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Abstract 

Electronic coupling matrix elements are important to the theoretical description of electron 

transfer processes. However, they are notoriously difficult to obtain accurately from time-

dependent density functional theory (TDDFT). Here, we use the HAB11 benchmark dataset of 

coupling matrix elements to assess whether TDDFT using optimally-tuned range-separated 

hybrid functionals, already known to be successful for the description of charge transfer 

excitation energies, also allows for an improved accuracy in the prediction of coupling matrix 

elements. We find that this approach outperforms all previous TDDFT calculations, based on 

semi-local, hybrid, or non-tuned range-separated hybrid functionals, with a remaining average 

deviation as low as ~12%. We discuss potential sources for the remaining error. 
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Introduction 

The concept of diabatic electronic states has proven to be highly successful, among other 

things, in the description of electron transfer reactions.1–3 However, diabatic states are not 

eigenfunctions of the electronic Hamiltonian, but rather require the calculation of electronic off-

diagonal elements (also known as electronic coupling matrix elements), denoted as Hab: 

௔௕ܪ =  ⟨ ߰௔|ℋ| ߰௕⟩ ,                                                             (1) 

where ℋ is the electronic Hamiltonian and ߰௔, ߰௕  are the diabatic states a and b. In electron 

transfer, where only two (initial and final) diabatic states are considered, Hab takes a prominent 

role. This is because the electron transfer rate is proportional to |Hab|2 for small Hab values (non-

adiabatic limit) and the electron transfer activation barrier is lowered by Hab for large Hab values 

(adiabatic limit).1–3 

It is desirable to compute Hab accurately using computationally inexpensive methods, so that 

electron transfer properties of systems large enough to be of practical significance can be 

predicted from first principles. For a simple two-state donor-acceptor system, the adiabatic 

ground (E1) and first excited state (E2) potential energies are related to the diabatic potential 

energies Ea, Eb by,  

ଶ,ଵܧ =
ଵ

ଶ
௔ܧ)  + ± ௕ܧ ඥ(ܧ௔ − ௕ )ଶܧ +  ௔௕|ଶ)                                   (2)ܪ|4

Specifically, for symmetric systems, where Ea = Eb, the first adiabatic excitation energy, ΔE12 = 

E2− E1, is simply twice the desired matrix element Hab, i.e.,  

|௔௕ܪ|2 =  ଵଶ .                                                               (3)ܧ∆

It is therefore tempting to use time-dependent density functional theory (TDDFT),4,5 which has 

been used extensively to calculate excitation energies in molecules (see, e.g., Refs. 4–12 for 

selected overviews), in order to compute electronic coupling elements. 

While TDDFT is a formally exact theory for molecular excited states, it is always 

approximate in practice. Practical success depends entirely on the accuracy of the approximate 

exchange-correlation functional employed in the calculations. Unfortunately, for charge-transfer 

excitations, which are essential to predicting electron transfer states, TDDFT using conventional 

approximations is well-known to fail, producing very large quantitative errors and even 

qualitative ones.13–19  

Stein et al. have shown that charge transfer excitation energies can be reliably predicted from 

TDDFT, using the concept of the optimally-tuned range-separated hybrid (OT-RSH) 

functional.20,21 In the RSH approach,22–24 the repulsive Coulomb potential is range-split, allowing 

for the separate treatment of each interaction range. For the type of RSH functionals of interest 
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here, the functional reduces to the Hartree–Fock approximation in the long range and to a semi-

local or a conventional hybrid functional in the short-range. This allows for an asymptotically 

correct potential - which is essential to the correct description of charge transfer - while retaining 

a careful balance between short-range exchange and correlation - which is essential to the proper 

description of chemical bonds. In the optimal tuning approach,25,26 one chooses the range-

separation parameter (the value of which controls the transition between short- and long-range 

interactions) non-empirically, by enforcing (possibly for multiple charge states) the ionization 

potential theorem.27–33 

In recent years, the OT-RSH approach has been used successfully to predict a wide range of 

