@ Journal of

CrossMark Clinical
Epidemiology

1o ;
ELSEVIER Journal of Clinical Epidemiology 68 (2015) 52—60

Predictive distributions were developed for the extent of heterogeneity in
meta-analyses of continuous outcome data
Kirsty M. Rhodes™*, Rebecca M. Turner”, Julian P.T. Higgins"*

AMRC Biostatistics Unit, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 OSR, UK
®School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK
“Centre for Reviews and Dissemination, A/B Block, Alcuin College, University of York, York, YOI0 5DD, UK

Accepted 1 August 2014; Published online 7 October 2014

Abstract

Objectives: Estimation of between-study heterogeneity is problematic in small meta-analyses. Bayesian meta-analysis is beneficial
because it allows incorporation of external evidence on heterogeneity. To facilitate this, we provide empirical evidence on the likely het-
erogeneity between studies in meta-analyses relating to specific research settings.

Study Design and Setting: Our analyses included 6,492 continuous-outcome meta-analyses within the Cochrane Database of System-
atic Reviews. We investigated the influence of meta-analysis settings on heterogeneity by modeling study data from all meta-analyses on the
standardized mean difference scale. Meta-analysis setting was described according to outcome type, intervention comparison type, and
medical area. Predictive distributions for between-study variance expected in future meta-analyses were obtained, which can be used
directly as informative priors.

Results: Among outcome types, heterogeneity was found to be lowest in meta-analyses of obstetric outcomes. Among intervention
comparison types, heterogeneity was lowest in meta-analyses comparing two pharmacologic interventions. Predictive distributions are
reported for different settings. In two example meta-analyses, incorporating external evidence led to a more precise heterogeneity
estimate.

Conclusion: Heterogeneity was influenced by meta-analysis characteristics. Informative priors for between-study variance were
derived for each specific setting. Our analyses thus assist the incorporation of realistic prior information into meta-analyses including
few studies. © 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/3.0/).
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1. Introduction Several possible approaches are available to deal with het-
erogeneity: we can ignore it, investigate it, or we may
decide not to perform a meta-analysis at all. Alternatively,
we can allow for heterogeneity in a random-effects meta-
analysis, estimating the summary effect and the between-
study variance [2].

In many meta-analyses, there are few studies available to
include, perhaps because the disease is rare or the treatment
under assessment is new. Of 22,453 meta-analyses from the
Cochrane Database of Systematic Reviews (CDSR),
containing at least two studies, just under 75% contained
five or fewer studies [3]. When there are only a small num-
ber of studies included in a meta-analysis, estimation of the

Conflicts of interest: None. between-study variance is difficult. In a conventional

Funding: KM.R. was supportefi by an MRC research studentship. This random-effects meta-analysis, the uncertainty in the
resej reh was funded by MRC project grant U105260358. between-study variance is not accounted for [2]. However.

Corresponding author. Tel.: +44-(0)-1223768261; fax: +44-(0)- ’
1223330365. within a Bayesian framework, we can allow for all sources
E-mail address: kirsty.rhodes @mrc-bsu.cam.ac.uk (K.M. Rhodes). of uncertainty and incorporate external evidence on

Policy decision makers are becoming increasingly
reliant on the findings from systematic reviews [1]. Within
systematic reviews are meta-analyses that combine results
from similar studies to synthesize available evidence in a
specific research area. Variation among the results of
included studies, known as heterogeneity, is inevitable.
The studies have likely been conducted using different
methods, at various locations, and by different teams. Sta-
tistical heterogeneity occurs when the variation between
study results is greater than that expected by chance.
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What is new?

Key findings

o This article represents a very large empirical study
of continuous-outcome meta-analyses, showing
that meta-analysis characteristics strongly influ-
ence the extent of heterogeneity.

e Predictive distributions have been obtained for the
expected between-study variance in future meta-
analyses, and these differ substantially across
settings defined by outcome type, type of interven-
tion comparison, and medical area.

What this adds to what was known?

e When a meta-analysis includes a small number of
studies, estimation of the between-study variance
is difficult. The existing literature on heterogeneity
in meta-analyses of continuous outcomes is sparse,
and so little is known as to what forms a realistic
prior distribution for the between-study variance.
This article proposes a new set of informative prior
distributions for use in specific research areas.

What is the implication and what should change

now?

e We have demonstrated how an informative prior
for heterogeneity can be used in a future meta-
analysis. In each of two illustrative examples,
incorporation of external information led to more
precise estimates for the between-study variance.

e In view of the strong associations between
meta-analysis characteristics and the extent of
heterogeneity observed in our data set, the use
of an empirically derived informative prior for
heterogeneity in future meta-analyses would be
perfectly reasonable.

heterogeneity. To perform a Bayesian random-effects meta-
analysis, prior distributions need to be specified for un-
known parameters. It has been recommended that a realistic
prior distribution should be used for the between-study
variance [4—6].

