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ABSTRACT 

Computationally-guided semi-rational design has significant potential for improving 

the aggregation kinetics of protein biopharmaceuticals. While improvement in the 

global conformational stability can stabilise proteins to aggregation under some 

conditions, previous studies suggest that such an approach is limited because thermal 

transition temperatures (Tm) and the fraction of protein unfolded (fT) tend to only 

correlate with aggregation kinetics where the protein is incubated at temperatures 

approaching the Tm.  This is because under these conditions, aggregation from globally 

unfolded protein becomes dominant.  However, under native conditions, the 

aggregation kinetics are presumed to be dependent on local structural fluctuations or 

partial unfolding of the native state, that reveal regions of high propensity to form 

protein-protein interactions that lead to aggregation. 

In this work, we have targeted the design of stabilising mutations to regions of the 

A33 Fab surface structure, that were predicted to be more flexible.  This Fab already 

has high global stability, and global unfolding is not the main cause of aggregation 

under most conditions.  Therefore, the aim was to reduce the conformational flexibility 

and entropy of the native protein at various locations, and thus identify which of those 

regions has the greatest influence on the aggregation kinetics. 

Highly dynamic regions of structure were identified through both molecular 

dynamics simulation, and B-factor analysis of related X-ray crystal structures. The most 

flexible residues were mutated into more stable variants, as predicted by Rosetta, which 

evaluates the ΔΔGND for each potential point mutation. Additional destabilising 



variants were prepared as controls to evaluate the prediction accuracy, and also to assess 

the general influence of conformational stability on aggregation kinetics. 

The thermal conformational stability, and aggregation rates of eighteen variants at 

65 °C, were each examined at pH 4, 200 mM ionic strength, under which conditions 

the initial wild-type protein was <5% unfolded.  Variants with decreased Tm values led 

to more rapid aggregation due to an increase in the fraction of protein unfolded under 

the conditions studied.  As expected, no significant improvements were observed in 

the global conformational stability as measured by Tm.  However, six of the twelve 

stable variants led to an increase in the cooperativity of unfolding, consistent with lower 

conformational flexibility and entropy in the native ensemble.  Three of these had 5-

11% lower aggregation rates, and their structural clustering indicated that the local 

dynamics of the C-terminus of the heavy chain had a role in influencing the aggregation 

rate. 
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INTRODUCTION 

The aggregation of therapeutic proteins is a prevailing challenge for the formulation 

of final dosage biopharmaceuticals1. It occurs when suboptimal conditions are used for 

manufacture2, transportation3 and storage4. Typically, certain protein drugs, like 



antibodies, need to be injected in high-concentration dosage forms, and in small 

volumes for their ease of administration, which leads to an increased risk of aggregation 

and shear stress5,6.  Aggregation of protein drugs cannot only reduce their efficacy, but 

can also lead to unwanted adverse immunogenicity in patients7,8. 

When striving for an optimal storage formulation that forms less than 1% aggregate 

over one year, measuring the rates of monomer loss for a wide range of potential 

formulations and variants, would require many samples, and also a timescale of many 

months, that is often not practical.  While formulation through excipients and solution 

conditions (e.g. pH, osmolarity, ionic strength) remain as the primary methods to 

stabilise protein drug candidates, modification of the protein structure for improved 

stability is also a promising strategy, provided the efficacy of the drug is not 

compromised9.  Therefore, in silico screening is emerging as a potential method for 

predicting the behaviour of mutational candidates10,11.  The advance of computational 

molecular dynamics (MD) simulations, with a range of available forcefields12–16 has 

enabled the modelling of complex biomolecular dynamics and interactions, and can be 

used to evaluate the basis upon which mutations lead to increased conformational 

stability17.  Calculation of the root mean square fluctuation (RMSF), measures the 

deviation over time between an atom or residue position and its reference position.  

This has been shown to increase significantly in MD simulations at residues around 

mutations that increase conformational flexibility18.  RMSF can also be used to guide 

mutagenesis, with the aim of replacing highly flexible residues with amino acids that 

lead to more stability through improved interactions or packing19. Similarly, B-factors 



(or temperature factors) determined by X-ray crystallography, represent the extent of 

thermal motion of an atom such that a high B-factor value indicates a high fluctuation 

for that atom20.  Thus B-factors have also been used to guide iterative saturation 

mutagenesis and increase the thermostability of enzymes, by modifying only sequence 

regions with the highest B-factors21. A recent study combined both RMSF and B-factor 

analyses to identify the flexible loops of transketolase, and engineered more 

thermostable variants with increased specific activity22. 

A range of computational methods have also been developed to predict the change in 

protein stability (ΔΔGND) upon mutation, though most do not yield R2 correlations to 

experimental ΔΔGND of more than 0.5-0.623–25.  However, Rosetta has achieved 

considerable progress in structure prediction26, design27, stability improvement, and 

protein molecule docking28.  A thorough optimisation of relaxation approaches upon 

point mutation, found that a minimisation method involving limited backbone 

minimisation after repacking of all sidechains, achieved the highest experiment-

prediction correlation coefficient of 0.6929.  Mutations predicted by Rosetta to be 

conformationally stabilising have been shown previously to enable reductions in the 

aggregation rates of proteins under partially unfolding conditions30. 

While monoclonal antibodies (mAb) remained as the leading novel therapeutics for 

the past a few decades31, the complexity (e.g. Fc region) and heterogeneity of mAb 

(glycosylation, charge variants) make it a challenge for expression32 and formulation33, 

compared to antibody fragments like single-chains or single-domains. Antigen-binding 

fragment (Fab) is one of the widely studied antibody subclasses, with one light chain 



disulphide-linked with one constant heavy chain (CH1) and variable heavy chain (VH) 

of the heavy chain of a full antibody34. Understanding the stability and aggregation 

propensity of Fab would not only help the discovery of new therapeutic variants, but 

will also provide valuable insights as a building block for other novel Fab formats like 

bispecifics (Fab2) and trispecifics (Fab3)
35.   

Previously, the A33 Fab was studied across a wide range of pH, ionic strength and 

temperature36.  It was found that the aggregation rates could only be correlated well 

with thermal transition temperatures (Tm) at an elevated incubation temperature of 

65 °C, while the correlations dropped substantially at 4-45 °C, consistent with previous 

observations on IgG variants37.  The elevated temperature increased the fraction of 

globally unfolded protein fT>0.01, and led to conditions in which the observed 

aggregation was dominated by a global unfolding mechanism.  However, some 

conditions at 65 °C and also all conditions at the lower temperatures relevant to long-

term storage, had fT < 0.01, where increasing the Tm or lowering f65, did not decrease 

the aggregation rate.  Thus, under native conditions at lower temperatures, colloidal 

stabilisation, local structure dynamics, and protein surface properties within the native-

state ensemble, played more dominant roles in aggregation. 

