue)

0.13/0.07 p=3.33 × 10-13 (z:
negative)

16q12.1 TOX3 10,11 eQTL analyses in TCGA (tumor tissue) 0.02/4.27 × 10-5 p=0.09
16q13 AMFR 1 eQTL analyses in METABRIC (tumor adjacent

normal tissue); prediction by ChIA-PET in MCF7
NA NA
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cells
16q23.2 DYNLRB2 10 eQTL analyses in TCGA (tumor tissue) NA NA
17q22 STXBP4 22 Index SNP associated with differential transcript

expression in TCGA (tumor tissue)
0.03/0.01 p=2.21 × 10-11 (z:

positive)
19p13 LRRC25,

ABHD8

10,23,24 eQTL analyses in TCGA (tumor tissue); eQTL
analyses in normal breast tissue

5.36 × 10-6/0, NA p=0.65, NA

19q13.31 ZNF404,
ZNF155

2,10 eQTL analyses in TCGA (tumor tissue); eQTL
analyses in TCGA (tumor tissue)

0.15/0.21, 0.13/0.19 p=1.15 × 10-13 (z:
positive), p=0.03 (z:

positive)
21q22.12 KCNE1,

RUNX1,
RCAN1

25 eQTL analyses in TCGA (tumor tissue);
eQTL analyses in METABRIC (tumor tissue);
eQTL analyses in METABRIC (tumor tissue)

0.08/0.06, 0.04/0,
NA

p=0.65, p=0.76, NA

* association analysis of 122,977 cases and 105,974 controls; MetaXcan was used for the association analyses
NA, not applicable
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Supplementary Table 13. Primer sequences.
Name Sequence 5'-> 3'

