UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Diazepam-induced loss of inhibitory synapses mediated by PLCδ/ Ca²⁺/calcineurin signalling downstream of GABAA receptors

Nicholson, MW; Sweeney, A; Pekle, E; Alam, S; Ali, AB; Duchen, M; Jovanovic, JN; (2018) Diazepam-induced loss of inhibitory synapses mediated by PLCδ/ Ca²⁺/calcineurin signalling downstream of GABAA receptors. Molecular Psychiatry , 23 pp. 1851-1867. 10.1038/s41380-018-0100-y. Green open access

[thumbnail of Ali_Diazepam-induced loss of inhibitory synapses mediated by PLCδ Ca²⁺ calcineurin signalling downstream of GABAA receptors_VoR.pdf]
Preview
Text
Ali_Diazepam-induced loss of inhibitory synapses mediated by PLCδ Ca²⁺ calcineurin signalling downstream of GABAA receptors_VoR.pdf

Download (5MB) | Preview

Abstract

Benzodiazepines facilitate the inhibitory actions of GABA by binding to γ-aminobutyric acid type A receptors (GABA_{A}Rs), GABA-gated chloride/bicarbonate channels, which are the key mediators of transmission at inhibitory synapses in the brain. This activity underpins potent anxiolytic, anticonvulsant and hypnotic effects of benzodiazepines in patients. However, extended benzodiazepine treatments lead to development of tolerance, a process which, despite its important therapeutic implications, remains poorly characterised. Here we report that prolonged exposure to diazepam, the most widely used benzodiazepine in clinic, leads to a gradual disruption of neuronal inhibitory GABAergic synapses. The loss of synapses and the preceding, time- and dose-dependent decrease in surface levels of GABA_{A}Rs, mediated by dynamin-dependent internalisation, were blocked by Ro 15-1788, a competitive benzodiazepine antagonist, and bicuculline, a competitive GABA antagonist, indicating that prolonged enhancement of GABA_{A}R activity by diazepam is integral to the underlying molecular mechanism. Characterisation of this mechanism has revealed a metabotropic-type signalling downstream of GABA_{A}Rs, involving mobilisation of Ca²⁺ from the intracellular stores and activation of the Ca²⁺/ calmodulin-dependent phosphatase calcineurin, which, in turn, dephosphorylates GABA_{A}Rs and promotes their endocytosis, leading to disassembly of inhibitory synapses. Furthermore, functional coupling between GABA_{A}Rs and Ca²⁺ stores was sensitive to phospholipase C (PLC) inhibition by U73122, and regulated by PLCδ, a PLC isoform found in direct association with GABA_{A}Rs. Thus, a PLCδ/Ca²⁺/ calcineurin signalling cascade converts the initial enhancement of GABA_{A}Rs by benzodiazepines to a long-term downregulation of GABAergic synapses, this potentially underpinning the development of pharmacological and behavioural tolerance to these widely prescribed drugs.

Type: Article
Title: Diazepam-induced loss of inhibitory synapses mediated by PLCδ/ Ca²⁺/calcineurin signalling downstream of GABAA receptors
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41380-018-0100-y
Publisher version: https://doi.org/10.1038/s41380-018-0100-y
Language: English
Additional information: © The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Div of Biosciences > Cell and Developmental Biology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy > Pharmacology
URI: https://discovery.ucl.ac.uk/id/eprint/10050872
Downloads since deposit
79Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item