It is known that colloidal stability and conformational stability are two key factors 

that influence the rate and extent of aggregation38.  Conformational stability can be 

separated into the effects of both global and local unfolding, with the latter leading to 

an increased range of conformations in the native-state ensemble, of which some may 

be more prone to aggregation than others.  It is difficult to predict which specific local 



fluctuations in structure would contribute most to aggregation.  We therefore 

introduced twelve stabilising, and five destabilising mutations, mostly into the regions 

of A33Fab predicted to be the most flexible.  As the Fab was already very stable, we 

did not expect to improve Tm, or decrease f65 significantly, but rather we aimed to reduce 

the flexibility and conformational entropy of the native ensemble, thus also increasing 

its unfolding cooperativity.  It was anticipated that this may then in some cases lead to 

slower aggregation, and therefore, identify potential hotspot surface loops whose 

flexibilities most strongly impact on aggregation.   

The flexible regions of the A33 Fab were first identified by combining molecular 

dynamics simulation of A33 Fab, and B-factor analyses of multiple protein structures 

of high sequence similarity.  Residues in the most flexible regions were mutated 

towards those where Rosetta predicted a lower ΔΔGND.  One additional variant was 

constructed that was predicted by Rosetta to be the most stabilising, although it was in 

a region of low flexibility.  A set of variants, predicted by Rosetta to be destabilising, 

were also prepared as negative controls to validate the design strategy.  Of all designs, 

twelve stable variants and five unstable ones could be expressed sufficiently for study 

along with the wild type.  The conformational stabilities and aggregation rates of the 

eighteen Fab variants were compared at a condition (pH 4, 200 mM ionic strength, 

65 °C), where f65 < 0.05 for wild-type, and that was therefore, close to the limits of any 

correlation between aggregation rate and Tm or f65
36.  Therefore, even if mutations had 

increased Tm and decreased f65, they would not be expected to decrease the rate of 

aggregation significantly through a global unfolding mechanism.  Instead, the 



mutational scanning led to increased cooperativity of unfolding associated with 

decreased conformational flexibility, and also determined that the aggregation rate was 

sensitive to the local flexibility of the heavy chain C-terminus in particular. 

 

 

MATERIALS AND METHODS 

Analysis of Residue Flexibility 

Molecular Dynamics Simulation 

The homology model of wild type A33 Fab was built from the crystal structure of 

human germline antibody 5-51/O12 (PDB ID 4KMT) and the amino-acid sequence of 

A33 Fab (See SI).  The molecular dynamics simulation was conducted in Gromacs14. 

The protonation states of chargeable residues at pH 4 were determined by uploading 

the PDB file to PDB2PQR web service39,40. The Fab PDB file was initially converted 

to a topology file with its five inter/intra-disulfide bonds retained. An OPLS-AA/L all-

atom force field was selected and protonation status was manually adjusted. The Fab 

was centred into a cubic box at least 1 nm away from the edge of the box. The box was 

filled with water molecules as solvent. The entire solution box was neutralised and 

adjusted to an ionic strength of 200 mM by adding Na+ and Cl-. The structure was then 

subjected to an energy minimisation step, and equilibrated at 300 K and atmospheric 

pressure for more than 40 ns.  Jobs were submitted to UCL Legion High-Performance 

Computing Facility (Legion@UCL).  At least three repeats were conducted to validate 

if data was reproducible.  The root-mean square fluctuation (RMSF) data was exported 



based on trajectories beginning from 20 ns to allow for relaxation at the beginning of 

the simulation. 

B-factor 

Multiple homologous structures with 53-90% sequence identities to A33 Fab, were 

retrieved from Protein Data Bank41, and aligned to A33 Fab in order to infer the 

flexibility across all residues.  All the PDB files were modified so that only one set of 

light chain and heavy chain remained.  Due to the crystallisation uncertainties for 

excessive thermal motion of certain residues, some residues were not displayed in their 

PDB files but shown in their sequence files. As a result, only residues present in PDB 

files could be used for sequence alignment with A33 Fab.  Therefore, instead of using 

the FASTA sequence file, the actual sequence information was extracted from the PDB 

for heavy chain and light chain separately, and the sequence outputs from all human 

Fab PDBs were aligned with that of A33 Fab using BioEdit42. 

For each sequence, the B-factors from each atom in the same residue were averaged 

and assigned to that residue.  The B-factors within each protein were normalised into 

a distribution with average 0 and standard deviation 121.  Residue-averaged B-factors 

for each protein were aligned according to the sequence alignment.  Only the B-factors 

for which there was a residue within the A33 Fab sequence were retained. The average 

B-factors for each A33 Fab residue were calculated by averaging the B-factors obtained 

at the same positions from each homologous structure.  To reduce the noise, the B-

factors were window-averaged across 5 residues.  

In silico Mutagenesis and ΔΔG Calculation by Rosetta 



Point mutations were modelled into the homology model using Rosetta method 

“ddg_monomer”43 (see SI).  Each of the 442 residues in the PDB structure was mutated 

into the other 19 amino-acid residues.  In total, 8398 structures with single mutations 

were created.  The “ddg_monomer” jobs were submitted to UCL Legion High-

Performance Computing Facility (Legion@UCL) with Rosetta Version 2015.31.58019.  

After mutating, the change in stability (ΔΔG) induced by each point mutation, was 

calculated with reference to the original wild type model. 

Design of Stable and Unstable Variant Candidates 

After the identification of flexible regions and the in-silico mutagenesis, variant 

candidates were selected for expression in the wet lab. Variants were categorised into 

stable and unstable classes. 

Stable Variant Candidates 

For stable variants, they were designed based on a combined analysis of B-factor, 

RMSF and ΔΔG. The hinge regions in the heavy chains had no available B-factor 

values, but their RMSF values were very high. It was suggested that the hinge regions 

accounted for the flexibility and instability of an IgG, and switching it to another 

subclass could potentially improve the formulation stability while maintaining its 

binding affinity 5. Thus, the last two hinge residues, HC-A227 and HC-A228, were 

selected for mutation. For the other regions (residues 1 to 436), both B-factor and 

RMSF were considered. Because the scales of B-factor and RMSF were not 

comparable, the B-factor and RMSF values were firstly normalised to between 0 and 1 

according to Equation 1. Individual residues were then ranked based on the product of 



normalised B-factor and RMSF, and the top 5 residues were selected. For a total of 7 

selected residues, each was mutated into the other three amino acids predicted by 

Rosetta to have the lowest ΔΔG values from across all 19 candidates. Three mutations 

were selected because Rosetta is expected to fit with 69% prediction accuracy43, so 

theoretically, three mutations should yield at least one stable variant. An additional 5 

mutations were selected based only on the lowest ΔΔG values predicted by Rosetta, 

regardless of the flexibility of the target site.   

