
rspa.royalsocietypublishing.org

Research
Cite this article: Gopinathan D, Venugopal
M, Roy D, Rajendran K, Guillas S, Dias F. 2017
Uncertainties in the 2004 Sumatra–Andaman
source through nonlinear stochastic inversion
of tsunami waves. Proc. R. Soc. A 473: 20170353.
http://dx.doi.org/10.1098/rspa.2017.0353

Received: 19 May 2017
Accepted: 17 August 2017

Subject Areas:
geophysics, oceanography, mathematical
modelling

Keywords:
tsunami simulation, earthquake source,
inverse problem, uncertainty quantification

Author for correspondence:
D. Gopinathan
e-mail: d.gopinathan@ucl.ac.uk

Uncertainties in the 2004
Sumatra–Andaman source
through nonlinear stochastic
inversion of tsunami waves
D. Gopinathan1, M. Venugopal2, D. Roy3,

K. Rajendran4, S. Guillas1 and F. Dias5

1Department of Statistical Science, University College London,
LondonWC1E 6BT, UK
2Department of Instrumentation and Applied Physics,
3Computational Mechanics Laboratory, Department of Civil
Engineering, and 4Centre for Earth Sciences, Indian Institute of
Science, Bangalore 560012, India
5School of Mathematics and Statistics, University College Dublin,
Dublin 4, Ireland

DG, 0000-0002-0490-3229

Numerical inversions for earthquake source
parameters from tsunami wave data usually
incorporate subjective elements to stabilize the
search. In addition, noisy and possibly insufficient
data result in instability and non-uniqueness in
most deterministic inversions, which are barely
acknowledged. Here, we employ the satellite
altimetry data for the 2004 Sumatra–Andaman
tsunami event to invert the source parameters. We
also include kinematic parameters that improve the
description of tsunami generation and propagation,
especially near the source. Using a finite fault model
that represents the extent of rupture and the geometry
of the trench, we perform a new type of nonlinear joint
inversion of the slips, rupture velocities and rise times
with minimal a priori constraints. Despite persistently
good waveform fits, large uncertainties in the joint
parameter distribution constitute a remarkable
feature of the inversion. These uncertainties suggest
that objective inversion strategies should incorporate
more sophisticated physical models of seabed
deformation in order to significantly improve the
performance of early warning systems.
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1. Introduction
An unexpected opportunity for inversion of earthquake source parameters arose in the fortuitous
detection of the tsunami caused by the 2004 Sumatra–Andaman event (2004 S-A) by satellites
[1–3] (figure 1). The tsunami sea-level anomaly (SLA) detected by Jason-1 and TOPEX/Poseidon
(T/P) altimeter-equipped satellites has no historical antecedent in its unambiguous demarcation
of the signal and detection of its amplitude (approx. 0.6 m). Not only is the SLA capture duration
commensurate with the entire rupture duration (approx. 600 s) but also the satellite track is near-
parallel to the entire rupture length (approx. 1400 km). Given the rarity of tsunami detection
by satellites, confluence of these remarkable features endows the SLA data with unprecedented
value for inverting the source dynamics over the entire duration of the event. The corresponding
uncertainty quantification affords a rare insight into the limitations in the underlying physical
models of tsunami genesis. Moreover, the SLA data contain many embedded uncertainties [4].
The presence of these uncertainties further motivates the need for an inversion method that has
the ability to quantify the consequent uncertainties in the inverted parameters.

Inversion of measured data for earthquake sources inevitably depends on the way the problem
is posed and parametrized. Ill-conditioning and sensitivity issues may result from inaccurate
physical models and inadequate or noisy measurements. Imposition of a priori subjective
constraints (or regularization) is a common approach to the computational, if unphysical,
amelioration of such drawbacks. Widely employed deterministic inversion schemes (e.g. the non-
negative least-squares method) cannot, by nature, comprehensively handle measurement noise,
parameter uncertainties and multiple possible solutions. These methods, nevertheless, provide
insights into possible solutions to a nonlinear inversion, undertaken here for the slips, rupture
velocities and rise times. They are not designed to quantify the uncertainties about the solutions in
terms of the ranges of likely values resulting from the inversion, or the nature of the distributions
over these ranges—both necessary to assess the validity of scientific deductions that ensue from
the inversion. While probabilistic methods endeavour to amend such pitfalls of deterministic
methods, many are ill-equipped for a global search, so a careful choice of the approach is a
necessity when embarking on a probabilistic nonlinear inversion path. Finally, a single objective
functional in the form of an error norm, employed in most of these schemes, may disregard
local misfits and thus distort the statistical distribution of some of the inverted parameters whose
influences might be purely local. There is thus a case for a stochastic and multi-objective global
search en route to a more informative reconstruction. It may be noted here that despite their
shortcomings, regularized versions of deterministic methods are paramount (and they remain
the only available methods) in real-time tsunami warning systems where computational speed
and response are critical.

The term ‘joint’ inversion usually denotes the inversion of multiple measurement types, e.g.
tide gauge, SLA, geodetic, etc. in the geophysical community. However, in this work, the term
‘joint’ refers to the inversion for multiple parameter types, e.g. slips, rupture velocities and rise
times while using only the SLA as the measurement. Lorito et al. [5] performed a nonlinear
inversion for some of the kinematics rupture parameters (slip, rake and rupture velocity).
However, this inversion did not include kinematic parameters that have been shown recently to
be the key descriptors of the tsunami generation for the 2011 Japan Tohoku event [6]. Furthermore,
Dutykh et al. [7] illustrated on the Java 2006 event the importance of the dynamics of the rupture
process by constructing the dynamic seabed displacement according to the rupture propagation
speed and the rise time. Lorito et al. [5] introduced steps of 1 m in the slip values on each subfault
and 0.25 km s−1 steps in rupture velocity (and only employed four rupture velocities for the entire
rupture, and did not vary rise times). This discretization of the search can only produce a partial
understanding of the uncertainties. Although we chose one rupture velocity per segment (14 in
total), we did not split the segments in the down-dip direction as Lorito et al. [5] did. Indeed, we
argue that in order to reconstruct the satellite altimetry (near-parallel to the rupture), an increased
resolution along the rupture is likely to be more informative for the reconstruction than along the
down-dip direction.
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Figure 1. (a) The rupture is modelled by a 14-segment finite fault (FF) model (green boxes). The epicentre (cyan diamond)
is located in the first segment. Satellite tracks (grey) with valid sea-level altimetry (SLA) locations for Jason-1 (red) and T/P
(magenta). The near-field basin (yellow box) for uncertainty propagation. The measurement for the inversion is: (b) Jason-1
and (c) T/P SLA. The multi-satellite time-spatial interpolation (MSTSI) algorithm detects and removes anomalies (black) not
pertaining to the tsunami, e.g. in the range 8◦–13◦N. Observe the near-parallel nature of the tracks to the rupture that enables
the inversion of the dynamics for the entire rupture. No interpolation or addition of points is performed to give due importance
to the available SLA data.

Tanioka et al. [8] quantified uncertainties in slips using the non-negative least-squares method
coupled with jackknifing, but assumed a constant rise time (120 s) for each segment; in addition,
they selected, not jointly inverted, the rupture velocity from a discrete set of values. A similar
procedure is performed by Hirata et al. [9] by assuming constant rise times for each segment
(here 150 s). Satake et al. [10] assume five linear rise time functions (30 s each), which together,
form a piecewise linear rise time function per segment. This can be seen as an indirect inversion
of rise time (jointly with slips). However, here too, rise times per segment are restricted to the
values 30–150 s in steps of 30 s; uncertainties about rise times and slips are not computed either.
More recently, Melgar & Bock [6] performed a linear deterministic inversion of rupture velocities,
as well as an indirect inversion of rise times using multiple time windows of 10 s rise times.
Regularization is achieved by spatial and temporal smoothing. Again, uncertainties about slips,
rupture velocity and rise times are not computed, but could be large (as we see for some segments
in the current paper); this approach cannot account for nonlinear effects and does not quantify
uncertainties in the solution.

