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Abstract—In this work, we study graph-based multi-arms
bandit (MAB) problems aimed at optimizing actions on irregular
and high-dimensional graphs. More formally, we consider a
decision-maker that takes sequential actions over time and
observes the experienced reward, defined as a function of a
sparse graph signal. The goal is to optimize the action policy,
which maximizes the reward experienced over time. The main
challenges are represented by the system uncertainty (i.e., un-
known parameters of the sparse graph signal model) and the
high-dimensional search space. The uncertainty can be faced
by online learning strategies that infer the system dynamics
while taking the appropriate actions. Namely, the action-reward
mapping is learned from observation of the outcome of past
actions. However, the high-dimensionality makes online learning
strategies highly inefficient. To overcome this limitation, we
propose a novel graph-based MAB algorithm, which is data-
efficient also in high-dimensional systems. The key intuition is to
infer the nature of the graph processes by learning in the graph-
spectral domain, and exploit this knowledge while optimizing
the actions. In particular, we model the graph signal with a
sparse dictionary-based representation and we propose an online
sequential decision strategy that learns the parameters of the
graph processes while optimizing the action strategy.

I. INTRODUCTION

We are surrounded by large-scale interconnected systems
(transportation networks, social networks, etc.), which create
services and produce massive amounts of data. This has
pushed researchers in developing understanding for high-
dimensional data networks. However, it is also essential to
focus on controlling and optimizing these data networks. For
example, advertisements agencies might be in need to place
ads properly among users to maximize their profit within an
entire social networks, see Fig. 1. Also, a sparse set of energy
sources (or cooling sources) might need to be placed within
grid networks (or cooling systems). These are examples of
decision making strategies (DMSs) over high-dimensional and
irregular networks. When the dynamic of the system to control
is not known a priori, machine learning provides us with online
DMSs to learn the dynamics while controlling the system.

Multi-arms bandit problems are very common online DMSs
and, by now, they are well-understood for small strategy
sets [1]. In the classical stochastic k-armed bandit problem,
a decision maker chooses one out of the k possible arms
(actions) and experiences an instantaneous reward, which is
chosen from an unknown distribution associated with that arm.
The goal is to learn from the experience (by trial-and-error) the
arm with the best distribution, i.e., the arm with the highest re-
ward on average. The performance of these learning strategies
is measured in terms of regret, which is the difference between
the reward incurred by the algorithm and the optimal reward.

-/‘\q‘
g L e
g

minimize product ads to maximize the product appreciation

Figure 1. Applicative example of ads placement within a social networks.

However, the regret scales with the ambient dimension, either
linearly or as a square root [1], which makes the problem
intractable in scenarios with infinitely large strategy sets, as
large-scale network optimizations, recommendation systems
etc. To learn efficiently in complex domains data (data-efficient
machine learning), one must ultimately be able to exploit the
structure of the high-dimensional ambient space [2], [3].
However, properly exploiting the structure in irregular and
high-dimensional networks is an open challenge. In this work,
we address this challenge by applying the tenets of graph
signal processing (able to model non-Euclidean large systems)
to online DMSs. In particular, we develop novel graph-based
multi-arm bandit problems as sequential decision strategies
for high-dimensional networks. We claim that looking at the
arms as nodes on the graph and at the payoff as signal on
the graph allows to infer and exploit the geometry of the
ambient space to deduce the process driving the signal on
the graph, i.e., the reward. The key intuition is to infer the
problem structure by learning in the (sparse) graph-spectral
domain, and exploit this knowledge while optimizing the
actions in the (high-dimensional) vertex domain. Fig. 2 depicts
the main differences between a classical MAB problem and
the proposed graph-based MAB one.

