Downloaded via UNIV COLLEGE LONDON on June 15, 2018 at 14:49:45 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

Ll

©

ACS AuthorChoice

v
A4

& Cite This: ACS Omega 2018, 3, 54705479

Process Modeling for the Fiber Diameter of Polymer, Spun by

Pressure-Coupled Infusion Gyration

Xianze Hong,_}_ Anthony Harker,” and Mohan Edirisinghe*’*

TDepartment of Mechanical Engineering, University College London (UCL), Torrington Place, London WCIE 7JE, UK.
*Department of Physics and Astronomy, University College London (UCL), Gower Street, London WCI1E 6BT, UK.

© Supporting Information

ABSTRACT: Several new spinning methods have been
developed recently to mass produce polymeric fibers.
Pressure-coupled infusion gyration is one of them. Because
the fiber diameter plays a pivotal role for the mechanical,
electrical, and optical properties of the produced fiber mats, in
this work, polyethylene oxide is used as a model polymer, and
the processing parameters including polymer concentration,
infusion (flow) rate, working pressure, and rotational speed are
chosen as variables to control fiber diameters spanning the
micro- to nanoscale. The experimental process is modeled
using response surface methodology, both in linear and
nonlinear fitting formats, to allow optimization of processing
parameters. The successes of the fitted models are evaluated

Linear and Nonlinear Models

using adjusted R* and Akaike information criterion. A systematic description of the experimental process could be obtained
according to the model in this study. From the analysis of variance, it is concluded that the polymer concentration of the solution
and the working pressure affected the fiber diameters more strongly than other parameters.

1. INTRODUCTION

Polymeric fibers have a vast scope of applications and have
recently garnered much attention owing to their various
outstanding features such as high porosity, superior mechanical
properties, and large surface area to volume ratio, which render
them valuable in diverse applications such as cellular migration
scaffolds,' ™ protective clothinég,7_12 composite reinforce-
ments,"*'* and nanosensors.'>" Additionally, a well-aligned
fibrous structure has potential for applications that require a
particular orientation over nonwoven fibers (randomly
interlaced), for example, the differentiation basement of tendon
cells and peripheral nerves.'”~*° Despite the versatility of
nanofibers, their use is still restricted by the lack of proper
quantity-production methods.

State of the art techniques used to fabricate fine fibers include
phase separation, template synthesis, and electrospinning, with
the latter being the most versatile and promising in the past
decades; but the utilization of electrospinning is restricted by its
many disadvantages such as random orientation of produced
fibers, difficulty to build three-dimensional (3D) structures,
sensitivity to solution electrical conductivity and jet stability,
high cost and low safety due to applied high voltage (kV level),
and low production rate. Although its sister processes, for
example, self-organized needleless (tube electrospinning)”**
or the use of multiple needles,” can improve the electro-
spinning productivity, they introduce side effects such as
capillary effect (multiple needles) and increase the production
cost by requiring a bigger size of equipment.
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To overcome the major limitations of electrospinning,
several methods have been explored that largely originate
from the industrial jet-spinning technique. They make use of
inexpensive centrifugation for low cost and large scale
production of uniaxially aligned 3D fibrous bundles consis-
tently, and they generate fibers with diameters ranging from
micro- to nanoscale. These methods include centrifugal
spinning,M_26 force spinning,27 pressurized gyration,zg_32
infusion gyration, and pressure-coupled infusion gyration
(PCIG). Many previous studies demonstrated that these
techniques are capable of effectively producing a variety of
products independent of the material properties. Experimental
investigation into PCIG demonstrated that it can overcome
discontinuous production of pressurized gyration and force
spinning and is able to produce finer fibers than infusion
gyration and centrifugal spinning, which are only really capable
of generating fibers on submicron or micrometer level.**

