Interventions for childhood apraxia of speech (Review)

Morgan AT, Murray E, Liégeois FJ

Morgan AT, Murray E, Liégeois FJ.
Interventions for childhood apraxia of speech.
DOI: 10.1002/14651858.CD006278.pub3.

www.cochranelibrary.com
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>PLAIN LANGUAGE SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>SUMMARY OF FINDINGS FOR THE MAIN COMPARISON</td>
<td>4</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>6</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>7</td>
</tr>
<tr>
<td>METHODS</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.</td>
<td>7</td>
</tr>
<tr>
<td>RESULTS</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>10</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>12</td>
</tr>
<tr>
<td>AUTHORS' CONCLUSIONS</td>
<td>13</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>14</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>14</td>
</tr>
<tr>
<td>CHARACTERISTICS OF STUDIES</td>
<td>15</td>
</tr>
<tr>
<td>ADDITIONAL TABLES</td>
<td>21</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>29</td>
</tr>
<tr>
<td>WHAT'S NEW</td>
<td>62</td>
</tr>
<tr>
<td>HISTORY</td>
<td>74</td>
</tr>
<tr>
<td>CONTRIBUTIONS OF AUTHORS</td>
<td>74</td>
</tr>
<tr>
<td>DECLARATIONS OF INTEREST</td>
<td>74</td>
</tr>
<tr>
<td>SOURCES OF SUPPORT</td>
<td>75</td>
</tr>
<tr>
<td>DIFFERENCES BETWEEN PROTOCOL AND REVIEW</td>
<td>75</td>
</tr>
<tr>
<td>INDEX TERMS</td>
<td>76</td>
</tr>
</tbody>
</table>
Interventions for childhood apraxia of speech

Angela T Morgan¹,², Elizabeth Murray³, Frederique J Liégeois⁴

¹Murdoch Children’s Research Institute, Melbourne, Australia. ²Department of Audiology and Speech Pathology, The University of Melbourne, Melbourne, Australia. ³Faculty of Health Sciences, The University of Sydney, Lidcombe, Australia. ⁴Institute of Child Health, University College London, London, UK

Contact address: Angela T Morgan, Murdoch Children’s Research Institute, Flemington Road, Melbourne, Victoria, 3052, Australia. angela.morgan@mcri.edu.au.

Publication status and date: New search for studies and content updated (conclusions changed), published in Issue 5, 2018.

Citation: Morgan AT, Murray E, Liégeois FJ. Interventions for childhood apraxia of speech. Cochrane Database of Systematic Reviews 2018, Issue 5. Art. No.: CD006278. DOI: 10.1002/14651858.CD006278.pub3.

ABSTRACT

Background
Childhood apraxia of speech (CAS) affects a child’s ability to produce sounds and syllables precisely and consistently, and to produce words and sentences with accuracy and correct speech rhythm. It is a rare condition, affecting only 0.1% of the general population. Consensus has been reached that three core features have diagnostic validity: (1) inconsistent error production on both consonants and vowels across repeated productions of syllables or words; (2) lengthened and impaired coarticulatory transitions between sounds and syllables; and (3) inappropriate prosody (ASHA 2007). A deficit in motor programming or planning is thought to underlie the condition. This means that children know what they would like to say but there is a breakdown in the ability to programme or plan the fine and rapid movements required to accurately produce speech. Children with CAS may also have impairments in one or more of the following areas: non-speech oral motor function, dysarthria, language, phonological production impairment, phonemic awareness or metalinguistic skills and literacy, or combinations of these. High-quality evidence from randomised controlled trials (RCTs) is lacking on interventions for CAS.

Objectives
To assess the efficacy of interventions targeting speech and language in children and adolescents with CAS as delivered by speech and language pathologists/therapists.

Search methods
We searched CENTRAL, MEDLINE, Embase, eight other databases and seven trial registers up to April 2017. We searched the reference lists of included reports and requested information on unpublished trials from authors of published studies and other experts as well as information groups in the areas of speech and language therapy/pathology and linguistics.

Selection criteria
RCTs and quasi-RCTs of children aged 3 to 16 years with CAS diagnosed by a speech and language pathologist/therapist, grouped by treatment types.

Data collection and analysis
Two review authors (FL, AM) independently assessed titles and abstracts identified from the searches and obtained full-text reports of all potentially relevant articles and assessed these for eligibility. The same two authors extracted data and conducted the ‘Risk of bias’ and GRADE assessments. One review author (EM) tabulated findings from excluded observational studies (Table 1).
Main results

This review includes only one RCT, funded by the Australian Research Council; the University of Sydney International Development Fund; Douglas and Lola Douglas Scholarship on Child and Adolescent Health; Nadia Verrall Memorial Scholarship; and a James Kentley Memorial Fellowship. This study recruited 26 children aged 4 to 12 years, with mild to moderate CAS of unknown cause, and compared two interventions: the Nuffield Dyspraxia Programme-3 (NDP-3); and the Rapid Syllable Transitions Treatment (ReST). Children were allocated randomly to one of the two treatments. Treatments were delivered intensively in one-hour sessions, four days a week for three weeks, in a university clinic in Australia. Speech pathology students delivered the treatments in the English language. Outcomes were assessed before therapy, immediately after therapy, at one month and four months post-therapy. Our review looked at one-month post-therapy outcomes only.

We judged all core outcome domains to be low risk of bias. We downgraded the quality of the evidence by one level to moderate due to imprecision, given that only one RCT was identified. Both the NDP-3 and ReST therapies demonstrated improvement at one month post-treatment. A number of cases in each cohort had recommenced usual treatment by their speech and language pathologist between one month and four months post-treatment (NDP-3: 9/13 participants; ReST: 9/13 participants). Hence, maintenance of treatment effects to four months post-treatment could not be analysed without significant potential bias, and thus this time point was not included for further analysis in this review.

There is limited evidence that, when delivered intensively, both the NDP-3 and ReST may effect improvement in word accuracy in 4- to 12-year-old children with CAS, measured by the accuracy of production on treated and non-treated words, speech production consistency and the accuracy of connected speech. The study did not measure functional communication.

Authors’ conclusions

There is limited evidence that, when delivered intensively, both the NDP-3 and ReST may effect improvement in word accuracy in 4- to 12-year-old children with CAS, measured by the accuracy of production on treated and non-treated words, speech production consistency and the accuracy of connected speech. The study did not measure functional communication. No formal analyses were conducted to compare NDP-3 and ReST by the original study authors, hence one treatment cannot be reliably advocated over the other. We are also unable to say whether either treatment is better than no treatment or treatment as usual. No evidence currently exists to support the effectiveness of other treatments for children aged 4 to 12 years with idiopathic CAS without other comorbid neurodevelopmental disorders. Further RCTs replicating this study would strengthen the evidence base. Similarly, further RCTs are needed of other interventions, in other age ranges and populations with CAS and with co-occurring disorders.

PLAIN LANGUAGE SUMMARY

One well-controlled study shows some evidence of effect of two interventions for childhood apraxia of speech (CAS)

Review question

What treatments help to improve the speech and language of children and adolescents with childhood apraxia of speech (CAS).

Background

Children with CAS find it difficult to produce sounds and syllables consistently and precisely in order to speak words and sentences with clarity and correct speech rhythm. As a result, children with CAS can be hard to understand with potential for negative impacts on school achievement and peer friendships. CAS affects around 0.1% of the general population. This review collates the research evidence to identify the most effective therapies for children with CAS.

Search date

The evidence is current to 6 April 2017.

Study characteristics

We found one study with 26 children aged 4 to 12 years with CAS. The children had mild to severe CAS without a known cause. Children were allocated randomly (using a method like coin tossing) to one of two treatments: the Nuffield Dyspraxia Programme - Third Edition (NDP-3); and the Rapid Syllable Transition treatment (ReST). Both therapies were delivered intensively in one-hour sessions, four days a week for three weeks. The treatments were delivered by speech pathology students in a university clinic. Outcomes
were assessed before therapy, immediately after therapy, at one month and four months post-therapy. Our review looked at one-month post-therapy outcomes only.

Study funding sources

The included study was funded by the Australian Research Council; the University of Sydney International Development Fund; Douglas & Lola Douglas Scholarship on Child and Adolescent Health; Nadia Verrall Memorial Scholarship; and a James Kentley Memorial Fellowship.

Key results

Further studies replicating these findings would strengthen available evidence.

The study provides limited evidence that the NDP-3 may improve the accuracy of production on treated items and the accuracy of connected speech. There is limited evidence that the NDP-3 has a negligible effect on speech production consistency, and the ReST a negligible effect on accuracy of production on non-treated words. The study did not measure functional communication.

Quality of the evidence

The included study was a randomised controlled trial with an overall low risk of bias. We downgraded the quality of the evidence by one level to moderate, due to imprecision, given that only one RCT was identified.

Recommendations

There is limited evidence that the NDP-3 or ReST may be helpful for children with CAS of unknown origin, aged 4 to 12 years, without other co-occurring conditions. We were not able to find out whether one of these treatment was better than the other, or whether either was better than no treatment or treatment as usual. There is currently no available evidence for other treatments.

Further RCTs - including studies comparing treatments to a no-treatment (wait-list) control group - would strengthen the evidence base. Further research is also needed for children with CAS and other disorders or diagnoses.
Summary of Findings for the Main Comparison

Nuffield Dyspraxia Programme - Third Edition (NDP-3) versus Rapid Syllable Transition Treatment (ReST) for Childhood Apraxia of Speech

Patient or population: children aged 4 to 12 years with CAS of unknown cause
Settings: University of Sydney Communication Disorders Treatment and Research Clinic
Intervention: NDP-3
Comparison: ReST

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Summary of MD findings</th>
<th>Absolute MD</th>
<th>Number of participants (studies)</th>
<th>Quality of the evidence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy of production on treated items</td>
<td>NDP-3 MD of 36.0 was 2.1 greater than the ReST MD of 33.9</td>
<td>26 (1 trial)</td>
<td>⊗⊗⊗⊕⊕ Moderate[^a^]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Accuracy of production on non-treated items</td>
<td>ReST MD of 18.3 was minimally greater than the NDP-3 MD of 18.2</td>
<td>26 (1 trial)</td>
<td>⊗⊗⊗⊕⊕ Moderate[^a^]</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Secondary outcomes

[^a^]: Moderate
Speech production consistency

Measured by: calculating the number of inconsistent productions of 25 words produced 3 times using the DEAP inconsistency sub-test.

Follow-up: pre-intervention to 1 month post-intervention.

| Measure | NDP-3 MD of 11.1 was 0.2 greater than the ReST MD of 10.9 | 26 (1 trial) | ⚫⚫⚫⚫ | Moderate *a*

Accuracy of connected speech

Measured by: counting the number of correct imitations of 3 word phrases (/x/).

Follow-up: pre-intervention to 1 month post-intervention.

| Measure | NDP-3 MD of 14.3 was 2.8 greater than the ReST MD of 11.5 | 26 (1 trial) | ⚫⚫⚫⚫ | Moderate *a*

GRADE Working Group grades of evidence

- **High quality**: we are very confident that the true effect lies close to that of the estimate of the effect.
- **Moderate quality**: we are moderately confident in the effect estimate; the true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different.
- **Low quality**: our confidence in the effect estimate is limited; the true effect may be substantially different from the estimate of the effect.
- **Very low quality**: we have very little confidence in the effect estimate; the true effect is likely to be substantially different from the estimate of effect.

CAS: childhood apraxia of speech; **DEAP**: Diagnostic Evaluation of Articulation and Phonology; **MD**: mean difference; **NDP-3**: Nuffield Dyspraxia Programme - Third Edition; **ReST**: Rapid Syllable Transition Treatment (ReST) for Childhood Apraxia of Speech

a We downgraded the quality of evidence by one level, to moderate, for imprecision, as there was only one study for comparison.

b Note, a decrease in inconsistency is a positive outcome.
BACKGROUND

Description of the condition

Childhood apraxia of speech (CAS) affects a child’s ability to produce speech sounds and syllables in the right order, and to speak words and sentences with accuracy and correct speech rhythm. Over sixty years ago, Morley 1954 provided a seminal paper documenting a series of speech characteristics in children that resembled the speech production disorder of adults with acquired apraxia of speech, and the diagnosis of CAS was born. CAS is a rare condition, affecting only around 0.1% of the general population (Morley 1972; Yoss 1975). CAS is more prevalent within particular medical subgroups, however, and particularly penetrant in certain genetic syndromes (e.g. Fedorenko 2016; Mei 2017).

Historically, synonyms such as verbal dyspraxia and developmental apraxia of speech have been used. The most commonly used terms today are CAS and developmental verbal dyspraxia (DVD), with the latter used largely in the UK context (RCSLT 2011). We use the term CAS consistently throughout this review. A deficit in motor programming or planning is thought to underlie CAS; that is, children know what they would like to say but there is a breakdown in the ability to programme or plan the required movements to accurately produce speech. The current approach to diagnosis of CAS is expert-based perception of speech symptoms (Maas 2012a). There is consensus amongst speech and language pathologists (SLPs), also known as speech and language therapists (SLTs), that three core features of CAS have diagnostic validity: (1) inconsistent error production on both consonants and vowels across repeated productions of syllables or words; (2) lengthened and impaired coarticulatory transitions between sounds and syllables; and (3) inappropriate prosody (ASHA 2007).

In addition to the core features of CAS, children may also have co-occurring impairments affecting non-speech oral motor function, language, phonemic awareness/meta-linguistics and literacy (ASHA 2007). Younger children typically present with more severe forms of the disorder, with improvement noted over time for both idiopathic CAS (Davis 2005; Jacks 2006) and individuals with CAS associated with genetic syndromes (Morgan 2017; Morgan 2018). It is not currently known how age, severity or underlying aetiology impact upon CAS treatment response or outcome.

There are no epidemiological data on the prevalence of CAS, although it occurs infrequently in comparison with other forms of developmental speech disorder such as articulation disorder and phonological disorder, which occur in around 3.5% of preschool children (Eadie 2015). A population-based estimate suggests that CAS occurs in one child per 1000 (0.1%) (Morley 1972; Yoss 1975), and is found in 3.4% to 4.3% of the children referred to clinics for speech disorder management (Delaney 2004). The diagnosis of CAS can apply to children who have a specific impairment in speech with other neurodevelopmental functions relatively more preserved (e.g. borderline or typical non-verbal cognition). Historically most cases were referred to as ‘idiopathic’, given limited aetiological knowledge of the condition (Morgan 2008).

In recent times, however, novel insights have been gained into the genetic and neurobiological bases of CAS (Eising 2018). Variations in an increasing number of single genes have been associated with CAS (Eising 2018; Turner 2015), with the most replicated finding being disruption of the Forkhead box protein P2 or FOXP2 (Lai 2001; Morgan 2017; Vargha-Khadem 2005). Beyond single gene causes, CAS has also been associated with copy number variant syndromes, such as 16p11.2 deletion syndrome (Fedorenko 2016; Mei 2017), Koolen de Vries Syndrome (Morgan 2018), 6q25.3 deletion syndrome (Peter 2017), 7q11.23 duplication syndrome (Vellman 2011), and other genetic conditions such as Floating Harbour syndrome (White 2010). Further to genetic causes, other medical conditions associated with CAS include metabolic disorders (e.g. galactosaemia; Shriberg 2011) or epilepsy disorders (e.g. Liégeois 2012). In relation to neurobiology or brain function, there is inconsistency as regards the key brain regions and networks disrupted in CAS, with neuroimaging studies reporting both cortical and subcortical anomalies (Liégeois 2012; Liégeois 2014; Liégeois 2016).