To facilitate Bayesian meta-analysis with an informative
prior for the between-study variance, we provide empirical
evidence on the likely extent of heterogeneity in meta-
analyses of particular settings, defined by outcome type,
types of interventions evaluated, and medical area. Study
data from the binary outcome meta-analyses in the CDSR
have already been analyzed by Turner et al. [5]. Turner
et al. summarized a set of informative prior distributions
for the between-study variance 72 for use in future binary
outcome meta-analyses on the log odds ratio scale.

Here, we analyze data from a large collection of published
continuous-outcome meta-analyses and investigate the influ-
ence of meta-analysis characteristics on between-study het-
erogeneity. We provide predictive distributions for the extent
of heterogeneity expected in future continuous-outcome
meta-analyses in particular settings. These distributions can
be used in new meta-analyses as ‘“‘off-the-shelf”” informative
prior distributions for the between-study variance [4,7].

2. Methods
2.1. Data description

CDSR is a rich resource of systematic reviews in areas
of health care. These reviews have been prepared by the
Cochrane Collaboration, with the objective to make the
most up-to-date and reliable evidence conveniently avail-
able to health care consumers, professionals, and providers
[3]. In this research, data from the CDSR (issue 1, 2008)
were provided by the Nordic Cochrane Centre.

Cochrane reviews typically include multiple meta-
analyses, which correspond to the comparisons of different
pairs of interventions or the assessment of different outcomes
within the same research area. For example, a review exam-
ining antibiotics could report separate meta-analyses
comparing each of several antibiotics against a placebo, with
respect to both infection severity and adverse effects. Meta-
analyses were included in our analyses if they consisted of
data from at least two studies. In some reviews, results from
studies eligible for a meta-analysis were available, but no
pooled results were published in the Cochrane review. Such
data were regarded in the same way as meta-analyses to
maximize the amount of information available. The review
authors may have decided not to perform a meta-analysis
based on the degree of heterogeneity between studies [3].

Reviews sometimes present results for several subgroup
analyses within meta-analyses. Because we are interested in
the overall between-study heterogeneity in a meta-analysis,
study results were combined across subgroups. In some re-
views, the subgroups presented within a meta-analysis were
not mutually exclusive; therefore, we checked for study du-
plications and used data for only the first occurrence of
each study in each meta-analysis [3].

All meta-analyses in the original CDSR database have
been classified according to the type of outcome, types of in-
terventions involved in the pairwise comparison, and medical
specialty, as described in an earlier article [3]. In previous
work conducted on binary outcome meta-analyses, Turner
etal. [5] classified types of outcome according to three cate-
gories (objective, semiobjective, and subjective). When
grouping outcomes for the analyses of continuous data, we
decided to use narrower outcome groupings because there
were no continuous outcomes we judged to be objective
and fewer outcome categories in total.

For each study measured as a continuous outcome,
we have study data consisting of means and standard
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deviations, together with the number of participants in each
intervention group. All meta-analyses have been catego-
rized according to whether the meta-analysis was originally
published on the mean difference (MD) or standardized
mean difference (SMD) scale.

2.2. Statistical analysis

We used hierarchical models to analyze study data from
each meta-analysis in the data set, while investigating the in-
fluence of meta-analysis characteristics on the extent of
between-study heterogeneity. Within each meta-analysis, a
random-effects model with normal within-study likelihoods
was fitted to continuous outcome data from each study, on
the SMD scale. A definition of the SMD is provided in the
Appendix at www.jclinepi.com (Section A.1.1).

Many meta-analyses in the data set have been published on
the MD scale. Nonetheless, we analyzed all study data using
the SMD scale, and we compared the distribution of heteroge-
neity among observed SMDs for meta-analyses originally
analyzed on the SMD scale and meta-analyses originally
analyzed on the MD scale. Our analyses initially investigated
the distributional form of the between-study heterogeneity
variance 77, without accounting for meta-analysis characteris-
tics as covariates. We contemplated several distributions for
72 and took forward three distributions into later analyses,
adjusting for covariates, based on assessment of goodness
of fit. Turner et al. [5] and Pullenayegum [6] fitted a normal
distribution to log-transformed values of underlying
between-study heterogeneity 7° in binary outcome meta-
analyses. We contemplated a log-normal distribution for 77
in continuous-outcome meta-analyses. Other candidate distri-
butions included the heavier tailed log-¢ distribution with five
degrees of freedom, and also an inverse-gamma distribution,
as a conjugate prior for the variance of a normal distribution.
Model selection based on the deviance information criterion
(DIC) [8] led to the choice of the log-f model for 7°.