In this work, we assume a general representation of pro-
cesses taking place on large networks and we do not limit
ourselves to smooth-reward assumption [4]. We consider a
network (that we model as graph) and a decision maker opti-
mizing the placement of sparse sources on the network. Fol-
lowing an unknown graph process, the source signal spreads
across the network over time, leading to a resulting signal
that characterizes the instantaneous reward. While the graph
structure is assumed to be known, the decision-maker needs
to learn over time the model driving the graph process to be
able to take the optimal decision on the source placement. By
taking sequential decisions, a training set is built and used as
input to a parametric dictionary learning algorithm to infer
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Figure 2. Graphical visulazation of both the classical MAB and the graph-
based MAB problems.

kernels that sparsely represent graph signals. Similarly to [5],
the graph process is approximated by a smooth polynomial
function, which incorporates the graph Laplacian (i.e., it takes
into account the graph structure). The key intuition is to learn
the sparse coefficient vector of the polynomial function to
characterize the graph signal resulting from any originating
source (being then able to optimize the source signal). This
allows us to find the best tradeoff between exploitation (op-
timized based on the current knowledge of the system) and
exploration (suboptimal actions that might reveal unknown
behaviors of the system) despite the large dimensionality of
the problem. We then characterize the confidence bound of
the MAB learner as a function of the graph structure and use
it to propose a learning algorithm. Simulation results show
accuracy of the our graph-MAB strategy when compared to
baseline ones. Finally, we also provide a study on the graph
topology that favors a faster learning process. We show that
more connected graphs and more sparse source signals leads
to a more accurate estimation of the graph process.

II. SEQUENTIAL DECISION STRATEGIES OVER GRAPHS

In the following, we formulate the problem we aim to solve
on high-dimensional graphs. We then provide an overview
of the classical MAB problems. Finally, we show that our
problem can be formulated as a classical MAB problem, that
however leads to a data-inefficient learning method.

A. Problem Formulation

We consider a weighted and undirected graph G =
(V,E,W) (known to the decision maker), with V being the
vertex set with |V| = N, & the edge sets, and W the N x N
adjacency matrix. Let h; = [th,hg,t,...,hN,t]T, be the
source signal over G (i.e., action taken by the decision maker),
with hy, + € [0, 1]. The source signal will spread across G over
time following an unknown process, and the resulting signal
after a time period of A can be expressed as function of the
source signal h; as

y: = Dh; + €
where ¥; = [y1.4,---,yne]T, and € = [e14,...,en )7 is
a random noise. In the applicative example of ads placed
over a social network, G represents the social network, h; the

location of ads placed at ¢, and ¥, ¢ the resulting popularity
of the content of interest at the vertex location n at time
t+ A. The resulting signal y; is generated by an underpinning
process, which is unknown to the decision maker. Given y;,
the instantaneous reward of the decision maker is denoted by
r(hy) = My;, where M is a N x 1 binary matrix, showing the
nodes over which the signal is measured to build the reward.
Thus, the reward is a mean of the signal y; at the location
activated by the masking matrix M'.

The mean reward experienced by the decision maker when
taking action h, is given by u(h:) = E{r(h:)} = MDh;. Let
consider sequential decision strategies, in which the decision
maker takes actions over time. At the decision opportunity ,
the action h; is selected and the reward r(h;) is observed. We
assume that the rewards associated to consecutive actions (e.g.,
r(h) and r(hy) ) are i.i.d.. In the example of ads placement,
different ads content are placed over time and therefore the
associated appreciation of the user does not depend on the
ads placed previously in time. Let denote by A the set of
feasible actions that the decision maker can take, defined as

A={h||hllo <To A hn,€[0,1], n=1,..,N}

where T is the maximum sparsity level of the actions. In
an ideal case in which the mean reward p(h) is known for
all actions, the optimal action p* = maxpe 4 p(h) would be
selected at each decision opportunity. In practice, the mean
reward is not known and the decision maker needs to learn
from past actions the best policy to take such that the reward
of future actions is maximized. This translates in the following
optimization problem

T
max E {Z r(ht)} st.  h,e A (1)

t=1

The faster the decision maker learns the mapping between
actions and mean reward, the more profitable will be the future
actions.

B. The MAB problem

We now provide the classical MAB problem formulation
as shown in [1] and references therein. Let a € A be one
possible action and .4 the set of feasible actions. At time ¢, the
learner selects the action a and experiences an instant payoff
Tq,¢, Which is drawn from a stochastic distribution with mean
value (i,. Being the mean payoff unknown a priori, the learner
does not select the optimal arm (i.e., the one that maximizes
1q) immediately. It rather selects suboptimal actions, leading
to a cumulative regret after T decisions defined as R(T') =
Tu*—ZtT:l Ta,,t, DEINg a; the arm selected at the ¢-th decision
opportunity and p* the mean reward of the optimal arm.