charge-transfer phenomena (see, e.g., Refs. 18–21,34–37). However, to the best of our 

knowledge it has rarely been used for the calculation of electronic coupling38 and its accuracy 

has not been systematically assessed. An excellent opportunity for such an assessment is 

afforded by the recently suggested HAB11 and HAB7 databases of Kubas et al.39,40 The former 

database, on which we focus in the present study, consists of 11 π-conjugated organic homo-

dimer cations, possessing different numbers of multiple bonds, varying types of aromaticity, and 

different heteroatoms (N, O, S). For each dimer cation, high-level ab initio benchmark data are 

provided for four different distances between the monomers forming the dimers. 

In this article, we provide a comprehensive TDDFT investigation of the electronic coupling 

reported in the HAB11 dataset. We show that indeed TDDFT using conventional semi-local and 

hybrid functionals fails for these systems, that RSH functionals offer a distinct improvement, and 

that the OT-RSH approach results are the most accurate. Finally, we discuss remaining 

discrepancies and their possible origin. 

  

Computational Approach 

To explore how TDDFT performs for the calculation of the electronic coupling elements in 

the HAB11 database, we first use the well-known generalized-gradient-approximation (GGA) of 

Perdew, Burke, and Ernzerhof (PBE),41 as well as the global hybrid functional based on it, 

PBE0,42 with the usual exact-exchange fraction of 25% and also with an increased fraction of 

50%. We then employ three standard (non-optimally-tuned) RSH functionals:  CAM-B3LYP,43 

ωB97X44, and LRC-ωPBEh.45 Finally, we optimally-tune and utilize the LRC-ωPBEh functional, 

as explained below. 

In RSH functionals, the coulomb potential is split into two terms using the identity43  

ଵ

௥
=  

ఈାఉ ୣ୰୤ (ఊ௥)

௥
+  

ଵି(ఈାఉ ୣ୰୤(ఊ௥))

௥
   ,                                         (4) 
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where α, β and γ are adjustable parameters, and r is the inter-electron coordinate. The first term is 

treated using Harree-Fock exchange and the second term is treated using GGA exchange. GGA 

correlation is used throughout. The three RSH functionals we use differ on the choice of the 

three adjustable parameters, as well as on the choice of the GGA expressions used for the short-

range exchange and the correlation. 

For optimal tuning of the range-separation parameter γ, we rely on the ionization potential 

theorem. This theorem, obeyed by the exact functional, identifies the energy of the highest 

occupied orbital with (minus) the ionization potential obtained from total energy differences of 

the original system and the ionized one. Here, we employ this principle twice – for both the N 

electron and the N+1 electron system, so as to minimize the deviation of the energy of the lowest 

unoccupied molecular orbital (LUMO) from the electron affinity of the system.20,26,46–49 Thus, γ 

is obtained by minimizing the target function ܬଶ(γ), given by  

ଶ(γ)ܬ = (εுைெை(ே)
ஓ ஓ(ܰ))ଶܫ + + (εுைெை(ேାଵ)

ஓ + ܰ)ஓܫ  + 1))ଶ                              (5) 

where  εுைெை
ஓ  is  the energy of the highest occupied molecular orbital (HOMO) for a specific γ 

and ܫஓ is the ionization potential of the system, obtained from ground state energy differences 

between the original system and one where an electron has been removed, for the same γ value. 

(N) and (N+1) denote the number of electrons in the system. We use the LRC-ωPBEh functional 

as the basis for the optimal tuning for several reasons. First, it uses α+β=1, which guarantees use 

of 100% Fock exchange in the long-range, which is essential for the description of charge 

transfer.20 Second, it uses α=0.2, which means that 20% of Fock-exchange are used in the short 

range. We have previously found this to be a highly suitable value,45,50–52  being in the range 

typically used by global hybrid functionals and therefore affording a good balance of exchange 

and correlation in the short-range. We note that the CAM-B3LYP functional does not use 100% 

Fock exchange at long range. The ωB97X functional does, but we preferred to tune the LRC-

ωPBEh one as it contains fewer semi-empirical parameters. It has been previously reported that 

constrained DFT (CDFT) using a larger 50% fraction of Fock exchange yielded best agreement 

with reference values,39 an issue elaborated below. Therefore, for comparison purpose we have 

also considered a modified PBE0 functional with 50% of Fock-exchange, as well as a modified 

optimally-tuned LRC-ωPBEh functional, with α=0.5. 