PCIG is able to bring materials to the nanoscale not only to
improve their properties and afford them new advanced
features beyond bulk materials but also to produce uniaxially
aligned 3D fibrous bundles consistently and cost-effectively.
During rotational spinning, PCIG feeds the polymer solutions
into the vessel continuously and utilizes gas blowing and high-
speed rotation to extrude several parallel polymer jets from
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orifices that are equally spaced on the surface of the vessel.
Fibers with a controlled morphology can be prepared by
selectively adjusting the processing parameters, for example,
solution concentration, applied pressure, rotational speed,
infusion (flow) rate and also, if necessary, collection distance.
Compared with other gyration methods, the fiber produced
using the PCIG method is much thinner. This is because the
mass transfer of dynamic fluid flow can be regulated by the
infusion rate of the solution when flowing across the orifice
during spinning, and hence the input material can be effectively
used to obtain the desired product morphology by balancing
different combinations of processing parameters with solvent
evaporation.

For some specific applications that are sensitive to the
porosity and surface area (dominated by fiber diameter), for
instance, cellular scaffolds, the fiber should be produced at a
given diameter. However, PCIG is affected by various
interacting parameters simultaneously; thus, to design an
appropriate experimental process is complex for achieving a
desired diameter, and the use of numerous trials to prepare
fibers with the desired diameters would be expensive and time-
consuming. Researchers have tried to figure out scientific and
forecasting tools in a variety of processes. Nowadays, there are
several data mining and machine learning algorithms that can
capably and reliably optimize the experimental process by
quantifying the relationships between data using effective
techniques such as Box—Behnken design, response surface
methodology (RSM), and artificial neural networks (ANN),
with the last one more popular now.

ANN and RSM are two widely used methods of
mathematical modeling and computer simulation for computa-
tional processes.”>*® ANN consists of input, hidden, and output
layers and is inspired by the working principles/structures of
biological neural networks of the human brain. There are
different populations of interconnected processing units
(neurons) within layers, and these units are interconnected
with each other to investigate their inter-relationships and
predict the specific outputs that relate to different input data
and specific functions used. ANN, more precisely, the three
layers back propagation (BP) ANN has been used as a tool for
modeling the electrospinning processes as well as for predicting
the geometry and mechanical properties of the spun fibers. The
units in the hidden layer can be manipulated as required; hence,
any continuous functions can be represented with any
precision. In addition, BP ANN is able to solve multivariate
regression problems (linear/nonlinear) by training models
through computing functions’ gradient, then adjusting the
weights and thresholds between neurons in each layer along the
negative gradient direction, and to optimize the functions (also
known as the gradient descent algorithm).””**

However, despite the aforementioned strengths of ANN,
there are also several known limitations of ANN, including: the
slow convergence when the estimated value is close to the
target; sensitivity to the noise of the training sample, that is,
relatively poor training effect if there are intense changes in the
sample; more notably, a tricky issue is that there is currently no
general formula for the determination of the number of units
(neurons) in the hidden layer, when the network structure is
designed. As the number of the units directly determines the
ability of the network to dig linear/nonlinear information from
data, insufficient quantity of selected units may lead
information to be expressed inadequately; an excessive quantity
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of units will increase the computational overhead exponentially,
also resulting in a decline in network generalization.”™*

RSM is a convenient method that needs fewer experiments
than ANN to construct an effective model. It shows good
performance if the data are well-distributed statistically in the
design of the experiment.”” On the basis of the training data,
RSM uses statistical methods, taking into account the combined
effects of several parameters to estimate the relationships (e.g,
functional relevance) and the response of the modeling process
by fitting an empirical model (linear/nonlinear). The resulting
models can be evaluated and further used as a tool for
predicting and optimizing the settings of the independent
variables to reduce residuals.””*’ According to its structural
characteristics, in respect of obtaining results of the interaction
between different components for the whole system, sensitivity
analysis, and other in-depth and advanced information, RSM
has shown better performance in comparison with ANN. In
some previous studies, RSM has been used for optimizing
processes and material properties in different fields, for instance
poly(vinyl alcohol) hydrogel,*" thermoplastic elastomers,** and
diamond-like carbon films.**

To have an overview of the effect of the PCIG experimental
parameters individually and the quantitative basis of the
relationships between PCIG parameters and the spun fiber
diameter, RSM is used in this work. Using a mathematical
model to describe the effects of PCIG parameters allows us to
represent the influencing parameters in a simple and systematic
way and to predict the response of the experiments with
different parameter combinations. In addition, owing to the
benefit of RSM, the number of experiments for testing the
influences of all possible combinations of parameters on
diameter could be reduced.