The classical algorithm for MAB problems is the UCB (or
its improved versions, such as UCB-Tuned) [6]. The key idea
is that at each round the arm with the highest bandit index is

In general, the reward can be any a function of the resulting signal such
as the mean of y or |[y* — y||2, with y* being the target signal.



selected. In the classical UCB algorithm, the bandit index of
arm a at time t is

2logt
N a,t

ba7t = ﬂat + 2)
with N, ; being the number of times the arm a has been
selected up to ¢, and fi,: is the mean reward for arm a
estimated at the ¢th decision opportunity.

C. Graph optimization as MAB problem

We observe that the maximization of the reward in (1) is
equivalent to the following minimization

T
in Tp*—E h),. 3
-5 { ) .

At the same time, we notice that the above optimization
problem is the minimization of the mean cumulative regret
of MAB problems in which each action a is a source signal
h. Adopting UCB or similar solvers for MABs, the regret is
asymptotically minimized [1], therefore the reward is asymp-
totically maximized. This means that solving (3) as MAB
problems is asymptotically equivalent to solving (1).

The UCB algorithm achieves a sublinear regret, i.e., R(t) =
O(]A|logt). In particular, the regret of the learning algorithm
scales with the ambient dimension. In our case, the action
space (or the total number of possible arms) is A = (%Vo ), if
T) is the imposed sparsity of h. It is easy to understand that
this action space is not sustainable for current MAB problems.
By way of example, in a network with 100 nodes, actions with
sparsity Ty < 10 would lead to an action space with cardinality
|A| > 10%3.

ITI. PROPOSED ALGORITHM
A. Learning in the spectral domain

We now overcome the above limitation by taking into
account the graph structure in the sequential optimization
process, in particular we show the gain in learning structured
dictionaries that sparsely represent the signal on the graph
and thus permit to infer the nature of the graph processes.
Then acting/optimizing in the high-dimensional domain of
the actions is made easier since the graph process is well
estimated. We start from the assumption that graph signals
can be modeled as combinations of overlapping local patterns
or generating kernel g(+), that are a function of the eigenvalues
of the Laplacian and characterize the graph pattern in the
spectral domain [5]. In more details, let define the dictionary
DasD=g(L)= ZkK:O ayL¥*, where the last equality holds
in the case of smooth kernel functions. This means that we
impose that the kernel translated in the vertex n has a support
contained in a ball of K hops from vertex n. Under the
assumption of smoothness of the kernels, the reward associated
to h is expressed as linear combinations of coefficients that
define the dictionaries:

N K
Yn,t = Z hm,t Z ak(Lk)n,m + €nt 4
m=1 k=0
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Figure 3. Graphical representation of the kernel UCB.

where (L*), ., is the (m,n) entry of L*. Finally, ¢, =
[€1.,€2.4,---,€n¢]T is a Gaussian and N-dimensional random
variable with ¢, ; ~ N(0,02). With the following matrix
notations P = [LO L', L2, ..., LX], with P € RVxN(K+1),
and & = [ag, a1, ..., ax]?, we can then express the resulting
signal y; as

y; = Plg 1 @ o = PH,a &)

with I k1 being the (K + 1) x (K + 1) identity matrix, and
H; =TIy ®h;, with H, € RNEHD) XK+,

At the decision opportunity ¢, the decision-maker takes a
given action h; on the graph G, leading to an instantaneous
reward of

T(ht):Myt:MPHta+Met=Xta+nt (6)

where 9, = [n1,...,nn]T = Me, with 5, ~ N(0, No?),
and X, = MPH,, with X, € RVX(K+1)_ This means that
the reward can be expressed as a linear combination of the
K-degree polynomial o and the matrix X, which includes
both the graph structure information (via the Laplacian L) and
the action h. In the following, we show how to exploit this
linear combination to learn the polynomial & and optimize the
sequential decision strategy of the decision maker.

B. Kernel UCB

We now propose a novel algorithm that learns in the spectral
domain and then acts in the vertex domain. The algorithm
is composed of two steps: 1) refinement of the coefficients
estimate, 2) selection of the arm given the updated knowledge
of the system, as graphically shown in Fig. 3.