Description of the intervention

A range of CAS treatment approaches with differing theoretical standpoints have been reported. These studies are almost exclusively in the form of uncontrolled case studies or case series. Therapeutic approaches for CAS can be grouped into the following three areas.

1. Motor-based approaches. These therapies are based on principles of motor learning (see Maas 2008 for a review); for example, traditional articulation-based drill therapy (Vellman 1994), the Nuffield Dyspraxia Programme (Williams 2004), the Rapid Syllable Transitions Treatment (Ballard 2010), rate control therapy (Rosenthal 1994), the PROMPT System (Prompts for Restructuring Oral Muscular Phonetic Targets) (Chumpelik 1984; Dale 2013), melodic intonation therapy (Helfrich-Miller 1994), adapted cueing technique (Klick 1985), and integral stimulation or dynamic temporal and tactile cueing (Maas 2012a; Strand 2006). Motor-based therapy can also include non-speech oro-motor techniques: for example, oral form recognition training (Kingston 1987) and orofacial myofunctional therapy (Ray 2003). Motor-based therapy can also be instrumentally based, such as delayed auditory feedback (Lozano 1978), electropalatography (Carter 2004; Lundeborg 2007), and ultrasound (Preston 2013).

2. Linguistic approaches. Linguistic therapies address language impairments that can co-occur in children with CAS. Examples of linguistic approaches include programmes to address phonological speech production or awareness (McNeill 2009).

3. Multi-modal communication approaches. These approaches seek to support verbal communication. Methods can
address specific communication messages or features, such as Aided AAC (augmentative and alternative communication) Modelling (Binger 2007), or use of technological devices (Bornman 2001; Cumley 1999).

How the intervention might work

Below, we describe the ways in which the aforementioned approaches (described under Description of the intervention) might work.

1. Motor-based approaches. These methods use principles of motor learning, such as emphasizing a high number of successful repetitions of a task, using stimuli with high complexity, and a period of teaching followed by practice where cues and feedback are faded. Such approaches are reported to facilitate maintenance and generalisation in children with CAS (Maas 2008; Maas 2014).

2. Linguistic approaches. These methods are focused on the semantics, phonology or grammar of language, and not on motor speech production per se. For example, a linguistic approach may include phonological contrast therapy, where children are taught how to abstract speech sound rules for the specific language(s) they speak (Dodd 2008). Another example of a linguistic approach is core vocabulary therapy, which focuses on shaping children's word approximations whilst expanding their expressive and receptive vocabulary (Crosbie 2005).

3. Multi-modal communication approaches. These methods are used for children who are minimally verbal to help them communicate and reduce the frustration associated with their speech disability. Devices may include a computer, phone or tablet with applications to help children produce words, phrases and sentences. Other methods involve gesture, sign language or use of visual picture boards.

Why it is important to do this review

There is a need for clinicians and parents to be aware of the most efficacious treatments for children with CAS. To date, studies in the field are largely non-RCT (randomised controlled trials), single case series or case-control studies that are generally positive in showing improvements in speech post-therapy across motor (e.g. Baas 2008; Ballard 2010; Edeal 2011; Hall 1989; Kadis 2014; McCabe 2014; Strand 2000; Strand 2006), linguistic (e.g. McNeill 2009a; McNeill 2009b; McNeill 2010; Stokes 2010; Zaratsky 2010), and multi-modal communication approaches (e.g. Harris 1996; King 2013; Tierney 2016). Yet these non-RCT studies are inherently biased in nature and there is a need in the field for a systematic evaluation of available evidence. This review identifies best available treatments for CAS. This is an update of a Cochrane Review first published in 2008 (Morgan 2008). The previous review revealed no available RCTs for review. The first RCT in this field was published in 2015, hence it was timely to provide an updated review.

Objectives

To assess the efficacy of interventions targeting speech and language in children and adolescents with CAS as delivered by speech and language pathologists/therapists.

Methods

Criteria for considering studies for this review

Types of studies

RCTs and quasi-RCTs (e.g. studies in which participants are allocated to intervention groups on alternate days).

Types of participants

Children aged 3 to 16 years with a diagnosis of CAS made by a speech and language pathologist/therapist.

Types of interventions

See Description of the intervention section above. Eligible control groups were no treatment control (e.g. wait-list control), treatment as usual, or other treatment controls.

Types of outcome measures

Primary outcomes

1. Accuracy of production on treated or non-treated* items (may be associated with motor-based, linguistic or multi-modal communication approaches noted under How the intervention might work)

A desirable outcome would have been an improvement in accuracy of speech or multi-modal communication, while an undesirable outcome would have been deterioration from baseline.

*Non-treated items are stimuli (e.g. syllables, words, phrases) that have not been practised by children during intervention sessions. They are a form of control whereby we are able to measure children's performance on 'treated' items (e.g. syllables, words, phrases the child has practised during speech sessions) and compare it with performance on 'non-treated' items. In this way, we can quantify whether the child has 'generalised' their newly acquired speech skills, or improvement in speech, to non-treated stimuli,
or whether they have only improved on speech items practised during therapy.

Secondary outcomes
1. Speech production consistency across repeated words and syllables (may be associated with motor-based, linguistic or multi-modal communication approaches noted under How the intervention might work)
2. Accuracy of connected speech, including co-articulation accuracy (e.g. syllable segregation, voice onset time; most commonly associated with motor-based or linguistic approaches noted under How the intervention might work)
3. Functional communication (e.g. child- or parent-based questionnaire; may be associated with motor-based, linguistic or multi-modal communication approaches noted under How the intervention might work)

A desirable outcome would have been an improvement on outcomes one to three, whilst an undesirable outcome would have been deterioration from baseline on outcomes one to three. Outcome measurements were recorded before, immediately after and at longer-term follow-up.

Search methods for identification of studies

Electronic searches
Margaret Anderson, Cochrane Information Specialist for the Developmental, Psychosocial and Learning Problems Group, conducted the searches for this update in August 2011, June 2014 and April 2017. We searched the following list of sources which includes bibliographic databases, and international and national trials registers. We did not apply any date restrictions, but we only examined articles written in the English language. We report the search strategies for this update in Appendix 1. Earlier search strategies are in Appendix 2.

1. Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 3) in the Cochrane Library, and which includes the Cochrane Developmental, Psychosocial and Learning Problems Specialized Register (searched 6 April 2017)
2. Ovid MEDLINE (1946 to March week 5 2017)
3. Ovid MEDLINE E-Pub Ahead of Print (searched 6 April 2017)
4. Ovid MEDLINE In Process & Other Non-indexed Citations (searched 6 April 2017)
5. Embase Ovid (1980 to 2017 week 15)
6. CINAHL EBSCOhost (Cumulative Index to Nursing and Allied Health Literature; 1937 to 10 April 2017)
7. PsycINFO Ovid (1806 to April week 1 2017)
8. PsycINFO EBSCOhost (1887 to 4 August 2011)
9. ERIC EBSCOhost (Education Resources Information Center; 1966 to 10 April 2017)
10. ERIC Proquest (Education Resources Information Center; 1966 to 6 June 2014)
11. Cochrane Database of Systematic Reviews (CDSR; 2017, Issue 4) part of the Cochrane Library
13. SpeechBITE (speechbite.com; searched 10 April 2017)
15. Chinese Clinical Trial Registry (ChiCTR; www.chictr.org.cn; searched 10 April 2017)
16. ClinicalTrials.gov (clinicaltrials.gov; searched 10 April 2017)
17. EU Clinical Trials Register (clinicaltrialregister.eu; searched 10 April 2017)
18. ISRCTN Registry (www.isrctn.com; searched 10 April 2017)
19. Nederlands Trial Register (trialregister.nl/trialreg/admin; searched 10 April 2017)

Searching other resources
We searched the reference lists of included reports, and requested information on unpublished trials from authors of published studies and other experts, as well as information groups in the areas of speech and language therapy/pathology and linguistics.

Data collection and analysis
We were unable to use many of our preplanned methods (Morgan 2006), as only one study met the inclusion criteria (Criteria for considering studies for this review). This study was published in a peer-reviewed journal and there are no other completed RCTs or quasi-RCTs at this time, published or unpublished. See Appendix 3 and Morgan 2006.

Selection of studies
Two review authors (FL and AM) independently screened all titles and abstracts yielded by the search for eligibility: In cases of uncertainty over whether an abstract met the inclusion criteria, we obtained the full-text report. Next, the same two reviewers independently evaluated each full-text report against the inclusion criteria (Criteria for considering studies for this review). In the event of disagreement over inclusion of a particular paper, FL and AM reached consensus by re-assessing the study against the inclusion criteria together. We present the results of our selection process in a PRISMA diagram; see Figure 1 (Moher 2009).
Data extraction and management

In addition to outcome data, we documented the following information using a data management form: participant details; setting (e.g. community clinic, school); type of intervention; length and frequency of intervention; professions involved; duration of impairment; level of severity; co-morbidity; and assessment tools employed. We requested any information that was missing or unclear from the corresponding author (Dealing with missing data). AM independently extracted and entered the outcome data into Review Manager 5 (Review Manager 2014), and FL then independently evaluated the data and entries. AM and FL discussed any disagreements until they reached a consensus. EM entered further details of excluded studies into Table 1.

Assessment of risk of bias in included studies

Two review authors (FL and AM) independently assessed the risk of bias within the one included study, using Cochrane’s ‘Risk of bias’ tool (Higgins 2011a). Both review authors rated the risk of bias as low, high or unclear (uncertain), across each of the domains listed below. There were no cases of disagreement.

1. Sequence generation. Did the study describe the method used to generate the allocation sequence in sufficient detail to determine whether it produced comparable groups? In the review authors’ judgment, was the sequence adequately generated?
2. Allocation concealment. Did the study describe the method used to conceal the allocation sequence in sufficient detail to assess whether intervention schedules could have been foreseen in advance of, or during, recruitment? In the review authors’ judgment, was allocation adequately concealed?
3. Blinding of participants and personnel. Did the study describe any measures used to blind participants and personnel from knowledge of which intervention a given participant might have received? In the review authors’ judgment, was knowledge of the allocated interventions adequately concealed from participants and relevant personnel during the study?
4. Blinding of outcome assessment. Did the study describe any measures used to blind outcome assessors from knowledge of which intervention a given participant might have received? In the review authors’ judgment, was knowledge of the allocated interventions adequately concealed from all outcome assessors during the study?
5. Incomplete outcome data. Did the study report data on attrition and exclusions as well as the numbers involved
(compared with total randomised), reasons for attrition/exclusion, and any re-inclusions in analyses performed. In the review authors’ judgment, did the study authors deal adequately with incomplete data?

6. **Selective outcome reporting.** Did the study make attempts to assess the possibility of selective outcome reporting? In the review authors’ judgment, are reports of the study free of suggestion of selective outcome reporting determined by comparing the outcomes listed in the original study protocol with the final RCT publication?

7. **Other sources of bias.** Was the study apparently free of other problems that could put it at a high risk of bias? In the review authors’ judgement, was the study free of other problems not covered by the domains above?

Measures of treatment effect

We were unable to conduct a meta-analysis due to there being only one included study. We have archived our methods for use in future updates of this review (see Appendix 3; Morgan 2006).

Unit of analysis issues

For each outcome measure, we averaged the accuracy of production (e.g. number of correct items from total items elicited) across the group. Units were mean accuracy scores for each intervention group. See Appendix 3 for additional methods archived for use in future updates of this review.

Dealing with missing data

There were missing data for 1/26 participants in the Murray 2015 RCT, due to a participant withdrawing in the middle of treatment (see Appendix 3 and Morgan 2006).

Assessment of heterogeneity

We were unable to assess heterogeneity as only one study met the inclusion criteria (see Appendix 3 and Morgan 2006).

Assessment of reporting biases

We were unable to assess reporting biases due to there being only one included study (see Appendix 3 and Morgan 2006).

Data synthesis

We could not undertake a meta-analysis as we included only one study in the review (see Appendix 3 and Morgan 2006).

Summary of findings

Using GRADEpro GDT (GRADEpro GDT 2015), we created a ‘Summary of findings’ table for the comparison: Nuffield Dyspraxia Programme - Third Edition (NDP-3) versus Rapid Syllable Transition Treatment (ReST) for Childhood Apraxia of Speech. In this table we report our primary (accuracy of production on treated and non-treated items) and secondary (speech production consistency and accuracy of connected speech) outcomes for one month post-treatment. We chose this time point as it is the most clinically salient time point. The time point immediately after therapy is not sufficient to determine whether the treatment effect was sustained. We did not examine the time point of four months post-therapy because the number of participants in each group (NDP-3: 9/13 participants; ReST: 9/13 participants) had returned to community SLP/SLT treatment between the one-month and four-month post-therapy period and, as such, it would be difficult to delineate between a sustained treatment effect of the RCT versus the usual therapy re-introduced. We also report in this table the quality ratings for each outcome as assessed by two review authors (AM and FL) using the GRADE approach (Schünemann 2017). They assigned ratings of high, moderate, low or very low quality, according to the presence of risk of bias (Risk of bias in included studies), indirectness of evidence, unexplained heterogeneity or inconsistency in results, imprecision of results and high probability of publication bias; they discussed any disagreements over the quality ratings until a consensus was reached. Please see ‘Summary of findings for the main comparison’ for an overview of treatment effects for each outcome measure and GRADE assessment of the quality of the evidence.

Subgroup analysis and investigation of heterogeneity

We were unable to perform any subgroup analyses as we included only one study in the review. See Appendix 3 and Morgan 2006.

Sensitivity analysis

We were unable to perform a sensitivity analysis as we included only one study in the review. See Appendix 3 and Morgan 2006.

Results of the search

We identified a total of 7978 records once duplicates were discarded. EM identified a further 16 records through handsearching. Of these 7994 titles and abstracts, we excluded 7895 as clearly
irrelevant, and assessed the full texts of the remaining 99 reports against our inclusion criteria (Criteria for considering studies for this review). From these 99 reports, only one study met our inclusion criteria for this review (Included studies); we excluded the remaining 98 reports as irrelevant (see Excluded studies). We did not identify any non-English abstracts for inclusion. Please see Figure 1.

Included studies

The one included study, Murray 2015, was an RCT that compared treatment effects for two interventions, each delivered intensively (one hour for four days a week for three weeks): the Nuffield Dyspraxia Programme - Third Edition (NDP-3; Williams 2004) and the Rapid Syllable Transition treatment (ReST; Ballard 2010). Twenty-six children (13 allocated to each therapy group), aged 4 to 12 years (18 males) with CAS diagnosed by a SLP/SLT participated in the study, which took place at the University of Sydney Communication Disorders Treatment and Research Clinic. The primary outcomes were per cent accuracy on treated and untreated pseudo-words and real words and phrases.

The research was funded (as published in the article) by: Douglas and Lola Douglas Scholarship on Child and Adolescent Health; Nadia Verrall Memorial 2010; and Postgraduate Student Scholarship 2011 through Speech Pathology Australia, James Kentley Memorial Scholarship, Postgraduate Research Support Schemes and Faculty of Health Sciences; University of Sydney International Development Program Fund, and the Australian Research Council Future Fellowship.

Please see the Characteristics of included studies table for further detail of the nature of these interventions.