2. MATERIALS AND METHODS

2.1. Materials and Experiment Preparation. Poly-
(ethylene oxide) (PEO, molecular weight (M,,) of 2 X 10° g
mol ") purchased from Sigma-Aldrich (Poole, UK) is used as-
received, and deionized water is selected as the solvent. The
PCIG apparatus used in this work (Figure la) consists of a
cylindrical rotatable vessel 40 mm in height and 60 mm in
diameter. It is equipped with 20 orifices symmetrically
distributed on the vessel surface, each 0.5 mm in diameter. A
dc motor joint is at the top of the vessel, and it can work in the
range of 4.5—15 V to drive vessel rotation at various speeds up
to 36 000 rpm. The injected polymer solution flow is controlled
by a syringe pump (PHD Ultra 4400, Harvard Apparatus Ltd.,
Edenbridge, UK) with a 10 mL syringe and connected at the
bottom of the vessel by a plastic tube. A nitrogen gas cylinder is
connected to the vessel bottom using a T-junction to provide
pressure (up to 0.3 MPa). The collector, a stationary copper
mesh, is placed around the vessel at a preset distance of 100
mm to collect the jetted fibers. The distance between the
orifices in the gyrator is 9 mm, and the vertical copper wires in
the collector are 25 mm apart. The spun fibers are assessed by
means of a JSM-6301F scanning electron microscope, and the
fiber diameters are determined by Image J software from
random fibers at different locations per sample. A typical
scanning electron microscopy (SEM) image of a spun fiber
using PCIG is shown in Figure 1b.

2.2. Design of Experiments. To obtain a more systematic
understanding of the processing conditions and to establish a
quantitative basis for the relationships between PCIG
parameters and the fiber diameter, RSM is employed. During
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Figure 1. (a) PCIG fiber formation. (b) Typical SEM image of spun
nanofiber using PCIG.

this study, fiber diameters are prepared by varying four
parameters: PEO solution concentration, pressure, infusion
(flow) rate, and rotation speed, and their relation to the fiber
diameter is investigated using RSM. All other parameters
including humidity (38.5%) and ambient temperature (25 °C)
are fixed during the experiments.

On the basis of the previous work,”* it is found that the
appropriate distance of collection (from orifices to collector) is
determined by the duration of solvent evaporation and the
diameter of the spiral trajectory required for the polymer jets.
An insufficient collection distance will result in the formation of
thicker or coarser fibers, which are without enough elongation
before reaching the collector. On the other hand, if the selected
collection distance is beyond the critical value needed for
evaporation of the solvent, the effect of further increase in the
distance can be negligible. In this work, the orifice—collector
distance is fixed at 100 mm.

The infusion rate affects the hydrostatic pressure existing at
the jetting orifices, and the volume and mass of polymer
solution passing the orifice are also controlled by the infusion
rate. A higher infusion rate will give a shorter solvent
evaporation/polymer jet stretching time, hence promoting
thicker and multiple polymer jets formed during spinning,
which were observed in our previous work.”* Six levels of flow
rate were chosen (500, 1000, 2000, 3000, 4000, and 5000 uL/
min) in this work.

The polymer concentration is one of the key factors in the
spinning process; it selectively affects the formation and
morphology of the spun fiber via adjusting solution’s fluid
properties, for example, the viscosity and chain entanglement
degree, which is a prerequisite for uniform fiber formation. A
higher polymer concentration helps to stabilize the polymer jets
in the fiber generation process, which is crucial for the
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formation of a thicker fiber. In this work 5, 10, 15, and 21 wt %
are used as the four levels of solution concentration.

The influence of applied pressure is studied by performing
experiments at three levels of pressure (0.1—0.3 MPa). A high
pressure would lead to a reduction in the fiber diameter at any
fixed polymer concentration; this is attributed to the enhanced
thinning effect introduced by gas blowing, and hence solvent
evaporation that takes place in the radial direction of jets would
also be facilitated by a higher applied pressure. In addition, the
enhanced gas blowing would help to improve the instability of
polymer jets at the orifices, which would promote the
formation of the beaded or “defective” fiber.