Bayesian inversion frameworks for tsunami inversion have been carried out recently [11,12].
These approaches, in principle, thoroughly quantify uncertainties in the inversion. Bletery et al.
[11] considered a discrete set of nine different rupture velocities for the 2004 S-A in the relatively
narrow range 2.4–3.2 km s−1 and did not account for rise times; they nevertheless noticed
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that the uncertainties associated with the rupture propagation are significantly larger than the
uncertainties on the measurements. Giraldi et al. [12] studied the Chile 2010 event, and inverted
the latitude and longitude of the epicentre, the strike angle and the slip along the fault, but neither
rupture velocities nor rise times. To accelerate inversion, they employed surrogate modelling
using polynomial chaos (see [13–15] for other Gaussian process surrogate models of tsunami
models). We demonstrate in this paper that a nonlinear inversion of all the kinematic parameters,
along with uncertainty assessments, can be achieved using a stochastic inversion approach.

The multi-objective evolutionary method [16] employed here treats the measurements (Jason-1
and T/P SLA) and FF source model parameters (slips, rupture velocities and rise times) as
diffusive stochastic processes (see appendix A). Paucity of data and modelling deficiencies impart
to the posterior probability distributions of the parameters a multimodal structure that reflects
multiple solutions. The stochastic framework offers a natural and rational means to account for
multiple solutions, hence simultaneously quantifying their uncertainties. By imposing minimal
a priori constraints and thus according primacy to the measured data, our work showcases a
hitherto unreported large spread in most of the recovered parameters. This in turn calls for a
fresh modelling approach by incorporating additional physics related to the dynamics of material
discontinuities and heterogeneities such as large sediment cover [17] that are present notably in
the northern part of the rupture.

2. The measurement: wave height from satellite altimetry
In this work, data from satellite altimetry are employed as the measurement to invert for
the rupture parameters. Satellite altimetry measures the same quantity as the tide gauges, i.e.
wave height η. Altimeters employ microwave radar sensors to measure the distance between
the sensor and the ocean surface. Proper corrections, e.g. as employed in the Radar Altimeter
Database System (RADS), provide a way to extract the SLA from the altimeter data. Four
altimeter-equipped satellites, viz. Jason-1, The Ocean Topography Experiment-TOPEX/Poseidon,
Environmental Satellite (ENVISAT) and GEOSAT Follow-On (GFO), mapped the ocean in the
temporal window 114–544 min post 2004 S-A event origin of 26 December 2004 00.58.53 UTC
[4]. SLA levels of considerable amplitudes (approx. 0.7 m) were recovered from the signals after
post-processing. This fact makes the 2004 S-A the first event where satellite altimetry enabled
delineation of such strong signals for tsunamis in deep ocean.

SLA data for Jason-1 and T/P have been used in this work because they captured the leading
wavefront of the tsunami in the deep Bay of Bengal region. The tsunami was detected in the
time intervals [1 h 54 min, 2 h 3 min 6 s] and [2 h 1 min, 2 h 10 min] by Jason-1 (Phase a | Cycle
109 | Pass 129) and T/P (Phase b | Cycle 452 | Pass 129), respectively. The corresponding
satellite track intervals can be approximated by the line segments between (83.11◦E, 7.36◦S) and
(92.98◦E, 19.2◦N) for Jason-1 and (82.16◦E, 6.06◦S) and (91.98◦E, 20.26◦N) for T/P (figure 1). The
early onset time of anomaly detection (approx. 2 h post event origin) is crucial for detecting the
primary wavefront of the tsunami. The location of the satellite tracks in deep Bay of Bengal
is the key to excluding coastal reflections and dispersive effects. This precludes the need for
better resolved shallow water/coastal bathymetry data and dispersive wave propagation models.
Moreover, Jason-1 and T/P are tandem satellites. This brings in a form of redundancy in the SLA
datasets from the two satellites as evident in the satellite track of Jason-1 being parallel to that of
T/P. Also, the orientation of both satellite tracks is near-parallel to the entire length of the rupture
(approx. 1400 km). As in addition the SLA capture duration are commensurable (546 s for Jason-1
and 540 s for T/P) with the entire rupture duration (approx. 600 s), we can afford to resolve the
rupture velocity and rise times on the scale of the FF segmentation, instead of assuming them to
be uniform, as is usually done. The altimeter accuracy (approx. 4 cm), temporal (approx. 1 s) and
spatial (approx. 27 km ≈ 15′) along-track resolution and quality post-processing of altimetry data
by RADS are other vital features favouring the use of SLA data for inversion.

The SLA data are obtained from RADS with default post-processing that performs many
corrections on the raw SLA data, viz. orbital, tropospheric, ionospheric, barometric, tidal, geoidal,
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backscattering, etc. Consequently, there exist gaps in the downloaded SLA data where the raw
data do not meet the strict requirements of RADS error budgets. We denote by tJ and tT, the
discrete set of time instants and by xJ (and xT), the corresponding points on the satellites Jason-
1 and T/P (J and T) tracks where SLA data are available and valid. The number of valid SLA
measurements are nJ = 456 and nT = 332 for Jason-1 and T/P, respectively. The SLA data contain
spatially and temporally localized oceanographic and meteorological effects that are not removed
by RADS post-processing. The multi-satellite time-spatial interpolation (MSTSI) method [18] is
used for additional post-processing to extract the tsunami signal (figure 1). These corrections
remove some of the uncertainties associated with the SLA data and render it more trustworthy
for the inversion. We denote the discrete set of SLA values post-MSTSI correction by ηJ and ηT,
respectively. Neither are additional points added to the SLA data via interpolation (in order
to give due primacy to measured data) nor is any relative weighing factor used between the
two satellite data. Quite a few discrepancies were found between the SLA data and computed
waveforms for the 2004 S-A event even with model enhancements [4]. This study also pointed
to the need for a more complex source model as a probable solution. We describe our enhanced
source model in the next section.

3. The forward models: seabed displacement to the tsunami

(a) Seabed displacement: kinematic description
Information on the spatial distribution of coseismic displacement along the earthquake rupture
is essential for the simulation of the consequent tsunami. The prescription of the coseismic
displacement (especially its vertical component), which acts as the initial condition for the
tsunami propagation model, significantly impacts the numerical computation of the tsunami
wave. As the time scale of the tsunami life cycle is much larger than the rupture process, the
dynamics of the rupture are usually assumed to have minimal effect on the tsunami wave.
Consequently, the final vertical seabed displacement is equated with the initial sea surface change
(or initial conditions) for the tsunami propagation model. For realistic scenarios (e.g. for slow
ruptures as reported for the Andaman segment [1,9]), it is more appropriate to endow the source
with a kinematic description. Crucially, the incorporation of dynamic parameters for inversion of
the tsunami source helps us understand the physical processes underpinning the rupture. As we
will see later, even though the inclusion of the dynamic parameters in the rupture may only have
a small effect on the far-field tsunami wave, they do have appreciable implications on the near-
field (far- and near-field imply remoteness from or proximity to the rupture, respectively). Since
mathematical models for dynamic rupture are difficult to develop and generally not available,
we make some simple assumptions on the static displacement field to arrive at its dynamic
counterpart.