Step 1: Coefficients estimation
Let consider the ¢-th decision opportunity, when ¢t — 1 deci-
sions have been already taken and the corresponding signal
and reward have been observed. The training set built over
time corresponds to {(h,,y,)}._}, where we recall that the
randomness is due to the random noise €, and p(y|h,a) ~
N(Dh, 21 y). For large t, maximizing the MAP probability



p(aly,h) corresponds to minimize the ly-regularized least-
square estimate of a, which leads to the following estimation
problem:

t—1

oy :argminZHPH,,.a—yTH%—I—)\HaH%. (7
@ T=1

Ths & = [0\ 272Z, 4 M| XU 2Ty, =
V;IZ{th, with Z1.; = [Z1,227. .. ,thl]T, Z. = PH_,
Y, = [yl,yg, L. ,ytfl]T, and V, = thZM + )\IK+1.

In practice, since the training set is built over time, it is
a small set to begin with. Therefore the [?-regularized least-
square estimate in (7) leads to an approximation of the actual
polynomial «, and this approximated estimate is refined at
each decision opportunity.

Step 2: Action selection
Once the estimation of the a coefficients is refined, the
decision maker needs to select the action to take at the ¢-
th decision opportunity. Following the theory of linear UCB
[7], the decision maker selects the action h (and therefore
X = MPI k.1 ®h) such that

h, : argmax max Xa ®)
heA acE,

where the confidence bound Ej; is an ellipsoid centered in &;
defined such that @, € E; with probability 1 — 4 for all ¢t > 1.
With a confidence bound E} such that E; : {||a; —a.|| < ¢},
with ¢, = R [\/K Tog(1 + tNTod/A) + /2log 1 /5} FAL28,
the maximization in (8) becomes

h; = argmax max Xa = arg max Xa + Ct\/ﬁ
he A acE; he A

— argmax {MPHat n ctHMPHval} . 9)
e t

Algorithm 1 Kernel-UCB
Input:
N: number of nodes, Ty: sparsity level of initial signal h,
K: sparsity of the basis coefficients, M: reward mask.
A, d: regularization and confidence parameters
R, S: upper bounds on the noise and o,
t=1
while ¢t < 7T do
Refine estimate of the coefficients
X1t =[X1,Xo,.... X 1)"
Yie=[1,y2. . 41"
Vi=XT, X144+ Mg
a, =V ' XT.Y 1.,
Evaluate the confidence bound and select the best action
=R [\/Klog(l FINTod/N) + /2log 1/5} A28
h, : arg maxpe.4 [MPHdt + ¢,||[MPH]| |V;1}
Observe the resulting signal y, and the instantaneous
reward 7(y;)
t=t+1
end while

This optimization characterizes the Step 2, i.e., the action
selection. The above problem maximizes a convex objective
function over a polytope?, defined by the two constraints. It
can be shown that, if the objective function has a maximum
value on the feasible region then it is at the edges of the poly-
tope. Therefore, the problem reduces to a finite computation
of the objective function over the finite number of extreme
points.

In Algorithm 1, we summarize the main steps of the
proposed Kernel-UCB strategy.

IV. RESULTS

As benchmark solution, we propose an algorithm that first
builds a training set (in the first 77, decision strategies), then
estimates the generating kernel and selects the best arm. In the
first T, decision opportunities randomly selected action are
taken. We label this algorithm AAL (act after learning). We
then provide results for the proposed Kernel-UCB algorithm
with and without confidence bound, i.e., ¢; as evaluated from
Algorithm 1, or ¢; = 0. When ¢; = 0, the algorithm selects
the future actions only based on the current estimate of the
system dynamics, neglecting uncertainty on this estimate .

We carry our experiments on radial basis function (RBF)
random graphs, where we generate the coordinates of the
vertices uniformly at random in the unit square, and we set the
edge weights based on a thresholded Gaussian kernel function
so that W(i,j) = exp(—[dist(i,5)?)/20) if the distance
between vertices ¢ and j is less than or equal to 7', and
zero otherwise. We further set ¢ = 0.5 and we vary T to
construct graphs which are more or less densely connected.
We then consider that each signal on the graph is characterized
by the originating signal h, the generating kernel and an
additive random noise €; with zero mean and variance o2.
This leads to a R value in the spectral UCB of R = o..
Remaining parameters of the sequential decision strategy are
the following: A = 0.01, 6 = 0.01.