 

Normalised value

=
𝑅𝑎𝑤 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
 

Equation 1 

In order to design the variants only based on B-factor, RMSF and ΔΔG values without 

losing or introducing new features, several additional filter criteria were applied. 

Mutations were avoided that would introduce a cysteine, remove a disulphide bond, or 

disrupt salt bridges. In addition, mutations were avoided in the Complementarity 

Determining Regions (CDR) of the Fab as this would affect Fab function, and guide 

mutations to regions that could be potentially useful in any Fab generated by industry. 

Unstable variant candidates 

The unstable variants were designed from only those candidates with the highest ΔΔG 

values as predicted by Rosetta.  As above, the designed variants avoided mutations 

from and to cysteine, salt bridge modifications, and the CDR regions of Fab. 



As the top 25 variants with highest ΔΔG were mutations into proline, 14 of which 

were glycine to proline mutations, variants ranked after the first 25 were also selected 

to expand the range of mutation types. 

In vitro Site-Directed Mutagenesis and Transformation 

Site-directed mutagenesis was conducted using QuikChange II XL Site-Directed 

Mutagenesis Kit (Agilent Technologies, US), and mutated plasmids transformed into 

One Shot TOP10 Chemically Competent E. coli (Thermo Fisher Scientific, UK), grown 

on Tet+ LB agar. Single colonies were isolated for plasmid purification and sequencing.  

Correct plasmids were retransformed into W3110 E. coli, and glycerol stocks prepared 

for subsequent fermentation. 

Fab expression, purification and buffer exchange 

The fermentation protocol described previously36 was scaled-down to match the 180 

ml DASbox Mini Bioreactor (Hamburg, Germany).  The same purification protocol 

was retained, with protein aliquots snap-frozen and stored at -80 °C.  Fab formulations 

were prepared and equilibrated at 4 °C one day prior to aggregation kinetics and thermal 

stability analyses.  The frozen sample of Fab was thawed from the -80 °C freezer and 

filtered through Anotop 25 0.02 μm syringe filters (GE Healthcare, Buckinghamshire, 

UK) to remove aggregates, then buffer exchanged to MilliQ water, and concentrated to 

2 mg/mL with 30 kDa cut-off Vivaspins (Generon Ltd, Bershire, UK), and stored at 

4 °C. 

Thermal Stability Analysis 



The thermal stability analysis was conducted using the UNit (Unchained Labs, UK).  

Fab samples were formulated in triplicates at 1 mg/ml, pH 4 of 20 mM sodium citrate 

with NaCl to bring the total ionic strength to 200 mM.  To achieve this, 20 μL of 2 

mg/mL Fab in water was added to 20 μL double-concentrated stock buffer for each 

variant.  9 μL was pipetted into the cuvette for each sample and loaded into the UNit.  

Step-wise heating was applied from 20-90 °C at 1 °C/step.  The van’t Hoff thermal 

parameters ΔHvh, ΔSvh and thermal unfolding temperature (Tm) at which 50% of protein 

population was unfolded, were determined from the barycentric mean (BCM) of protein 

intrinsic fluorescence spectra at 280-460 nm, at each temperature, by fitting to the van’t 

Hoff equation (Equation 2 and Equation 3)44,45.  The fraction of unfolded protein (fT) 

at any temperature T was calculated from Equation 4.  Ton was defined as the 

temperature T at which 2% protein was unfolded (i.e. fT = 0.02) using Equation 5 

derived from both Equation 2 and Equation 4. 

 

 

𝐼𝑇 =
(𝐼𝑁 + 𝑎𝑇) + (𝐼𝐷 + 𝑏𝑇) exp[

∆𝐻𝑣ℎ

𝑅 (
1

𝑇𝑚
−

1
𝑇)]

1 + exp[
∆𝐻𝑣ℎ

𝑅 (
1

𝑇𝑚
−

1
𝑇)]

 

Equation 2 

∆𝑆𝑣ℎ =
∆𝐻𝑣ℎ

𝑇𝑚
 

Equation 3 

𝑓𝑇 =
𝐼𝑇 − 𝐼𝑁 − 𝑎𝑇

𝐼𝐷 + 𝑏𝑇−𝐼𝑁 − 𝑎𝑇
=  

exp[
∆𝐻𝑣ℎ

𝑅 (
1

𝑇𝑚
−

1
𝑇)]

1 + exp[
∆𝐻𝑣ℎ

𝑅
(

1
𝑇𝑚

−
1
𝑇

)]
 

Equation 4 



𝑇𝑜𝑛 =
∆𝐻𝑣ℎ

∆𝑆𝑣ℎ − 𝑅 ln (
𝑓𝑇

1 − 𝑓𝑇
)

   (𝑠𝑒𝑡 𝑓𝑇 = 0.02) 
 

Equation 5 

 

 

Aggregation Kinetics 

Double-concentrated stock buffer was prepared as above for the thermal stability 

analysis, and mixed with 2 mg/ml Fab in MilliQ water, to achieve a final concentration 

of 1 mg/ml Fab in 20 mM sodium citrate, with NaCl to bring the total ionic strength to 

200 mM. Each sample was aliquoted into 20 μL in a 0.2 mL thin-walled RNase-free 

PCR tube (Fisher Scientific, UK), and placed onto a thermal cycler (Bio-Rad C1000 

Touch, UK) set at 65 °C.  Samples were sacrificed in triplicates for each variant every 

1 or 5 min, quenched on ice for 5 min, and centrifuged at 15,000 rpm, 4 °C for 15 min, 

from which 15 μL supernatant was transferred into a HPLC vial insert, and 5 μL 

injected into an Agilent Zorbax Bio Series GF-250 SEC-HPLC column (Agilent, 

Berkshire, UK) to quantify the monomer.  The SEC-HPLC was operated at a flowrate 

of 1 ml/min 200 mM sodium phosphate, pH 7 on an Agilent 1200 HPLC system 

(Cheshire, UK), for 4.5 min in each cycle.  Calibration curves were established prior 

to each batch of analyses. 

An exponential function was used to fit the kinetics of monomer loss using Equation 

6, in which A and k are the coefficients, y is the monomer retention normalised from 0 

to 1, and t is the incubation time. The first derivative of Equation 6 is shown in Equation 

7, in which the absolute initial aggregation rate is “A*k” when t=0.  



 

y = 𝐴 × 𝑒(−𝑘𝑡) Equation 6 

𝑑(𝑦)

𝑑(𝑡)
= −𝐴 × 𝑘 × 𝑒(−𝑘𝑡) 

Equation 7 

 

RESULTS AND DISCUSSION 

Identifying Flexible Regions 

The mutational impacts upon protein stability have been extensively reviewed11,46–48. 