The rupture is modelled as a dislocation in the material along which it is cut and displaced.
Building on Volterra’s theory of dislocations, Steketee [19] modelled the coseismic displacement
as a solution to the seismic dislocation (i.e. rupture) in an elastic medium. Okada [20] presented
explicit closed-form analytical formulae for calculating the surface displacement due to a constant
dislocation (or slip) across a rectangular fault patch in a semi-infinite isotropic homogeneous
medium. We employ this Okada solution to construct the static displacement field denoted
by u(x), where x is a point in the computational domain Ω . Towards this, a FF segmentation
is constructed by discretizing the continuous rupture into a finite number (nF) of rectangular
segments (or sub-faults). A segment (say i, where i varies from 1 to nF) is characterized by 10
parameters, seven of which define its geometry viz. its length li, width wi, depth di, strike θ i

s, dip
angle θ i

δ and geodetic coordinates (xi
o, yi

o) of its origin. Another two parameters, the rake angle θ i
r

and slip Si describe the direction and magnitude of the dislocation on the segment. Mechanical
characterization of the segment’s medium is carried out by the last parameter ν, its Poisson’s
ratio. All the parameters are assumed to be constant within the segment. The displacement for a
given slip is linearly related to the Green’s function, which hence only needs to be evaluated once
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for each segment with a unit slip input. For simplicity, we denote the expressions for the Green’s
function operator in [20] as O and express the static displacement field resulting from segment i
as ui(x):

ui(x) = SiO(x, ν, li, wi, di, θ i
s, θ i

δ , θ i
r, xi

o, yi
o). (3.1)

Let (·)z denote the vertical or z-component. The total vertical displacement field uz(x), which
is the primary cause for tsunami genesis, is expressed as the linear superposition of vertical
displacements resulting from all the nF segments,

uz(x) :=
nF∑

i=1

ui
z(x) =

nF∑
i=1

SiOi
z(x, . . . , yi

o). (3.2)

Now, the static displacement ui(x) is used to construct the dynamic displacement ui(x, t) resulting
from segment i following [7]. To construct this time evolution, two more parameters, the rise
time Ti

R and the rupture velocity Vi
R, are introduced per segment. These parameters are also

assumed to be constant within each segment. This key enhancement also renders the source more
complex than the simple (and widely used) case where a single rupture velocity and rise time
are assigned to the entire rupture. The rupture velocity provides the segments with a temporal
ordering corresponding to the propagation of the rupture. The time instance when segment i
initiates rupturing is denoted by ti

o. In the present FF model, t1
o = 0 s because rupture starts with

the first segment. The rupture velocity is related to the rupture initiation instances of adjacent
segments (say i and i + 1) as

Vi
R = li

ti+1
o − ti

o
. (3.3)

As originally proposed by Hammack [21], the maximum displacement is assumed to be attained
in a finite rise time Ti

R. In other words, ui(x, t) goes from zero to the maximum coseismic static
displacement ui(x) in the time interval [ti

o, ti
o + Ti

R]. A simple way to carry out this transformation
is by multiplying ui(x) with the seabed evolution or rise time function such that the temporal and
spatial dependence are mathematically separated. Many rise time functions are available, e.g. the
instantaneous (Heaviside), piecewise linear [10], exponential and trigonometric functions [7], or
more complex ones [22]. We select the trigonometric rise time function R(·, ·) defined by

R(t, τ ) :=H(t − τ ) + 1
2
H(t)H(τ − t)

(
1 − cos

(
π

t
τ

))
, (3.4)

with H(·) denoting the Heaviside step function. This selection is ad hoc but, in our problem,
the satellite track SLA is relatively insensitive to the particular shape of the rise time function,
compared to the rise time itself. The dynamic displacement ui(x, t) due to the dynamic behaviour
of the rupture in segment i is hence defined as follows:

ui(x, t) := ui(x)R(t − ti
o, Ti

R). (3.5)

Similar to (3.2), the vertical seabed displacement history uz(x, t) due to the entire rupture is the
linear superposition of individual dynamic displacements resulting from all the nF segments,

uz(x, t) :=
nF∑

i=1

ui
z(x, t) =

nF∑
i=1

SiOi
z(x, . . .)R(t − ti

o, Ti
R). (3.6)

Thus, the vertical seabed displacement evolves from 0 at rupture initiation time t1
o to its final

value at the rupture termination time. The rupture termination time or the total time taken by the
rupture may vary depending on the relative values of segment initiation and rise times. Normally,
it is given by tnF

o + max(TnF
R , lnF/VnF

R ), the time taken by either the rupture to reach the end of the
last segment or the dynamic displacement of the last segment to fully evolve, whichever is greater.
In cases where other segments may have relatively larger rise times, the rupture termination time
is defined as the time instant when the dynamic displacements due to all the segments have
reached their final values.
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Various FF segmentations have been employed in the research community for the 2004 S-A
event. These have been discussed and compared [23,24]. Here, we use the 14-segment FF model
along the Sunda trench from Hirata et al. [9] to represent the rupture due to its quality and
parsimony. The epicentre is located in (3.3◦N, 95.68◦E), the first segment at a depth of 30 km. This
FF model is used in [9] and in a slightly modified form in [25] to invert for the tsunami source from
satellite altimetry. It also appears in another form in [26] to jointly invert for the tsunami source
from tide gauge and satellite altimetry. The FF parameters except the rupture parameters are fixed
with values taken from table 1 of [9]. Notably, l = 100 km, w = 150 km, d = 10 km and θδ = 10◦ for
all the segments. The uniform dip angle of 10◦ lies between the Harvard centroid-moment-tensor
solution of 8◦ [1] and 10◦–12◦ observed for the aftershocks by the ocean-bottom seismographic
network [26,27]. This along with the up-dip depth of 10 km gives a down-dip depth of 36 km.
Principal stress axes of the aftershocks from thrust events are used to arrive at the rake angles
[9,26]. The extent of the locked fault zone in the Sumatra subduction zone identified by coral
growth and GPS assessments are used to constrain the down-dip width to 150 km [9,28].

To complete the description of the rupture, we define the seismic moment M0 and moment
magnitude MW [29,30] as

M0 :=
nF∑

i=1

μliwiSi (3.7)

and
MW := 2

3 (log10 M0 − 9.1), (3.8)

with μ = 3.5 × 1010 N m−2 [29] being its modulus of rigidity.

(b) Tsunami: generation and propagation
The seabed displacement triggers a possible tsunami: the released energy propagates as small
waves in deep ocean but may attain catastrophic amplitudes in shallow water due to amplification
and eventually produces potentially large coastal inundations. We employ VOLNA [31] to
model the generation and propagation of the tsunami wave. VOLNA is a well-validated finite
volume solver of the non-dispersive nonlinear shallow water equations (NSWEs) on Cartesian
coordinates:

Ht + ∇ · (Hv) = 0 (3.9)

and
(Hv)t + ∇ ·

(
Hv ⊗ v + g

2
H2I2

)
= −gH∇h, (3.10)

where h(x, t), v(x, t), g and H(x, t) are the dynamic bathymetry, depth-averaged horizontal velocity,
acceleration due to gravity and total water depth, respectively. I2 denotes the 2 × 2 identity
matrix. The free surface elevation (or SLA), η(x, t) is given by

η(x, t) = H(x, t) − h(x, t), (3.11)

where the dynamic bathymetry is the sum of static bathymetry hs(x) and the dynamic seabed
deformation uz(x, t) :

h(x, t) = hs(x) + uz(x, t). (3.12)

Thus, (3.12) employs the active mode of tsunami generation distinct from the passive mode
constituted by instantaneous uplift [32]. Here, hs is sourced from ETOPO1 bathymetry
(1′-resolution) [33] and uz(x, t) is the vertical component of the dynamic seabed displacement
from (3.6).

The computational domain Ω is [82◦E, 97◦E] × [8◦S, 21◦N], which contains the track portions
of Jason-1 and T/P satellites where the tsunami was detected (figure 1). A uniform triangular
mesh (element size approx. 1.8 km) for the simulations is built upon the ETOPO1 grid using
Gmsh [34]. The time-stepping is done approximately every 1.28 s for a total simulation time ts of
2 h 12 min, the time by which the satellites have finished traversing Ω . The seabed displacement
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(3.6) is calculated every 15 s from t = 0 s till the end of the seabed deformation to update the
bathymetry (3.12). While reflections from the islands (northeast of the trench) could in principle
contribute to the tsunami, the approximately 10 min temporal window of SLA capture by the
satellites is free of such subsequent reflections. Similar remarks hold for reflections from the
regions adjacent to the Myanmar coast.