Across meta-analyses, a hierarchical regression model
was fitted to log-transformed values of underlying
between-study heterogeneity, assuming a ¢ distribution with
five degrees of freedom for residual variation. As covariates
in our regression models, we included indicators for
outcome type, type of intervention comparison, and medi-
cal area. Within pairwise comparisons, heterogeneity was
assumed to vary across meta-analyses, with separate vari-
ances for the different outcome types. Heterogeneity was

Table 1. Structure of the data set

also assumed to vary across pairwise comparisons, with
separate variances for each type of intervention compari-
son. The mathematical form of the model is given in the
Appendix at www.jclinepi.com (Section A.1.2).

All models were fitted using Markov chain Monte Carlo
(MCMC) within the WinBUGS [9] software (MRC Biosta-
tistics Unit, Cambridge), and results were based on 50,000 it-
erations after a burn-in period of 10,000 iterations. This was
sufficient to achieve convergence. Convergence diagnostics
were run on the 50,000 iterations after burn-in. We monitored
convergence using the Brooks—Gelman—Rubin statistic
[10], as implemented in WinBUGS. For each MCMC,
convergence was checked graphically via trace plots and
autocorrelation plots. Vague normal (0,10) priors were
declared for all regression coefficients, as recommended by
Spiegelhalter et al. [11]. We tried a range of plausible vague
prior distributions for the scale parameters of the random ef-
fects. An inverse-gamma (0.1,0.1) distribution was found to
provide the best overall performance and was therefore as-
signed to each scale parameter in all analyses.

For each setting defined by outcome type, type of inter-
vention comparison, and medical area, we obtained a pre-
dictive distribution for the between-study heterogeneity
variance 72, expected in a future meta-analysis in that
setting, within the full Bayesian model. The algebraic form
of the predictive distribution for 72, is provided in the
Appendix at www.jclinepi.com (Section A.1.2). A log-¢ dis-
tribution was fitted to each predictive distribution, using
posterior quantities for log (72, ). This process provided
parametric distributions approximating the predictive distri-
butions under the full Bayesian model. These distributions
are easily summarized and can serve as prior distributions
for 72 in future meta-analyses [4,7]. In earlier work carried
out on binary outcome meta-analyses, outcome types were
categorized into three broad groups. Here, we grouped
continuous-outcome meta-analyses into narrower cate-
gories by outcome type, providing an extensive library of
informative priors for heterogeneity.

3. Results
3.1. Descriptive analyses

The data set includes 6,672 continuous-outcome meta-
analyses, containing data from 29,902 studies. Of these
meta-analyses, 79% (5,280 meta-analyses) were originally

N Min Median Max 1GR
No. of comparisons per review 1,138 reviews 1 1 22 1-2
No. of meta-analyses per comparison 1,949 comparisons 1 2 31 1-4
No. of studies per meta-analysis 6,492% meta-analyses 2 3 98 2-5
Sample size 28,981" studies 4 61 18,850 33-140

Abbreviations: Min, minimum; Max, maximum; IQR, interquartile range.

@ We excluded 28 meta-analyses in which the outcome type did not fit into any of our predefined categories and was classified as ‘‘other.”
b We removed 728 studies with missing standard deviations of mean responses.


http://www.jclinepi.com
http://www.jclinepi.com
http://www.jclinepi.com

K.M. Rhodes et al. / Journal of Clinical Epidemiology 68 (2015) 52—60 55

performed on the MD scale, and 21% (1,392 meta-
analyses) were originally performed on the SMD scale.
Seven hundred twenty-eight studies (2.4%) have missing
standard deviations and are therefore removed from our sta-
tistical analysis. Table | lists the structure of the data set
used for our analyses.

Twenty-eight meta-analyses (0.4%) were excluded from
our analyses in which the outcome type did not fit into any
of our predefined categories and was classified as “other.”
Frequencies of outcome types, types of intervention com-
parison, and medical areas among the remaining 6,492
meta-analyses in our data set are given in Table 2.

In approximately 40% of meta-analyses analyzed origi-
nally on the SMD scale, the method-of-moments estimate
for 72 on this scale was negative and hence set to zero.
Nonzero estimates for 7> have a median of 0.10 and 95%
range of 0.002—2.30. Among the meta-analyses analyzed
originally on the raw MD scale but reanalyzed on the
SMD scale, 43% of method of moment—based estimates
for 7% were negative and hence set to zero. Nonzero esti-
mates for 72 have a comparable median and 2.5% quantile
to the meta-analyses analyzed originally on the SMD scale,
a median of 0.11 and 95% range of 0.002—4.38. Histograms
representing the empirical distributions of nonzero estimates

Table 2. Ratios of between-study variances representing comparisons of

outcome, intervention comparison, and medical specialty

for 72 on the log scale are provided in the Appendix at www.
jclinepi.com (Section A.2). The distributions based on ana-
lyses of MDs and SMDs are broadly similar, and in the
remainder of the article, we use the complete data set,
analyzed throughout on the SMD scale.