Proteins can become conformationally stabilised, such as via improved hydrophobic 

interactions and packing density in the protein interior, or they can be colloidally 

stabilised, due to increased surface net charge or decreased hydrophobicity. The present 

work aimed to reduce the local dynamics that contribute to conformational instability 

and also potentially to aggregation kinetics, and so the most flexible regions were 

identified first.  The RMSF data by residue, from molecular dynamics simulation of 

the wild type Fab are shown in Figure 1(A). It can be seen from the standard error of 

the mean at each residue, that the deviation between simulation repeats was greatest 

when the RMSF also had the highest values. RMSF was broadly dependent on the type 

of secondary structure, where loop regions often had high RMSF (0.137±0.052 nm); β-

strand regions had relatively low RMSF values (0.093±0.023 nm); and helical regions 

also had high RMSF on average (0.164±0.096 nm).  

The PDB IDs of accessed homologous human Fabs are shown in the Supplementary 

Information. The normalised B-factors for each residue position, after window 

averaging, is shown in Figure 1(B), and had a similar sequence dependence as the 



RMSF. This implies that B-factors from the crystal structures of Fab, which reflect a 

disorder in vitro, can be simulated by molecular dynamics in silico. In order to verify 

that both independent measurements achieve similar flexibility results for the protein 

residues, RMSF and B-factors were plotted against each other and gave a modest 

correlation (R2=0.56) in Figure 1(C).  

B-factors also showed that the β-strand structures were the most rigid, whereas the 

few helical structures were relatively flexible. The loop regions covered almost the 

entire magnitude for both RMSF and B-factors, but also showed the highest flexibility 

in some locations. While proteins with more β-sheet regions are more prone to forming 

aggregates49,50, the β-strands were relatively less flexible than helices and loops, largely 

as they were also less solvent exposed in the Fab structure. Therefore, the conformation 

and flexibility of surrounding structure is likely to play a key role in controlling the 

solvent exposure of the β-strands, and hence their ability to form aggregates51.  It is 

interesting to see that only a small proportion of all loops exhibit significantly high 

flexibility, yet the five most flexible regions are loops.  This result indicated that 

mutagenesis could be targeted to residues with high flexibility in loop regions as 

determined by both the RMSF and B-factor analyses, to decrease the local flexibility 

through increased interactions.  While not all flexible loops would be expected to 

influence the aggregation rate, this represents a substantially reduced set of targets in 

the protein that could potentially be mutated to minimise aggregation. 

 



 

Figure 1. Residue-dependent flexibility of Fab. (A) Average RMSF for wild-type A33 

Fab at pH 4, 200 mM ionic strength. Error bars are the standard error of the mean from 

three repeat simulations.  (B) Normalised B-factors averaged from 26 homologous 

structures, and window averaged over 5 contiguous residues.  The colour bar denotes 

secondary structure type as determined by PyMol, with loop (black), strand (red) and 

helix (green) regions.  (C) Correlation between RMSF (A) and B-factor (B).  

 

In silico Single Point Mutagenesis for ΔΔGND 

The homology model for the wild type is shown in the supplementary information. 

After in-silico mutagenesis, 8398 mutations were generated. Their ΔΔGND values, in 

arbitrary Rosetta Energy Units (REU), and their frequency distribution are plotted in 

the supplementary information. It can be seen that most of the mutations had ΔΔGND 

values of close to 0, which implied that most single mutations were predicted to have 

little impact on global conformational stability. Moreover, negative ΔΔGND values were 



all greater than -9.4 REU, whereas positive ΔΔGND values extended much further with 

a maximum value of 235 REU. This result implied that the A33 wild type structure was 

already relatively stable within the accessible sequence space for single mutations, 

which was not surprising given that it was obtained after significant previous selection 

and engineering as a potential therapeutic52.  With a ΔGND of around -1100 REU, an 

improvement by up to -9.4 REU, would be expected to provide less than 1% 

stabilisation of the global structure.  Conversely, the destabilising variants were 

expected to exhibit greater detrimental effects, of up to 20% loss in ΔGND.  These 

included polar or ionisable mutations in the protein core, hydrophobic mutations on the 

outer surface, steric hindrance caused by large amino acid substitutions, and the 

removal of salt bridges and hydrogen bonds. 

There were 2386 potentially stabilising variants (i.e. ΔΔGND values lower than 0). To 

investigate whether they were biased towards particular secondary structure types, the 

lowest ΔΔG values for each residue were plotted by colour on the Fab structure in 

Figure 2. The blue regions in the figure represent stabilising effects, and the red ones 

indicate where no improvement could be made by any of the 19 mutations. Most of the 

blue regions were located within β-sheet structures (e.g. LC-N137, LC-S176), while 

some were in the turn or random coil regions (e.g. HC-L61, HC-T135), though this 

appears to simply reflect the relative abundance of each secondary structure type. 



 

Figure 2 A blue-white-red plot to represent the locations of stable variants.  

For each residual position, there are 19 mutations. The lowest ΔΔGND value of the 19 

mutations is plotted in gradient colours from blue to white to red, which demonstrates 

the ΔΔGND from lowest negative value to 0. Where the lowest ΔΔGND was greater than 

0, a value of 0 was retained to indicate no improvement. 

 

 

Designed Variants and Laboratory Production 

Initially, 26 stable variants and 9 unstable variants were selected for generation and 

expression. Some proved difficult to generate by site direct mutagenesis, and others did 

not grow or express sufficiently well in cell culture to obtain sufficient material for 

analysis. A total of 12 stable variants and 5 unstable variants were studied.  Rosetta 

predicted that the single variant variants finally studied would not stabilise the original 

molecule by more than 1% in terms of global unfolding (ΔΔGND), whereas five variants 



could lead to significant destabilisation of between 3% and 21% of the ΔΔGND of wild 

type (Table 1). 