4. The inverse problem: reconstructing the source parameters
Using a LSWE, the problem of inverting the slip alone from SLA (or tsunami wave height) is
widely posed as linear [8,9,26]. In the LSWEs, the SLA and seabed uplift are linearly related, the
latter in turn being linearly related to the slip via the Okada solution (3.2). This enables employing
schemes like the non-negative least-squares minimization [35]. Unfortunately, inversions for
either rupture velocities or rise times are highly nonlinear (4.1). In a linear setting, this amounts
to fixing, perhaps arbitrarily, parameters related to the FF array in (3.1), rupture velocities (3.3),
rise time function (3.4), rise times (3.5) and crustal rigidity (μ) (3.7). Alternatively, these are
deduced from a priori finite discrete sets. Complex interactions between the static (slip) and
dynamic (rupture velocity and rise time) parameters cannot be reflected in such exercises. As
a result, employing some form of variance reduction [9] or jackknifing [8] cannot faithfully
reproduce the statistical information and hence the uncertainties in the inverted parameters (see
also [36] which discusses artefacts in the inverted solution in the context of seismic inversions). In
fact, in a problem as complex as this, a significant part of the non-uniqueness could perhaps
arise owing to the limitations and inaccuracies in the forward problem, e.g. the deformation
model that should ideally account for thermo-visco-plasticity and damage (including fracture)
within a highly inhomogeneous and discontinuous medium like sediment deposits. All the
above factors highlight the importance of a nonlinear, joint inversion of the source parameters
attempted here.

Among the possible options for joint inversion of slips, rupture velocities and rise times,
stochastic methods perhaps offer the most rational framework for tackling the ubiquitous
noisy character of real-world problems while naturally dealing with non-uniqueness in the
inverted parameters. Surveys of inversion for the 2004 S-A event may be found in [23] and
examination of various FF models in [24]. Deterministic schemes face possible ill-posedness and
lack of physicality or/and extreme sensitivity to regularization. Such regularizations may include
imposition of constraints to limit the search space, slip-velocity positivity [37], weak equalization
of adjacent segments’ slip [38], uniform slips, average slip via seismic moment/magnitude and
others as discussed in [36]. Imposing different constraints may result in multiple solutions fitting
a given dataset. A significant step in the nonlinear inverse problem approach was by [5], wherein
the heat bath algorithm [39]—a stochastic simulated annealing method—was used to invert for
multiple rupture velocities, rake angles and rigidities. However, it employed a brute-force logic
within a bounded set wherein a trial solution at any given iteration differed from the last guess
by a fixed value. Collapsing a continuum search to one on a discrete set as above may conceal
important sources of non-uniqueness in the reconstructions associated with such nonlinear
inverse problems. Consequently, this discretization does not allow for proper quantification of
uncertainties in the solution.

We employ an inversion approach founded on a stochastic filtering or projection scheme,
namely the Change of Measure Based Evolutionary Optimization (COMBEO) [16,40] (see
appendix A for a description and notations). COMBEO has been rigorously vetted against around
40 standard benchmark optimization problems while performing better than many existing
heuristic methods [16]. In addition, it is backed firmly by the mathematics of the martingale
problem [16,41]. It has, for instance, been employed with great success in optical tomography
problems where noisy measurements abound and parameter field reconstructions are non-trivial.
Cases with experimental data include diffraction tomography [42] and quantitative photoacoustic
tomography [43].
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(a) Formulating the nonlinear inverse problem
In this section, we formulate the inverse problem. We designate the FF slips (S = {Si}nF

i=1), rupture
velocities (VR = {Vi

R}nF
i=1) and rise times (TR = {Ti

R}nF
i=1) as the rupture variables (or rupture

parameters). All the other FF parameters are treated as constants. We simplify the notations in
(3.6) to clearly delineate the general functional dependence of the final seabed displacement on
the rupture variables, as follows:

uz(x, t) =D(x, t, S, VR, TR). (4.1)

The deformation operator D combines the effects of O, the generation of the static seabed
displacement (3.1) and R, its transmutation into the dynamic counterpart (3.5). While D is linear
in Si owing to the linearity in the Okada expression (3.1), it is highly nonlinear in Vi

R and Ti
R as

manifest in (3.5), (3.4) and (3.3). Turning to the tsunami propagation, we consolidate (3.9)–(3.12)
into the tsunami operator T to get

η(x, t) = T (x, t, uz(x, t)). (4.2)

As is evident from (3.10), T is nonlinear in uz. We substitute (4.1) in (4.2) to portray the
dependency of η(x, t) on the rupture variables that are hidden in uz(x, t),

η(x, t) = T (x, t,D(x, t, S, VR, TR)). (4.3)

From (4.3), it is clear that T is also nonlinear in Si, Vi
R and Ti

R.
Coming to the measurements, we concatenate the individual satellite SLAs, ηJ ∈ R

nJ and ηT ∈
R

nT to constitute the SLA measurement vector ηM ∈ R
nM (with nM = nJ + nT = 788),

ηM = [ηJ ηT]. (4.4)

The corresponding combined satellite track locations and tsunami detection time instances are
similarly constituted by xM = [xJ xT] and tM = [tJ tT], respectively. The computed counterpart ηC
of the measurement vector ηM (4.4) is formed as a restriction of the free surface elevation (4.3)
over the satellite tracks. For clarity, we suppress x and t and render (4.3) into a composition of the
two forward models (D, T ) characterized by the measurement operator M that maps the rupture
variables to the computed measurement (A 2),

ηC = T ◦ D(S, VR, TR)|(x,t)=(xM,tM) = M([S VR TR]). (4.5)

The argument of M is the vector of parameters p that are to be inverted (A 1). In (4.5), the
most general case of inversion is when all the rupture variables are inverted for. In line with
the discussions above, although M may be considered weakly nonlinear in slips, it is strongly
nonlinear in rupture velocities and rise times. The parameters p and measurements ηM are treated
as stochastic processes in COMBEO which evolve along a time-like axis (hence, the subscript τ in
(A 1)–(A 2)). The measurement-prediction misfit (or the innovation in the filtering parlance) e is
defined as the signed error between the actual observation ηM and its computed counterpart ηC ,

e(p) = ηM − ηC . (4.6)

A deterministic route to solve an inverse problem seeks to find pmin that minimizes a suitable
norm of the vector-valued e(p) (say, ‖e(p)‖2). On the other hand, COMBEO tries to find a joint
distribution of the rupture variables that drives each component of e(p) to a 0 mean Brownian
motion, the stochastic equivalent of the deterministic 0. Thus, COMBEO can handle a multivariate
objective function as it works on a vector of signed errors instead of a positive scalar (i.e. a norm).
Indeed, the signed version of the misfit is also better than its unsigned version (absolute value),
because the former contains more information about the error. The vector-valued misfit enables
the maximum possible assimilation of the available information, compared to the common
inversion schemes where the misfit is flattened into a scalar error. As a result, COMBEO typically
achieves a better fit for the whole duration of the observed SLA than other inversion methods.
Finally, we note that the inversion of the parameters from 14 segments is aided to a great extent
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Figure 2. Satellite track SLA (a) Jason-1 and (b) T/P for different rupture velocities assigned to different segments. Difference
between these cases and the waveform computed with 2.25 km s−1 as the baseline, (c) Jason-1 and (d) T/P.

by the availability of 788 high-quality SLA measurements on satellite tracks that are near-parallel
to the entire rupture.

(b) Choice of parameter space for inversion: Cases A, B and C
We first perform a sensitivity study of the kinetic parameters. The aim is to explore the sensitivity
of the satellite track SLA to rupture velocity and rise time.

The sensitivity of satellite track SLA to the rupture velocity is displayed in figure 2. The
slips and rise times are fixed at 15 m and 100 s for all the segments. The rupture velocities are
chosen as 0.75, 2.25 and 3.75 km s−1, uniformly throughout the 14 segments of the fault. Then,
the segments 1–5, 6–10 and 11–14 are assigned different rupture velocities in a cyclic manner (see
legend in figure 2). The first and second columns show the results on tracks of satellites Jason-1
and T/P, respectively. The first row shows the tsunami wave height (η). The second row shows
the difference in tsunami wave heights with the one corresponding to 2.25 km s−1 as the baseline.

The sensitivity of satellite track SLA to the rise time is displayed in figure 3. The slips and
rupture velocities are fixed at 15 m and 2.25 km s−1 for all the segments. The segments are
allocated rise times of 150, 300, 600 and 1200 s uniformly. Here, the second row shows the
difference in tsunami wave heights with the one corresponding to 600 s as the baseline. The
differences are of similar magnitude when compared with those for rupture velocities.