Excluded studies

We excluded 98 full-text reports. Of these, 29 studies were either not interventions (e.g. diagnostic studies), or did not include participants with CAS (e.g. focused on other speech disorders or adult-acquired apraxia of speech). The remaining 69 excluded papers were CAS intervention studies but were not RCTs, and are tabulated in Characteristics of excluded studies tables. Further detail on the excluded CAS studies is provided in Table 1.

Risk of bias in included studies

We examined the one included study, Murray 2015, for risk of bias. We judged the study to be at low risk of bias for all domains except ‘other sources of bias’, which we judged to be at unclear risk of bias. Please see the ‘Risk of bias’ table (beneath the Characteristics of included studies table) for further detail on the basis of our decisions, and Figure 2 for a summary of ratings.
Effects of interventions

See: Summary of findings for the main comparison

We downgraded the quality of the evidence by one level to moderate due to imprecision, given that only one RCT was identified.

Primary outcome: accuracy of production

The Murray 2015 study compared the number of real words produced correctly (out of the total elicited words) at pre-treatment with one month post-treatment for treated and non-treated items.

Treated items

The study authors reported that, compared to pre-treatment baseline, the NDP-3 MD of 36.0 was greater than the ReST MD of 33.9 at one month post-treatment, with an absolute mean difference of 2.1 between groups.

Non-treated items

The study authors reported that, compared to pre-treatment baseline, the ReST MD of 18.3 was minimally greater than the NDP-3 MD of 18.2 at one month post-treatment with an absolute mean difference of 0.1 between groups.

Secondary outcomes

Speech production consistency
The Murray 2015 study compared treatment gains in speech production consistency (measured by 25 real words repeated three times using the inconsistency subtest of the Diagnostic Evaluation of Articulation and Phonology (DEAP) test (Dodd 2006)), at pre-treatment with one month post-treatment for treated items. The study authors reported that, compared to pre-treatment baseline, the NDP-3 MD of 11.1 was minimally greater than the ReST MD of 10.9 at one month post-treatment, with an absolute mean difference of 0.2 between groups.

Accuracy of connected speech
The Murray 2015 study compared treatment gains in the accuracy of connected speech (as assessed by imitated word accuracy in connected speech of at least three word combinations), at pre-treatment with one month post-treatment for treated items. The study authors reported that, compared to pre-treatment baseline, the NDP-3 MD of 14.3 was greater than the ReST MD of 11.5 at one month post-treatment, with an absolute mean difference of 2.8 between groups.

The study did not measure functional communication.

DISCUSSION

Summary of main results
We sought to investigate the effectiveness of targeted speech and language interventions for children and young people, aged 3 to 16 years of age, with a diagnosis of CAS made by a speech and language pathologist/therapist. We found only one study, Murray 2015, which met our inclusion criteria (Criteria for considering studies for this review). This RCT recruited 26 children aged 4 to 12 years, and compared two interventions: the Nuffield Dyspraxia Programme-3 (NDP-3); and the Rapid Syllable Transitions Treatment (ReST). Treatments were delivered intensively in one-hour sessions, four days a week for three weeks, in a university clinic in Australia. Speech pathology students delivered the treatments in the English language.

We considered all core domains to be at low risk of bias. Both the NDP-3 and ReST therapies demonstrated improvement at one month post-treatment. A number of cases in each cohort had recommenced usual treatment by their speech and language pathologist between one month and four months post-treatment. Hence we could not analyse maintenance of treatment effects to four months post-treatment without significant potential bias, and so we did not include this time point for further analysis in this review.

Overall there is limited evidence that, when delivered intensively, both the NDP-3 and ReST may effect improvement in word accuracy in 4- to 12-year-old children with CAS, measured by the accuracy of production on treated and non-treated words, speech production consistency and the accuracy of connected speech. The study did not assess functional communication. We are unable to say whether either treatment is better than the other, or better than no treatment or treatment as usual. No evidence currently exists to support the effectiveness of other treatments for children aged 4 to 12 years with idiopathic CAS, without other comorbid neurodevelopmental disorders. No formal analyses were conducted to compare NDP-3 and ReST by the original study authors, hence one treatment cannot be reliably advocated over the other. Further RCTs replicating this study would strengthen the evidence, which we currently rate as low using the GRADE evidence rating system (i.e. that 'further research is very likely to have an important impact on our confidence in the estimate and is likely to change the estimate').

Further well-controlled studies investigating the effectiveness of other treatments for CAS are also needed across other motor-based therapies, and also across linguistic and multi-modal approaches. As noted earlier in the Why it is important to do this review section, non-RCT case series or case-control studies examining motor, linguistic and multi-modal interventions for CAS have described positive effects of intervention, but RCTs are required to strengthen the evidence base for these approaches. Further, there is also a need for trials that examine interventions for CAS compared to no treatment (e.g. wait-list control group). A no-treatment comparison is arguably difficult to achieve in this field however, given the typically severe presentation of speech disorder and reticence of parents or clinicians (or both) to withhold treatment from children. Finally, RCTs are also needed on populations with CAS and co-occurring neurodevelopmental or medical disorders. Cochrane Reviews are often criticised in the SLP/SLT field because they do not allow consideration of lower levels of evidence, such as case studies or case series, which are more commonly performed in the field. Recognising these concerns we have provided a summary of the observational studies of CAS interventions excluded from this review (see Table 1), to encourage future, rigorous and controlled investigation of the efficacy of these methods. The lack of RCT intervention data in the CAS field to date is reinforced by challenges of: (1) the low incidence of the disorder; (2) the lack of a universally applied diagnostic classification system; (3) a lack of understanding of the aetiology of CAS; and (4) the challenge of designing trials for children with co-occurring clinical features (e.g. non-verbal cognitive impairment) or disorders (e.g. intellectual disability, autism spectrum disorder).

Overall completeness and applicability of evidence
We identified only one small RCT for inclusion in this review, indicating that there is an urgent need for further RCTs in this field. The interventions examined are currently in use and therefore results are applicable to clinical practice.
Quality of the evidence

We considered the overall quality of the evidence to be moderate using the GRADE approach; see Summary of findings for the main comparison. We downgraded the quality of the evidence by one level to moderate, due to imprecision, given that only one RCT was identified.

Potential biases in the review process

We carefully managed potential conflicts of interest, as described below under Contributions of authors and Declarations of interest. There is a possible risk of language bias given that we only included studies written in English.

Agreements and disagreements with other studies or reviews

There are no other systematic reviews examining only RCT and quasi-RCT evidence for efficacy of treatment for CAS.

AUTHORS’ CONCLUSIONS

Implications for practice

The present review concluded that there is only one RCT examining interventions for CAS in the literature to date, which requires replication. This study provides some evidence that the NDP-3 may improve the accuracy of production on treated items (words) and connected speech, but limited evidence that the NDP-3 improves speech production consistency or that the ReST improves accuracy of production on non-treated words. The study did not measure functional communication.

There are a range of further therapies reported in the literature (Table 1), but the effectiveness of these interventions has not been rigorously examined; that is, other existing studies involve case study or case-series investigations and not RCTs, limiting the ability to interpret and generalise findings to a broader population of children with CAS. At present the evidence supports the use of NDP-3 or ReST intervention programmes for children with idiopathic CAS, aged 4 to 12 years, without other co-occurring neurodevelopmental deficits. Further well-controlled studies investigating the effectiveness of other treatments for CAS are urgently needed. There is a substantial range of treatments available for CAS; however, these require comparison with each other and to a no treatment (e.g. wait-list control) group before their efficacy is rigorously demonstrated. Further trials are also needed that examine the efficacy of therapies for children with CAS with a range of co-occurring neurodevelopmental impairments or diagnoses.

Implications for research

There is a critical need for further rigorously controlled studies of treatment efficacy for CAS. Replication of the work by Murray 2015 is required. Further work should also rigorously examine other CAS treatments reported in the literature. RCTs and quasi-RCTs are difficult to conduct given the heterogeneity of presentation of individuals with CAS, and due to the low incidence of the disorder. However, the work of Murray 2015 shows RCTs are possible.

Future studies may also investigate further therapy implementation variables to increase our understanding of treatment response in this population, in particular considering dose, delivery, uptake and context, with examples given below.

1. Duration, dose, delivery, uptake and intensity of treatment (e.g. intervention once a week over 12 weeks or three sessions over five weeks)

2. Response of particular subgroups of participants to treatment (e.g. subgroups based on age, genetic diagnosis, specific speech symptomatology), or dependent upon similarity of co-occurring features (e.g. gross and fine motor or cognitive presentation)

3. Impact of timing of treatment (e.g. intervention at three years versus six years)

4. Effect of the administrator of treatment (e.g. clinician, parent, teacher’s aide or even participant-administered therapy for older children)

ACKNOWLEDGEMENTS

We are grateful to the current Cochrane Developmental, Psychosocial and Learning Problems group (CDPLPG: Joanne Wilson, Margaret Anderson and Geraldine Macdonald) for their support and guidance throughout the review process. Thank you also to the external reviewers. This work was supported by Victorian State Government Operational Infrastructure Support. The National Health and Medical Research Council (NHMRC) of Australia provided further support to Angela Morgan (AM) in the form of a Career Development Fellowship (#607315) and Practitioner Fellowship (#1105008). An NHMRC Centre of Research Excellence in Speech and Language Neurobiology grant was awarded to AM and Frederique Légeois (FL) (# 1116976), and an NHMRC Project grant was awarded to AM and FL (#1127144). FL’s research is supported by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London (UK).
References to studies included in this review

Murray 2015 [published data only]

Murray E. (Faculty of Health Sciences, The University of Sydney, Lidcombe, Australia). [personal communication]. Conversation with: A Morgan (Murdoch Children’s Research Institute, Melbourne, Australia) 13 August 2015.

References to studies excluded from this review

Baas 2008 [published data only]

Ballard 2010 [published data only]

Beathard 2008 [published data only]

Binger 2007 [published data only]

Binger 2008 [published data only]

Binger 2011 [published data only]

Bornman 2001 [published data only]

Bose 2001 [published data only]

Carter 2004 [published data only]

Chappell 1973 [published data only]

Culp 1989 [published data only]
Culp DM. Developmental apraxia and augmentative or alternative communication - a case example. *Augmentative and Alternative Communication* 1989;5(1):27–34. DOI: 10.1080/07434618912331274936

Cumley 1999 [published data only]

Dale 2013 [published data only]

Daly 1972 [published data only]
Dworkin 1988 [published data only]

Edeal 2011 [published data only]

Forrest 2001 [published data only]

Groenen 1996 [published data only]

Hadar 1984 [published data only]

Hall 1989 [published data only]

Hall 1990 [published data only]
Hall PK, Hardy JC, LaVelle WE. A child with signs of developmental apraxia of speech with whom a palatal lift prosthesis was used to manage palatal dysfunction. *Journal of Speech and Hearing Disorders* 1990;55(3):454–60. PUBMED: 2381187

Harris 1996 [published data only]

Hayden 2006 [published data only]

Head 1975 [published data only]

Helfrich-Miller 1994 [published data only]

Iuzzini 2010 [published data only]

Jaroma 1984 [published data only]

Kadis 2014 [published data only]

Katz 2006 [published data only]

King 2013 [published data only]

Kingston 1987 [published data only]

Klick 1985 [published data only]

Krauss 1982 [published data only]

Lagasse 2012 [published data only]
Lozano 1978 [published data only]

Lüke 2016 [published data only]

Lundeborg 2007 [published data only]

Maas 2012a [published data only]

Maas 2012b [published data only]

Martikainen 2011 [published data only]

Martin 2016 [published data only]

McCabe 2014 [published data only]

McNeill 2009a [published data only]

McNeill 2009b [published data only]

McNeill 2010 [published data only]

Morgan Barry 1995 [published data only]

Moriarty 2006 [published data only]

Namasivayam 2013 [published data only]

Namasivayam 2015 [published data only]

Preston 2013 [published data only]

Preston 2016 [published data only]

Preston 2017 [published data only]
Preston JL, Leece MC, Maas E. Motor-based treatment with and without ultrasound feedback for residual speech sound errors. *International Journal of Language and Communication Disorders* 2017;52(1):80–94. DOI:
Interventions for childhood apraxia of speech (Review)

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

10.1111/1460-6984.12259; PMCS156595; PUBMED: 27296780

Ray 2003 [published data only]

Richardson 2004 [published data only]

Rosenbek 1974 [published data only]

Rosenthal 1994 [published data only]

Skelton 2014 [published data only]

Square 1994 [published data only]

Stokes 2010 [published data only]

Strand 2000 [published data only]

Strand 2006 [published data only]

Thomas 2014 [published data only]
Thomas DC, McCabe P, Ballard KJ. Rapid Syllable Transitions (ReST) treatment for childhood apraxia of speech: the effect of lower dose-frequency. *Journal of Communication Disorders* 2014;51:29–42. DOI: 10.1016/j.jcomdis.2014.06.004; PUBMED: 25052390

Thomas 2016 [published data only]

Tierney 2016 [published data only]

Vashti 2013 [published data only]

Velleman 1994 [published data only]

Yoss 1974 [published data only]

Zaretsky 2010 [published data only]

Additional references

ASHA 2007

Chumpelik 1984
Crosbie 2005

Davis 2005

Delaney 2004

Dodd 2006

Dodd 2008

Eadie 2015

Egger 1997

Eising 2018

Fedorenko 2016

Gillon 2000

Goldman 2000

Gozzard 2004

GRADEpro GDT 2015 [Computer program]
McMaster University (developed by Evidence Prime). GRADEpro GDT. Version accessed prior to 30 April 2018. Hamilton (ON): McMaster University (developed by Evidence Prime), 2015.