 

Table 1 Predicted ΔΔGND of designed stable and unstable variants 

 

Variant ID △△GND △△GND/△GWT 

(%)(1) 

RMSF 

(nm)(2) 

B-factor(3) 

Wild type 0.0 N/A N/A N/A 

Stable 

HC-A227E -4.4 0.39% 0.44 N/A 

HC-A228H -3.5 0.31% 0.50 N/A 

HC-T135Y -2.6 0.23% 0.25 2.12 

HC-S134Y -6.0 0.53% 0.27 2.11 

HC-S134M -5.3 0.46% 0.27 2.11 

HC-S134P -4.0 0.35% 0.27 2.11 

HC-S136G -4.3 0.38% 0.26 2.01 

HC-S219Y -5.0 0.44% 0.18 3.07 

LC-L154A -3.8 0.33% 0.15 1.42 

LC-S176W(4) -8.8 0.78% 0.07 -0.29 

HC-G194H -5.4 0.48% 0.20 1.83 

HC-T197L -4.0 0.35% 0.14 1.31 

Unstable 

LC-A153P 235.7 -20.82% 0.16 1.23 

LC-G66P 163.3 -14.42% 0.09 0.60 

LC-G200W 40.8 -3.60% 0.17 0.75 

HC-V215W 39.1 -3.44% 0.09 1.30 

HC-G178P 86.0 -7.57% 0.13 0.46 

 



(1) Rosetta “ddg_monomer” simulated 50 conformations for wild type and each 

variant, calculated ΔGND for each conformation, and then determined ΔΔGND from their 

respective minimum values, as ΔGmut - ΔGWT. Positive values of ΔΔGND/ΔGWT are 

predicted to be stabilising, and negative values destabilising mutations.  (2) The RMSF 

values of wild type at the mutational sites, also shown in Figure 1(A), with the average 

of all the residues at 0.12.  (3) The window averaged and normalised B-factor from 

homology models, also shown in Figure 1(B), with the average of all the residues at 

0.47.  (4) LC-S176W was the only variant designed based on the highest stabilisation 

as predicted by Rosetta alone. 

 

Thermal Stability Measurement for Tm, Ton and Fraction of Unfolded State fT65 

After the expression of designed variants, their conformational stability was assessed 

through different thermal stability measures. We selected a formulation condition of 1 

mg/ml Fab in 20 mM sodium citrate, pH 4, at an ionic strength of 200 mM, as this 

partially unfolded the wild-type protein at 65 °C by 6%36, and to led to aggregation on 

a practical timescale. These conditions were used for both thermal stability 

measurement and aggregation kinetics.  

Determination of Tm 

To determine experimentally the stabilising or destabilising effects of each mutation, 

the thermal transition mid-point temperatures (Tm) of variants were measured by 

intrinsic protein fluorescence. As shown in Figure 3(A), all the stabilising variants 

ranged in a narrow window with Tm-values from 70.2-72.5 °C.  This was consistent 

with the Rosetta predictions, and confirmed that the A33 Fab structure was already 

relatively stable to global unfolding, as a result of significant selection and engineering 

as a potential therapeutic.  All five of the destabilising variants had significantly lower 

Tm-values than the wild type, ranging from 67.1 °C for LC-A153P to 60.2 °C for the 

least stable variant LC-G66P. 



Determination of fT65 

The coefficients derived from Tm curve-fitting (Equation 2) were used to calculate 

the fraction of unfolded protein fT at a particular temperature T (Equation 4), which has 

a sigmoidal dependence on temperature.  When the temperature is much lower or much 

higher than the Tm, the fT approaches to 0 or 1, respectively.  The dependence of fT on 

both Tm and ΔHvh, means that a good correlation between Tm and fT exists only at 

temperatures close to Tm.  In this work, the incubation temperature was deliberately 

chosen at 65 °C, which is at most 7 °C from the Tm of all variants, and thus a good 

correlation between Tm and fT65 is expected. 

As shown in Figure 3(A), wild-type was 4.7% unfolded at 65 °C, and most of the 

variants predicted to be stabilising were similarly 3.5-5.9% unfolded, except HC-

T197L (10.6%).  Three variants predicted to be unstable, LC-A153P, LC-G200W and 

HC-V215W were 25-35% unfolded, while HC-G178P unfolded 62% and LC-G66P 

unfolded 86%.  Overall this created a diverse range of variants unfolded from 3.5-86% 

at 65 °C, enabling the role of global unfolding on aggregation kinetics at 65 °C to be 

deconvoluted from other effects below. 

Determination of Ton 

Another useful parameter is the unfolding onset temperature Ton (Equation 5), at 

which 2% of the protein is unfolded (set fT=0.02). Previous analyses of aggregation 

kinetics for A33 Fab36, and GCSF53,54, indicated that the mechanism of aggregation at 

fT < 0.01 was predominantly from relatively rare native-like states, and not due to global 

unfolding. This was consistent with previous suggestions that protein monomers would 



form a nucleus before associating into larger oligomers55, and that this nucleus is very 

likely to be generated through the effective collision between the exposed hydrophobic 

residues from partially unfolded proteins. Hence, Ton (at which fT=0.02), represents the 

temperature above which global unfolding may begin to play a more significant role in 

aggregation.  The difference between Ton and Tm, is an indirect measure of the 

cooperativity of unfolding, which is more directly reported by Svh in Equation 3. This 

is potentially influenced by the degree of local dynamics in the native structure, and 

hence the breadth of the native-state ensemble, from which global unfolding occurs. 

Therefore, if dynamics in the native-state ensemble have a role in aggregation, then Ton-

values or Svh could potentially provide a valuable indication of the propensity to 

aggregate at temperatures well below Tm. 

Figure 3(A) shows the variant Ton-values, and the significance of their differences to 

that of the wild type. The variants predicted to be stable had similar Ton, and mostly 

ranged from 62.7-63.8 °C (except HC-T197L), with HC-T135Y significantly higher 

than the wild type.  Variant LC-S176W had an unusual thermal unfolding behaviour, 

which is detailed in the SI.  Not surprisingly, all of the unstable variants, had 

significant drops of 3.5-12.7 °C in Ton compared to wild type.  In general, variants 

predicted to be most stable by Rosetta, had higher Tm and Ton, and lower fT65 compared 

to those predicted to be unstable.  
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Figure 3 (A) The melting temperature (Tm, dark bars), temperature when 2% was 

unfolded (Ton, grey bars) and fraction of unfolding at 65°C (fT65, tilt-line bars) as 

measured by UNit in triplicates at 1 mg/ml, pH 4 of 20 mM sodium citrate with NaCl 

to bring the total ionic strength to 200 mM. (B) The enthalpy and entropy changes at 

the midpoint of transition, ΔHvh and ΔSvh, derived from van’t Hoff analysis. The unusal 

melting curve for LC-S176W precluded the determination of enthalpy and entropy for 

this variant.  All error bars were standard error of the mean (SEM).  Arrow↑or↓

indicated an increase or decrease in average values of variants compared to the wild 

type. Two-sample t-test assuming unequal variances were performed between A33 wild 

type and other variants (*** p<0.001, ** p<0.01, * p<0.05). 