Now, with the purpose of bringing out the complex interplay between the rupture variables,
we consider three cases of inversion—Case A (inversion of slips alone), Case B (slips and rupture
velocities) and Case C (slips, rupture velocities and rise times).

Case A: This simplest case involves inversion of the slips alone while fixing the values of the
rupture velocities and rise times. For this case, the right-hand side of (4.5) reduces to M([S]) (with
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Figure 3. Satellite track SLA (a) Jason-1 and (b) T/P for different rise times assigned to different segments. Difference between
these cases and the waveform computed with 600 s as the baseline, (c) Jason-1 and (d) T/P.

p = S). This is the case usually encountered in the literature [9,26]. The inversion may be construed
as linear in the slips, provided one neglects the effect of the nonlinear terms in the NSWE (3.10) for
deep ocean. Hence, although the Green’s function approach (or a variant with linearization about
the mean slip for the NSWE [5,44]), in practice, could be employed here, we do not pursue that
route to maintain uniformity in simulations for the subsequent nonlinear scenarios, viz. Cases B
and C. The number of parameters to be inverted (nP) is equal to the number of slips or the number
of segments in the FF model (nF = 14). Reasonable values of the rupture velocities and rise times,
consistent with other findings in the literature, are fixed at 2.5 km s−1 and 60 s, respectively, in all
the segments.

Case B: Here, the rupture velocities are posed as additional unknowns, which increases the
complexity of the inversion (i.e. now, nP = 2 × nF = 28). This implies that the inversion algorithm
independently searches for the 14 slips and 14 rupture velocities, while all the 14 rise times remain
fixed at 60 s. Lorito et al. [5] employed with success the Green’s functions for such a scenario using
the NSWE and inverted for the 18 slips and four rupture velocities for a 9 × 2 segment FF model.
But unlike our case where each of the 14 segments is allowed an individual rupture velocity,
Lorito et al. [5] partitioned the FF model into four subfault groups, each rupturing together as a
unit with the same rupture velocity. More importantly, in this work the active mode of tsunami
generation is employed [32]. This allows dynamic rupture to be more consistently manifested in
both the dynamic seabed uplift (3.12) and consequently in the SLA instead of shifting/delaying
the Green’s functions [5]. The right-hand side of (4.5) reduces to M([S VR]) (with p = [S VR]) for
this case.

Case C: We include the 14 rise times also to be independently searched by the inversion
algorithm inflating the parameter space to 42 dimensions (i.e. now, nP = 3 × nF = 42). As is
evident in (3.5), the rise times bring in further nonlinearity that precludes applying Green’s
functions or linear inversion schemes. To our knowledge, this is the first time that such an
inversion attempt has been made for a megathrust event.
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Figure 4. Evolution of (a) the l2-norm of the multi-objective error e(p) and (b) moment magnitude MW . The error norm
(and moment magnitude) plateaus around 30 iterations (shaded) after which very small fluctuations are noticed. See the
corresponding SLA waveformmatches in figure 5.

Minimal a priori constraints are imposed in the form of bounds within the inversion algorithm
to limit the search in the parameter space. The bounds for the slips, rupture velocities and rise
times are (0, 100) m, (0.4, 4) km s−1 and (30, 300) s, respectively, in line with the current physical
understanding. The initial guess for these parameters at the start of the search are, respectively,
10 m, 2.5 km s−1 and 60 s. Parameters at any given iteration in COMBEO are perturbed by an a
priori noise β, as the parameter evolutions follow stochastic differential equations (SDEs) (A 1).
Nevertheless, the exploration rendered by the process noise must also not push the solution too
far away from the neighbourhood of its current optimal solution. Therefore, the entries in the
parameter noise covariance matrix ΣβΣT

β
need to be selected in a manner so as to not render

the recursive procedure divergent. Preferably, they should be at least an order of magnitude
lower than the solution. Here, we fix ΣβΣT

β
= (0.1)2I14 m2 in Case A with I14 denoting the

14 × 14 identity matrix. For Cases B and C where rupture velocities and rise times are inverted,
the corresponding diagonal blocks of ΣβΣT

β
are populated by (4)2I14 m2 s−2 and (0.1)2I14 s2,

respectively.
The uncertainty in the measurement is another important, yet often overlooked factor, which

is to an extent accounted for in COMBEO by the measurement noise γ (A 2). The entries in the
measurement noise covariance matrix Σγ ΣT

γ must be relatively small in comparison to ‖ηM‖ so
that mτ stays in the vicinity of ηM. Here, we fix Σγ ΣT

γ = (10−3)2I788 m2, where I788 denotes the
788 × 788 identity matrix.

In the presence of multimodality in the posterior distribution of the parameters (i.e. multiple
possibilities for the solution), obtaining an acceptable solution is based on a judicious combination
of the local and global search features available in COMBEO. However, being a Monte-Carlo
scheme, implementing COMBEO is a computationally intensive endeavour requiring repeated
numerical evaluations of VOLNA. The search is continued until the misfit attains the statistical
properties of the measurement noise (i.e. a zero-mean stochastic process with independent
increments), but practically it is halted when the misfit error plateaus or becomes less than a
tolerance value (figure 4). The stopping criterion for the algorithm varies with the problem at
hand, but in general, a trial and error procedure is required to determine the total number of
iterations (here, we stop at 100 iterations).

The search provides a natural means to the empirical quantification of the various uncertainties
involved. Indeed, the positions of the particles along the search, after convergence has been
obtained, represent the intrinsic uncertainty about the solution of the inversion problem. The
number of particles (i.e. ensemble size nE) was limited to five because it provided satisfactory
results with no need to increase further.
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Figure 5. Waveform fits for computed (a) Jason-1 and (b) T/P SLA after the error norm plateaus (i.e. iterations 31–100; see
figure 4).

(c) Uncertainty propagation: near-field effects
The effect of inverted parameter distributions on near-field tsunami waves is showcased by
propagating these uncertain input parameters through the forward model (figure 6). The near-
field basin comprises the area of the graph shown in figure 1, a region encompassing the whole
of the rupture. The parameters from iterations where the error reaches steady state (i.e. 31–100)
are employed for this exercise. This is primarily done to estimate the hazard implications of the
different source parameters, especially the rupture velocity and rise time.

The maximum tsunami height at every point of the near-field basin (figure 1) is computed
for each of the 70 parameter values (i.e. corresponding to iterations 31–100). The range of these
70 maximum wave height values (i.e. the difference between the maximum and minimum of
the set of 70 maximum wave heights) is plotted in figure 6. We note that differences of several
metres in these ranges can be spotted across Cases A, B and C. Different inversions can produce
not only vastly different tsunami predictions, but also ranges about these predictions that can be
significantly dissimilar. It highlights the need to make an informed choice about the parameter
setting employed for the inversion.

5. Discussion
In all the three cases, the inverted parameters are reported after the l2-norm of the multi-objective
error attains steady state at around 30 iterations, beyond which only very small fluctuations are
noticed (figure 4). Similar observations apply to the moment magnitudes and seismic moments
which attain steady state at about 9.35 and 13.5 × 1022 Nm, respectively. The effect of realizing
a steady state in the error norm is clearer in the corresponding fits between measured SLA
and computed waveforms for both the satellites (figure 5). The waveforms computed after 30
iterations are seen clustered about the measured SLA for all the three cases. Careful observation
reveals that the computed waveforms tend to match better the measured SLA waveform over
certain intervals on inclusion of more parameters for inversion. Thus relatively speaking, the
envelope of computed waveforms for C (joint inversion of slips, rupture velocities and rise times)
enables a better reconstruction than B (joint inversion of slips and rupture velocities), which in
turn provides a better fit than A (inversion of slips alone). Fig. 6 in [11] displays similar variations
in the inverted SLA waveforms about the measured SLA, although without the use of rupture
velocities and rise times. Their inverted slips along the segmentation are overall consistent with
ours, but also show some dissimilarities, again possibly due to a different parameter setting. It
is reassuring that using a different route, our results agree with the other approaches in more
restricted settings.
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Figure 6. Range of maximumwave height. The value at each point in the plot shows the range of the maximumwave heights
at that point resulting from forward propagation of the 70 parameter sets (i.e. from iterations 31–100). The near-field effects of
the different parameter distributions: (a) Case A, (b) Case B and (c) Case C. Observe significant differences in the tsunami wave
height throughout the rupture length between the three cases.