All molecular coordinates were those used in the construction of the HAB11 dataset (see 

supporting information of Ref. 39). All TDDFT calculations were carried out within the linear 

response approach using QChem 4.353 and Gaussian 0954 with the cc-pVTZ55 basis set. We 

emphasize that the results reported below do not employ the Tamm-Dancoff approximation 
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(TDA) to TDDFT.56 While the TDA is often an excellent approximation to full-matrix linear-

response TDDFT, in this case it has been found to introduce substantial errors, as shown in Table 

S1 of the supplementary material for the case of the PBE0 functional.  

 

Results and Discussion 

A thorough comparison of the TDDFT results for the electronic coupling elements, as 

obtained with the various exchange-correlation functionals discussed above, is reported in Table 

I and shown graphically (on a logarithmic scale) in Figure 1. Data are presented for ten out of the 

eleven systems in the dataset - the benzene dimer cation has been omitted owing to severe 

convergence issues of the TDDFT calculations. In addition to the |Hab| values, Table I and figure 

1 also report the exponential decay constant of the coupling, related to |Hab| via  

|Hab| =A exp(-βd/2),                                                         (6) 

where d is the inter-monomer distance. β has been extracted by fitting the dependence of |Hab| on 

d to an exponent, and is reported as n/a for functional and system combinations where the 

dependence of |Hab| on d deviated significantly from being exponential. Finally, for convenience 

Table I reports the reference values and the TDDFT deviations from it, for both |Hab| and β. The 

Table also provides error statistics, via the mean unsigned error (MUE), mean relative signed 

error (MRSE), mean relative unsigned error (MRUE), and maximum unsigned error (MAX). 

could not see MAX in Table I.  

An initial observation is that, as expected, TDDFT with GGA and conventional hybrid 

functionals performs very poorly. With PBE, the mean relative unsigned error (MRUE), in %, 

with respect to the reference values is ~208%, i.e., the results are in gross quantitative error. 

With PBE0, a global hybrid functional, severe quantitative deviations are somewhat improved, 

but the MRUE in % is still quite high, ~168%. Increasing the PBE0 percentage of Hartree-Fock 

exchange from 25% to 50%, a value typically too large for thermochemistry, reduces the 

deviation, but the MRUE is still a far from satisfying ~86%.  

Table I and Figure 1 additionally show that errors are further reduced by using any of the 

three RSH functionals tested, but not to the same degree. CAM-B3LYP and LRC-ωPBEh offer a 

more modest improvement compared to the PBE and PBE0 functionals, reducing the deviation 

to ~111% and ~88% respectively, with LRC-ωPBEh being moderately but consistently more 

accurate. The best improvement is obtained using ωB97X, with the errors reduced to ~34%. Still, 

for some of the systems deviations are noticeably larger (e.g., acetylene, cyclopentadiene) and 

some calculations were unsuccessful due to severe convergence problems (e.g., furan, pyrrole). 
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The relatively modest improvement obtained from CAM-B3LYP can be easily rationalized 

by considering that this functional, fit against thermochemistry data, only contains 65% Fock 

exchange in the long-range. While this is more than PBE0, it still falls short of the 100% needed 

to obtain the correct asymptotic potential. It is also easy to rationalize the relative success of the 

ωB97X functional (fit against thermochemistry, kinetics, and non-covalent interaction data), 

which does possess 100% Fock exchange asymptotically. It is less apparent, at first glance, why 

LRC-ωPBEh, which also possesses full asymptotic Fock exchange, performs more like CAM-

B3LYP than like ωB97X, a point we revisit below. 