Higgins 2011a

Higgins 2011b

Jacks 2006

Lai 2001

Liégeois 2012

Liégeois 2014

Liégeois 2016
Interventions for childhood apraxia of speech (Review)

Murray 2012

Peter 2017

RCSLT 2011

Review Manager 2014 [Computer program]

Schnüemann 2017

Shriberg 2010

Shriberg 2011

Turner 2015

Vargha-Khadem 2005
Vargha-Khadem F, Gadian DG, Copp A, Mishkin M. FOXP2 and the neuroanatomy of speech and language.
Nature Reviews: Neuroscience 2005;6(2):131–8. DOI: 10.1038/nrn1605; PUBMED: 15685218

Velleman 2011

White 2010

Williams 2004

Williams 2010

Yoss 1975

References to other published versions of this review

Morgan 2006

Morgan 2008

* Indicates the major publication for the study
Characteristics of included studies [ordered by study ID]

Murray 2015

Methods
Parallel-group randomised controlled trial

Participants
Sample size: 26 children
Dropouts/withdrawals: 1 child in the NDP-3 group dropped out mid-treatment yet was included in the analysis using intention-to-treat analysis
Sex: 18 males, 8 females
Mean age: 5 years and 6 months (SD = 25 months)
Inclusion criteria
1. Clinical diagnosis of confirmed CAS, specified as having all 3 features of the ASHA 2007 consensus-based position paper, and at least 4 out of 10 features from the 'Strand' checklist (Shriberg 2010)
2. Aged between 4 and 12 years at time of treatment
3. Standard score of ≧ 85 for receptive language of CELF-IV or CELF-P2
4. Normal or adjusted-to-normal hearing and vision
5. Child and at least 1 parent being native Australian-English speakers
6. No other diagnosed developmental or genetic disorders (e.g. dysarthria, autism or intellectual disability)
No information was collected on race, ethnicity or socioeconomic status

Interventions
Process
Participants were randomly assigned to 1 of the 2 treatments: ReST or NDP-3. Concealed allocation was revealed after baseline assessment was completed. No significant differences between groups for any baseline variables (age, sex, primary or secondary outcome measures or CAS severity). Dose was controlled. Treatment was delivered for both ReST and NDP-3 over 12 x 1-hour sessions, scheduled 4 days/week for 3 weeks in school vacation time in January 2011 and January 2012, with a maximum of 10 participants per block. Treatments were provided as per intervention manuals and published protocol (Murray 2012). ReST sessions had an average of 100.4 production trials (SD = 0.9) and NDP-3 had an average of 101.3 (SD = 1.2), with no significant difference in number of production trials between groups. Therapy was provided by student SLPs under the supervision of Murray and McCabe. Several days of training were provided for both treatments and in transcription and data collection until reaching inter-rater reliability > 85%. Further detail on each treatment is provided below

1. ReST: this treatment is based on principles of motor learning. There were 3 goal levels within the treatment: (1) 2-syllable C1V1C2V2 (e.g. bagu or fabi), (2) 3-syllable C1V1C2V2C3V3 (e.g. bagutu or fabitu), (3) 3-syllable pseudo words as final nouns within carrier phrases (e.g. “Can I have a bagutu?”). Children were required to practise production of 20 pseudo words, with a goal of 80% accuracy of production in perceptually rated articulation, coarticulation and prosody over 2 consecutive sessions before stepping up to the next goal level. The child’s initial goal level was selected dependent upon initial diagnostic testing prior to the pre-treatment experimental probe. Consonants in the stimuli were individually selected for each child to ensure all target sounds were at least 10% stimulable and were maximally different fricative and plosive sounds (e.g. /bl/, /fl/, /tl/, /g/), again based on pre-treatment data. Stimuli were
designed so that half had a strong weak pattern and the remainder a weak strong pattern, with the third syllable being either strong (using "ee" (/i/)) or weak (using "er", the Australian schwa). All pseudo words had a high phonotactic probability and were orthographically biased. Sessions consisted of pre-practice and practice components. In pre-practice, which lasted 10 to 15 minutes, the clinician aimed to elicit at least 5 correct productions of any of the 20 stimuli using imitation, phonetic placement cues, tapping of stress pattern, segmenting and blending and prosodic cues in addition to 'knowledge of performance' feedback after each production. In practice, which lasted around 50 minutes, the participant worked toward the goal of 80% accuracy with no cues given across 100 trials. Trials were delivered in 5 blocks of 1 trial of each of the 20 treated stimuli, presented in random order. 'Knowledge of results' feedback was provided 50% of the time on a decreasing scale (i.e. on 9 of the first 10 trials, down to only 1 of the final 10 trials). See Murray 2012 and Murray 2015 for further detail.

NDP-3
The NDP-3 intervention was conducted as described in the manual (Williams 2004) and subsequent publication (Williams 2010). Treatment goals targeted unknown segments as single sounds or syllable shapes using known sounds. Each goal was targeted during a game-based activity, treated in a separate block of 18 minutes and was associated with 5 individualised stimuli. Children were required to achieve 90% accuracy for each target stimulus before moving on to different stimuli within the same goal. Verbal instructions, modelling and articulation, and visual tactile cues were provided as needed. 'Knowledge of results' and 'knowledge of performance' feedback was provided 100% (i.e. after every production attempt). If the production was correct, the child was then asked to repeat the response a further 3 times, again with immediate knowledge of results and knowledge of performance feedback by the clinician.

Outcomes

<table>
<thead>
<tr>
<th>Timing of outcome assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome assessments were conducted prior to treatment and within 1 week, 1 month and 4 months post-treatment. No therapy was reported between study onset and 1 month post-treatment yet over half the cohort resumed community SLP services between 1 and 4 months post-treatment (ReST = 9, NDP-3 = 9).</td>
</tr>
</tbody>
</table>

Primary outcomes
The primary outcomes included:
1. treatment gains;
2. maintenance of treatment gains; and
3. expected response generalisation to untreated real words and pseudo words using experimental probe items at the child’s individualised generalisation level.

Outcomes were measured based on a 292-item experimental probe of treated and untreated stimuli. 162 items from NDP-3 assessment and 80 pseudo words from ReST treatment, and an additional 50 untreated 1-, 2- and 3-syllable real word stimuli were used to test for generalisation of treatment effects in both groups. The probe assessed impairment level speech outcomes for simultaneous accuracy for articulation and prosody. For further detail on scoring, see Murray 2015.

Secondary outcomes
A number of secondary measures of generalization were made to further explore potential differences in the treatments’ effects
1. Imitated word accuracy in untreated connected speech of at least 3 words (as per...
NDP-3 manual; Williams 2004, p 143)
2. DEAP (Dodd 2006) inconsistency subtest
3. Single Word Test of Polysyllables (Gozzard 2004) (only administered at pre-
treatment and 1-month post-treatment)
4. GFTA-2 (Goldman 2000) was administered at pre-treatment and 1-month post-
treatment to document changes in segmental accuracy using per cent phonemes correct
(PPC), per cent vowels correct (PVC), per cent consonants correct (PCC) as well as per
cent lexical stress (prosodic) matches for untreated single words in these clinically
available assessments. For further detail on scoring, fidelity, reliability and recording,
see Murray 2015

Comparisons
3 comparisons for each primary and secondary outcome measure were conducted
1. Pre-treatment compared with 1 week post-treatment to assess acquisition of
treatment and generalization effects
2. 1 week versus 1 month post-treatment to assess short-term maintenance of these
effects
3. 1 week versus 4 month post-treatment to test longer-term maintenance with
exception of the Single Word Test of Polysyllables (Gozzard 2004) and GFTA-2
(Goldman 2000), which were only administered pre-treatment and 1 month post-
treatment

Notes
Funding
Douglas and Lola Douglas Scholarship on Child and Adolescent Health; Speech Pathol-
ogy Australia funded Nadia Verrall Memorial 2010 and Postgraduate Student Scholar-
ship, James Kentley Memorial Scholarship, Postgraduate Research Support Schemes and
Faculty of Health Sciences; University of Sydney International Development Program
Fund; and Australian Research Council Future Fellowship

Conflicts of interest: none known

Study start date: January 2010
Study end date: July 2012

<table>
<thead>
<tr>
<th>Bias</th>
<th>Authors' judgement</th>
<th>Support for judgement</th>
</tr>
</thead>
</table>
| Random sequence generation (selection bias) | Low risk | Clarification was sought from the cor-
responding author by phone who con-
irmed that each envelope had a note within it specifying the treatment condition to which the child was allocated (Murray 2015). The authors could not see through the envelopes. Envelopes were placed in a container and an independent person (cor-
responding author's husband) not involved in the study selected an envelope that was then given a participant number (P1, P2, etc.) until all participants were allocated to an arm of the study. Allocation was not re-
vealed until after the pre-treatment evalua-
Murray 2015 (Continued)

<table>
<thead>
<tr>
<th>Bias Type</th>
<th>Risk</th>
<th>Clarification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation concealment (selection bias)</td>
<td>Low risk</td>
<td>Clarification was sought from corresponding author (Murray 2015), who confirmed via email that envelopes were sequentially numbered based on the random order in which they were selected from a container (i.e. randomised and not based on any identifying variable)</td>
</tr>
<tr>
<td>Blinding of participants and personnel (performance bias)</td>
<td>Low risk</td>
<td>SLP could not be blinded to type of intervention</td>
</tr>
<tr>
<td>Blinding of outcome assessment (detection bias)</td>
<td>Low risk</td>
<td>Blinded, independent assessors</td>
</tr>
<tr>
<td>Incomplete outcome data (attrition bias)</td>
<td>Low risk</td>
<td>No attrition</td>
</tr>
<tr>
<td>Selective reporting (reporting bias)</td>
<td>Low risk</td>
<td>All outcome measures reported in the original protocol, Murray 2012, were reported. A lexical stress measure was added in final outcome ratings but not mentioned in protocol but this was an addition and not a failure to report</td>
</tr>
</tbody>
</table>
| Other bias | Unclear risk | 1. Maintenance findings. Some children resumed their usual therapy in the 4-month period to maintenance assessment. Whilst the number of children resuming usual treatment was similar between both groups, this variable may have led to increased maintenance results across both treatments
2. No control group without intervention (i.e. no wait-list control group)
3. Pre- and post-treatment assessors Qualified SLPs who had not seen the children previously conducted the 1 week, 1 month and 4 month post-assessments. In some cases, final-year undergraduate SLP students (4th-year students) conducted post-assessments. The same SLP or student SLP must not have seen/rated the children before. One researcher performed all of the pre-assessments, including probes, before allocation was revealed |
Characteristics of excluded studies
ordered by study ID

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baas 2008</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Ballard 2010</td>
<td>Not RCT or quasi-RCT</td>
</tr>
<tr>
<td>Beathard 2008</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Binger 2007</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Binger 2008</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Binger 2011</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Bornman 2001</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Bose 2001</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Carter 2004</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Chappell 1973</td>
<td>No experimental treatment data included in study</td>
</tr>
<tr>
<td>Culp 1989</td>
<td>Not RCT or quasi-RCT (single case [ABA] design)</td>
</tr>
<tr>
<td>Cumley 1999</td>
<td>Not RCT or quasi-RCT (case series)</td>
</tr>
<tr>
<td>Dale 2013</td>
<td>Not RCT or quasi-RCT (case series)</td>
</tr>
<tr>
<td>Daly 1972</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Dworkin 1988</td>
<td>Study examined adult participant with AAOS</td>
</tr>
<tr>
<td>Edeal 2011</td>
<td>Not RCT or quasi-RCT</td>
</tr>
<tr>
<td>Forrest 2001</td>
<td>Study focuses on children with speech disorder, not specifically DAS. No experimental treatment data included in study</td>
</tr>
<tr>
<td>Groenen 1996</td>
<td>No experimental treatment data included in study</td>
</tr>
<tr>
<td>Reference</td>
<td>Study Characteristics</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Hadar 1984</td>
<td>Study examined adult participant with AAOS</td>
</tr>
<tr>
<td>Hall 1989</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Hall 1990</td>
<td>Not RCT or quasi-RCT (longitudinal case study)</td>
</tr>
<tr>
<td>Harris 1996</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Hayden 2006</td>
<td>Study uses a hypothetical treatment case only. No experimental treatment data</td>
</tr>
<tr>
<td>Head 1975</td>
<td>Study focuses on intervention for a group of participants with a range of speech disorders without dissociating between participants with subtypes of speech disorders. Does not report treatment efficacy specific to participants with DAS</td>
</tr>
<tr>
<td>Helfrich-Miller 1994</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Iuzzini 2010</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Jaroma 1984</td>
<td>Study does not specify whether child has diagnosis of DAS or only some features of dyspraxia</td>
</tr>
<tr>
<td>Kadis 2014</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Katz 2006</td>
<td>Study examined adult participants with AAOS</td>
</tr>
<tr>
<td>King 2013</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Kingston 1987</td>
<td>Study focused on articulation disorders, not specifically DAS</td>
</tr>
<tr>
<td>Klick 1985</td>
<td>No experimental treatment data included in study</td>
</tr>
<tr>
<td>Krauss 1982</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Lagasse 2012</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Lozano 1978</td>
<td>Study examined adult participant with AAOS</td>
</tr>
<tr>
<td>Lundeborg 2007</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Lüke 2016</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Maas 2012a</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Maas 2012b</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Martikainen 2011</td>
<td>Not RCT or quasi-RCT</td>
</tr>
<tr>
<td>Author</td>
<td>Design Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Martin 2016</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>McCabe 2014</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>McNeill 2009a</td>
<td>Not RCT or quasi-RCT (case series)</td>
</tr>
<tr>
<td>McNeill 2009b</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>McNeill 2010</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Morgan Barry 1995</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Moriarty 2006</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Namasiyavam 2013</td>
<td>Not RCT or quasi-RCT (case study series)</td>
</tr>
<tr>
<td>Namasiyavam 2015</td>
<td>Not RCT or quasi-RCT (pre-post group design)</td>
</tr>
<tr>
<td>Preston 2013</td>
<td>Not RCT or quasi-RCT</td>
</tr>
<tr>
<td>Preston 2016</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Preston 2017</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Ray 2003</td>
<td>Study examined adult participant with AAOS</td>
</tr>
<tr>
<td>Richardson 2004</td>
<td>Study focus on motor dyspraxia or developmental coordination disorder not apraxia of speech</td>
</tr>
<tr>
<td>Rosenbek 1974</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Rosenthal 1994</td>
<td>Study combined a number of treatment methods and grouped individuals. Could not determine individual participant outcomes related to specific treatment methods</td>
</tr>
<tr>
<td>Skelton 2014</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Square 1994</td>
<td>No experimental treatment data included in study</td>
</tr>
<tr>
<td>Stokes 2010</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Strand 2000</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Strand 2006</td>
<td>Not RCT or quasi-RCT (case series)</td>
</tr>
<tr>
<td>Thomas 2014</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Thomas 2016</td>
<td>Not RCT or quasi-RCT (case study)</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Baas 2008</td>
<td>1 male aged 12.8 years with CAS and charge syndrome</td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of participants</th>
<th>Design</th>
<th>Interventions</th>
<th>Outcomes</th>
<th>Baseline data</th>
<th>Follow-up data</th>
<th>Other notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballard 2010</td>
<td>3 siblings (2 males, 1 female) aged 7.8 and 10 years with CAS</td>
<td>Not quasi-/RCT (Single subject multiple baseline design across behaviours and participants)</td>
<td>Rapid Syllable Transition Treatment (ReST)</td>
<td>60-minute sessions (100-120 trials per session), 4 × per week for 12 sessions. Home practice not reported</td>
<td>Reading aloud: 10 treated and 10 non-treated non-word strings; real word generalisation data; perceptual analysis of prosodic pattern and acoustic analysis using pairwise variability index</td>
<td>3/3 had significant gains in treated items and generalisation to same level of treated complexity. 2/3 generalised to lower and higher complexity non-word items. Minimal generalisation to real words</td>
<td>Baseline data taken at beginning of every 4th session and at 4 weeks post-treatment</td>
</tr>
<tr>
<td>Beathard 2008</td>
<td>1 female aged 3 years with CAS</td>
<td>Not quasi-/RCT (Case description)</td>
<td>Music therapy</td>
<td>Other (alternative interventions)</td>
<td>30-minute sessions over 9 months. 24 sessions in total</td>
<td>Descriptive data only</td>
<td>Commenced non-verbal. At end, had 11 phonemes in inventory</td>
</tr>
</tbody>
</table>
| Binger 2007 | 2 males aged 4.2 and 4.4 years with CAS and language disorder | Not quasi-RCT (Single case multiple baseline across participants) | Aided AAC Modeling | Augmentative and alternative communication | 15-minute sessions, 1 to 3 × per week for 10 to 15 sessions | Frequency of use of multi-symbol messages in play scenarios | Significantly more frequent use of multi-symbol messages using aided AAC as well as different types of messages. Maintained and generalised gains. Increased participation | Baseline × 3, every 2nd treatment session, and at 2, 4 and 8 weeks post-treatment | CAS diagnosis unclear and not replicable. Limited outcome measures. No blinding of assessors. No response generalisation data taken (only stimulus generalisation) |}