The combination of solution blowing and centrifugal force
act against the solution’s surface tension and thus result in the
deformation of the polymer droplets, thereby enabling the
formation of fibers from the vessel orifice. The higher rotational
speed will enhance this deformation by increasing the
centrifugal force. The presence of non-Newtonian fluid shear
stress acts against the normal stress and leads to tension and
deformation along the same direction as the planar effect.”®
Thus, the stretching in polymer jets will be further accelerated
by the centrifugal force and gas blowing. The rotational speeds
selected for this study are 10 000, 24 000, and 36 000 rpm.

2.3. RSM Implementation. To capture the effects of all
control parameters, 120 experiments were carried out for
different combinations of parameters set at different levels. To
achieve a high fitting degree, the input data should be measured
accurately and should be sensitive to the parameters of the
experimental process. For each individual experiment, over 100
fiber diameters were obtained from the random fibers of each
sample, and each average diameter value was used as 1 input
data to fit the model. However, there are 19 combinations,
which give us droplets or beaded fibers, so the data of the
remaining 101 experiments were used.

After measuring the fiber diameter related to each
experimental data point, for describing the behavior of the
response, it is necessary to fit a mathematical function based on
the level of the study. For achieving a significant regression, the
major part of variation of the experiment data must be well-
fitted (explained) by the regression equation, and the
remainder will certainly be induced by fitting residuals. Most
of the variation of the residuals is caused by error, in this case, it
is related to the spread of fiber diameters and random
fluctuation during the fiber diameter measurement. We expect
the spread of diameters to be the dominant effect. We used
Mathematica to process the results of the experiments using the
least-squares algorithm, which is a multiple regression analysis
that is used to fit a mathematical model to a set of experimental
data with the lowest residual. For that reason, both linear and
nonlinear models were applied, as we assume linear or
nonlinear mapping might exist between the parameters and
fiber diameters. The goodness of the models that fit
experimental data were compared using adjusted R* and the
Akaike information criterion (AIC) test. The adjusted R*
represents the level of the total variability that can be expected
from the resulting model, adjusted by R? as more fitting
variables were used. The AIC, a model selection criterion
established on the basis of information entropy, can penalize
the too complicated model (with redundant variables) by
increasing its AIC value. A lower AIC value is preferred, as then
smaller residuals exist between the fitting curve and the
experimental data. Additionally, application of analysis of
variance (ANOVA) was used to evaluate the quality of the
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Figure 2. Residual distribution (a) and typical residual plot (b) of the power law model derived from Mellado et al’s work® (changing the infusion
rate and polymer concentration, with a fixed pressure of 0.2 MPa and a rotational speed of 36 000 rpm).

fits, as the mathematical model found after fitting the function
to the data sometimes does not satisfactorily describe the
experimental domain under study of the linear models. The
central idea of ANOVA was to compare the variations caused
by changes of the levels of parameters with the variations by the
random errors inherent in the measurements of the generated
responses. Hence, it allows us to assess the source of the
experimental variance and the significance of the regression
used to predict the responses.

3. RESULTS AND DISCUSSION

We aim to find an optimal model to describe the relationship
between the fiber diameter and processing parameters of PCIG
[polymer concentration (c), infusion (flow) rate (f), pressure
(p), and rotational speed (g)]; RSM is employed in this study.
Introducing physical frameworks in the model building may
help us have an in-depth understanding of the experimental
process and the mechanism of fiber formation process and
improve the goodness of the fitted models. Mellado et al.”
studied a basic theoretical rotary spinning framework to
characterize the regimes of poly (lactic acid) nanofiber
production. Their model can be expressed as

aUl/Zvl/Z

R*Q

109005
(1)

where r is the radius of the spun fiber; v is the kinematic
viscosity (calculated by extensional viscosity/density of
solution); R, is the collection distance that span a range from
90 to 180 mm; Q is the rotational speed (varies from 4000 to
37000 rpm); U is the mass velocity; and a is the initial jet
radius.