Next, we study the effect of optimal tuning, using Eq. (5), on the LRC-ωPBEh results. Two 

different varieties of optimal tuning were used. In one approach, denoted as OT-RSH-d, optimal 

tuning is performed directly on the dimer system, which means that it is performed separately for 

each chemical system at each monomer distance. In another approach, denoted as OT-RSH-m, 

optimal tuning is performed on the neutral monomer and the range-separation parameter thus 

determined is used for the dimer at all monomer separation. This means that the procedure is 

performed only once per each chemical system. Optimal γ values obtained from the two methods 

for all systems studied, using the default short-range exchange fraction of α=0.2, are given in 

Table S2 of the Supporting Information. Clearly, in either its “d” or “m” variant, optimal tuning 

greatly improves the LRC-ωPBEh results. In fact, the OT-RSH-d results are statistically 

comparable to those of ωB97X and OT-RSH-m results are even slightly better, with MRUEs of 

11.3% and 11.7% for Hab and β values, respectively.  

Clearly, optimal tuning has a decisive effect on the quality of the results. In other words, 

incorporation of asymptotic exact exchange is, in and of itself, not a sufficient condition for 

obtaining quality results. Rather, the coupling energies are also quite sensitive to the precise 

value of the range-separation parameter γ. For the ωB97X functional, the default γ value, 0.3 

bohr-1, happens to be close to the optimally-tuned one, explaining its success (with a similar 

default value used in other semi-empirical range-separated hybrid functional43,57). For the LRC-

ωPBEh functional, the default value of γ is a smaller 0.2 bohr-1, which is too small for these 

systems. Therefore, it benefits substantially from the tuning procedure. Generally, it has been 

demonstrated repeatedly that the optimal γ value can be a strong function of the system size and 

chemical composition.47,58–63 Therefore, optimal-tuning is highly recommended for a general 

system outside the specific HAB11 dataset. 

We note that for some data points – notably the acetylene dimer cation at all inter-monomer 

distances and the thiophene dimer cation at a 3.5 Å and 4.0 Å inter-monomer distances – the 

lowest energy excitation is not the charge transfer one, i.e., not the excitation to the singly 
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occupied orbital.39 Therefore, it is essential to consider the right excitation when comparing to 

the HAB11 reference data. We further note that in these cases the tuning process was often of 

lower quality. To understand this, Fig. 2 shows a plot of the tuning target, J2(γ) (see Eq. (5)) as a 

function of the range-separation parameter γ, for two cation dimers, the ethylene dimer (a) and 

the acetylene dimer (b), both at an inter-monomer separation of 3.5 Å. For ethylene, a clear and 

relatively deep minimum at a value close to zero is observed. For acetylene, however, that is not 

the case – the minimum is shallow and differs from zero substantially. Failure of the tuning 

procedure is not common but is not unprecedented.64 It simply means that in difficult cases, e.g., 

strong heterogeneity or more complicated correlation, the functional form is not flexible enough 

to find a range-separation parameter for which the ionization potential theorem is fully obeyed. 

This serves, then, as a “built-in indicator” that results would not be as reliable. Nevertheless, in 

our case the performance is still quite satisfactory. For the overwhelming majority of cases 

studied here, this problem was not encountered. 

At this point, it is of interest to compare the electronic coupling and decay constant values 

calculated here with those obtained previously39,65 using methods based on ground-state DFT, 

namely, CDFT,66 fragment-orbital DFT (FODFT),67 self-consistent charge density functional 

tight-binding (FODFTB),68 and projector operator-based diabatization (POD)65 It was found that 

both CDFT and POD with 50% Fock exchange yielded the best agreement to the reference 

values, with a 5.3% and 9.3% MRUE for the Hab, a distinct improvement over the 13.8% and 

17.1% MRUE obtained with CDFT and POD using 25% Fock exchange. We therefore examined 

the effect of increasing the short-range fraction of Fock exchange in OT-RSH-d to 50%, while 

re-optimizing γ. We found that, compared to OTRSH-d with 20% Fock exchange, this somewhat 

further decrease the MRUE for Hab to 15.3%, with an MRUE of 14.8% for β values. This error is 

still larger than that found by CDFT, but several arguments stand in its favour. First, this OT-

RSH result outperforms that obtained with GGA, hybrid, or other range-separated hybrid 

functionals. Second, the quality of the TDDFT-based calculations generally does not depend on 

the inter-monomer separation, whereas the results of CDFT calculations for small inter-monomer 

distances can depend on the choice of the weight functions used for constraining the charge. 