3.2. Comparisons of heterogeneity across meta-analysis
types

We fitted hierarchical models that performed random-
effects meta-analysis for each continuous-outcome meta-
analysis in the data set, on the SMD scale. After adjusting
for meta-analysis characteristics as covariates, a hierarchical
model assuming a log-t distribution with five degrees of
freedom led to a DIC value of 19,562, compared with
29,565 for the inverse-gamma model and 19,582 for the log-
normal model for 7%, Thus, the log- regression model for 77
appears to be the better choice. The inverse-gamma model
seems a poor fit. In this section, we focus on results from fitting
the log-r model to investigate the influence of meta-analysis
characteristics on the extent of heterogeneity in a meta-
analysis. To compare levels of between-study heterogeneity
across different meta-analysis types, we report ratios of het-
erogeneity variances 72, together with their respective 95%

heterogeneity among different types of meta-analyses, according to

Meta-analysis type

No. of meta-analyses (%) Ratio of 7 (95% CI)

Outcome type
General health-related outcomes®
Obstetric outcomes
Resource use and hospital stay/process
Internal and external structure-related outcomes
Signs/symptoms reflecting continuation/end of condition and
infection/onset of new acute/chronic disease
Mental health outcomes
Biological markers
Various subjectively measured outcomes®
Intervention comparison type
Nonpharmacologic® vs. any intervention
Pharmacologic vs. placebo/control
Pharmacologic vs. pharmacologic
Medical specialty
Cardiovascular
Cancer
Central nervous system/musculoskeletal
Digestive system
Infectious diseases
Mental health and behavioral conditions
Obstetrics and gynecology
Pathologic conditions
Respiratory diseases
Urogenital
Other

1,300 (20) 1 (Reference)
165 (3) 0.39(0.21, 0.69)
456 (7) 1.78 (1.22, 2.52)
175 (3) 2.13(1.05, 3.87)

2,490 (38) 1.22 (0.93, 1.56)
535 (8) 1.22 (0.84, 1.70)

1,053 (16) 0.84 (0.60, 1.15)
318 (5) 1.51 (1.05, 2.17)

2,904 (45) 1 (Reference)

2,384 (37) 0.88 (0.63, 1.21)

1,204 (19) 0.68 (0.42, 0.98)

475 (7) 1 (Reference)
24 (0.4) 10.4 (2.50, 45.8)
712 (11) 0.47 (0.29, 0.72)
1,144 (18) 1.06 (0.75, 1.57)
143 (2) 0.56 (0.27, 1.16)

(

(

886 (14) 0.42 (0.28, 0.60)

671 (10) 1.14 (0.74, 1.76)
254 (4) 0.87 (0.49, 1.54)
1,345 (21) 0.12 (0.07, 0.18)
341 (5) 1.04 (0.63, 1.70)
497 (8) 0.73 (0.43, 1.16)

Abbreviations: Cl, credible interval.

@ General health—related outcomes include general physical health, adverse events, pain, and quality of life/functioning.
b Various subjectively measured outcomes include consumption, satisfaction with care, composite end point (including at most one mortality/

morbidity end point), and surgical or device-related success/failure.

¢ Nonpharmacologic interventions include interventions classified as medical devices, surgical, complex, resources and infrastructure, behav-
ioral, psychological, physical, complementary, educational, radiotherapy, vaccines, cellular and gene, and screening.
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Table 3. Predictive distributions for log(7?) in future meta-analyses related to medical areas other than cancer and respiratory diseases, together
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with summary statistics for 72 on the untransformed scale

Outcome type

Pharmacologic vs. placebo/control

Pharmacologic vs. pharmacologic

Nonpharmacologic (any)

Obstetric outcome

Resource use and hospital stay/
process

Internal and external structure-
related outcome

General physical health and
adverse event and pain and
quality of life/functioning

Signs/symptoms reflecting
continuation/end of condition
and infection/onset of new
acute/chronic disease

Mental health outcome

Biological marker

Various subjectively measured
outcomes

#—4.13,2.342 5);
median = 0.016; 95%
range = 0.0002—1.86;

N = 50

#—2.55,2.732 5);
median = 0.078; 95%
range = 0.0004—-21.3;

N=78

#—2.43,2.502,5);
median = 0.086; 95%
range = 0.0007-12.9;

N=110

#—3.16, 2.50%,5);
median = 0.040; 95%
range = 0.0003-7.02;

N =631

#-3.00,2.502,5);
median = 0.048; 95%
range = 0.0004—7.56;

N = 367

#—2.99,2.162,5);
median = 0.049; 95%
range = 0.0007—4.70;

N=174

#-3.41,2.832,5);
median = 0.033; 95%
range = 0.0001-10.2;