We now show its performance with respect to the AAL
baseline algorithm, for a randomly generated graph (RBF
model) with NV = 100, and sparsity level T = 4. The
mask M is randomly generated and it covers 20% of the
nodes. Fig. 4 depicts the cumulative regret as a function of
the time (in terms of decision opportunities) for the considered
graph. Each point is averaged over 100 realizations (when at
each realization both the graph and the noise of the signal
on graph is generated). The Kernel-UCB is compared to
the baseline algorithm AAL with different learning time 77,
namely 77 = 10 and 71 = 20. Note the longer is the
learning time, the better is the estimate of the polynomial a.
However, since during the learning phase actions are selected
at random, the longer is also the suboptimal phase. From Fig.
4, we observe that the Kernel-UCB (both with and without
confidence bound) outperforms the baseline algorithm. We

2For the sake of brevity, we skip the proof of convexity. The intuition is
that V', L can be decomposed into V', V= LTL and the objective function
can be expressed as a sum of an affine and l2-norm term.
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Figure 4. Cumulative regret vs. time for randomly generated graphs with
N = 100, diffusion process (with 7 = 0.5) and sparsity level Ty = 5.

also notice that the baseline with 77, = 10 leads to a non-
accurate estimate of the polynomial a. Therefore, after the
learning phase the decision-maker selects future actions under
the assumption of a wrong estimated a. This leads to a large
level of suboptimality and therefore to a rapidly increasing
cumulative regret. Finally, as expected, the proposed algorithm
with the confidence bound take into consideration outperforms
the one with ¢; = 0.

We are now interested in understanding how much the
graph topology correlates to the performance of the learning
process. To do this, we first consider a randomly generated
training set of 300 signals, and we then estimate the accu-
racy of the learned polynomial «. Implicitly, the better the
estimate, the more efficient the decision maker. To measure
the accuracy of the estimate, we evaluate the error on the
resulting signal given the action h of test signals. Basically we
evaluate (1/Yrest|) 32; [lys — Dhil[3/1]y:|*, where [Yreq| is
the cardinality of the testing set.

We are interested in studying how much the estimation
error depends on the connectivity of the graph, and therefore
on the Laplacian. Let us consider graphs generated with the
RBF model again. By changing the threshold parameter 7T,
we generate more or less densely connected graph. Higher
levels of connectivity also leads to a different profiles of
the eigenvalues of the Laplacian )\;, as observed from Fig.
5(a), where the values of \; are provided for different graph
topologies. In particular, we provide \; for graph topologies
with N =400 and 7' = 0.987,0.95 and 0.86. In the legend,
we also provide the power sum of the eigenvalues, namely d =
Z,Ifzo Zf;l AF, for each graph topology. As a consequence,
more connected graphs lead to a more accurate estimate of the
generating kernels, see Fig. 5(b). The intuition is that a more
densely connected graph leads to a more informative resulting
signal y and therefore to a better estimate. Mathematically,
this can also be deduced by observing the distribution of the
Laplacian eigenvalues (Fig. 5(a)) and the associated power
sum d.

V. CONCLUSIONS

In this work, we proposed graph-based online sequential
strategies, which are data-efficient in high-dimensional prob-
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Figure 5. Graph Laplacian distribution and signal estimation error for random
graphs with different levels of connectivity, N = 400 nodes, and sparsity
value Tp = 15..

lems. The key intuition is to infer the problem structure by
learning in the (low-dimensional) graph-spectral domain, and
exploit this knowledge while optimizing the actions in the
(high-dimensional) vertex domain. This allows us to find the
best tradeoff between exploitation (optimization based on the
current knowledge of the system) and exploration (suboptimal
actions that might reveal unknown behaviors of the system)
despite the large dimensionality of the problem. We analyse
the system performance also in correlation with the graph
connectivity. Simulation results show the gain of proposed
algorithm when compared to baseline ones.
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