Third, it is important to note that the errors made by the OTRSH-d and OTRSH-m are of the 

order of few tens of meV, which is in fact better than the accuracy obtained with OT-RSH 

approaches for electronic or optical excitations (typically 0.1 eV to 0.2 eV).  

Finally, because we are dealing with small, symmetric systems, one could conjecture that 

much of the remaining discrepancy between TDDFT and reference values arises from static 

correlation. However, two arguments stand against this conjecture. First, as noted above overall 
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accuracy somewhat improves with an increasing fraction of short-range exchange, whereas the 

opposite is true in the presence of strong static correlation.69–71 Second, Fogueri et al.72 suggested 

a DFT-based diagnostic for nondynamical correlation, given by Aλ = (1-TAE[XλC 

]/TAE[XC])/λ, where TAE is the molecular total atomization energy, XC represents a pure-DFT 

exchange-correlation functional, and XλC represents the corresponding hybrid with 100λ % Fock 

exchange. Aλ values around or above 1 indicate presence of severe static correlation, Aλ values 

near 0.15 indicate mild static correlation, and Aλ values below 0.10 point indicate mostly 

dynamic correlation. For all of our systems, Aλ values were found to be between 0.070 and 

0.134, supporting the absence of strong static correlation.  

 

 

Conclusion 

In conclusion, we have used the recently developed HAB11 benchmark dataset to assess 

the performance of TDDFT in computing electronic coupling matrix elements in small cationic 

dimers. We compared semi-local functionals, global hybrid functionals, conventional range-

separated hybrid functionals, and optimally-tuned range-separated hybrid functionals. We found 

that the latter decisively provide the best overall agreement with benchmark data, to within 

~12%. Future challenges for further reduction of the deviation between TDDFT and benchmark 

data include an a priori identification of the optimal fraction of short-range exact exchange and 

further improvements in correlation approximations. Moreover, since anions are often more 

challenging than cations in (TD)DFT, it will be of interest to test the performance of OTRSH on 

the HAB7 database of coupling matrix elements for dimer-anions.     
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TABLE I. Reference values for electronic coupling matrix elements Hab (in meV), and deviations from the reference values obtained with different 
functionals, for 10 out of the 11 dimer cations in the HAB11 data set, at various distances between monomers. Reference values and deviations are 
also given for the decay constant β (in 1/Å). Also provided are the mean unsigned error [MUE = (Σn|ycal-yref|)/n], the mean relative signed error 
[MRSE = (Σn((ycal-yref)/yref))/n], the mean relative unsigned error [MRUE = (Σn(|ycal-yref|/yref))/n] and the maximum unsigned error (MAX = max 
|ycalc-yref|) for Hab and β. 

Dimer 
cations  

Distance 
between 

monomers 
(Å) 