Table 1. Excluded, low-quality evidence from observational studies (case-series, case control)
(Continued)
<table>
<thead>
<tr>
<th>Binger 2008</th>
<th>1 female (Latino) aged 3.4 years with CAS and suspected velocardiofacial syndrome</th>
<th>Not quasi-/RCT (Single case multiple baseline across participants)</th>
<th>Aided AAC Modeling</th>
<th>Augmentative and alternative communication</th>
<th>10-minute sessions, 1 to 3 × per week for 10 to 15 sessions</th>
<th>Frequency of use of multi-symbol messages in play scenarios</th>
<th>Significantly more frequent use of multi-symbol messages using aided AAC. Parental response to training excellent. Maintained and generalised gains</th>
<th>Baseline × 3, every 2nd treatment session, and at 2, 4 and 8 weeks post-treatment</th>
<th>CAS diagnosis unclear and not replicable. No blinding of assessors. No response generalisation data taken (only stimulus generalisation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binger 2011</td>
<td>1 female aged 6 years with CAS and language disorder</td>
<td>Not quasi-/RCT (Single case multiple baseline across behaviours)</td>
<td>Aided AAC Modeling</td>
<td>Augmentative and alternative communication</td>
<td>15-minute sessions, 1 to 3 × per week for 10 to 15 sessions</td>
<td>Frequency of use of grammatical morphemes</td>
<td>Significantly more frequent use of grammatical morphemes using aided AAC. 2nd intervention period needed for 2/3 targets. Maintained gains</td>
<td>Baseline × 3, every treatment session, and 2, 4 and 8 weeks post-treatment</td>
<td>CAS diagnosis unclear and not replicable. No blinding of assessors. No response generalisation data taken (only stimulus generalisation)</td>
</tr>
<tr>
<td>Bornman 2001</td>
<td>1 male aged 6.6 years with CAS, hemiplegia and seizures</td>
<td>Not quasi-/RCT (Single case (ABA) design)</td>
<td>Voice output devices (Macaw)</td>
<td>Augmentative and alternative communication</td>
<td>60-minute sessions for 2 sessions (training). Home practice focus</td>
<td>Frequency of appropriate responses to questions in structured discourse</td>
<td>Mother provided greater frequency and type of questions. Frequency of appropriate responses in- 2 × baseline, 2 × practice period, 1 × post-treatment, and 4 weeks post-treatment</td>
<td>Lack of experimental control, multiple baselines or control data. CAS diagnosis unclear</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Study Design</th>
<th>Outcome Measures</th>
<th>Intervention Details</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter 2004</td>
<td>1 male and 1 female aged 12 and 8 years respectively diagnosed with CAS. Additional 8 children (7 males) aged 4 to 7 years with persistent articulation errors</td>
<td>Not quasi/RCT (Case series - single group study)</td>
<td>Electropalatography (EPG) on /t, d, k, g, s, z/</td>
<td>Motor</td>
<td>30-minute sessions, 1 × per week for 10 weeks</td>
<td>Per cent consonants correct (PCC) and Probe Scoring System (PSS) on probe of 43 words</td>
</tr>
<tr>
<td>Culp 1989</td>
<td>1 female aged 8 years with CAS and intellectual disability</td>
<td>Not quasi/RCT (Single case (ABA) design)</td>
<td>Partners in Augmentative Communication Training (PACT)</td>
<td>Augmentative and alternative communication</td>
<td>30 to 90-minute sessions daily after 3 days of intensive training. Home</td>
<td>Ratio of parent vs participant messages; ratio of successful/intelligible</td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

| Cumley 1999 | 2 females and 1 male aged 3.4, 8 and 12.9 years respectively, with CAS (2 with intellectual disability and 1 with submucous cleft) | Not quasi-RCT (3 case studies/reports) | Combined communication boards and voice output devices | Augmentative and alternative communication | 3.4-year-old: 2 to 3 x per week for 12 weeks 8-year-old: daily for 6 months 12-year-old: not reported | 3.4-year-old: MLU, 8-year-old: assessment of phonological processes; communication repairs 12-year-old: description of functional communication | 3.4-year-old: minimal speech improvement, MLU increased to WNL 8-year old: no change in speech, parent report of greater communication repairs, and less frustration 12-year old: supplemented natural speech | Pre-assessment and treatment descriptions | Lack of experimental control, multiple baselines or control data. CAS diagnosis unclear and not replicable. No statistical analysis. Limited outcome measures. No blinding of assessors. No immediate post-treatment data or generalisation data. No replication across participants |

| | | | | | | | | | |
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Prompts</th>
<th>Motor</th>
<th>Intervention Details</th>
<th>Outcomes</th>
<th>Generalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dale 2013</td>
<td>3 males and 1 female aged 3.6 to 6 years diagnosed with CAS</td>
<td>Not quasi-RCT (Single subject (ABB or ABC) design)</td>
<td>Prompts for Restructuring Oral Muscular Phonetic Targets (PROMPT) - full programme (FP) for 8 weeks versus PROMPT without tactile–kinesthetic–proprioceptive cueing for 4 weeks and FP for 4 weeks</td>
<td>50-minute session, 2 x per week for 8 weeks</td>
<td>Trained words on probe, untrained words. Pre-post testing on the DEAP, TOCS+, VMPAC focal motor and sequencing subtests and Vineland socialization scales</td>
<td>2/4 improved on DEAP: 4/4 improved on TOCS+, VMPAC subtests and Vineland. All 4 showed greater improvement on easier targets and majority maintained to 3 months post-treatment. Generalisation to untrained items noted</td>
<td>Probe words: baseline x 3, treatment x 4, post-treatment, and 3 months post-treatment</td>
</tr>
<tr>
<td>Conditions</td>
<td>Intervention</td>
<td>Motor</td>
<td>Probe Data</td>
<td>Large Effect Sizes</td>
<td>Baseline × 3, Each Treatment Session, and 1 Probe Post-treatment</td>
<td>Lack of Experimental Control, Multiple Baselines or Control Data. No Long-term Follow-up Data. No Blinding of Assessors. Accuracy Based on If Target Phoneme Was Correct (Including Cognate Pair Substitution) Not If Whole Word Was Correct</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Not quasi-RCT (Single case (AB) design)</td>
<td>Integral Stimulation (Dynamic Temporal and Tactile Cueing)</td>
<td>Motor</td>
<td>Probed Data on Targeted Phonemes (Articulation) in Words for Each Participant. 1 Phoneme Targeted with High Production Frequency = 100 Trials and Another with Moderate Production Frequency = 60 Trials. Articulation and Language Sample Taken at 2 Weeks Post-treatment</td>
<td>Large Effect Sizes for High Production Frequency and Moderate for Moderate Production Frequency. Improvement in PCC and Phoneme Inventory Post-treatment. Some Generalisation</td>
<td>Baseline × 3, Each Treatment Session, and 1 Probe Post-treatment</td>
<td>Lack of Experimental Control, Multiple Baselines or Control Data. No Long-term Follow-up Data. No Blinding of Assessors. Accuracy Based on If Target Phoneme Was Correct (Including Cognate Pair Substitution) Not If Whole Word Was Correct</td>
<td></td>
</tr>
<tr>
<td>Edeal 2011</td>
<td>2 males aged 6.2 and 3.4 years with CAS (1 case with repaired cleft lip and palate and language disorder)</td>
<td>40-minute Sessions (15 minutes each condition plus probes). 1 case: 3 × per week for 11 weeks. 1 case: 2 × per week for 5 weeks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hall 1989</td>
<td>1 female aged 9 years with mild CAS (followed until 12 years)</td>
<td>Articulation therapy, motor-programming remedial model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Intervention</th>
<th>Measures</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris 1996</td>
<td>1 male aged 5 years with CAS and language disorder</td>
<td>Not quasi-RCT (Multiple baseline across discourse contexts)</td>
<td>Augmentative and alternative communication</td>
<td>4-minute sessions, 2 × per week for 22 sessions over 4 months</td>
<td>Improvement in both contexts but more so in book reading than discourse. Some generalisation</td>
</tr>
<tr>
<td>Helfrich-Miller 1994</td>
<td>3 children (2 males, 1 female) aged 2.9 to 8 years with</td>
<td>Melodic Intonation therapy (MIT)</td>
<td>Varied. 37 to 71 sessions</td>
<td>Child 1: all consonants in inventory. Child 2: Pre- and post-treatment</td>
<td>No experimental control. Lack of information</td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design/Methods</th>
<th>Lingui-stic and Motor</th>
<th>Interventions and Measures</th>
<th>Results and Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iuzzini 2010</td>
<td>4 children (2 males, 2 females) aged 3.7 to 6.10 years with CAS</td>
<td>Not quasi / RCT (Single case design)</td>
<td>Stimulabil-ity (STP) and modified Core Vocabu-lary (mCVT) used concurrently</td>
<td>55-minute sessions (10 minutes STP, 45 minutes mCVT), 2 x per week for 20 sessions. No home practice</td>
<td>Per cent phonemes correct, phonetic inventory and inconsistency increased on average 20% after combined therapy (range 9% to 32%). Inventory gained 5 phones on average (range 1 to 10). 3/4 had greater consistency on CSIP and ISP after therapy; 1 had greater inconsistency. PCC inventory increased on average 20% after combined therapy (range 9% to 32%). Inventory gained 5 phones on average (range 1 to 10). 3/4 had greater consistency on CSIP and ISP after therapy; 1 had greater inconsistency.</td>
</tr>
</tbody>
</table>
| Jaroma 1984 | 1 male aged 5.5 years with CAS | Not quasi / Sensory integrative | Motor | Daily sessions for 2 (SP only) Illi-test not completed | Poor experimental control as stable baseline not established, lack of control data. CAS diagnosis unclear and not replicable. No statistical analysis. No blinding of assessors. No immediate post-treatment data or generalisation data | Lack of experimen-
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control)

<table>
<thead>
<tr>
<th>Study</th>
<th>14 children (9 males, 5 females) aged 3 to 6 years with diagnosed CAS (compared to 14 age-matched controls)</th>
<th>Not quasi-RCT (Case series pre-post design)</th>
<th>Prompts for Restructuring Oral Muscular Phonetic Targets (PROMPT)</th>
<th>Motor</th>
<th>2 × per week for 8 weeks (16 sessions in total)</th>
<th>GFTA2, HCAPP, VMPAC, MRI</th>
<th>Significant gains as a group for all speech measures</th>
<th>1-week pre-treatment (baseline), 1-week post-treatment</th>
<th>CAS diagnosis unclear and not replicable. Age-matched control group older than CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadis 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Intervention</th>
<th>Treatment Details</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>King 2013</td>
<td>3 males aged 4.1, 5.8 and 8.6 years diagnosed with CAS, 1 of the 3 diagnosed with Opitz FG syndrome and another with PDD-NOS</td>
<td>Not quasi-RCT (Single subject multiple baseline across participants design)</td>
<td>Integrated Multimodal Intervention (structured book reading, drill and play activities with AAC devices present and speech encouraged)</td>
<td>Augmentative and alternative communication 1-hour sessions, 2 × per week for 3 to 6 weeks</td>
<td>Category (e.g. vocalisation, AAC or both), type of word and accuracy targets Case 1: final consonants. Case 2: initial /s/ clusters then /θ/. Case 3: initial /s/ clusters</td>
</tr>
<tr>
<td>Klick 1985</td>
<td>1 female aged 5.6 years with CAS</td>
<td>Not quasi-RCT (Case description)</td>
<td>Adapted Cueing Technique</td>
<td>Motor</td>
<td>30 minutes of therapy per day for 6 months</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Interventions</td>
<td>Frequency</td>
<td>Outcomes</td>
<td>Notes</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Krauss 1982</td>
<td>2 males aged 5 and 6 years diagnosed with CAS</td>
<td>Concurrent Melodic Intonation Therapy (MIT) and traditional therapy (20% and 80% of sessions respectively)</td>
<td>2 × per week over 2-month period</td>
<td>Pre- and post-treatment gains on word-morpheme usage, auditory comprehension, naming, describing function, sentence completion, imitation of word phrases and articulation. Tested using language</td>
<td>Lack of experimental control, multiple baselines or control data. CAS diagnosis unclear and not replicable. No blindi ng of assessors. No follow-up or generalisation data. No replication across participants</td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Intervention</th>
<th>Study Details</th>
<th>Sample Size</th>
<th>Outcome Measures</th>
<th>Findings</th>
<th>Methodological Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagasse 2012</td>
<td>2 males aged 5 and 6 years with suspected CAS</td>
<td>Melodic Intonation Therapy (MIT) compared to ‘traditional speech-language therapy’</td>
<td>Ongoing 1 × per week speech therapy (traditional articulation sessions) and 40-minute MIT music sessions over 4 weeks (both treatments concurrent)</td>
<td>GFTA2; KLPA2 and speech production on stimulable sounds in 1- or 2-syllable words</td>
<td>Case 1 made greater gains in MIT sessions (but only 2% gain). Case 2 made greater gains on traditional articulation therapy (15% gain)</td>
<td>Pre- and post-treatment</td>
<td>Lack of experimental control, multiple baselines or control data. CAS diagnosis unclear and not replicable. No statistical analysis. Limited outcome measures. No blinding of assessors. No follow-up or generalisation data.</td>
</tr>
<tr>
<td>Lüke 2016</td>
<td>1 German-speaking male aged 2.7 years with severe CAS</td>
<td>SpeechGenerating Devices - fixed display (Gotalk 20+) and dynamic display (DynaVox V)</td>
<td>45-minute sessions × 50 treatment sessions. Treatment sessions 2 to 28 days apart</td>
<td>Means of communication (oral versus SGD), intelligibility of speech productions, consistency of speech productions, lex-</td>
<td>Significantly more communication initially with SGD than speech; significant increase in speech intelligibil-</td>
<td>Baseline × 3, every 2nd treatment session, and 2, 4 and 8 weeks post-treatment</td>
<td>Lack of baseline data for consistency. CAS diagnosis unclear and not replicable. No blinding of assessors. No</td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Intervention</th>
<th>Primary Outcomes</th>
<th>Methodological Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lundeborg 2007</td>
<td>1 female aged 5.1 years with CAS</td>
<td>Not quasi / RCT (Single case cross-over design)</td>
<td>Intraoral stimulation and electropalatography</td>
<td>25-minute sessions (5 minutes intraoral stim, 20 minutes EPG); daily at home, total of 195 sessions in 12 months</td>
<td>Per cent consonants correct, per cent phonemes correct, per cent words correct, intelligibility, visual deviancy</td>
</tr>
<tr>
<td>Maas 2012a</td>
<td>4 children (2 males, 2 females) aged 5.4 to 8.4 years with CAS (2 also with dysarthria and a third with language disorder); 3 also in Maas</td>
<td>Not quasi / RCT (Single case alternating treatments design with multiple baselines across behaviours over 2 phases)</td>
<td>Dynamic Temporal and Tactile Cueing (high versus moderate feedback frequency in cross-over design)</td>
<td>50-minute sessions 3 × per week for 3 participants but 1 had 60-minute sessions 2 × per week</td>
<td>Per cent accuracy on 2-point scale of segmental and suprasegmental aspects of target words and phrases with 2 words</td>
</tr>
</tbody>
</table>
| Maas 2012b | 4 children (2 males and 2 females) aged 5.0 to 7.9 years with CAS. 2 cases had additional dysarthria diagnoses 1 other case had multiple co-occurring disorders | Not quasi-/RCT (Single case alternating treatments design with multiple baselines across behaviours over 2 phases) | Dynamic Temporal and Tactile Cueing (random versus blocked practice compared in cross-over design) | Motor | 2 × 4 week blocks of therapy | Per cent accuracy on 2-point scale of segmental and suprasegmental aspects of entire target words and phrases with 2 words | 3/4 responded to both conditions. 2 responded relatively better to blocked practice, 1 to random practice, and 1 to no condition. 2/4 demonstrated generalization | Weekly probes: 3 to 4 × baseline, 4 × treatment. Phase 1: 4 to 5 × withdrawal, 4 × treatment. Phase 2: 2 × withdrawal and 1 month post-treatment | Effect sizes used not interpretable or comparable to others. Different doses across all participants. Treatment fidelity < 80%. No stimulus generalisation measures | Small sample size with heterogeneity. Cross-over conditions made comparison difficult regarding targets chosen. No control group. Effect sizes used not interpretable or comparable to others. Treatment fidelity < 80%. No stimulus generalisation measures |}

Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Methodology</th>
<th>Treatment Duration</th>
<th>Outcome Measures</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martikainen 2011</td>
<td>1 female aged 4.7 years with CAS</td>
<td>Case series</td>
<td>Not quasi-RCT (Multiple baseline across behaviours - cross-over treatment design)</td>
<td>Combined Melodic Intonation Therapy (MIT) and Touch Cue Method (TCM)</td>
<td>Motor and linguistic 3 sessions for 6 weeks for 18 sessions for MIT. 6 weeks no therapy. 3 sessions for 6 weeks for 18 sessions for TCM</td>
<td>Articulation accuracy: PVC, PCC. Also, overall word accuracy scores: PMLU, PWP, PWC. All calculated from responses to 46 picture cards. 1/5 measures significant post-MIT (percent vowels correct). Per cent consonants correct also reduced 3/5 significant post-TCM (PVC, PCC, PMLU). PVC, PCC, and PMLU maintained. Greater changes for both therapies after withdrawal. PVC and PMLU only significant after MIT withdrawn.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Methodology</th>
<th>Treatment Duration</th>
<th>Outcome Measures</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin 2016</td>
<td>12 children (sex unknown) aged 3 to 10 years with CAS (11 with co-occurring conditions)</td>
<td>Case series (pre and post design)</td>
<td>DuBard Association Method®</td>
<td>Motor</td>
<td>Daily in small groups in a school programme for an 11-month period</td>
<td>Articulation, mean length of utterance (MLU), and intelligibility on Arizona Articulation Proficiency Scale</td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Measures</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCabe 2014</td>
<td>4 males aged 5.5 to 8.6 years with CAS. 2 children had additional auditory processing impairments</td>
<td>Rapid Sylable Transition Treatment (ReST)</td>
<td>Articulation, prosodic and simultaneous articulation and prosodic accuracy on trained and untrained probe pseudo words; PCC, PVC and percent lexical stress matches from connected speech; PPVT-4 as control</td>
<td>All 4 participants increased perceptual accuracy. 1/4 participants showed change in untreated items. All participants showed change in prosody (average prosody gain 58%, 3/4 in PVC and 2/4 in PCC; average gain 79%)</td>
</tr>
</tbody>
</table>

There was no immediate post-treatment data taken to determine treatment effects, the follow-up data was 1 month post-treatment and included a withdrawal phase. There was no statistical analysis of connected speech.
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<p>| McNeill 2009a | 12 children (9 males, 3 females) aged 4.2 to 7.6 years with CAS | Not quasi-RCT (Case series design) | Integrated Phonological Awareness Intervention | Linguistic | 45-minute session; 2 × per week for 6 weeks in 2 blocks with 6-week withdrawal between blocks. Total of 245 sessions | Trained speech accuracy and phonological awareness accuracy on a probe. Generalisation-BTOPP and first trial of DEAP inconsistency subtest for PVC, PVC and inconsistency score. PIPA for 4-year-olds. TOPA for 5 to 7-year-olds. Burt Word Reading Test for non-word reading and informal non-word | Speech: 9/12 children improved on trained items. Phonological awareness: 8/12 children improved in 1 or both intervention blocks. Generalisation for 8/12 on all measures except Burt Word Reading Test | Pre- and post-treatment | Lack of experimental control, control group or control data. CAS diagnosis unclear regarding prosody. Limited information provided on each participant. Limited treatment phase data. No maintenance data. No blinding of assessors |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention Details</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>McNeill 2009b</td>
<td>2 male identical twins aged 4.5 years with CAS (deletion at 10q21.2-22.1)</td>
<td>Not quasi-RCT (Single case design) Integrated Phonological Awareness intervention</td>
<td>- PPC, PVC and DEAP inconsistency percentage increased from 0 to 7 at post-treatment. Reading WNL and spelling demonstrated use of strategies at final follow-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45-minute session; 2 x per week for 6 weeks in 2 blocks with 6-week withdrawal between blocks. Total of 245 sessions</td>
<td>PCC and PVC improved at post-treatment and follow-up. Reduced inconsistency. Sound-letter knowledge increased from 0 to 7 at post-treatment. Reading WNL and spelling demonstrated use of strategies at final follow-up.</td>
</tr>
<tr>
<td>McNeill 2010</td>
<td>12 children (9 males, 3 females)</td>
<td>Not quasi-RCT (12-month follow-up to BBTOP and 1st trial of Neale) Integrated Phonological Awareness intervention</td>
<td>Significant difference for CAS 1-year follow-up to McNeill 2009a 7/12 of original participants</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Intervention</td>
<td>Measures</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Moriarty 2006</td>
<td>3 children (2 males, 1 female) aged 6.3, 6.</td>
<td>Integrated Phonological Awareness Intervention</td>
<td>DEAP yielding PPC, PIPA for 4-year-olds & TOPA for 5 to 7-year-olds. Decoding measures (Burt Word Reading Test and Non-word Reading Task) and spelling measures (probe of 10 words from the DEAP inconsistency subtest) were completed for participants at least 6 years of age at the beginning of the study. The NARA was administered for participants aged 5 years, 6 months and up</td>
</tr>
</tbody>
</table>

Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namasi-vayam 2013</td>
<td>12 children (9 males, 3 females) aged 3 to 6 years with speech sound disorders</td>
<td>Not quasi-RCT (Case series pre-post design)</td>
<td>Prompts for Re-Structuring Oral Muscular Phonetic Targets (PROMPT)</td>
<td>Motor 45-minute session 2 × per week for 8 weeks</td>
<td>GFTA2, HCAPP, VM-PAC focal motor and sequencing subtests, Children’s Speech Intelligibility Measure</td>
</tr>
</tbody>
</table>
| Namasi-vayam 2015 | 37 children (28 males, 9 females) aged 2.6 to 4.5 years with CAS | Not quasi-RCT (pre-postgroup design) | Motor Speech Treatment Protocol (MSTP) | Motor Intense treatment group: 45-minute session, 2 × per week × 10 weeks = 20 sessions. Less intense group: 45-minute | GFTA-2 sounds in words subtest; speech intelligibility using Children’s Speech Intelligibility Measure | Intense group had greater changes in articulation and functional communication compared to the less Pre- and post-treatment. No control group or control data. Participants were not directly randomised; however, no be-
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) *(Continued)*

| Preston 2013 | 6 males aged 9 to 15 years with CAS. 1 child had additional ADHD and another child had additional dysarthria | Not quasi-RCT (Single case multiple baseline across behaviours across participants) | Ultrasound biofeedback (targeting articulation on clusters and CV or VC sequences of inaccurate phones) | Motor (instrumentally based) | 60 minute sessions, 2 × per week × 18 sessions (at least 150 trials per session) | Probe of whole-word accuracy of treated and untreated items | U002 and U007 had significant gains on 2/4 treated combinations, U005 for 3/4, and U008, U009 and U012 had significant gains on all treated combinations. All exhibited some generalisation data with some showing change and others not | 10 sessions (CSIM) at word level, and Beginner’s Intelligibility Test (BIT) at sentence level. Functional Outcomes for Children Under Six (FOCUS) scale | Intense group with large effect sizes. Mixed results were found for intelligibility: at word-level (CSIM), both the less intense and 1/2 intense groups made a significant and large change. At sentence level, 1/2 intense groups made a significant change | tween-group differences were found at baseline. There were missing data (dealt with using intention-to-treat analysis). No information on session trials was obtained, which is important for intensity calculations | No control group or comparison treatment. No blinding of assessors. Untreated items were not clearly selected as control or generalisation data with some showing change and others not |
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study Year</th>
<th>Participants</th>
<th>Design</th>
<th>Intervention</th>
<th>Treatment Details</th>
<th>Outcome Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preston 2016</td>
<td>3 males aged 11 to 13 years diagnosed with CAS and poor expressive language and phonological processing, 1 participant had additional flaccid dysarthria, ADHD, language and learning difficulties</td>
<td>Not quasi/RCT (Single case multiple baseline across behaviours (syllable positions))</td>
<td>Ultrasound biofeedback (using structured chaining and principles of motor learning)</td>
<td>1 hour sessions × 14 sessions. Sessions 1 to 7 addressed target 1 and sessions 8 to 14 addressed target 2 with randomly assigned prosody or no prosody conditions</td>
<td>Treatment acquisition data, generalisation probe of untreated words, maintenance to 2 months post-treatment</td>
<td>2/3 participants acquired accurate articulation. 0/3 demonstrated generalisation or maintenance. 3 × baseline probes, midway therapy probe, post-therapy probe (within 1 week after treatment) and 2-month follow-up. No control group. Greater within-treatment probes and post-treatment probes would have allowed for greater statistical analysis. No control data. No blinding of assessors. No stimulus generalisation measures.</td>
</tr>
<tr>
<td>Preston 2017</td>
<td>3 males aged 11 to 14 years with CAS</td>
<td>Not quasi/RCT (Single case (ABA) design)</td>
<td>Ultrasound biofeedback (using structured chaining and principles of motor learning)</td>
<td>2 × 1-hour articulation treatment a day for 2 weeks. 16 hours of therapy in total. Over</td>
<td>Treatment acquisition of /s/, l/ and /w/ Generalisation to untrained items using a probe</td>
<td>Case 1 had acquisition, generalisation, and maintenance of targets. Case 2 had some. Probe conducted 1 × before treatment, at the end of the first week, and at the end of the second week. Lack of experimental control, multiple baselines or control data. No blinding of assessors.</td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Design</th>
<th>Intervention</th>
<th>Outcome Measures</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ray 2003</td>
<td>1 adult with CAS and class III malocclusion. Another 5 adults aged 18 to 23 years with persistent articulation disorders</td>
<td>Not quasi-/RCT (Case series)</td>
<td>Orofacial myofunctional therapy</td>
<td>Motor (Instrumentally based)</td>
<td>45-minute session, 1 × per week for 6 weeks</td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Sample Size</th>
<th>Diagnosis</th>
<th>Study Design</th>
<th>Therapy</th>
<th>Baseline</th>
<th>Probe</th>
<th>Outcome Measures</th>
<th>Treatment Sessions</th>
<th>Reason for Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosenbek</td>
<td>1 female aged 9 years with CAS</td>
<td>Not quasi / RCT (Case study)</td>
<td>Intensive, systematic drill motor therapy</td>
<td>Motor</td>
<td>22 sessions over 3 months</td>
<td>20-item probe of /t/ (target), ineligibility in spontaneous speech</td>
<td>/t/ improved from 0 to 20 correct in probe. Intelligibility judged by unfamiliar listeners improved</td>
<td>Lack of experimental control, multiple baselines or control data. CAS diagnosis unclear and not replicable. No follow-up data. Only anecdotal generalisation data. No statistical analysis. No reliability of judgments reported. No replication across participants</td>
<td></td>
</tr>
<tr>
<td>Rosenthal</td>
<td>4 children (3 males, 1 female) aged 10-14 years diagnosed with CAS</td>
<td>Not quasi / RCT (Single subject (ABAB) design)</td>
<td>Rate Control Therapy</td>
<td>Linguistic and motor</td>
<td>20-minute session per reading passage. No further information available</td>
<td>Articulation accuracy (words read correctly)</td>
<td>Improved to 85% accuracy at 50% habitual rate and maintained in therapy</td>
<td>Reading rate in 5-minute intervals</td>
<td>Lack of control and follow-up data. CAS diagnosis unclear</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Design</td>
<td>Treatment</td>
<td>Outcome Measures</td>
<td>Findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------</td>
<td>------------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skelton 2014</td>
<td>3 children (2 males, 1 female) aged 4 to 6 years diagnosed with CAS</td>
<td>Not quasi-RCT (Single case multiple baseline design across participants)</td>
<td>Concurrent treatment (using randomised variable practice)</td>
<td>Motor Therapy until target sounds reached 80% accuracy. P1 had 26, P2 had 12 and P3 had 28 sessions. 2 x per week, 30 minutes per session and on average 100 to 115 trials per session.</td>
<td>All children reached 80% accuracy on target sounds. Moderate to large generalisation effects at word and 3-word phrases levels (70% to 100% accuracy).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stokes 2010</td>
<td>1 male aged 7 years with residual CAS</td>
<td>Not quasi-RCT (Single case (ABA) design)</td>
<td>Articulation with facilitative vowel contexts</td>
<td>Linguistic 45- to 55-minute session, 3 x per week for 3 weeks. 60+ Accuracy on ‘sh’ sound in word initial probe, ‘tr’ as consonant improvement in ‘sh’ articulation accuracy.</td>
<td>Significant improvement in ‘sh’ articulation accuracy. Pre-treatment, mid-therapy x 2 (after sessions 3 and 6), participant did not meet current CAS criteria. Lack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Design</th>
<th>Intervention</th>
<th>Trials per session</th>
<th>Home practice provided</th>
<th>Treatment stimuli</th>
<th>Control stimuli</th>
<th>Articulation accuracy ratings</th>
<th>Outcome measures</th>
<th>Follow-up data or generalisation data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strand 2000</td>
<td>1 female aged 5 years with "severe motor planning deficits but no dysarthria" (CAS)</td>
<td>Not quasi-RCT (Single case multiple baseline design)</td>
<td>Integral stimulation</td>
<td>Motor</td>
<td>30- to 50-minute session, 3 to 5 × per week (1 to 2 × per day) for 10 to 16 sessions, No home practice</td>
<td>Improvement from 0.25 to 0.80 on 2-point scale</td>
<td>Articulation accuracy ratings on a 2-point scale</td>
<td>Treatment gains for 3/4 participants maintained by 2/4</td>
<td>No follow-up or generalisation data, CAS diagnosis unclear and not replicable.</td>
<td>No statistical analysis. Limited outcome measures. No blinding of assessors. No replication across participants.</td>
</tr>
<tr>
<td>Strand 2006</td>
<td>4 males aged 5.5 to 6.1 years with CAS (2 with dysarthria and 1 with mild intellectual disability)</td>
<td>Not quasi-RCT (Single case multiple baseline across participants)</td>
<td>Dynamic Temporal and Tactile Cueing</td>
<td>Motor</td>
<td>30-minute sessions, 2 × per day for 5 days a week for 38 to 50 sessions</td>
<td>No change in control words with 'tr' initial post-treatment, and maintenance (2 weeks post-treatment)</td>
<td>in trained and untrained words. No change in control words with 'tr' initial post-treatment, and maintenance (2 weeks post-treatment)</td>
<td>Base-line × 4 (or more, staggered baseline), 20+ treatment probes</td>
<td>No follow-up or generalisation data. No reliability of data reported.</td>
<td>No statistical analysis. Limited outcome measures. No blinding of assessors. No replication across participants. No follow-up data or generalisation data. No statistical analysis. Limited outcome measures. No blinding of assessors. No replication across participants. No follow-up or generalisation data.</td>
</tr>
<tr>
<td>Thomas 2014</td>
<td>4 children (2 males, 2 females) aged 4.8 to 8 years with CAS</td>
<td>Not quasi-RCT (Single case multiple baseline across participants and behaviours)</td>
<td>Rapid Syllable Transition Treatment (ReST)</td>
<td>Motor</td>
<td>50 minute sessions 2 × per week for 6 weeks. 100 trials per session</td>
<td>Accuracy on imitation (a) treated words, (b) untreated pseudo words, (c) untreated real words and control words</td>
<td>Significant improvement on treated words and untreated real words. Significant improvement for 2/4 participants on untreated pseudo words. No change in control items</td>
<td>Baseline × 3 to 6, treatment × 3, and 1 day, 1 month and 4 months post-treatment</td>
<td>Use of GFTA2 for control items. No stimulus generalisation data</td>
<td></td>
</tr>
</tbody>
</table>
| Thomas 2016 | 5 children (4 males, 1 female) aged 5 to 11 years with CAS (3 with mild or moderate receptive language disorder) | Not quasi-RCT (Single case multiple baseline across participants) | Rapid Syllable Transition Treatment (ReST) | Motor (in-trumentally based - telehealth) | 60-minute session, 4 times a week for 3 weeks (12 sessions in total). Minimum of 1200 trials per session | Accuracy on treated pseudoword items, generalisation to untreated non-words and real words, and control items (articulation of rhotics) on a probe; client/family satisfaction with telehealth treatment | 5/5 participants demonstrated significant change in treated items. 4/5 maintained gains to 4 months post-treatment. 4/5 had significant generalisation to untrained non-words and real words, and 1/5 demonstrated change in control | At least 3 baseline probes, 3 therapy probes (sessions 5, 9 and 1 day post-treatment). Follow-up at 1 week, 4 weeks & 4 months post-treatment | Missing data for some participants at certain time points in Table 3. Problems with change in control data. Some internet issues (dropouts, port sound quality, etc.) were observed in 61% of sessions; however, significant outcomes were
| Tierney 2016 | 1 male aged 3 years with CAS and fine motor delay | Not quasi/RCT (Single case design; descriptive) | Multimodal therapy: Signed Exact English sign language, Sarah Rosenfeld Johnson’s oro-motor programme and Kaufman Speech Praxis Program | Augmentative and alternative communication | Clinic-based sessions 45 minutes 1 to 2 × per week and home-based sessions for 60 minutes 1 × per week | Language assessment; observations and Kaufman Speech Praxis Test; Verbal Motor Production Assessment for Children (VMPAC) | Receptive and expressive language consistently in average range but receptive relatively better than expressive language. By 3.6 years of age receptive and expressive language same level. Marked drooling and limited inventory and sequencing at 18 months, yet skills on Kaufman & VMPAC in average range at Language assessment at 1.1 year, 3 years and 3.6 years. Kaufman test or observations at 1.6, 3 and 3.9 years, VMPAC at 3 years, 9 months | Language assessment at 1.1 year, 3 years and 3.6 years. Kaufman test or observations at 1.6, 3 and 3.9 years, VMPAC at 3 years, 9 months | Lack of experimental control, multiple baselines or control data. CAS diagnosis unclear and not replicable regarding prosody and drooling. No statistical analysis. No binding of assessors. No replication across participants. Limited repeated measures on same instrument. Participant had multiple ther- |
Table 1. Excluded, low-quality evidence from observational studies (case-series, case control) (Continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Subject</th>
<th>Design</th>
<th>Intervention</th>
<th>Outcome</th>
<th>Pre- and post-treatment</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vashdi 2013</td>
<td></td>
<td>1 male aged 14 years with severe CAS and limb/motor apraxia and obsessive compulsive disorder</td>
<td>Not quasi-RCT (Case study)</td>
<td>Verbal Motor Learning (with Dynamic Distal Stabilization Technique (DDST))</td>
<td>Motor</td>
<td>1 × 30-minute clinic session and 6 × home practice sessions a week for 4 weeks</td>
<td>(1) Producing highest pitch using /I/ sound with and without DDST, to determine minimum and maximum frequency and length using Speech Analyser 1.5. (2) Imitation of 18 words to analyse word length, maximum loudness, maximum and minimum frequency</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Sample Description</td>
<td>Study Design</td>
<td>Intervention</td>
<td>Time</td>
<td>Outcome</td>
<td>Pre- and post-treatment Notes</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Vashdi</td>
<td>2014</td>
<td>Female aged 10 years with CAS and ASD</td>
<td>Not quasi-/RCT (Case study)</td>
<td>Verbal Motor Learning (Initial Phoneme Cue (IPC) technique)</td>
<td>2 × 1 hour sessions, 2 weeks apart (participant had initial therapy: 1-hour session weekly for 1 year prior to this study)</td>
<td>Imitation accuracy of CVCV treated words either (a) with IPC or (b) without IPC</td>
<td>Imitation of CVCV was 0% to 22% accuracy and imitation with IPC was 96% to 100% accuracy</td>
</tr>
<tr>
<td>Yoss</td>
<td>1974</td>
<td>10 children (no information on gender reported) aged 6 to 11 years with moderate to severe CAS</td>
<td>Not quasi-/RCT (Case descriptions/file audit)</td>
<td>School-based intervention</td>
<td>25 to 307 hours of therapy</td>
<td>Articulation, polysyllable words and connected speech in speech samples. Intelligibility</td>
<td>Significant improvement in articulation. Minimal generalisation to polysyllable words</td>
</tr>
<tr>
<td>Zaretsky 2010</td>
<td>1 female aged 11.6 years with CAS, intellectual disability and language disorder</td>
<td>Not quasi-RCT (Single case design)</td>
<td>Phonological awareness (phoneme grapheme mapping, reading comprehension, 'Basics' programme). Speech - PROMPT and Moving Across Syllables</td>
<td>Between 6.0 and 11.6 ongoing weekly treatments - 1 hour × 1:1 sessions and PROMPT institute over summer</td>
<td>Per cent accuracy on phonological awareness and decoding</td>
<td>Improvement seen in phoneme grapheme mapping, segmentation and short vowel identification. Some improvement in decoding</td>
<td>Ongoing 1 × per week sessions from 6.0 to 11.6 years</td>
</tr>
</tbody>
</table>