PCIG parameters affect the mean fiber diameter to different
extents. The effects of each processing parameter on the fiber
diameter are correlated and are presented in Figure 1S of the
Supporting information, which indicates that the polymer
concentration (viscosity) and the mass velocity are positively
correlated with the fiber diameter. Equation 1 also offers us
some guidance, and the minimum rotational speed (Q.) for
fiber formation is represented in eq 2

R %62
szc

c 2
a

-3
# @)

It indicates that the rotational speed can be considered to
have a power law relationship with other parameters, where y is
the extensional viscosity, p is the density of the solution, and ¢
is the surface tension. However, Mellado et al.>® did not
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incorporate additional pressure and flow rate parameters in
their experiments. So, some mathematical expressions are
suggested, which take into account the trends of variation of the
fiber diameter displayed in Figure 1S, including a quartic
relationship between the infusion (flow) rate and diameter,
linear dependences are suggested with respect to concentration
and pressure, and include a power. The fitting model is given in
eq 3, which offers an AIC value of 1142.35 and adjusted R* of
95.1%, and the coeflicients are shown in Table 1S. The
distribution of fitted residuals and a typical example of a
residual plot (Figure 2; details of distribution and all other plots
are shown in Table 2S and Figure 2S) indicate that the
residuals of the data point related with the current model vary
dramatically. Hence, this is inadequate to make precise
inferences about the data behavior in the experimental range
of this work. It is noteworthy that the component of pressure in
eq 3 has an extremely large power but is multiplied by a very
small constant (i.e., 8, << f, as seen in Table 1S). It can be
rewritten in this limit in the form of the exponential function
for the future fittings, that is, e,

y=B1+Bf+Bf +BF + B+ Bo)
(1 + Bp)igh 3)

Because PCIG is more complicated than the given
framework of basic rotary spinning and the interactive effects
between different parameters are not clearly known, for
example, how the pressure affects solution flow or how the
concentration affects viscosity through evaporation, it is
essential to develop an empirical model based on the
experimental data to allow establishment of a quantitative
relationship between the fiber diameter and combined
parameters.

3.1. Linear Model Fitting. The general equations for
response y (diameter) are developed by exploring fitting to
multivariate experimental data using all possible polynomial
functions of the variables up to a given order, which also can
readily be extended to higher orders. Initially, we confine
ourselves to linear combinations with variables up to second
order forms, which offer a certain level of complexity to a
model but without considering the trend of the experimental
results, and its results can be used as another baseline (apart
from the results of Mellado et al.’s™ work as presented in eq 3)
to compare with each result of the following updates. The
confidence interval we use for all fitting tests in this work is set
to 95% by default. In the first fitting test, we look at functions
that include all possible combinations of terms up to quadratic
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form in the processing parameters, which involves checking 16
384 nonrepeating combinations out of 1048 576. Additionally,
effects of pressure and rotational speed act within an inverse
relationship to the fiber diameter (as seen in Figure 1Sc,d), that
is, increasing the pressure and speed will decrease the fiber
diameter. So, it suggests that polynomials in the inverse of p
and g (1/p and 1/g instead of p and g in the model ﬁttin%)
might be better, which is also consistent with Mellado et al.’s >
work, as presented in eq 1. The best-fitted quadratic model
equation for the mean fiber diameter is given by eq 4.

y =5 = Pe+ ﬁ2c2 + B — fie/g — ﬂs/(g)z - B/p
+ Boc/p + Bf /p + B,/ (gp) (4)

Here, y is the mean fiber diameter (y), and the value of each
estimated coefficient (/) can be found in Table 1. It is worth

Table 1. ANOVA Table of the First Linear Model: Eq 4

estimated coefficient

L SS F-statistic P-value

1 290.32

c —25.42 104 x 10° 30735 632 x 107
c 0.68 8020.60 2.37 0.13

o 9.63 x 107* 143 X 10°  42.19 431 X 107°
c/g -1.09 x 10° 2880.85 0.85 0.36

1/¢ —6.84 x 10" 349 x 100 10.30 1.83 x 107
1/p —95.09 460 X 10° 13604  9.19 X 107
c/p 4.37 378 x 10°  111.57 171 x 1077
flp 1.81 X 1073 7031.03 2.08 0.15