In the absence of previously reported exercises on similar lines, a comparative assessment
of the iterative evolution of parameters, errors and other derived quantities (like M0 and MW)
reported here is not possible. The fast and near-monotonic decay of the error norm results from
the superior form of the exploration–exploitation trade-off embedded in COMBEO and owing to
a multi-objective search. Variances in the parameters captured by the method in all the three cases
are quite significant, even though the respective errors have attained a steady state (figure 7). The
variances are also different for each case.

For none of the cases, the slips reach the prescribed upper bound of 100 m. High mean slips of
30–60 m are consistently observed in segments 4 and 5. The variances are visibly quite different
between the three cases, especially in segments 7–9. Mean slips of 20–30 m are also consistently
seen in the northernmost segments 12–14 where the rupture terminates. Although unusually high,
they are supported by a good fit in the northern end of the waveforms. Interestingly, coseismic
land level changes observed both from geodetic and field evidence also suggest variations along
the rupture zone with its northern terminus (segment 14) showing a relatively larger vertical
offset [45]. Overall, the slips here are relatively higher than previously reported, e.g. table 2 in
[23] and in [24]. This also results in the marginally higher values of M0 than that reported in the
former (5.7–11 × 1022 Nm). The inflated slips (and MW) are compensated values (compensated
by the inversion algorithm). At least one previous work [25] explains, in similar terms, a higher
slip reported therein. We identify two reasons reported in the literature that shed light on the slip
inflation. First, based on the study in [17], we estimate a 60% increase locally in the deformation
uplift due to the presence of sediments. This could reduce the compensation by the algorithm
and result in proportionately lower slips. Second, Shearer & Bürgmann, in their comments on
table 2 of [23] in the context of seismic and geodetic inversions for the 2004 S-A source, explain
a halving of the moment magnitude (or a 0.2 decrease in MW) due to an increase in the dip
angle assumed. We do not change our assumptions to conform to an MW in the range of 9.1–
9.3, because one of the main aspects of the work is to highlight the inadequacies of the physical
models. Thus a closer match could have been enforced, e.g. by assuming a steeper dip angle in the
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Figure 7. Empirical distributions of inverted (a) slips, (b) rupture velocities and (c) rise times. Case A, inversion of slips only;
Case B, joint inversion of slips and rupture velocities; Case C, joint inversion of slips, rupture velocities and rise times.

FF geometry [23], a strategy avoided here. Similarly, the terminal high slips could also have been
obviated by imposing the a priori constraint of zero slip in the rupture termination zone. In other
words, we point to an important underlying source of uncertainty which is liable to be glazed
over in the event of matching the MW or imposing further constraints. A closer examination of
the SLA reveals unmatched fluctuations that could be ascribed either to coarse segmentation or
deficiencies in the model.

Large uncertainties are also seen in the rupture velocities although they are curtailed by
the prescribed upper bound of 4 km s−1. Significant is the discrepancy when the rise times are
included in the inversion, particularly for segments 7–9 and the last two terminal segments (13
and 14). The variances nearly encompass the range of values given in tables 2 and 3 of [23], i.e.
1.5–4.1 km s−1. To the best of our knowledge, there are no existing inversions for rise times using
SLA data let alone joint inversions, so comparisons are difficult. The uncertainties in rise times
seem relatively larger for segments 4, 5, 8, 9 and 11–13.

Parameter distributions in many segments are clearly skewed, highlighting the non-
Gaussianity of the posterior distributions. This is manifested, for instance, in segment seven
wherein the nature of skewness changes markedly in the three different inversion cases.
Moreover, considerable uncertainties in parameters found here explain the plethora of related
values reported previously, clearly mandating a more nuanced interpretation of the results than
is typically done.

It is not surprising that the fit (figure 5) looks best in the initial few peaks and troughs for
Case C because it uses the maximum number of parameters (with nP = 42) among the three
cases. Case B (with nP = 28) is next in line followed by Case A (with nP = 14). From a statistical
viewpoint, the errors in the three cases are indistinguishable (figure 4a). The Akaike information
criterion (AIC) [46,47] may be employed as a statistical information-theoretic measure for the
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Table 1. Ranking of the three cases using the AIC.

case nP AIC AICc AICc-AIC 	KL 	KL
c

A 14 5426 5427 1 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 28 5429 5431 2 3 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 42 5465 5470 5 39 44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

relative quality of the three models (or cases). It should be noted that the AIC cannot be readily
calculated here because we do not perform a likelihood-based statistical inference. However,
inspired by the match between the maximum-likelihood and least-squares estimates in the case
of least-squares inversion, we compute a pseudo information criterion (with an abuse of notation)
using the residual sum of squares (RSS). The number of SLA measurements (nM = 788) is taken
as the sample size for AIC calculation. The expression for AIC in [47] is then recast as

AIC = nM log(eagg) + 2nP, (5.1)

where eagg is an aggregate RSS defined as the sum of squares of the errors for iterations 31–100
(i.e. the stabilized region in figure 5). Ideally, the AIC needs to be calculated for all the instances
of the three models under consideration (i.e. 70 × 3 = 210 instances in total), but the use of eagg

enables us to aggregate each case (or model). Owing to the finite sample size of the measurement
(i.e. 788), we use the corrected AIC or AICc [47] given by

AICc = AIC + 2nM(nM + 1)(nM − nP − 1)−1. (5.2)

This correction exerts considerable influence when the number of measurements available is
small. Here, it does not influence the AICc calculation much (see the column for correction AICc-
AIC in table 1). The relative quality of the three models is revealed in the Kullback–Leibler (K-L)
information ranking (	KL), calculated as

	KL
i = AICi − AICmin, i = A, B, C, (5.3)

where AICmin denotes the minimum of AIC values across the three cases. Similarly, 	KL
c , the

ranking using AICc, may be defined on similar lines. The value of 	KL for a model is proportional
to the K-L information loss in it relative to the other models. The calculations are listed in table 1.
Case A (or Model A) has the minimum AICc (and AIC) and Case B is close to Case A in the
sense of the K-L distance. Case C is relatively far from Cases A and B. At first glance, it seemingly
implies that Case C (i.e. inclusion of rise times in the inversion) has no empirical support. But
AIC is an information-theoretic measure and may not be able to capture the nuances in the
physical modelling of the problem. Rather than just eliminate the rise times from the parameter
space, the way forward is to model better the dynamic parameters in the rupture process while
incorporating more of the physical phenomena involved.

Finally, we illustrate the impact of uncertainties in rupture velocities and rise times on wave
heights. Melgar [6] showed that the impact manifests itself close to the source. We display in
figure 6 the range of maximum wave heights that result from the uncertainties in the inversion.
We find that, indeed, these ranges are similar in the far field but are appreciably different near
the source. We also observe that there are localized patches with larger spreads when dynamic
parameters are included: this underscores the necessity to include these dynamic parameters
when investigating local hazard footprints. A network of buoys near the source would have
provided better constraints for the estimation of the dynamic parameters.

6. Conclusion
The rational approach employed in COMBEO, the evolutionary stochastic optimization scheme
adopted here, en route to a joint nonlinear inversion while also addressing the problems inherent
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in common deterministic schemes, is perhaps a significant first step forward for earthquake
source recovery problems. The rational yet flexible machinery of advanced nonlinear inversion
techniques allows for an attempt not only at recovering the dynamic source model of the
2004 S-A event but also at accounting for complex interactions between the static (slip) and
dynamic (rupture velocity and rise time) parameters. Instead of the usual variance reduction
by incorporating arbitrary a priori constraints, the possibility of multiple solutions is retained
by imposing a minimal set of constraints. The resulting uncertainties could originate from the
limitations (such as uncertainties of epistemic origin) in the physical models and paucity of
measurement data. In view of the large variances observed, this study emphasizes the need for
better physical models.