N = 401

{—2.76,2.582,5);
median = 0.063; 95%
range = 0.0003—-12.0;

N=61

{—4.40,2.312,5);
median = 0.012; 95%
range = 0.0001—-1.16;

N =46

{—2.83,-2.70%,5);
median = 0.061; 95%
range = 0.0003—-11.9;

N =48

#—2.70,2.4625);
median = 0.070; 95%
range = 0.0004—8.32;

N=17

#—3.44,2.442 5);
median = 0.032; 95%
range = 0.0002—4.28;

N=212

#—3.27,2.47%,5);
median = 0.038; 95%
range = 0.0003—-5.69;

N =133

#—3.27,2.142 5);
median = 0.039; 95%
range = 0.0005—3.02;

N=75

{—3.68,2.782,5);
median = 0.027; 95%
range = 0.00001—4.95;

N =165

#-3.03,2.592,5);
median = 0.049; 95%
range = 0.0002—-8.11;

N =39

#—3.99,2.112,5);
median = 0.019; 95%
range = 0.0003—-1.07;

N =69

{-2.41,2.572 5);
median = 0.089; 95%
range = 0.0005—-13.3;

N =243

{—2.29,2.322 5);
median = 0.105; 95%
range = 0.0009-10.6;

N =45

#—3.02,2.27%,5);
median = 0.050; 95%
range = 0.0006—4.00;

N = 878

{—2.86,2.332,5);
median = 0.060; 95%
range = 0.0006—5.49;

N = 428

#-3.85,1.932,5);
median = 0.058; 95%
range = 0.001-2.58;

N = 280

{-3.27,2.662,5);
median = 0.037; 95%
range = 0.0002—7.33;

N =417

{—2.62,2.412,5);
median = 0.074; 95%
range = 0.0007-9.06;

N =156

N denotes the number of meta-analyses of each type in the CDSR data set.

credible intervals (Cls) (Table 2). Each outcome type is re-
ported in contrast to the largest group of general health—re-
lated outcomes, and we report each type of intervention
comparison in contrast to the largest group evaluating a non-
pharmacologic intervention. As a reference category for med-
ical areas, we choose cardiovascular disease, for which the
mean estimate of 7> was central across medical areas.

Heterogeneity is on average lowest in meta-analyses
assessing an obstetric outcome, with evidence of a differ-
ence compared with the largest group of meta-analyses
comparing general health—related outcomes; the esti-
mated ratio of variances is 0.39 (95% CI: 0.21, 0.69).
We find that heterogeneity is higher in meta-analyses
examining resource use or hospital stay/processes and
internal and external structure-related outcomes than those
assessing general health—related outcomes. Similarly,
heterogeneity appears higher in meta-analyses with
various subjectively measured outcomes including
consumption, satisfaction with care, composite end point
(including at most one mortality/morbidity end point),
and surgical or device-related success/failure, compared
with the reference group of meta-analyses assessing gen-
eral health—related outcomes.

About the types of intervention comparison, studies
within meta-analyses evaluating a nonpharmacologic inter-
vention are on average most heterogeneous. We find that
heterogeneity is lowest in meta-analyses comparing two
pharmacologic interventions.

The estimated ratios of between-study variances in
Table 2 suggest that heterogeneity is substantially lower
in meta-analyses related to respiratory diseases than in
other medical areas. In this data set, heterogeneity is high-
est in meta-analyses related to cancer; however, only 24
meta-analyses (0.4%) were related to cancer, so we regard
this finding with caution.

3.3. Predictive distributions for heterogeneity in future
meta-analyses

Initially, we report a predictive distribution for a
future meta-analysis for a general setting. This was
obtained from a Bayesian hierarchical model fitted to
all meta-analyses in the data set, including no meta-
analysis characteristics as covariates. The fitted distribu-
tion for log(7?) is #(—3.44,2.59%,5), which has a median
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of 0.03 and 95% range of 0.0002—5.16 on the untrans-
formed scale.

Table 3 summarizes a set of predictive ¢ distributions for
log(72,,), across settings, defined by type of outcome and
intervention comparison type for medical areas other than
respiratory diseases and cancer, together with summary
statistics for Tiew on the untransformed scale. Sets of pre-
dictive distributions for 72, in meta-analyses for medical
areas of cancer and respiratory diseases are available in
the Appendix at www.jclinepi.com (Section A.3). Although
the inverse-gamma distribution does not provide the best
fit for underlying values of between-study variance in a
meta-analysis, we provide predictive inverse-gamma distri-
butions for Tﬁew in the Appendix at www.jclinepi.com (Sec-
tion A.3). These distributions would facilitate Bayesian
random-effects meta-analysis with a conjugate prior for
the between-study heterogeneity variance. In Bayesian
analysis, use of a conjugate prior is sometimes preferred
because the resulting posterior distribution is of the same
known form as the prior.