 

Van’t Hoff analysis for the enthalpy and entropy change 

The changes in van’t Hoff enthalpy and entropy (ΔHvh and ΔSvh) between native and 

unfolded states, were determined for the variants at the Tm using the van’t Hoff 

analysis44,45, as shown in Figure 3(B).  As the Tm values did not vary significantly 

between variants, ΔHvh and ΔSvh. were highly correlated.  Four of the stable variants 

had no significant change in ΔHvh and ΔSvh, which implied they had comparable 

stability compared to the wild type.  Six variants, namely HC-A227E, HC-A228H, 

HC-T135Y, HC-S219Y, LC-L154A and HC-G194H, saw significant increases in ΔHvh 

and ΔSvh, which indicated decreased conformational flexibility via lower SN values for 

the native ensemble than the wild type, assuming that both wild type and the variants 



retained a similar SU for the unfolded ensemble.  This demonstrates that targeted 

stabilisation to rigidify flexible regions, can reduce the number of conformational states 

populated in the native ensemble, as measured by an increase in unfolding 

cooperativity56.  Only HC-T197L, of the designs intended to be stabilizing, saw a 

considerable reduction in ΔHvh and ΔSvh, suggesting that this mutation increased the 

conformational entropy of the native state, concomitant with the observed decrease in 

Tm.   

For the variants designed to be unstable, four out of five had an increase in ΔHvh and 

ΔSvh while LC-G66P had a respective 17.2% and 13.7% decrease in ΔHvh and ΔSvh, 

compared to the wild type.  Nevertheless, their adversely decreased Tm would still be 

expected to dominate their behavior with respect to aggregation.  

Variants Stabilised Through Increased Cooperativity 

Compared to the wild type, no significant improvements in Tm were found for the 

variants predicted to be stable (p=0.45). However, HC-T135Y (p=0.04) and LC-L154A 

(p=0.07) had marked increases in their Ton. As the designed mutations did not greatly 

enhance the thermal stability globally through Tm, increases in Ton that decrease Tm -Ton 

would imply improvements in unfolding cooperativity.  Indeed, seven out of the 

twelve predicted stable variants had values of Tm -Ton of 7.5-8.7 °C, compared to 8.8 °C 

for wild type.  These had correspondingly higher ΔSvh (Table 2), obtained from the Tm 

curve fitting (Equation 2 and Equation 3).  Specifically, HC-A227E, HC-A228H, HC-

T135Y, HC-S219Y, LC-L154A and HC-G194H all had significant increase in ΔSvh, 

confirming a decreased SN, and their increased unfolding cooperativity56.   



 

 

The A33 Fab structure is already very stable globally with a Tm of 71.8 °C, and lost 

only 1% of monomer to aggregation when stored at 4 °C for one year36.  This may be 

the reason why for this particular protein, targeting single stabilising mutations to 

rigidify the most flexible loops, was more likely to increase the unfolding cooperativity, 

than to improve global stability to unfolding.  This further suggests that for A33 Fab 

at least, a key feature of the protein that modulates unfolding cooperativity, outside of 

the main globally stabilising core interactions, is the flexibility of loops in the native 

state.  Localised loop flexibility would manifest as an increased native-state ensemble, 

and hence a broadened range of unfolding trajectories57.  Co-location of HC-A228H, 

HC-S219Y and HC-G194H in the hinge region of the heavy chain, implied that this 

region might be more involved in modulating the unfolding cooperativity than the 

flexible loop 134-136 of heavy chain, for which mutations did not significantly alter 

ΔSvh. 

 

 

Kinetics of Monomer Loss Under Conditions of Partial Global Unfolding 

The Fab variants were examined for their aggregation propensity at 65 °C, and in the 

same buffer as for the Tm measurements (20 mM sodium citrate, pH 4, 200 mM ionic 

strength). According to Figure 3(A), this condition created a wide range in the fraction 

of unfolded states between the stable and unstable variants, spanning 3.5% to 86%.  

Thus, it could be used to deconvolute the relative contribution of global protein 



unfolding, from other factors that also influence the aggregation rate, such as local 

structural flexibility.   

We initially determined the rate-order for monomer loss from the dependence of the 

rate of monomer loss on protein concentration (1 to 8 mg/ml) for the wild-type and four 

other Fab variants (Figure 4).  All monomer loss curves fit well to single-exponential 

kinetics, and as shown in Figure 4(A), the initial rate-order for monomer loss was 0.59 

to 0.74, and rose sharply to 1 (Figure 4C) as the reactions progressed. This indicated 

that monomer loss under the conditions and concentration range studied, was primarily 

rate-limited by a monomolecular reaction, such as partial protein unfolding. Deviation 

to a rate order less than 1 could result from several phenomena such as a second 

competing reaction, that was significant only at lower Fab concentrations and at earlier 

timepoints.  This could result from a finite loss of monomer through early absorption 

to the vial surface, and would become less significant over time, or would consume 

only a relatively small proportion by mass at the higher concentrations58.  Other effects 

like reversible dimerisation, macromolecular crowding, or viscosity might also result 

in lower than expected aggregation rates at higher concentrations, and cannot be ruled 

out.  These effects would mean that the aggregation kinetics remain monomolecular 

(as observed from best fits to single exponentials), but also lead to the observed inverse 

dependence on protein concentration. 

 



 

 

Figure 4 The correlation between the rate of monomer loss and protein concentration 

(A) Wild type and four Fab variants were subjected to the same thermal treatment as 

the study for aggregation kinetics, but with initial concentration at 1, 2, 4 and 8 mg/ml. 

N0 indicates the initial Fab concentration. The monomer retention curve was shown in 

SI. The initial rate of monomer loss was linearly correlated with the initial Fab 

concentration, both at logarithm scale. 

(B & C) Time-dependence of slope for ln(vt) vs ln(Nt), where ln(vt) and ln(Nt) were 

calculated from Equation 6 and Equation 7, and the parameters A and k, obtained from 



the single-exponential fitting, over 35 min (B) and 1000 min (C), for each of the four 

Fab concentrations. 

 

 

 Single exponential equations were used to fit the kinetics for loss of monomer of all 

variants as this provided the best fits.  The aggregation kinetic constant k from each 

exponential curve fit, and also the initial aggregation rates, are shown in Figure 5, to 

provide a quantitative comparison.  A clear difference in the rate of monomer loss was 

observed between the stable and unstable variants.  Wild type and most of the 

stabilising variants (except LC-S176W) lost 80% of their monomers within 35 min, 

whereas the destabilising variants aggregated by the same extent in less than 10 min.  

LC-G66P in particular lost all monomer within only 1.5 min.  The wild-type Fab 

aggregated with k at 0.042 min-1, while most stable variants (except LC-S176W) had 

comparable kinetic constants, k.  HC-S219Y and HC-G194H had k 0.037 min-1, which 

was an improvement of over 11% compared to the wild type.  All the unstable variants 

had k more than 0.18 min-1, with LC-G66P fastest at 1.65 min-1, and 40-fold higher than 

the rate for wild type. 