A key source of epistemic uncertainty enters the joint inversion due to the paucity of dynamic
source (i.e. slip history) models. Usual inversions, where slips alone are inverted, fix the slip
initiation and rise time of the segment, thus making the segment slip the only unknown in
its slip history. Our amelioration allows a joint evolution of the segment slip, its initiation
time (deduced from its rupture velocity) and rise time. A parametrization of rupture dynamics
using a rupture velocity and rise time per segment invariably makes them sensitive to the
segment geometry, besides the coarse resolution resulting from segment-wise rise times given
the infinite frequency spectrum of the actual slip history. Accordingly, our parametrization is
a significant development, though not nearly the best possible. As with slips, this uncertainty
is stochastically captured and quantified by COMBEO. Consequently, it is pertinent not to
lose sight of inadequacies in the existing physical models and lack of suitable source models
while interpreting any inversion result, including the findings here. Finally, it is remarkable
that although uncertainties in measurement (SLA data) also contribute to the variances, the
data suffice to constrain the parameters within the bands reported. This brings into focus the
practice adopted here of according due primacy to measurement data over a priori constraints. As
additional data are incorporated within the scheme, a reduction in parameter variances ought to
be indicative of the quantum of additional information contained therein.

An important component in modelling uncertainties emerges from the simplifying
assumptions in the Okada model, e.g. isotropy, homogeneity and elastic half-space. The lateral
variations in the material property and in the bathymetry are also unaccounted for. Similarly
important is the choice of parametrization in the practical utilization of the Okada model which
includes the geometry of the FF array defined by its orientation, spatial spread, number of
segments and grid spacing [24]. The 2004 rupture lies in the Bay of Bengal, where the ocean
floor is overlain by kilometres-thick sediment cover [48] especially near its northern termination
where it is up to approximately 5–10 km thick. The nonlinear and non-classical behaviour of
this compacted granular media is not reflected in the Okada model. In the absence of such
physical models, incorporating spatial distribution of material properties in the finite-element
method (FEM) [17,49] only addresses the problem in a limited manner. COMBEO’s stochastic
compensation for this unaccounted material behaviour may be a reason for (i) the relatively high
mean slips throughout the rupture, (ii) the apparently high slips (40–60 m) in segment five and
(iii) the high mean slips (20–30 m) in the rupture termination region.

Indeed, although previous works point towards high slips in the northern regions of the
rupture, the present study offers a rational confirmation. In all three inversion cases, we also
recover high slips in the vicinity of the rupture termination. However, such high slips at the
rupture termination are physically unrealistic. We believe this is due to unaccounted contribution
from the sediments layer, which is much thicker in the northern regions of the rupture than in the
other rupture locations. Precisely, Dutykh & Dias [17] quantify the amplification as a function of
the ratio of the sediment thickness to down-dip depth. In the northern regions of the rupture, this
calculation results in an amplification of around 60% of the seabed uplift.

Our results are consistent with some of the high slips found 300–500 km away from the
initiation of rupture [25]. These may be considered slips that compensate for unaccounted
physical factors such as the inelastic crustal deformation. The authors of [1] reported that the
northward propagating rupture velocity is about 2 km s−1 for the first 745 km, and then slows to
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0.75 km s−1. We also find a general drop in the rupture velocity at around 600–800 km but not of
that magnitude: from close to 4 km s−1 to around 2.5 km s−1. We also observe an increase in the
rupture velocity from 900 km. We also note a complex interplay between the dynamic parameters
in the inversion. Additionally, the fact that the sensitivity to dynamic parameters reduces in
the far field (where the SLA track is located) may lead to a large range of possible values for
these parameters.

The results here may be improved by incorporating various enhancements, e.g. FEM
modelling of the source, adopting the spherical coordinate version of the NSWE, high-resolution
bathymetry datasets, etc. Likely improvements withal, parameter reconstructions for a problem
as complex as this would continue to exhibit significant uncertainty bands. This shows
that a stochastic scheme like COMBEO should continue to remain relevant as an effective
tool for tsunami source recovery. The characteristics of the uncertainties reported here (e.g.
skewness, variance, complex inter-dependencies) strongly suggest the need for developing more
sophisticated physical models.

The performance of early warning systems could be, in principle, improved by a rational
inclusion of uncertainties in the prediction of hazard footprints. This would require the adoption
of stochastic methods as in the present paper. However, deterministic schemes, being much faster
than such algorithms, have presently proved more useful in early warning systems; see e.g.
a statistical inversion framework for near real-time tsunameter data [50]. We note that recent
progress in the field of emulation shows much promise for the acceleration of tsunami models by
constructing statistical surrogates of the computer model (see [13] for a computationally efficient
method and [15] for the emulation of a landslide-induced tsunami). Accordingly, these methods
have the ability to extend the scope and speed of stochastic algorithms for early warnings.
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Appendix A. Multi-objective stochastic evolutionary optimization
The stochastic optimization employed here is a variant of COMBEO—a change of measure-
based evolutionary optimization [16,40,51]. As a necessary first step to solve the problem using
COMBEO, the parameters to be inverted, viz. the slips, rupture velocities and rise times of the
FF segmentation and the measurements, viz. the Jason-1 and T/P SLA are treated as stochastic
processes (e.g. random walk models in a time-discrete set-up with the optimization iteration
counter as the pseudo-time variable) [52]. Such a parametrization of the underlying variables

https://maps.ngdc.noaa.gov/viewers/wcs-client/
http://rads.tudelft.nl/rads/rads.shtml
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No 

Yes 

Set the iteration counter k = 0. Generate the initial ensemble of parameters (p̂0) at t0 from 

a Gaussian distribution with the initial guess as the mean and covariance ÂbÂb
T.

Set k = k + 1. Find the predictions (pk) at tkusing (A 5). 

Compute the gain matrix Gk and the updated parameters ( p̂k) using (A 6). 

Is the convergence criterion met? 

Compute the parameter estimates ( p̂k,nE
 ) as per (A 9). 

–

Figure 8. Flowchart for the stochastic evolutionary search algorithm COMBEO.

is in contrast with typical Bayesian schemes wherein the unknowns are merely treated as random
variables. However, a temporal evolution is demanded by the underlying stochastic calculus
[41,52] that leads up to the crucial update step, which forms the bare-bones of COMBEO.
Being a Bayesian scheme [53,54], COMBEO provides a natural framework to account for the
multiple solutions that may appear in an ill-posed inverse problem [55]. This may be contrasted
with the computationally complex regularization procedures employed in usual deterministic
schemes to tackle non-uniqueness. The inverted parameters are rendered sensitive not only
to such regularization but also to measurement noise, particularly in the presence of sparse
measurement data. Thus, where a deterministic scheme is ill-equipped to account for noise, a
Bayesian scheme is naturally equipped to properly appropriate the measurement noise into the
posterior distributions of the inverted parameters. To bring in more clarity to the steps in the
algorithm, we provide a flowchart (figure 8).

A Bayesian scheme, in essence, is characterized by its prediction and update steps which are
recursively repeated over iterations [54]. Whereas the prediction step propagates the last updated
or initially specified parameters to the current instance, the update step assimilates the currently
available measurements so as to render the measurement-prediction misfit into a zero-mean noise
process (or, more precisely, a zero-mean martingale such as an Ito integral). Ideally, at any given
iteration, the parameter random variable is represented in terms of a finite set of its realizations
known as an ensemble. Each realization (or particle) from the prior distribution is weighted
according to its corresponding measurement-prediction misfit such that the best fit particle attains
the highest weight and so on. Essentially, a typical Bayesian update is given by the product set
of the predicted particle and its relative weight. Such an update strategy emphasizes search in
locally optimal regions as dictated by a few fit particles and is therefore highly recommended to
solve convex optimization problems. Otherwise, a multiplicative update will eventually lead to
sample degeneracy as the entire weight gets assigned to a single particle as iterations progress.
Such a particle collapse stalls the update and necessitates prohibitively large ensemble sizes to
solve high-dimensional inverse problems [56].