Participants: All participants are English speakers unless otherwise reported.

AOS: apraxia of speech; BBTOP: Bankson-Berenthal Test of Phonology; CAS: childhood apraxia of speech; CSIP: consonant substitute inconsistency percentage; DAS: developmental apraxia of speech; DEAP: Diagnostic Evaluation of Articulation and Phonology; DVD: developmental verbal dyspraxia; GDD: global developmental delay; GFTA-2: Goldman Fristoe Test of Articulation 2; HCAPP: Hodson Computerized Analysis of Phonological Patterns; ISP: inconsistency severity percentage; KLPA-2: Khan-Lewis Phonological Analysis,
Appendix 1. Search strategies 2007 onwards

Cochrane Central Register of Controlled Trials (CENTRAL), in the Cochrane Library, and which includes the Cochrane Developmental, Psychosocial and Learning Problems Specialised Register

Searched 6 April 2017 (172 records)
Searched 6 June 2014 (103 records)
Searched 4 August 2011 (62 records)
1MeSH descriptor: [Apraxias] explode all trees
#2MeSH descriptor: [Speech Disorders] this term only
#3dysprax*
#4aprax*
#5prax*
#6(speech near/3 disorder*)
#7(speech near/3 impair*)
#8(speech near/3 problem*)
#9(speech near/3 difficult*)
#10voice near/3 disorder*
#11voice near/3 impair*
#12voice near/3 problem*
#13voice near/3 difficult*
#14vocal near/3 disorder*
#15vocal near/3 impair*
#16vocal near/3 problem*
#17vocal near/3 difficult*
#18communication near/3 disorder*
#19communication near/3 impair*
#20communication near/3 problem*
#21communication near/3 difficult*
#22#1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21
#23MeSH descriptor: [Adolescent] this term only
#24MeSH descriptor: [Child] 1 tree(s) exploded
#25(child* or girl* or boy* or pre next school* or pre-school*)
#26#23 or #24 or #25
#27#22 and #26 in Trials
CINAHL Plus EBSCOhost (Cumulative Index to Nursing and Allied Health Literature)

Searching 10 April 2017 (376 records)
Searching 6 June 2014 (571 records)
Searching 4 August 2011 (866 records)

S23 S17 AND S22
S22 EM 20140601-
S21 S17 AND S20
S20 EM 20110401-
S19 S17 and S18
S18 EM >=20070101
S17 S13 and S16
S16 S14 or S15
S15 (MH "Rehabilitation, Speech and Language") OR (MH "Speech Therapy") OR (MH "Language Therapy") OR (MH "Voice Therapy")
S14 (therap* or train* or rehabilitat* or manage* or assist* or measure* or treat* or assess* or remedia* or augment* or recover* or intervent*)
S13 S9 and S12
S12 S10 or S11
S11 child* or girl* or boy* or pre school* or pre-school*
S10 (MH "Child") OR (MH "Child, Preschool")
S9 S1 or S2 or S3 or S4 or S5 or S6 or S7 or S8
S8 (communication N3 disorder*) or (communication N3 impair*) or (communication N3 problem*) or (communication N3 difficult*)
S7 (vocal N3 disorder*) or (vocal N3 impair*) or (vocal N3 problem*) or (vocal N3 difficult*)
S6 (voice N3 disorder*) or (voice N3 impair*) or (voice N3 problem*) or (voice N3 difficult*)
S5 (speech N3 disorder*) or (speech N3 impair) or (speech N3 problem*) or (speech N3 difficult*)
S4 prax*
S3 aprax*
S2 dysprax*

Interventions for childhood apraxia of speech (Review)
Interventions for childhood apraxia of speech (Review)

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
ERIC Proquest

Searched 6 June 2014 limited to publication year =2011-2014 (379 records)
Searched 4 August 2011 limited to publication year =2007-2011 (321 records)

```
"(( (APRAX$.TI,AB.) OR (DYSPRAX$.TI,AB.) OR (PRAX$.TI,AB.) OR (( SPEECH NEAR ( DISORDERS1 OR IMPAIR$4 OR PROBLEM$1 OR DIFFICULT$3 ) .TLAB.) OR (( ( VOICE OR VOCAL ) NEAR ( DISORDERS1 OR IMPAIR$4 OR PROBLEM$1 OR DIFFICULT$3 ) .TLAB.) OR (COMMUNICATION NEAR ( DISORDERS1 OR IMPAIR$4 OR PROBLEM$1 OR DIFFICULT$3 ) .TLAB.) AND (( CHILD$3 OR GIRL$1 OR BOY$1 OR PRE ADJ SCHOOLS OR ADOLESCENS$3 OR TEENS$5 ) .TLAB.) AND ((SPEECH-THERAPY.DE.) OR (INTERVENTIO#.,W..DE.) OR (( THERAP$4 OR TRAIN$3 OR REHABILITAT$3 OR assess$5 OR measur$4 OR MANAGE$4 OR ASSIST$3 OR TREA T$5 OR REMEDIAS$4 OR AUGMENT$2 OR RECOVER$1 OR INTERVENTIONS1 ) .TLAB.))
```

Cochrane Database of Systematic Reviews (CDSR), part of the Cochrane Library

Searched 10 April 2017 (5 records)

#1MeSH descriptor: [Apraxias] explode all trees
#2MeSH descriptor: [Speech Disorders] this term only
#3dysprax*:ti
#4aprax*:ti
#5prax*:ti
#6(speech near/3 disorder*:ti,ab
#7(speech near/3 impair*:ti,ab
#8(speech near/3 problem*:ti,ab
#9(speech near/3 difficult*:ti,ab
#10(or #1-#9)
#11MeSH descriptor: [Adolescent] this term only
#12MeSH descriptor: [Child] 1 tree(s) exploded
#13(child* or girl* or boy* or pre next school* or pre-school*):ti,ab
#14#11 or #12 or #13
#15#10 and #14 in Cochrane Reviews (Reviews and Protocols)

Database of Reviews of Effect (DARE), part of the Cochrane Library

Searched 10 April 2017 (8 records)

#1MeSH descriptor: [Apraxias] explode all trees
#2MeSH descriptor: [Speech Disorders] this term only
#3dysprax*:ti
#4aprax*:ti
#5prax*:ti
#6(speech near/3 disorder*:ti,ab
#7(speech near/3 impair*:ti,ab
#8(speech near/3 problem*:ti,ab
#9(speech near/3 difficult*:ti,ab
#10(or #1-#9)
#11MeSH descriptor: [Adolescent] this term only
#12MeSH descriptor: [Child] 1 tree(s) exploded
#13(child* or girl* or boy* or pre next school* or pre-school*):ti,ab
#14#11 or #12 or #13
#15#10 and #14 in Other Reviews

SpeechBITE (speechbite.com)

Searched 10 April 2017 (27 records)

Basic search: "childhood apraxia"
Advanced search:
Practice Area: Apraxia / Dyspraxia
Research Design: Randomised Controlled Trial

Australian New Zealand Clinical Trials Registry (ANZCR; anzctr.org.au/BasicSearch.aspx)
Searched 10 April 2017 [5 records]
Searched 20 June 2014 [2 records]
Advanced search
speech AND apraxia limited to children

Chinese Clinical Trial Registry (ChiCTR; www.chictr.org.cn/index.aspx)
Searched 10 April 2017 (0 records)
(childhood apraxia of speech) or (dyspraxia) or (apraxia), (child) AND (speech)

ClinicalTrials.gov (clinicaltrials.gov)
Searched 10 April 2017 (3 records)
Searched 20 June 2014 (12 records)
Condition: apraxia OR dyspraxia Limited to children 0-17

EU Clinical Trials Register (clinicaltrialsregister.eu)
Searched 10 April 2017 (0 records)
(childhood apraxia of speech) or (dyspraxia) or (apraxia), (child) AND (speech)

ISRCTN Registry (www.isrctn.com)
Searched 10 April 2017 (0 records)
(childhood apraxia of speech) or (dyspraxia) or (apraxia), (child) AND (speech)

Nederlands Trial Register (www.trialregister.nl/trialreg/index.asp)
Searched 10 April 2017 (0 records)
(childhood apraxia of speech) or (dyspraxia) or (apraxia), (child) AND (speech)

World Health Organization International Clinical Trials Registry Platform (WHO ICTRP; apps.who.int/trialsearch)
Searched 10 April 2017 (8 records)
Searched 20 June 2014 (35 records)
Searched 10 August 2011 (1 record)
Basic search: apraxia OR dyspraxia. Limited to clinical trials in children
Appendix 2. Search strategies up to 2007

Cochrane Central Register of Controlled Trials (CENTRAL), in the Cochrane Library, and which includes the Cochrane Developmental, Psychosocial and Learning Problems Specialised Register