GUSB Fwd GAAAATATGTGGTTGGAGAGCTCATT
GUSB Rev CGAGTGAAGATCCCCTTTTTA
PUM1 Fwd AATGCAGGCGCGAGAAAT
PUM1 Rev TTGTGCAGCTGAGGAACTAATGA
RPLP0 Fwd CCATTGAAATCCTGAGTGATGTG
RPLP0 Rev CTTCGCTGGCTCCCACTTT
ZSWIM5_H_FWD1 AAGACGGTGGCGGAAAAGTG
ZSWIM5_H_REV1 GAAGGACCAGTAGACGATGCG
ZSWIM5_H_FWD2 AGTCGGCTTTCATCTGAGTGG
ZSWIM5_H_REV2 AGGAAGACGCAATTTGACTTGG
ZSWIM5_H_FWD3 CTATCTCCGAAACCCTTTTCCAG
ZSWIM5_H_REV3 TGTGGTGTGCCGTGATTAAATA
KLHDC10_H_FWD1 CTCAACCGCTTCGTGCAAC
KLHDC10_H_REV1 CCTAACTGGGTCCCATCGTATTT
KLHDC10_H_FWD2 TACGATGGGACCCAGTTAGGA
KLHDC10_H_REV2 TGTGGCCTCTCAAAAACCTGT
KLHDC10_H_FWD3 GCACGAAGTGGACATCGTTG
KLHDC10_H_REV3 CCTCCCGATTCATCATAATCTGG
UBLCP1_H_FWD1 GTGGACAGGAGTATTCAGTGACC
UBLCP1_H_REV1 CAAGTAACTTTTGGCGTTCTGG
UBLCP1_H_FWD2 CTCGCAGAGTGAAAGAGTACAAA
UBLCP1_H_REV2 GCACAAGACCTGTGGTCAAATA
PLEKHD1_H_FWD1 TCCCGGCGGTTTTTCATCATC
PLEKHD1_H_REV1 CCACTGGGTCTGCTCAAACT
PLEKHD1_H_FWD2 GGAAGAGACCGAAGAACTCTGC
PLEKHD1_H_REV2 TGCAAGGACTCCGTGAGGT
ALS2CR12_H_FWD1 ACTTGGGACCACGGAAGCTA
ALS2CR12_H_REV1 GGAGCTGGTACAAGAGGAGTTA
ALS2CR12_H_FWD2 ATGCACAAGCCCTTATCCTAGA
ALS2CR12_H_REV2 AGAGGCCAATCTCCCAGAACA
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RMND1_H_FWD1 CAGTGCCGAAGAATCGGTCAT
RMND1_H_REV1 CGAGCAGCATTTAATGGAGACA
RMND1_H_FWD2 GCACACCTTCCAACCATGAAA
RMND1_H_REV2 TGGATGCTTTTAGTGGTCTCTTC
RMND1_H_FWD3 GAGACCACTAAAAGCATCCAGG
RMND1_H_REV3 GCAGTGCATTAGGTCCTCGT
STXBP4_H_FWD1 CCTTGGCCTGAAGGTACTAGG
STXBP4_H_REV1 AGCAGATTCTAACCTCAACTTGG
STXBP4_H_FWD2 GAATCTGCTTGGGAGATAGCATT
STXBP4_H_REV2 TGAGGCTTGAGGTCCATATTCT
STXBP4_H_FWD3 ATCCCTCTGTTCGCTTTAAGGC
STXBP4_H_REV3 TCAGGGCTTGGTGTTGTTCC
ZNF404_H_FWD1 AAGTAAATGCGTACCATCAGGAG
ZNF404_H_REV1 TCCCACTTTAGGTCTCTGTTGT
ZNF404_H_FWD2 GGCCTTTGTTCGCAGCTATCT
ZNF404_H_REV2 AGGCTTGAGCCCTTACCAAAA
ZNF404_H_FWD3 GGCCTTTTGTAGAGGCTCTCA
ZNF404_H_REV3 AAGGTCTCCAACACGACTGAA
PIDD1_H_FWD1 TCAGAGGATTCGGACGCAG
PIDD1_H_REV1 GTGAGTGCTCAGACGCAAGAA
PIDD1_H_FWD2 GAGCCTCGTCGAGTCTCCAT
PIDD1_H_REV2 GGCCCAGTACAACAGGTGC
PIDD1_H_FWD3 CTCACCCACCTGTACGCAC
PIDD1_H_REV3 CAGAGCGATGAGGTTCACAC
NRBF2_H_FWD1 CAGACGAGCAGACCGTTTATT
NRBF2_H_REV1 TGCTGGGCTTTCAATCTTTCTT
ABHD8_H_FWD1 GGGGTGACCGACGGTATCT
ABHD8_H_REV1 GGCTTGACCTCTACAAAGGTG
ABHD8_H_FWD2 TCGAGCCGACCTCCTACAC
ABHD8_H_REV2 TTTGCAGCTAGTGATGCGCTT
ABHD8_H_FWD3 CTGAGGACATGCGAGCAATCT
ABHD8_H_REV3 GAAAGAGACACCGTAGGAATGG
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RP11-218M22.1_H_R1_FWD1 CGGGAAAAGATGGAGTGAAGGT
RP11-218M22.1_H_R1_REV1 GGCACTTCCGCTAATGCTG
RP11-218M22.1_H_R1_FWD2 TGAGCCGGGAAAAGATGGAGT
RP11-218M22.1_H_R1_REV2 GCACTTCCGCTAATGCTGAGG
RP11-218M22.1_H_R2_FWD1 CACTGAGAGAAGCAGGAGAATGT
RP11-218M22.1_H_R2_REV1 AAGAGAGATTGTCTCGCAGTC
RP11-218M22.1_H_R2_FWD2 ACTGAGAGAAGCAGGAGAATGT
RP11-218M22.1_H_R2_REV2 AAAGAGAGATTGTCTCGCAGTC
AP006621.6_H_FWD1 TCCTGAGGGCCGACTCTAC
AP006621.6_H_REV1 CGTCTTAGCGGCTGTCACTT
AP006621.6_H_FWD2 ACTGAGAGAAGCAGGAGAATGTT
AP006621.6_H_REV2 CACTAAAGAGAGATTGTCTCGCA
RP11-467J12.4_H_FWD1 GGGGTGGTGGGTGTCACTAA
RP11-467J12.4_H_REV1 ATTCACCTTCACCAGGGCAC
RP11-467J12.4_H_FWD2 TCACTAAAAGGAACCAGCCCC
RP11-467J12.4_H_REV2 CTCTGACTGATTCACCTTCACCA
RP11-15A1.7_H_FWD1 CAGAGTGTGTCTGGACTCCG
RP11-15A1.7_H_REV1 CCAGGCGCTCAGAGATATGG
RP11-15A1.7_H_FWD2 GCGACTCAGAGTGTGTCTGG
RP11-15A1.7_H_REV2 ATGGAATACGTTCCCGGTGG
CTD-3032H12.1_H_FWD1 CCTACACGAGGCCAGAGATCC
CTD-3032H12.1_H_REV1 CCTAACAGCAGATCGCCTCG
CTD-3032H12.1_H_FWD2 GCCCGTGGCCTACACGAG
CTD-3032H12.1_H_REV2 CGGGTCTTCCTTTGTGTCCAG
B2M-FWD-1 GAGGCTATCCAGCGTACTCCA
B2M-REV-1 CGGCAGGCATACTCATCTTTT
B2M-FWD-2 CTCACGTCATCCAGCAGAGA
B2M-REV-2 CGGCAGGCATACTCATCTTT
B2M-FWD-3 AGGCTATCCAGCGTACTCCA
B2M-REV-3 CGGCAGGCATACTCATCTTT
ARHGDIA-FWD-1 GGATGAGCACTCGGTCAACTA
ARHGDIA-REV-1 GGCCTCCTTGTACTTTCGCAG
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ARHGDIA-FWD-2 GAGCCTGCGAAAGTACAAGG
ARHGDIA-REV-2 TCCTTCAGCACAAACGACTG
ARHGDIA-FWD-2 TGCCTCTGCCTTTTCTGTCT
ARHGDIA-REV-3 GCACTTGGTCCCTTGTTTGT
ZAP70-FWD-1 CGAGCGTGTATGAGAGCCC
ZAP70-REV-1 ATGAGGAGGTTATCGCGCTTC
ZAP70-FWD-2 ACGCCAAGATCAGCGACTTT
ZAP70-REV-2 GGGTGCGTACCACTTGAGC
ZAP70-FWD-3 CTGGAGCTATGGGGTCACCA
ZAP70-REV-3 CAGGCTGTAGTAACAGGCTCG
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Supplementary Excel Table guide

Supplied in a combined file

Supplementary Table 2
Genes with predicted expression levels associated with breast cancer risk at p<1.05 × 10-3 (the significance level with false discovery
rate correction)

Supplementary Table 3
Associations of predicted expression of identified genes with breast cancer risk in each of the three assessed datasets (OncoArray,
iCOGS, and GWAS sets)

Supplementary Table 4
Full list of all risk SNPs within the same genomic loci/region of the identified associated genes in Tables 1-4 and their distances with
the associated genes

Supplementary Table 7
Canonical pathways, diseases and bio functions, and networks associated with identified breast cancer associated genes, and highly
co-expressed protein-coding genes of the identified novel susceptibility long non-coding RNAs

Supplementary Table 12
Predicting variants in gene expression prediction models for the identified associated genes after Bonferroni correction
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