In COMBEO, however, such a scenario is averted by converting the multiplicative weights
to additive updates which are applied to the predicted particles. This update, in a sense, ‘cures’
particles with low weights by bringing them closer to regions of higher fitness. This additive
correction is derived rigorously from the multiplicative update rendered by the underlying
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Girsanov change of measure [41,52], using the machinery of stochastic calculus (see [40] for
a detailed derivation). Thus, the additive updates perform the intended functionality of the
multiplicative weights with significantly smaller ensemble sizes as the sample degeneracy issue
is no longer a concern [40]. Inherent to the convergence of the iteration procedure in COMBEO is
the transformation of the measurement-prediction misfit to a zero-mean martingale. Informally,
this would mean that the misfit process becomes mean-invariant to further noisy (i.e. zero-mean)
perturbations in the parameter process. This is indeed the stochastic equivalent of the absolute
zero (sought in deterministic, quasi-Newton search schemes), around which the first variation of
the misfit should be zero. See [41,51,52] for a more formal and detailed exposition of martingales.

The procedure discussed so far may be looked upon as an attempt to solve the filtered
martingale problem [57], which at best, is a quasi-local search. The success of an optimization
algorithm, on the other hand, depends on striking the right balance between exploiting the
optimal information at hand and simultaneously exploring the search space for better solutions.
In achieving this, COMBEO uses a filtered martingale approach for local optimization along with
a family of perturbation schemes, e.g. coalescence, scrambling and selection, for the global search.
Fitted with a stochastic version of directional search that requires no derivative computation,
as explained later, COMBEO has been found to be far more successful in solving ill-posed
inverse problems as opposed to its counterparts such as particle swarm optimization, differential
evolution and covariance matrix adaptation evolution strategies [16,58]. We believe that this is,
at least in part, due to the additive nature of the updates and the ability to handle multivariate
objective functions without having to reduce them to a scalar functional. In what follows, we
give the relevant mathematical equations and formulae that lead up to the prediction–update
recursion in COMBEO.

As discussed earlier, a pseudo-dynamical character is imparted to the iterative procedure
(even though the parameters and measurements may be inherently static) by introducing a time-
like variable τ that increases with iterations, i.e. 0 = τ0 < τ1 < · · · < τk < · · · with the increasing
subscript indices denoting the iteration number. Describing the misfits and parameters as
stochastic processes in τ permits the discrete iterative procedure to be the discretized version
of the continuous evolution of a pseudo-dynamical stochastic system. The SDEs that describe the
evolution of the parameters and measurements may be written as

dpτ = dβτ (A 1)

and
mτ = M(pτ ) + γ τ , (A 2)

where pτ := p(τ ) ∈ R
nP and mτ := m(τ ) ∈ R

nM are the stochastic processes corresponding to
the parameters (p) and measurements (or observations ηM). The number of parameters and
measurements are denoted by nP and nM, respectively. We see that βτ := β(τ ) ∈ R

nP and γ τ :=
γ (τ ) ∈ R

nM are 0 mean Brownian motions with covariances ΣβΣT
β

∈ R
nP×nP and Σγ ΣT

γ ∈ R
nM×nM ,

respectively. In (A 2), M : R
nP 	→ R

nM is the measurement operator that maps the unknown
parameters through nonlinear forward models to the computed measurements (i.e. M(p) = ηC).
Also, m0 and γ 0 comprise the actual measurement (i.e. the SLA data ηM) and the noise content in
it, respectively. The entries in the measurement noise covariance matrix Σγ ΣT

γ must be relatively
small in comparison to ‖m0‖ so that mτ , τ > 0 stays in the vicinity of m0. Discretizations of (A 1)
and (A 2) give the following set of equations for the interval (τk, τk+1]:

pk+1 = p̂k + 	βk (A 3)

and
mk+1 = M(p̂k+1) + γ k+1, (A 4)

where (·)k := (·)τk , 	βk = βk+1 − βk and p̂k denotes the updated parameter. Within the Monte-
Carlo set-up that we adopt here, let {p̂0(j)}nE

j=1 denote the initial set of parameter realizations
drawn from a prior probability distribution. Here, nE denotes the ensemble size. The particle-
wise prediction equation that propagates the updated ensemble {p̂k(j)}nE

j=1 at τk to generate the
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predicted ensemble {pk+1(j)}nE
j=1 for the (k + 1)th iteration follows from (A 3) as

pk+1(j) = p̂k(j) + 	βk(j), j = 1, . . . , nE. (A 5)

The update step, aimed at driving the measurement-prediction misfit to a zero-mean noise,
would essentially involve solving the Kushner–Stratonovich (KS) equation [59,60] well known in
nonlinear filtering theory. Unfortunately, the KS equation offers a closed-form analytical formula
to the posterior parameter distribution only for the case of linear Gaussian measurements. In such
a case, the KS equation is known to reduce to a Kalman–Bucy filter update [61]. Here, we follow
a nonlinear ensemble version of the Kalman filter [62] which would indeed have reduced to a
Kalman-like update had the measurement operator M been linear (see below). Specifically, the
particle-wise update equation is given by

p̂k+1(j) = pk+1(j) + Gk+1(mk+1 − M(pk+1(j))), j = 1, . . . , nE. (A 6)

Here, G ∈ R
nP×nM is called a gain matrix, bearing resemblance with the Kalman gain and is given

by Gk+1 = Pk+1M
T
k+1(Mk+1M

T
k+1 + Σγ ΣT

γ )−1 [63]. Pk+1 ∈ R
nP×nE and Mk+1 ∈ R

nM×nE denote the
perturbation matrices corresponding to the parameter and measurement ensembles, respectively.
The perturbation matrices may be looked upon as the square roots of ensemble covariance
matrices and are evaluated as follows:

Pk+1 = 1√
nE − 1

⎡
⎣pk+1(1) − 1

nE

nE∑
j=1

pk+1(j), . . . , pk+1(nE) − 1
nE

nE∑
j=1

pk+1(j)

⎤
⎦ (A 7)

and

Mk+1 = 1√
nE − 1

⎡
⎣M(pk+1(1)) − 1

nE

nE∑
j=1

M(pk+1(j)), . . . , M(pk+1(nE)) − 1
nE

nE∑
j=1

M(pk+1(j))

⎤
⎦ .

(A 8)

Essentially, once the prediction ensemble {pk+1(j)}nE
j=1 is generated, each of these realizations is

input to the forward model to generate the predicted/computed measurements, {M(pk+1(j))}nE
j=1.

Each predicted realization is then given an ‘additive push’ that is proportional to the magnitude
of its corresponding measurement-prediction misfit. Ideally, when {p̂k+1(j)}nE

j=1 converges to the

optimal solution, the misfit {mk+1 − M(p̂k+1(j))}nE
j=1 = 0 modulo small, zero-mean fluctuations

determined by γ k+1.
A term-by-term comparison of (A 6) with a regularized Gauss–Newton (GN) update [42]

reveals an interesting feature: the gain matrix Gk+1 apparently plays the role of a Fréchet
derivative and may thus be considered as the directional component of COMBEO. Nevertheless,
the gain term is free of the gradient calculations as in a generalized Newton method. To
understand how (A 6) reduces to a Kalman-like update for the linear case, let us assume that
M represents the linear measurement operator. In that case, one could use the formula for the
Kalman gain, which is GKal

k+1 = Pk+1MT
k+1(Mk+1Pk+1MT

k+1 + Σγ ΣT
γ )−1, where Pk+1 is the process

error covariance matrix. Rewriting Pk+1 = Pk+1P
T
k+1 in the above expression for the Kalman gain

and noting that Mk+1Pk+1 = Mk+1 for the linear case (A 8), we arrive at our original expression
for Gk+1 in (A 6).

The parameter estimate evaluated at each iteration is the empirical mean given by

¯̂pk+1,nE
= 1

nE

nE∑
j=1

p̂k+1(j). (A 9)
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