UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Genome-Wide Transcriptome Analysis of CD36 Overexpression in HepG2.2.15 Cells to Explore Its Regulatory Role in Metabolism and the Hepatitis B Virus Life Cycle

Huang, J; Zhao, L; Yang, P; Chen, Z; Tang, N; Ruan, XZ; Chen, Y; (2016) Genome-Wide Transcriptome Analysis of CD36 Overexpression in HepG2.2.15 Cells to Explore Its Regulatory Role in Metabolism and the Hepatitis B Virus Life Cycle. PLoS One , 11 (10) , Article e0164787. 10.1371/journal.pone.0164787. Green open access

[thumbnail of Genome-Wide Transcriptome Analysis of CD36 Overexpression in HepG2.2.15 Cells to Explore Its Regulatory Role in Metabolism and the Hepatitis B Virus Life Cycle.pdf]
Preview
Text
Genome-Wide Transcriptome Analysis of CD36 Overexpression in HepG2.2.15 Cells to Explore Its Regulatory Role in Metabolism and the Hepatitis B Virus Life Cycle.pdf - Published Version

Download (2MB) | Preview

Abstract

Hepatitis B virus (HBV) is a hepatocyte-specific DNA virus whose gene expression and replication are closely associated with hepatic metabolic processes. Thus, a potential anti-viral strategy is to target the host metabolic factors necessary for HBV gene expression and replication. Recent studies revealed that fatty acid translocase CD36 is involved in the replication, assembly, storage, and secretion of certain viruses, such as hepatitis C virus (HCV) and human immunodeficiency virus (HIV). However, the relationship between CD36 and the HBV life cycle remains unclear. Here, we showed, for the first time, that increased CD36 expression enhances HBV replication in HepG2.2.15 cells. To understand the underlying molecular basis, we performed genome-wide sequencing of the mRNA from HepG2.2.15-CD36 overexpression (CD36OE) cells and HepG2.2.15-vector cells using RNA Sequencing (RNA-seq) technology to analyze the differential transcriptomic profile. Our results identified 141 differentially expressed genes (DEGs) related to CD36 overexpression, including 79 upregulated genes and 62 downregulated genes. Gene ontology and KEGG pathway analysis revealed that some of the DEGs were involved in various metabolic processes and the HBV life cycle. The reliability of the RNA-Seq data was confirmed by qPCR analysis. Our findings provide clues to build a link between CD36, host metabolism and the HBV life cycle and identified areas that require further investigation.

Type: Article
Title: Genome-Wide Transcriptome Analysis of CD36 Overexpression in HepG2.2.15 Cells to Explore Its Regulatory Role in Metabolism and the Hepatitis B Virus Life Cycle
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pone.0164787
Publisher version: http://doi.org/10.1371/journal.pone.0164787
Language: English
Additional information: Copyright: © 2016 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Renal Medicine
URI: https://discovery.ucl.ac.uk/id/eprint/10050639
Downloads since deposit
50Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item