The discrepancies among these fitted distributions reflect
the comparisons of between-study variances in Table 2.
Fig. 1 illustrates the predictive ¢ distributions for
between-study heterogeneity in two example settings. For
a pharmacologic vs. placebo/control meta-analysis
measuring an obstetric outcome, the predictive distribution

A

— Medical areas other
than respiratory diseases|
and cancer

- Respiratory diseases
Cancer

0.25
1

0.20
1

Density

0.00
1

T T T T T
0.001 0.01 0.1 1 10

Between-study heterogeneity variance

0.25
1

—— Medical areas other
than respiratory diseases
and cancer

- Respiratory diseases
Cancer

0.20
1

Density

o
S
[S]

T T T T T
0.001 0.01 0.1 1 10

Between-study heterogeneity variance

Fig. 1. Examples of predictive tdistributions for the between-study het-
erogeneity variance (plotted on the log scale). A vertical line highlights
the probability of the variance being greater than 1. (A) Pharmacologic
vs. placebo/control meta-analyses measuring an obstetric outcome.
(B) Nonpharmacologic meta-analyses measuring resource use.

gives little support to values above 1, whereas the predic-
tive distribution for a nonpharmacologic meta-analysis
measuring resource use gives moderate support to values
of 72 up to 10. Additional density plots representing predic-
tive ¢ distributions for between-study heterogeneity in a
variety of settings are displayed in the Appendix at www.

jelinepi.com (Section A.3).

3.4. Application to example meta-analyses

To demonstrate the use of an informative prior for the
between-study variance 7° in a continuous-outcome meta-
analysis, we reanalyzed data from two published meta-
analyses. Both example meta-analyses represent the typical
situation in which there are only a small number of studies
in the meta-analysis, and Bayesian estimation is particu-
larly beneficial. The first example meta-analysis consists
of just four studies to compare exercise vs. control (no
exercise or placebo exercise) with respect to depression
in adults with chronic kidney disease (Fig. 2A) [12]. In a
conventional random-effects meta-analysis, the heterogene-
ity is moderately high but imprecisely estimated [7> = 0.47
(95% CI: 0.10, 12.0), P = 79%]. The confidence interval
for the conventional estimate of 72 was obtained iteratively
via the Q-profile method [13].

Results for performing Bayesian random-effects meta-
analysis with noninformative priors for heterogeneity are
provided in Table 4. As a noninformative prior for the
between-study standard deviation 7, we used a uniform
(0,5) prior, as recommended by Spiegelhalter et al. [11].
We also considered a positive half normal (0,10) distribution
for 7, which has been used as a prior in earlier applications
to meta-analysis [14]. In each Bayesian meta-analysis with a
noninformative prior for heterogeneity, the between-study
variance is clearly estimated subject to substantial uncer-
tainty, and this is reflected by the wide intervals for the sum-
mary intervention effect. This meta-analysis compares a
nonpharmacologic intervention against a control in terms
of a mental health outcome. A Bayesian meta-analysis
implementing an informative log #(—3.85,1.93%,5) prior for
7° leads to a reduced estimate for the between-study hetero-
geneity of 0.19 (95% CI: 0.001, 2.40). This approach incor-
porates our beliefs about the likely extent of heterogeneity
in this setting, and we therefore consider these results more
credible than those obtained using alternative approaches.

Also presented in Table 4 are results from Bayesian meta-
analysis using the corresponding inverse-gamma distribution
as an informative prior for 72. The simple code for fitting each
of the Bayesian models using informative priors for the
between-study variance is available in the Appendix at
www.jclinepi.com (Section A.4). Central estimates for the
summary SMD are similar, irrespective of the form of the
prior distribution for heterogeneity. We note that central esti-
mates for the between-study variance are also quite compara-
ble across results from performing Bayesian meta-analysis
with log-t or inverse-gamma prior distributions. However,
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A Study SMD (95% CI)
Study 1 —_— -0.26 [-1.12,0.60]
Study 2 —— 0.47[ 0.06,0.88]
Study 3 R — 0.71[-0.05, 1.47]
Study 4 —_— 1.99[ 1.13,2.85]
RE Model (DerSimonian and Laird) e 0.71[-0.05,1.47]
Bayesian (vague uniform prior) —— 0.70[-1.04,2.38]
Bayesian (vague half-normal prior) e ————— 0.71[-0.91,2.33]
Bayesian (informative log—-t prior) — 0.67[-0.04,1.47]
Bayesian (informative inverse—-gamma prior) —— 0.68[-0.17,1.61]

I 1 i
-2.00 -1.00 0.00

1.00 2.00 3.00

B Study SMD (95% ClI)
Study 1 —— 0.05[-0.38,0.49]
Study 2 - -0.13[-0.32,0.06]
Study 3 - -0.11[-0.31,0.08]
Study 4 4 0.30[-0.42,1.02]
Study 5 e -041[-1.02,0.19]