Searched 2016, Issue 4
#1 MeSH descriptor Apraxias explode all trees
#2 dysprax*
#3 aprax*
#4 prax* 1007
#5 (speech near/3 disorder*)
#6 (speech near/3 impair*)
#7 (speech near/3 problem*)
#8 (speech near/3 difficult*)
#9 voice near/3 disorder*
#10 voice near/3 impair*
#11 voice near/3 problem*
#12 voice near/3 difficult*
#13 vocal near/3 disorder*
#14 vocal near/3 impair*
#15 vocal near/3 problem*
#16 vocal near/3 difficult*
#17 communication near/3 disorder*
#18 communication near/3 impair*
#19 communication near/3 problem*
#20 communication near/3 difficult*
#21 (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20)
#22 (therap* or train* or rehabilitat* or manage* or assist* or measure* or treat* or assess* or remedia* or augment* or recover* or rehab*).
#23 child near "MESH check words"
#24 (child* or girl* or boy* or pre school* or pre-school*).
#25 (#23 OR #24)
#26 (#21 AND #22 AND #25)

MEDLINE Ovid

Searched 1966 to January 2007
1 exp Apraxias/
2 dysprax$.tw.
3 aprax$.tw.
4 prax$.tw.
5 (speech adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
6 ((voice or vocal) adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
7 (communication adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
8 or/1-7
9 (therap$ or train$ or rehabilitat$ or manage$ or assist$ or measure$ or treat$ or assess$ or remedia$ or augment$ or recover$ or rehab$).tw.
10 8 and 9
11 Child/
12 (child$ or girl$ or boy$ or pre school$ or pre-school$).tw.
13 or/11-12
14 8 and 10 and 13
15 randomized controlled trial.pt.
16 controlled clinical trial.pt.
17 randomized controlled trials.sh.
18 random allocation.sh.
19 double blind method.sh.
20 single-blind method.sh.
21 or/15-20
22 (animals not human).sh.
23 21 not 22 (362564)
24 clinical trial.pt.
25 exp Clinical Trials/
26 (clin$ adj25 trial$).ti,ab.
27 ((singl$ or doubl$ or trebl$ or tripl$) adj25 (blind$ or mask$)).ti,ab.
28 placebo.sh.
29 placebo$.ti,ab.
30 random$.ti,ab.
31 research design.sh.
32 or/24-31
33 32 not 22
34 33 not 23
35 comparative study.sh.
36 exp Evaluation Studies/
37 follow up studies.sh.
38 prospective studies.sh.
39 (control$ or prospectiv$ or volunteer$).ti,ab.
40 or/35-39
41 40 not 22
42 41 not (23 or 34)
43 23 or 34 or 42
44 14 and 43

Embase Ovid
Searched 1980 to January 2007
1 exp Apraxias/
2 dysprax$.tw.
3 aprax$.tw.
4 prax$.tw.
5 (speech adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
6 ((voice or vocal) adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
7 (communication adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
8 or/1-7
9 (therap$ or train$ or rehabilitat$ or manage$ assist$ or measure$ or treat$ or assess$ or remediat$ or augment$ or recover$ or rehab$).tw.
10 Child/
11 (child$ or girl$ or boy$ or pre school$ or pre-school$).tw.
12 or/10-11
13 clin$.tw.
14 trial$.tw.
15 (clin$ adj3 trial$).tw.
16 singl$.tw.
17 doubl$.tw.
18 trebl$.tw.
CINAHL Ovid

Searched 1982 to December 2006

1 exp Apraxias/
2 dysprax$.tw.
3 aprax$.tw.
4 prax$.tw.
5 (speech adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
6 ((voice or vocal) adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
7 (communication adj3 (disorder$ or impair$ or problem$ or difficult$)).tw.
8 or/1-7
9 (therap$ or train$ or rehabilitat$ or manage$ assist$ or measure$ or treat$ or assess$ or remedia$ or augment$ or recover$ or rehab$).tw.
10 Child/
11 (child$ or girl$ or boy$ or pre school$ or pre-school$).tw.
12 or/10-11
13 randomi$.mp. [mp=title, subject heading word, abstract, instrumentation]
14 clin$.mp. [mp=title, subject heading word, abstract, instrumentation]
15 trial$.mp. [mp=title, subject heading word, abstract, instrumentation]
16 (clin$ adj3 trial$).mp. [mp=title, subject heading word, abstract, instrumentation]
17 sing$.mp. [mp=title, subject heading word, abstract, instrumentation]
18 doubl$.mp. [mp=title, subject heading word, abstract, instrumentation]
19 tripl$.mp. [mp=title, subject heading word, abstract, instrumentation]
20 trebl$.mp. [mp=title, subject heading word, abstract, instrumentation]
21 mask$.mp. [mp=title, subject heading word, abstract, instrumentation]
22 blind$.mp. [mp=title, subject heading word, abstract, instrumentation]
23 (17 or 18 or 19 or 20) and (21 or 22)
24 crossover.mp. [mp=title, subject heading word, abstract, instrumentation]
25 random$.mp. [mp=title, subject heading word, abstract, instrumentation]
26 allocate$.mp. [mp=title, subject heading word, abstract, instrumentation]
27 assign$.mp. [mp=title, subject heading word, abstract, instrumentation]
28 (random$ adj3 (allocate$ or assign$)).mp.
29 Random Assignment/
30 exp Clinical Trials/
31 exp Meta Analysis/
32 28 or 24 or 23 or 16 or 13 or 29 or 30 or 31
33 8 and 9 and 12 and 32

PsycINFO SilverPlatter

Searched up to January 2007
#28 (((trial*) in TI) or ((randomly) in AB) or ((randomized or randomised) in AB) or ("Clinical-Trials" in MJ,MN)) and ((child* or girl* or boy* or pre school* or pre-school*) and ((therap* or train* or rehabilit* or manage* or assist* or measure* or treat* or assess* or remedial* or augment* or recover*) and ((communication near 3 difficult*) or (communication near 3 problem*) or (communication near 3 impair*) or (communication near 3 disorder*) or ((voice or vocal) near 3 (difficult*)) or ((voice or vocal) near 3 (problem*)) or ((voice or vocal) near 3 (impair*)) or ((voice or vocal) near 3 (disorder*)) or (speech near 3 difficult*) or (speech near 3 problem*) or (speech near 3 impair*) or (speech near 3 disorder*) or (prax*) or (aprax*) or (dysprax*) or ("Apraxia-" in MJ,MN)))

ERIC Dialog Datastar (Education Resources Information Center)

Searched 1966 to January 2007
1 APRAX$.TI,AB.
2 DYSPRAX$.TI,AB.
3 PRAX$.TI,AB.
4 (SPEECH NEAR (DISORDER$ OR IMPAIR$ OR PROBLEM$ OR DIFFICUL T$)).TI,AB.
5 ((VOICE OR VOCAL) NEAR (DISORDER$ OR IMPAIR$ OR PROBLEM$ OR DIFFICUL T$)).TI,AB.
6 (COMMUNICATION NEAR (DISORDER$ OR IMPAIR$ OR PROBLEM$ OR DIFFICUL T$)).TI,AB.
7 (1 OR 2 OR 3 OR 4 OR 5 OR 6).TI,AB.
8 (THERAP$ OR TRAIN$ OR REHABILIT$ OR MANAGE$ OR ASSIST$ OR MEASURE$ OR TREAT$ OR ASSESS$ OR REHABILIT$ OR AUGMENT$ ADJ RECOVER$).TI,AB.
9 (CHILD$ OR GIRL$ OR BOY$ OR PRE ADJ SCHOOL$ OR PRE-SCHOOL$).TI,AB.
10 7.TI,AB. AND 8.TI,AB. AND 9.TI,AB.
11 (RANDOMISED OR RANDOMIZED).AB.
12 PLACEBO.AB.
13 RANDOMLY.AB.
14 TRIALS.TI,AB.
15 11 OR 12 OR 13 OR 14
16 10 AND 15

Linguistics Abstracts Online

Searched 1985 to January 2007
Terms used:
dyspraxia AND child or children
OR
apraxia AND child or children
Appendix 3. Methods for future updates

Electronic searches
We will include non-English language abstracts in any future updates of this review.

Measures of treatment effects

Binary data
We will analyse binary outcomes by calculating the risk ratio (RR) with 95% confidence intervals (CIs). Wherever necessary, we will contact original study authors for raw data.

Continuous data
To enable the combination of studies measuring the same outcome using different methods, we will report standardised mean difference (SMD) effect sizes with 95% CIs. For studies measuring the same outcome using the same measure, we will report mean difference (MD) effect sizes with 95% CIs. Wherever necessary, we will contact original study authors for raw data (e.g. where authors have only reported change from baseline data). We will transform and include skewed data where appropriate.

Unit-of-analysis issues
In future reviews, we will continue to consider the level at which randomisation occurred (i.e. in simple parallel-group designs, as encountered in the included study here (Murray 2015), where participants were individually randomised to one of two intervention groups, and a measurement for each outcome from each participant was collected and analysed). However, if we encounter cluster-randomised trials (i.e. where groups of individuals are randomised together to the same intervention), cross-over trials or multiple observations of the same outcome (e.g. repeated measurements, recurring events, etc.), we will consult the Cochrane Handbook for Systematic Reviews of Interventions for the latest recommendations on best management of unit-of-analysis issues (Higgins 2011b).

Dealing with missing data
If studies do not report intention-to-treat (ITT) analyses, we will contact the study authors and request the missing data. We will initially seek missing data via contact with the corresponding author. In regard to participant dropout, if the rate of attrition reaches a 30% threshold in an included study, we will conduct a sensitivity analysis and assess the impact of this attrition. If the impact is not significant, we will include the data. The maximum allowed difference in the dropout rate between the two groups that we will allow before we exclude an included study from a meta-analysis is 10%.

Assessment of reporting biases
Where appropriate, we will use funnel plots to assess the possibility that study selection might be affected by bias, by investigating any relationship between effect size and study precision (closely related to sample size) (Morgan 2008). Such a relationship may be due to publication or related biases, to systematic differences between small and large studies, or to a statistical artefact of the chosen effect measure. We will use Egger's test to examine potential bias (Egger 1997).

Assessment of heterogeneity
We will estimate between-study variance (τ^2) using a random-effects model and the inverse-variance approach. We will use the random-effects model because it is more conservative than the fixed-effect model.

Data synthesis
We will only perform a meta-analysis when studies employ similar interventions across the three intervention types (motor-based, linguistic, multi-modal communication). We will use a network meta-analysis with a random-effects model.
WHAT'S NEW

Last assessed as up-to-date: 6 April 2017.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 August 2017</td>
<td>New citation required and conclusions have changed</td>
<td>One new study included in review.</td>
</tr>
<tr>
<td>29 August 2017</td>
<td>New search has been performed</td>
<td>The review was updated following a new search on 6 April 2017.</td>
</tr>
</tbody>
</table>

HISTORY

Protocol first published: Issue 4, 2006

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 September 2015</td>
<td>Amended</td>
<td>Duplicate paragraph removed from the description of the intervention and reference error corrected in background section</td>
</tr>
<tr>
<td>13 May 2008</td>
<td>Amended</td>
<td>Converted to new review format.</td>
</tr>
<tr>
<td>12 May 2008</td>
<td>Amended</td>
<td>Change of title from protocol stage (‘developmental apraxia of speech’) to ‘childhood apraxia of speech’</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

Angela Morgan (AM; guarantor of the review), Frederique Liégeois (FL) and Elizabeth Murray (EM) contributed to drafts of the review. The authors developed the search strategy in concert with CDPLPG. AM and FL conducted study selection, study assessment, data extraction, data entry, and analysis. EM tabulated further detail on excluded studies in Table 1 and contributed to the Characteristics of included studies and Characteristics of excluded studies tables. AM and FL completed the first draft of the review. AM, FL and EM contributed to further drafts of the review. EM did not contribute to the study selection, risk of bias assessment, or extraction of data from this study due to potential for conflict of interest, given that EM was lead author of the included study.
DECLARATIONS OF INTEREST

Angela T Morgan (AM) - none known.

Elizabeth Murray (EM) is an author of the included study, Murray 2015, and was not involved in selecting this study for inclusion, or extracting or reviewing data from this study. Study selection as well as data extraction and review was conducted by two independent authors - AM and FL.

Frederique J Liégeois (FL) - none known.

SOURCES OF SUPPORT

Internal sources

- None, Other.

External sources

- National Health and Medical Research Council (NHMRC), Australia. NHMRC Practitioner Fellowship (APP1105008) awarded to AM.
- National Health and Medical Research Council (NHMRC), Australia. NHMRC Centre of Research Excellence in Speech and Language Neurobiology (CRE-SLANG) (APP1116976) awarded to AM and FL.
- National Health and Medical Research Council (NHMRC), Australia. NHMRC Project Grant (APP1127144) awarded to AM and FL.

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

Changes between 2006 protocol and 2008 review

The title was changed from 'Intervention for developmental apraxia of speech' to 'Intervention for childhood apraxia of speech' to reflect current terminology (ASHA 2007).

Changes between 2006 protocol and 2017 review

1. Description of the intervention. We reclassified the types of interventions from 'perceptually-based therapy' and 'instrumentally-based biofeedback approaches' to 'motor-based', 'linguistic-based' and 'multi-modal communication', to reflect more contemporaneous approaches in the field.

2. Criteria for considering studies for this review. We rewrote the inclusion criteria for studies to provide greater clarity around the specific types of interventions being targeted (i.e. interventions targeting speech and language); to specify that we would include studies comparing intervention to either no treatment (e.g. wait-list) control as well as other interventions; and to specify that the CAS diagnosis had to have been made by an SLP/SLT.

3. Types of outcome measures. We updated our outcome measures to reflect those used in current literature.

4. Electronic searches.
 i) We increased the sensitivity of our search by adding additional search terms for the condition and intervention.
 ii) We added the following databases and trial registers to our electronic searches, to ensure our search was as comprehensive as possible:
 a) Cochrane Database of Systematic Reviews;
 b) MEDLINE E-Pub Ahead of Print and MEDLINE In-Process and Other Non-Indexed Citations, both of which are updated daily.
c) Database of Abstracts of Reviews of Effect (DARE); however, this was not searched in 2017, as DARE was last updated in 2015;

d) SpeechBITE;

e) Chinese Clinical Trial Registry (ChiCTR);

f) EU Clinical Trials Register;

g) ISRCTN Registry; and

h) Nederlands Trial Registry.

iii) We did not search Linguistic Abstracts Online and Dissertation Abstracts because we judged these would not identify any unique studies not found in other databases.

5. Data collection and analysis. Some methodological sections involving meta-analysis as reported in the original protocol, Morgan 2006, were not relevant in this review because only a single RCT was identified for inclusion. See Appendix 3 for further detail.

6. Dealing with missing data. Whilst not used in this version of the review, we have specified that in future updates of the review, if the rate of attrition reaches a 30% threshold in an included study, we will include the study in the review but not in the meta-analysis. The maximum allowed difference in the dropout rate between the two groups will be 10% before a study included in the review is excluded from meta-analysis. See Appendix 3.

7. Data synthesis > Summary of findings. We used the GRADE approach in this updated review to rate the quality of the evidence (Schünemann 2017). The GRADE system was not available when the original 2006 protocol (Morgan 2006), or 2008 review (Morgan 2008), were published.

INDEX TERMS

Medical Subject Headings (MeSH)

*Speech Therapy; *Speech-Language Pathology; Apraxias [*therapy]; Speech Disorders [*therapy]

MeSH check words

Adolescent; Child; Humans