REFa 
OTRSH-d 
with α=0.2 

OTRSH-d 
with α=0.5 

OTRSH-
m with 
α=0.2 

PBE 

PBE0 
with 
25% 
HF 

PBE0 
with 
50% 
HF 

CAM-
B3LYP 

LRC-
ωPBEh 

wB97X 

Ethylene Hab 

3.50 519.20 60.60 7.75 9.65 418.25 301.20 119.10 204.45 187.60 42.85 

4.00 270.80 51.35 13.55 10.15 387.35 298.45 142.55 213.95 188.75 52.45 

4.50 137.60 42.20 19.25 13.90 328.15 264.10 146.30 196.60 171.25 56.60 

5.00 68.50 30.65 20.05 14.30 254.95 211.05 129.15 162.65 138.95 48.90 

 
β 

 
2.70 -0.45 -0.32 -0.23 -1.39 -1.27 1.14 -1.18 -1.07 -0.62 

Acetylene Hab 

3.50 460.70 119.15 61.90 12.30 463.05 346.60 163.15 257.55 247.15 108.20 

4.00 231.80 88.35 64.25 12.95 408.70 323.60 179.85 251.55 234.55 116.40 

4.50 114.80 71.20 57.00 13.75 329.70 270.90 166.10 217.20 198.55 104.60 

5.00 56.60 50.30 39.80 14.10 -- 209.80 137.70 171.15 145.35 85.40 

 
β 

 
2.80 -0.55 -0.55 -0.26 -1.34 -1.32 -1.25 -1.27 -1.14 -0.95 

Cycloprope
ne 

Hab 

3.50 536.60 34.65 -20.9 3.05 373.35 274.15 97.30 156.95 155.10 9.80 

4.00 254.00 36.25 -3.35 17.45 371.85 280.70 132.25 180.80 167.40 37.50 

4.50 118.40 34.05 11 28.70 305.90 244.15 136.75 169.05 152.50 41.55 

5.00 54.00 26.40 15.95 30.70 233.10 191.70 119.35 139.40 123.40 37.55 

 
β 

 
3.06 -0.45 -0.40 -0.59 -1.52 -1.47 -1.34 -1.37 -1.25 -0.68 

Cyclobutadi Hab 3.50 462.70 39.00 -8.25 -12.20 313.90 229.40 89.05 114.30 104.70 -24.75 
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ene 4.00 239.10 36.40 5.25 1.50 314.35 235.60 114.15 137.00 118.60 -7.00 

4.50 121.70 36.00 16.45 13.10 262.75 213.80 120.85 135.65 115.25 0.85 

5.00 62.20 31.60 18.35 16.50 206.50 173.25 107.40 116.40 96.85 2.25 

 
β 

 
2.68 -0.44 -0.38 -0.35 -1.26 -1.25 -1.11 -1.12 -0.99 -0.12 

Cyclopenta
diene 

Hab 

3.50 465.80 14.60 -55.1 -41.45 274.15 183.40 28.60 62.60 46.15 -114.85 

4.00 234.40 31.75 -30.15 -19.75 286.70 204.40 67.00 98.00 68.95 -113.15 

4.50 114.30 43.65 -5.7 -1.35 260.75 193.90 90.35 108.70 80.05 --b 

5.00 53.40 39.20 9.85 7.75 214.35 161.15 89.85 100.60 74.45 --b 

 
β 

 
2.89 -0.70 -0.39 -0.30 -1.54 -1.42 -1.25 -1.25 -1.05 -- 

Furane Hab 

3.50 440.30 31.80 -35.45 -28.85 297.10 208.75 61.05 96.45 78.55 -62.90 

4.00 214.90 38.95 -12.3 -8.60 297.40 222.80 88.85 126.10 101.15 -42.85 

4.50 101.80 47.75 9 7.10 257.50 205.00 104.00 127.65 103.55 -40.55 

5.00 46.00 40.45 18.30 14.15 202.40 167.70 97.55 112.00 90.15 -- 

 
β 

 
3.01 -0.76 -0.56 -0.45 -1.56 -1.54 -1.35 -1.38 -1.23 0.63 

Pyrrole Hab 

3.50 456.30 20.60 -47.7 -31.90 281.70 193.35 32.20 64.80 59.00 -88.00 

4.00 228.60 37.55 -24.85 -13.15 294.35 210.60 69.20 109.60 81.70 -73.25 

4.50 111.30 45.35 -0.9 3.10 255.10 198.15 90.30 116.75 89.10 --b 

5.00 52.20 38.15 13.10 11.25 204.20 165.45 89.55 105.90 80.75 --b 

 
β 

 
2.89 -0.68 -0.44 -0.36 -1.48 -1.44 -1.25 -1.30 -1.09 -- 

Thiophene Hab 

3.50 449.00 18.50 -122.25 -40.15 286.55 232.90 11.35 --b 39.70 -117.80 

4.00 218.90 38.95 -35.05 -22.70 285.05 203.70 51.00 --b 64.50 -139.55 

4.50 106.50 41.60 -13.90 -11.20 248.25 189.35 72.65 --b 71.10 -- 

5.00 54.40 32.35 -1.40 -1.40 192.10 152.50 70.90 --b 61.10 -- 
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β 