1/gp 2.32 X 10° 770 X 10* 2274 7.00 X 107

noting that an overcomplicated expression may perform less
well than the optimal expression; this is because the AIC and
adjusted R* penalized the use of too many free parameters that
actually do not contribute to improve (explain) the original
variance. Figure 3a shows the distribution of the fitted residuals
of the data points, and Figure 3b is a typical plot that indicates
how well eq 4 fits each data point. Its variance (ANOVA) table
is shown in Table 1. SS is the sum of the squared observation
deviations, and it can be dismembered in the sum of squares
due to model residual and the sum of the square of regression.
P-values represent the level of impact significances of the
coeflicients on the fiber diameter. As we use a 95% confidence
interval, if the P-value is larger than 0.0S, the related parameter
has little impact on the mean fiber diameter based on the

related fitting model, and it also reveals the quality of the
current model. Table 1 indicates that the regressed coeflicients
of % ¢/g, f/p are quite random, and the obtained adjusted AIC
and R* are 1118.93 and 86.2%, which show that the quality of
the fit is not very good, as to find the major explanatory
variables, the adjusted R* should be >95%.

To improve the model, visual inspection of the details of the
experimental data and residual plots can help to generate
valuable guides to the model suitability by denoting a response
that indicates the kind of terms that need to be added to the
model for improvement. Figure 1Sb suggests that there is a
two-peaked dependence on the parameter of flow rate (f); so
going to the fourth power of f will help to improve our model.

y=Ppy =B+ B+ Bf = Bf +BS +Bf - B
— Pye/g — ﬂ9/(g)2 = Bro/p + Prye/p + Piof /p
+ B,/ () (s)

Equation S shows the linear model with the best AIC out of
524 287 nonrepeating combinations of processing parameters
that are needed to test, after the power of infusion rate is
pushed up to fourth, which gives the AIC of 1107.22 and
adjusted R* of 88.1%. The ANOVA table, as shown in Table 2,

Table 2. ANOVA Table of the Linear Model with a Quartic
Form of the Flow Rate, Inversed Pressure, and Rotational
Speed Parameters: Eq S

estimated coefficient

B,) SS F-statistic P-value
1 137.99
c 2345 104 x 10° 35717  LS1 X 1072
¢ 0.63 8020.60 275 0.10
f 0.40 121 X 10°  41.66 5.94 x 107°
£ 2.86 x 107* 195 x 10 6.70 0.01
of? 2.92 x 1077 1.81 x 10* 623 0.01
f 7.17 x 107* 3.16 X 10*  10.85 1x107
f 6.03 X 10712 176 X 10*  6.04 0.02
c/g 1.06 X 10° 2550.71 0.88 0.35
e 6.95 x 1071 335 x 10" 111 1x 107
1/p 97.10 459 X 10° 15771  3.07 X 107
c/p 4.30 3.67 X 10° 12586  1.38 x 107'®
flp 2.80 x 107 104 X 10*  3.56 0.06
g/p 2.34 x 107°° 7.67 X 10 2633 173 X 1076
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Figure 3. Residual distribution (a) and typical residual plot (b) of the first linear model (changing the infusion rate and polymer concentration, with

a fixed pressure of 0.2 MPa and a rotational speed of 36 000 rpm).
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clearly indicates that the given estimated coefficient of the
related model is more precise than the previous linear models,
and the estimated coefficients are more significant than the
previous two at a 95% confidence interval for the spun fibers.
Also, the terms of concentration, pressure”’, flow rate, and
interactive terms between concentration and pressure™’ have
shown a significant influence on the mean diameter of spun
fibers. The addition of the fourth power terms in f has certainly
helped to improve the fitting performance. Figure 4 indicates
that the data are better fitted and the residuals are effectively
reduced.