The stabilising and destabilising effect of mutations in the variants was reflected 

similarly in their initial aggregation rate, expressed as ln(v) in % day-1.  Again, HC-

S219Y and HC-G194H reduced the initial rate by more than 12%, while HC-A228H 

was slower by 6.5% compared to the wild type.  None of the other stable variants had 



any noticeable improvement, while the unstable ones all had initial rates of monomer 

loss that were more than 340% that of wild type. 

 

 

Figure 5 The aggregation kinetic constants and initial aggregation rates of A33 Fab 

wild type and designed variants.  

The aggregation kinetic constant ln(k) and initial aggregation rates of A33 Fab wild 

type and designed variants.  They were derived from the exponential equations, fitted 

from the monomer retention curves.  Arrows↑or↓indicate increased or decreased 

values compared to those of wild type.  Error bars were standard errors, calculated 

from curve-fitting derived parameters.  Inset: Expanded view of stable variants only.  

 



Table 2 The thermal stability data and aggregation kinetic parameters for the variants 

 

Summary of values obtained for the thermal stability measurements and aggregation 

kinetics, for all the variants tested. 

 

Correlations Between Aggregation Rate and Thermal Stability Parameters 

Correlations between the aggregation rates, ln(v), and both Tm and Ton are shown in 

Figure 6(A).  As expected, inverse correlations were found, where a decrease in Tm 

and Ton resulted in more monomer loss due to conformational instability.  Both Tm and 

Ton correlated well (R2=0.95) with the aggregation rate, with the correlations mainly 

driven by the inclusion of the five destabilising variants that were considerably 

unfolded at 65 °C.  There was indeed no correlation found between aggregation rates 

and Tm, when comparing the stable variants alone, consistent with a different 

aggregation mechanism to that of the unstable variants (SI).  The initial aggregation 

rates were also plotted against the fraction of unfolded state at 65 °C, at which the 

kinetic study was operated (Figure 6(B)).  Although a good linear correlation 

(R2=0.94) was obtained between aggregation rate and fT65 when combining all the 



variants, it could be seen that when the fraction of unfolded state was below 6%, the 

aggregation rate was essentially constant, and deviated from the linear fit.  Various 

reaction models and their fits to the data are discussed further below. 

As described above, HC-A228H, HC-S219Y and HC-G194H reduced the 

aggregation rate the most, by 6-12%, whereas their Tm values were even one degree 

lower than that of wild type.  This implied that they could be in, or close to, particular 

hotspots of sequence or structure that affect the aggregation mechanism, and yet the 

one-degree reduction in Tm had little influence on local dynamics.  To visualise this, 

the locations of all stable variants with ln(v) 8.5 to 8.8 % day-1 were highlighted in 

Figure 6(C). It shows that the three top mutations were located close together at the C-

terminal end of the heavy chain.  Two of them, HC-A228 and HC-G194 were mutated 

to Histidine.  These residues were 5.0 Å and 7.3 Å from potential salt-bridge partners 

HC-D221 and HC-E216, respectively in the energy minimised model from Gromacs, 

which could provide a route to pin the flexible terminal chain into place.  Another 

reason might be the additional contacts provided by the mutation.  As shown in the SI, 

compared to the wild type at the mutational site, HC-A228 and HC-S219Y variants 

created respectively three and one new contacts, while HC-G194H replaced a hydrogen 

bond to HC-Ser191 with a van der Waals interaction to HC-Pro217.  These changes 

upon mutations each increase the number of non-covalent interactions to the hinge 

region.  As a result, these three variants reduced the local loop flexibility, which also 

led to the increased unfolding cooperativity as shown by their decrease in SN (increased 

ΔSvh) compared to the wild type. 



Variant HC-T197L was also near to the heavy-chain C-terminus, decreased the Tm by 

1.6 °C, and showed a 21% increase in the aggregation rate.  Considering the decrease 

in ΔSvh for HC-T197L (increased SN) of 1.16 kJ mol-1 K-1, compared to 1.24 kJ mol-1 

K-1 for wild type, this mutation appeared to have induced greater local conformational 

flexibility and significant loss of unfolding cooperativity. 

Among the stable variants, five targeted the flexible loop regions at heavy chain 

residues 134-136.  However, they did not alter the Tm or the unfolding cooperativities, 

and they all had similar aggregation rates to the wild type (within 5%).  Rosetta 

predicts these mutations to be more stable potentially through local hydrophobic 

interactions.  The SI shows that the two Tyr variants, HC-T135Y and HC-S134Y 

added two more van der Waals contacts while the other three variants remained the 

same as the wild type.  Considering their comparable aggregation rate, any improved 

conformational stability, particularly for T135Y, might be compensated by their 

increased propensity for hydrophobic interaction with other proteins. Indeed, four out 

of five mutations on HC-134-136 had an increased hydrophobic fraction of solvent 

accessible surface area (SASA)59,60 (SI).  However, HC-S219Y and HC-G194H also 

had higher hydrophobic SASA than the wild type, and yet lower aggregation rates, 

which implies that the relatively modest changes in hydrophobicity from such 

mutations are not the main factor affecting the aggregation rate.  More likely, the 

flexible loop region HC-134-136 was not involved in the aggregation mechanism to the 

same extent as the C-terminus, although there remained scope to explore this further 

given the relatively small changes in cooperativity and thermal stability for mutations 



in this region.  Another stable variant LC-L154A reduced one contact but also had less 

hydrophobic SASA, yet had a very similar aggregation rate to the wild type.  Further 

mutations in that light chain loop 151-157 would be needed to fully determine its role 

in aggregation from the native ensemble.  In conclusion, the aggregation rate was 

influenced by the flexibility of specific surface loops, but not for all loops. 

 

 

Figure 6 The correlations between initial aggregation rate and thermal stability (LC-

S176W excluded), and the locations of stable variants coloured by their aggregation 

rate 

(A) Linear correlations between initial aggregation rate, and both Ton, and Tm. 



(B) Linear correlation between initial aggregation rates and fT65 (plotted on log10 scale) 

(C) The locations of stable variants with aggregation rate ln(v) 8.53 to 8.86 % day-1 

were coloured in gradient from blue to red, indicated by arrows. The light chain and 

heavy chain were coloured in yellow and orange, respectively. 

 

We fit the data in Figure 7B to a range of potential kinetic models as previously for 

GCSF54, assuming that all variants underwent the same aggregation mechanism, but 

where aggregation could occur from both a native-like species or a globally unfolded 

species, with relative rates that depend upon the fraction unfolded, and hence the global 

unfolding stability of each variant.  Two numerical models gave good fits. The first 

(R2 = 0.96) was a bimolecular diffusion-limited aggregation from both N* and U*, 

which are in rapid pre-equilibria with N and U, respectively. The second (R2 = 0.96), 

was the numerical solution to at least three reaction models (3a, 3b, and 3c in SI).  