 
2.82 -0.58 -0.37 -0.08 -1.37 -1.25 -1.10 

 
-0.90 -- 

Imidazole Hab 

3.50 411.60 52.80 -11.1 0.05 327.00 237.60 82.80 126.10 110.40 -28.75 

4.00 202.80 59.70 0.15 6.05 318.30 236.00 98.60 140.60 117.55 -22.05 

4.50 99.10 47.65 11.25 11.75 275.95 209.10 105.55 132.60 109.50 -26.35 

5.00 49.70 32.90 14.50 12.00 217.95 164.85 93.55 110.20 89.00 -- 

 
β 

 
2.82 -0.52 -0.38 -0.29 -1.47 -1.35 -1.18 -1.21 -1.06 0.50 

Phenol Hab 

3.50 375.00 31.40 -35.1 -19.25 241.10 170.85 35.10 60.15 40.65 -93.45 

4.00 179.60 37.70 -17.75 -2.00 244.00 180.55 60.90 85.70 58.80 -104.80 

4.50 85.20 40.60 1.6 10.25 203.10 163.70 74.70 89.40 63.95 -- 

5.00 41.30 32.40 11.3 14.15 157.00 131.70 70.40 78.50 55.75 -- 

 
β 

 
2.95 -0.68 -0.46 -0.47 -1.44 -1.42 -1.23 -1.23 -1.02 -- 

   MUE (meV) 
42.11 

 
23.02 

 
14.09 

 
284.46 216.40 95.93 

 
135.85 109.54 61.50 

 
|Hab|  MRSE (%) 

34.48 
 

7.59 
 

7.17 
 

208.31 168.41 86.20 
 

111.44 88.32 5.24 

   MRUE (%) 
34.48 

 
15.26 

 
11.33 

 
208.31 168.41 86.20 

 
111.44 88.32 33.52 

   MAX (meV) 119.15 
 

122.25 
 

41.45 
 

463.05 346.60 179.85 
 

257.55 247.15 139.55 

   
MUE (1/Å) 

0.58 
 

0.42 
 

0.34 
 

1.44 1.37 1.22 
 

1.26 1.08 0.58 

 
β 

 MRSE (%) 
-20.22 

 
-14.80 

 
-11.70 

 
-50.17 -47.90 -42.59 

 
-43.79 -37.70 -7.49 

   MRUE (%) 
20.22 

 
14.80 

 
11.70 

 
50.17 47.90 42.59 

 
43.79 37.70 20.33 

 

 
  MAX(1/Å) 0.76 

 
0.56 

 
0.59 

 
1.56 1.54 1.35 

 
1.38 1.25 0.95 

a Ethylene, acetylene, cyclopropene, cyclobutadiene, cyclopentadiene, furane, and pyrrole reference values are calculated at the MRCI+Q level 

of theory. Thiophene, imidazole, benzene, and phenol reference values are calculated at the NEVPT2 level of theory. 

b Values are not reported due to convergence problem.  
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Figure 1. Logarithmic plot of |Hab| (in meV) as a function of d, the inter-monomer distance, in Å, for all systems studied in this article.  
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(c)                      (d) 
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(a)              (b) 

 

 

Figure 2. Plot of J2(γ) (see Eq. (5)) as a function of the range-separation parameter γ, for two cation dimers: (a) the ethylene dimer, (b) the 

acetylene dimer, both at an inter-monomer distance of 3.5 Å. 
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