The goodness of fitting of the linear test we applied does not
give a high adjusted R* (up to 88.1%), and we know that more
parameters used in the function would help to improve the
fitting precision. However, the number of fitting parameters in
eq S has already reached 14 (but the observed fiber
measurements give just 101 data). Continuously increasing
the complexity of the fitting function may lead to overfitting
because its excess estimated parameters would make the
equation less generalized. Hence, it suggests that nonlinear
methods could be used to update the model, as more
complicated functions can be achieved using fewer parameters,
and we are edging above the rule of thumb of no more than 1
fitting parameter per 10 measurements. Additionally, the
estimate of error variance, also known as the estimation
variance, is a benchmark showing the variance in fitting
parameters. It is based on the sum of square error and takes
into account the number of used parameters in the fitting and
can be used to measure the goodness of fit.

5475

3.2. Nonlinear Model Fitting. In contrast with the linear
quadratic model, which has a general type of function that
consists of simple multiplication and summation between
parameters up to the second order, the forms of nonlinear
model are almost infinite, including the incorporation of
exponential functions, trigonometric functions, and so forth. To
perform the trials on all possible combinations of the nonlinear
component is computationally expensive. Hence, we inspect
each graph in Figure 1S based on our experience and combine
all empirical components together to perform a nonlinear
fitting. From Figure 1Sa, a similar quartic form applies to the
dependence on f under all conditions. We pick up the
dependence on f from the last best-fitted linear function, as it
gives us an obvious improvement after we change the
parameter of f up to the fourth power, and the others are
kept in linear forms. The fitted nonlinear function with the best
AIC is given by eq 6 (the estimated coefficients as seen in Table
3S).

y=BA+Bf = Bf* + B = B+ fo)
(1 + A/p)(A + B,/g) (6)

The resulting adjusted R* is 94.9%, and the lowest AIC that
could be achieved is 1145.23. The residual distribution and a
typical residual plot are shown in Figure 5. The obtained
estimate of variance is 4470.67. This is much better in terms of
adjusted R%. However, a much higher AIC is given in this test.
This is because the adjusted R* would be increased only if the
new fitting parameter improves the model over the expected,
and we only use eight coefficients in the current test, which is
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Figure 6. Residual distribution (a) and typical residual plot (b) of the nonlinear model with quadratic concentration and rotational speed terms but
linear pressure terms (changing the infusion rate and polymer concentration, with a fixed pressure of 0.2 MPa and a rotational speed of 36 000 rpm).

0.5 [
1.0

-0.5

5 10 15 21
Concentration (wt%)

(@)

0.5

-0.5

-1.5

3.33 5.00 10.00
Inversed pressure (MPa)

(c)

0.5

1.0

500 1000 2000 3000 4000  S000
Flow rate (ul/min)

(b)

0.5 ‘
1.0 ‘
0.5

-1.5 -]

1/36000 1/24000 1/10000
Inversed rotational speed (RPM)

(d)
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less than those in any previous functional models in the linear
fitting work; so this AIC value is perhaps acceptable. It is
necessary to find suitable terms that can accurately describe the
training data as well as the optimal compromises between the
possible high adjusted R* and low AIC value, which need to be
achieved.

According to the fitted result of the last linear model
presented in eq S (with AIC of 1107.22 and the trends of the
data variations, as shown in Figure 1Sa,c,d), it is suggested that
there are more appropriate quadratic terms for the parameters
of solution concentration and rotational speed but linear
dependence on pressure. Thus, we increase the order of ¢ and g
up to second. The optimized equation is given below (eq 7 and
the estimated coefficients as listed in Table 4S)

y=p1+Bf+Bf + B +BFHA + e+ B
(1L +B,/p)(1 + /g + B,/ (8)*) )

The AIC is decreased to 1132.72, and the adjusted R* is
95.5%. The quadratic form of subfunction dependence on the
solution concentration and rotational speed and the linear
terms of pressure can help to improve our fitting performance
(3880.16 of the estimated variance) by offering a lower residual,
as shown in Figure 6.