Model 3a was for a monomolecular reaction from N, combined with a bimolecular 

diffusion-limited reaction from U*.  Model 3b was for a monomolecular reaction from 

N* in rapid pre-equilibrium with N, combined with a bimolecular diffusion-limited 

reaction from U*.  Model 3c was for aggregation from N*, formed in a rate-limiting 

monomolecular reaction from N, combined with a bimolecular diffusion-limited 

reaction from U*. 

  As the rate order was determined to be 0.59-1, models 3a-c were more likely than 

model 1, as it included a component that was monomolecular from N or N*.  Of these 



three models, 3c the rate-limiting monomolecular reaction from N to N* could have a 

physical basis in a relatively slow partial-unfolding step.  Accordingly, at lower 

protein concentrations than that studied, the subsequent aggregation step might be 

expected to become rate-limiting instead.  By contrast, 3a and 3b involve a 

monomolecular aggregate-forming step, which could have a physical basis in the 

reaction between N or N* and pre-existing aggregate nuclei or fragments. However, 

this would also require that the concentration of binding sites for N or N* within the 

nuclei, does not increase over time. 

For model 3c, the kinetic constant for partial unfolding of N to N*, k4 = 6.4±0.5 x 10-

4 s-1.  Variants that affect only the global unfolding stability would not necessarily 

affect this rate constant.  However, variants that deviate from the fit to model 3c in SI, 

are potentially those that modify k4, through direct influence on the partially unfolding 

regions of structure, such as those in the heavy-chain C-terminus as discussed above.  

The equilibrium constant KU* = [U*]/[U] = 2.6±0.1 x 10-4, indicated a population of U* 

that was one part in 3846 of the unfolded population.  Alternative models would also 

fit the data for the unfolded population, including one in which aggregation occurs 

directly from diffusion-limited collisions between two unfolded molecules U, but 

where formation of aggregate depends on molecular orientation as described by a 

transmission coefficient , numerically equivalent to KU*
2, hence   = 6.8 x 10-8.  

However, for the most stable variants, where the protein is predominantly native, the 

aggregation mechanism is essentially only monomolecular from N, without global 

unfolding to U.  



Are Point Mutations Sufficient to Stabilise The Fab? 

Previously, the wild-type A33 Fab was examined for its aggregation rate across a 

wide range of pH, ionic strength and temperatures36. Our current work explored 17 

point-variants, but in only one formulation condition of pH 4, 200 mM ionic strength 

at 65 °C.  At pH 4.5, 200 mM ionic strength previously, the Fab did not follow a linear 

Arrhenius behaviour between aggregation rate and the reciprocal of temperature.  

Instead, the unfolded fraction substantially increased from <0.00004% at 45 °C and 

below, to approximately 2% at 65 °C, and contributed more towards the aggregation 

rate, as discussed before. 

In Figure 7, the wild type data from pH 3.5-9, 65°C36 was plotted along with our 

current variant data (from Figure 6B).  A distinct difference is clearly shown for data 

at the different pH, except for conditions with very low ionic strength, where colloidal 

stabilisation through intermolecular electrostatic repulsion is presumably more 

significant. For a particular pH, the Fab aggregation rate data deviated over a relatively 

small range, due to their difference in ionic strength or applied mutations. This 

information suggests that, for the A33 Fab, the optimisation of pH should take priority 

above that of ionic strength, or single point mutations.  

Figure 7 also shows a steady increase of ln(v) from 0 to 3 as fT65 increases from less 

than 0.001 to 2% (mostly pH 5.5-9), followed by a sharp increase of ln(v) from 5 to 12 

as fT65 increases from 0.5 to nearly 100% (mostly pH 3.5-4.5).  This suggests that, 

when the unfolded states accounted mainly for the protein aggregation, the aggregation 

could be easily minimised through the optimisation of Tm (e.g. by mutation).  



However, when the protein is already within, or close to, the baseline aggregation rate 

under native conditions, little improvement could be achieved by reducing the unfolded 

fraction. It has been found54 that GCSF has a baseline rate of aggregation 66-fold higher 

than the A33 Fab. Thus, this baseline rate relates to the unique feature of a certain native 

protein. To further reduce this baseline, multiple sites of the protein would need to be 

modified to alter its local dynamics, if its efficacy is not compromised.  

One additional feature observed in the present work, is that a separate baseline is 

reached within the pH 4 data for the variants.  This indicates that the native-like state 

from which aggregation occurs in these conditions, is itself pH dependent. 

 

 

Figure 7 The aggregation rate and the unfolded fraction at 65°C 

Data from different pH conditions was coloured individually. The wild type data was 

derived from Chakroun et al. 2016, and was indicated by squares; the variants data from 

this work was indicated by stars. 



 

CONCLUSION 

This work used multiple protein modelling tools to explore the effect of point 

mutations on the protein global stability, unfolding cooperativity as a proxy for native 

conformational flexibility, and aggregation rates under conditions at which wild-type 

is only 4.7% unfolded.  The protein was known from previous work to be very stable 

to global unfolding.  Consistent with this, the predictions from Rosetta across all 

residues in the protein suggested only modest (<1%) improvements in stability would 

be possible from single mutations.  However, this provided an opportunity to target the 

conformational flexibility of the native protein, and measure the impact of this on 

unfolding cooperativity and also on aggregation under predominantly native conditions.  

None of the stabilising mutations targeted to flexible regions had significant impact on 

the Tm-values of the A33 Fab, as expected.  However, six variants increased ΔSvh, 

indicating increased unfolding cooperativity consistent with fewer conformations in the 

native state ensemble.  Of these, three variants reduced the aggregation rate by 6-12%, 

compared to the wild type, and were co-located around the C-terminal end of the heavy 

chain.  Other variants revealed increased unfolding cooperativities through 

stabilisation of the loop regions of residue 154 in the light chain, and residue 135 in the 

heavy chain, but without reducing the aggregation rate compared to the wild type.  

Thus, while not all flexible loops were important for Fab aggregation, the local 

dynamics of the heavy-chain of the C-terminus played a role in the aggregation 

mechanism.  It will be interesting in future to target multiple mutations to each flexible 



region, to identify additive or synergistic effects on the unfolding cooperativity and 

aggregation kinetics. 

 Fitting of a series of alternative kinetic models to the dependence on fraction 

unfolded for the variants, revealed that aggregation most likely occurred via a rate-

limiting partial-unfolding step under predominantly native conditions. This model is 

consistent with the observation that rigidifying certain surface loops could decrease the 

rates of monomer loss.  
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