RE Model (DerSimonian and Laird)
Bayesian (vague uniform prior)
Bayesian (vague half-normal prior)
Bayesian (informative log—t prior)

Bayesian (informative inverse—-gamma prior)

-
i
i

-

-

-0.11[-0.23,0.02]
-0.10[-0.35,0.18 ]
-0.10[-0.35,0.19]
-0.11[-0.26 , 0.06 ]

-0.11[-0.24 ,0.03 ]
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Fig. 2. Conventional and Bayesian random-effects meta-analyses combining standardized mean differences (SMDs); 95% confidence intervals
(Cls) are shown for each study. (A) Example 1: four studies comparing exercise vs. control (no exercise or placebo exercise) with respect to depres-
sion in adults with chronic kidney disease. (B) Example 2: five studies to compare budesonide at different doses for chronic asthma.

there are noticeable discrepancies between the 95% intervals
for both the combined SMD and 7°.

As a contrasting example, we also reanalyzed data from
a published meta-analysis consisting of just five studies to
compare budesonide at different doses for chronic asthma
(Fig. 2B) [15]. In a conventional random-effects meta-
analysis, the heterogeneity is low but again imprecisely
estimated [7* = 0 (95% CI: 0, 0.45), I = 0%). Bayesian
meta-analysis using an informative log #(—5.18,2.47%5)
prior for 7% leads to a slightly increased estimate for the
between-study heterogeneity of 0.002 (95% CI: <0.001,
0.06). Although the central estimate for 72 is only a little
higher than in the conventional meta-analysis, this
approach leads to a wider interval for the summary SMD
because it allows appropriately for the uncertainty in
between-study heterogeneity.

For this example in which the conventional heterogene-
ity estimate is low, central estimates and intervals for the
summary SMD and the between-study variance show
strong similarity between Bayesian meta-analyses using a
log-t or inverse-gamma prior distribution for the between-
study heterogeneity variance.

4. Discussion

In this work, we have analyzed data from 6,492
continuous-outcome meta-analyses to describe predictors
of heterogeneity and construct informative prior distribu-
tions for the between-study variance. We have demon-
strated how these priors can be implemented in a
Bayesian meta-analysis and given examples in which the
precision of heterogeneity is improved with their use.
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Table 4. Results from reanalyzing study data from published meta-analyses using conventional and Bayesian approaches to random-effects meta-

analysis

Analysis

Summary SMD (95% Cl) Estimated 72 (95% CI)

Any exercise vs. control (no exercise/placebo exercise). Outcome: depression

Conventional random-effects meta-analysis (DerSimonian and Laird
estimation)

Bayesian random-effects meta-analysis with a noninformative uniform

(0,5) prior on 7

Bayesian random-effects meta-analysis with a noninformative half normal

(0,10) prior on 7

Bayesian random-effects meta-analysis with an informative
#—3.85,1.932,5)° prior on log(?)

Bayesian random-effects meta-analysis with an informative 1G
(0.46,0.01)° prior on 72

Higher dose budesonide vs. lower dose. Outcome: FEV; measurement

Conventional random-effects meta-analysis (DerSimonian and Laird

estimation)

Bayesian random-effects meta-analysis with a noninformative uniform

(0,5) prior on 7

Bayesian random-effects meta-analysis with a noninformative half normal

(0,10) prior on 7

Bayesian random-effects meta-analysis with an informative
#—5.18,2.472,5)4 prior on log(r?)

Bayesian random-effects meta-analysis with an informative 1G
(0.94,0.00005)¢ prior on 72

0.71 (-0.05, 1.47) 0.47 (0.10, 12.0)

0.70 (=1.04, 2.38)° 1.31 (0.09, 15.3)°
0.71 (-0.91, 2.33)° 1.15 (0.09, 12.9)°
0.67 (—0.04, 1.47)° 0.19 (0.001, 2.40)°

0.68 (-0.17, 1.61)° 0.29 (0.01, 3.50)°

—-0.11 (-0.23, 0.02)* 0 (0, 0.45)*

—0.10 (-0.35, 0.18)° 1.1 (<0.001, 0.48)°
—0.10 (-0.35, 0.19)° 0.01 (<0.001, 0.49)°
—0.11 (-0.26, 0.06)° 0.002 (<0.001, 0.06)"

-0.11 (-0.24, 0.03)° <0.001 (<0.001, 0.01)°

@ 95% confidence interval. For 72, this interval is obtained iteratively via the Q-profile method [13].

® Posterior medians and 95% credible intervals are reported.