For improving the model one step further, we need to find
what part of function space is giving the biggest deviation as
well as the biggest residuals. The Box—Whisker charts in Figure
7 show the influences of fluctuation in the experimental
parameters by using fractional residuals as a fraction of the
mean diameters; they also indicate the median, 25 and 75%
quartiles, as well as upper and lower bounds as a function of the
concentration, flow rate, pressure, and rotational speed. It
should be noted that the pressure and rotational speed are in
their inverse forms.

Figure 7 indicates that the deviations of residuals are random,
and some are very large. The lower rotational speed and higher
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concentration give the relatively lower deviations. It suggests
that there may be systematic relationships, which exist in the
pressure and rotational speed deviations. The random deviation
is probably because the robust process of PCIG is a
quantitatively tuned method for the fabrication of nanofibers
but with a compromise of precise control of parameters that
affects the mean fiber diameter.

The mean values of the experimental parameters chosen in
the experiments are listed in Table 3, which indicates that the

Table 3. Mean of the Experimental Parameter Used in the
PCIG Process

processing parameters mean

concentration (wt %) 13.86
flow rate (uL/min) 2311.88
pressure (MPa) 0.20
rotational speed (rpm) 29 505.00
diameter (nm) 25191

constant terms of f and g in the model are possibly negligible
because of the small coefficients with a very low multiplying
power at the beginning of the functions. Presenting this change
on graphs shows that the curves are forced to pass the origin. It
is also sensible from the physical point of view of the PCIG
process, as it explains as that if the infusion rate is decreased to
be infinitely small, the resulting fibers will have an infinitely
small diameter. Taking into account all optimizations we raised
so far, the most up-to-date model can be presented as

y=Bf+Bf + B +Bf)A+ B+ pc?)
H(1/g + p,/(g)") (8)

Figure 8 (all the other residual plots of this test are shown in
Figure 3S) shows that the residuals have been reduced in the
above model (3800.86 of estimated error variance), and the
residual for each experimental parameter combination is listed
in Table 5S. The obtained AIC value is 1128.83, and the
adjusted R is 95.7%. The relevant confidence intervals of the
coefficients of pressure, concentration, and rotational speed are
fairly standard, and the interval between § and 95% cumulative
probabilities are listed in Table 4.

Ongoing work deals with the experimental verification of the
model predictions, and early indications show that the model
predictions are being satisfied.

Table 4. Confidence Interval of the Fitting Parameters in the
Best-Fitted Nonlinear Model: Eq 8

estimated coefficient (/3,) confidence interval

Bo 181847 (—477.27, 4114.22)

A —-1.20 (-2.73, 0.33)

B 3.04 x 107 (—8.64 x 1075, 6.95 X 107%)
B -2.56 x 107® (—5.88 X 1078, 7.60 x 1077)
By 0.12 (-0.23, 0.47)

Bs 9.26 x 107° (3.38 X 1073, 1.51 X 107)
Bs 0.14 (0.13, 0.16)

B —7046.28 (—7455.68, —6636.89)

4. CONCLUSIONS

In this paper, RSM is applied to investigate the novel PCIG
process for nanofiber making. ANOVA (variance) is carried out
at the significance level of 5% to study the effects of the input
parameters on the average fiber diameter, including infusion
rate (500—S000 uL/min), rotational speed (10000—36 000
rpm), applied pressure (0.1—0.3 MPa), and polymer concen-
tration (5—21 wt %). To use this method in experimental
optimization, it is necessary to select an appropriate
experimental design to fit a mathematical formulation for
evaluating the quality and accuracy of the fitting model based
on the obtained experimental data. It is concluded that the best
linear model gives an AIC of 1107.22 with a coefficient of
determination (adjusted R®) of 88.1% and indicates that the
PEO polymer concentration and pressure had more significant
effects than other parameters, for example, rotational speed on
the spun fiber diameter. The best nonlinear model that we
achieved offers an AIC of 1128.83 and a coeflicient of
determination of 95.7%. Our model is useful for predicting
and optimizing the process of fabrication of other types of
nanofibers, using the PCIG method. However, it should be
noted that the effects of physical properties of polymer
solution, for example, viscosity and surface tension that have
large differences based on different type of polymers, are not
considered in this model. This could be addressed in the
subsequent work.
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