¢ Predictive distribution for a nonpharmacologic meta-analysis for a urogenital condition with respect to mental health.
9 Predictive distribution for a pharmacologic vs. pharmacologic meta-analysis for respiratory disease with respect to a sign reflecting continu-

ation of condition.

The results of the present study are consistent with
those of the earlier work published on binary outcome
meta-analyses [5]. This is to be expected because under
often-plausible assumptions, there is a close relationship
between the log odds ratio and the SMD [16]. Taken
together, there is strong evidence to suggest that the magni-
tude of heterogeneity in a meta-analysis is substantially
influenced by meta-analysis characteristics. Notably, levels
of heterogeneity were highest among meta-analyses with
subjective outcomes and meta-analyses comparing non-
pharmacologic interventions. The current research adds to
the existing literature by providing informative log-t and
inverse-gamma prior distributions for 7> in continuous-
outcome meta-analyses. The inverse-gamma distributions
would facilitate Bayesian meta-analysis with a conjugate
prior for the between-study variance. In two example
meta-analyses, Bayesian meta-analysis with an informative
prior for heterogeneity led to more precise estimates for
heterogeneity and results were similar, regardless of the
distribution of the informative prior.

An important limitation lies in the fact that there are
insufficient data for meta-analyses with certain characteris-
tics. Given the rather extreme levels of heterogeneity
observed and the low frequencies of meta-analyses special-
izing in cancer and respiratory diseases for many settings,
we would be cautious about using our informative prior
distributions in future meta-analyses related to cancer or
respiratory diseases. A well-established problem in

conducting Bayesian meta-analysis is the sensitivity of re-
sults to priors for variance components [17]. Where the
number of past meta-analyses informing the chosen prior
is small, we recommend assessing the sensitivity of meta-
analysis results to the choice of prior distribution for het-
erogeneity, using a range of different prior distributions.
In addition to using a prior from the Appendix at www.
jclinepi.com, an analyst could implement the prior for a
general setting. In cases where no relevant data-based prior
is available, researchers could use elicited opinion from ex-
perts to construct an informative prior for heterogeneity
among studies in the meta-analysis.

An issue that has not been addressed in this article is that
results for the influence of medical area are highly prone to
confounding. All Cochrane reviews in the CDSR have been
prepared by authors, under the supervision of a Cochrane
Review Group (CRG) in the Cochrane Collaboration.
Because CRGs focus on a specific topic area, differences
observed between disease areas may be caused by CRG
editorial policies. Our results show extremely high heteroge-
neity among meta-analyses for cancer in comparison with
other medical areas. Further examination of these meta-
analyses revealed that this high estimate could be due to
meta-analyses included in a single Cochrane review [18]
with low-quality studies. These meta-analyses show
extremely high moment estimators for between-study het-
erogeneity. Removal of these meta-analyses would be an op-
tion, but we expect such examples to be present in other parts
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of our data set and do not consider such selective omission of
data to be appropriate. In any case, we acknowledge the in-
clusion of such studies in our analyses as a weakness of our
work and advise that our priors be used with caution.

A limitation of this work is that the reported informative
prior distributions for 7° are restricted to use in meta-
analyses performed on the SMD scale. As a simple solu-
tion, we could transform the between-study heterogeneity
variance based on the SMD scale to that based on the
MD scale by multiplying by a “typical” within-study stan-
dard deviation. However, it is difficult to obtain a good
estimate for a “‘typical” standard deviation of outcome
among participants in a study. An alternative to mean
difference measures would be to use relative effects by
computing a ratio of mean (RoM) values. Although the
RoM may be desirable for ease of interpretation and statis-
tical properties [19], we have used the SMD scale
throughout our analyses. The RoM is restricted to use in
studies in which the means on the two treatment arms have
the same sign because we compute the RoM on the natural
logarithm scale for mathematical convenience. What are
now needed are informative priors for heterogeneity in
meta-analyses performed on alternative scales. Higgins
and Thompson [20] proposed I* as a statistic to quantify
the degree of inconsistency among results of included
studies in a meta-analysis. This commonly reported
measure of inconsistency directly relates to the between-
study variance and has the same interpretation regardless
of the scale on which meta-analysis is performed. Although
it is convenient to assign a prior to 72, where possible,
because this parameter is used in the analysis, we plan to
construct informative prior distributions for /> for use in
future meta-analyses using different scales. Empirical evi-
dence on I* would provide useful information about the de-
gree to which we would expect inconsistency across studies
to reduce, on average, if meta-analysis was performed on a
different scale or using a different type of outcome data.

In summary, between-study heterogeneity was found to
be strongly influenced by the type of outcome measured
in the meta-analysis. Informative priors for heterogeneity
would be useful in meta-analyses including few studies.
Taking into account the important influences of
meta-analysis characteristics on heterogeneity, implement-
ing an informative prior for the between-study variance in
a new meta-analysis would be beneficial in many settings.
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