
Interaction of wave with a body submerged below an ice sheet with multiple
arbitrarily spaced cracks
Z. F. Li, G. X. Wu, and C. Y. Ji

Citation: Physics of Fluids 30, 057107 (2018); doi: 10.1063/1.5030378
View online: https://doi.org/10.1063/1.5030378
View Table of Contents: http://aip.scitation.org/toc/phf/30/5
Published by the American Institute of Physics

Articles you may be interested in
Non-linear instability analysis of the two-dimensional Navier-Stokes equation: The Taylor-Green vortex
problem
Physics of Fluids 30, 054105 (2018); 10.1063/1.5024765

Two-layer displacement flow of miscible fluids with viscosity ratio: Experiments
Physics of Fluids 30, 052103 (2018); 10.1063/1.5026639

Three-dimensional numerical investigation of vortex-induced vibration of a rotating circular cylinder in uniform
flow
Physics of Fluids 30, 053602 (2018); 10.1063/1.5025238

Role of jet spacing and strut geometry on the formation of large scale structures and mixing characteristics
Physics of Fluids 30, 056103 (2018); 10.1063/1.5026375

Autoignition of hydrogen in shear flows
Physics of Fluids 30, 057106 (2018); 10.1063/1.5026400

Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number
Physics of Fluids 30, 051903 (2018); 10.1063/1.5024925

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2037307372/x01/AIP-PT/MB_PoFArticleDL_060618/large-banner.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Li%2C+Z+F
http://aip.scitation.org/author/Wu%2C+G+X
http://aip.scitation.org/author/Ji%2C+C+Y
/loi/phf
https://doi.org/10.1063/1.5030378
http://aip.scitation.org/toc/phf/30/5
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5024765
http://aip.scitation.org/doi/abs/10.1063/1.5024765
http://aip.scitation.org/doi/abs/10.1063/1.5026639
http://aip.scitation.org/doi/abs/10.1063/1.5025238
http://aip.scitation.org/doi/abs/10.1063/1.5025238
http://aip.scitation.org/doi/abs/10.1063/1.5026375
http://aip.scitation.org/doi/abs/10.1063/1.5026400
http://aip.scitation.org/doi/abs/10.1063/1.5024925


PHYSICS OF FLUIDS 30, 057107 (2018)

Interaction of wave with a body submerged below an ice sheet
with multiple arbitrarily spaced cracks

Z. F. Li,1 G. X. Wu,1,2,a) and C. Y. Ji1
1School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology,
Zhenjiang 212003, China
2Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE,
United Kingdom

(Received 21 March 2018; accepted 1 May 2018; published online 21 May 2018)

The problem of wave interaction with a body submerged below an ice sheet with multiple arbitrar-
ily spaced cracks is considered, based on the linearized velocity potential theory together with the
boundary element method. The ice sheet is modeled as a thin elastic plate with uniform properties,
and zero bending moment and shear force conditions are enforced at the cracks. The Green func-
tion satisfying all the boundary conditions including those at cracks, apart from that on the body
surface, is derived and is expressed in an explicit integral form. The boundary integral equation for
the velocity potential is constructed with an unknown source distribution over the body surface only.
The wave/crack interaction problem without the body is first solved directly without the need for
source. The convergence and comparison studies are undertaken to show the accuracy and reliabil-
ity of the solution procedure. Detailed numerical results through the hydrodynamic coefficients and
wave exciting forces are provided for a body submerged below double cracks and an array of cracks.
Some unique features are observed, and their mechanisms are analyzed. Published by AIP Publishing.
https://doi.org/10.1063/1.5030378

I. INTRODUCTION

The physical behaviors of ocean waves in open water and
icy regions are different. When free surface waves propagate
into a region covered by an ice sheet, or the other way round,
there will be wave reflection and transmission. In such a way,
the wave/body interactions in icy waters can be expected to be
much more complex than those in open waters.

When the horizontal dimension of the ice is much larger
than its vertical one, it can be treated as an elastic plate based
on the field measurements.1 Through this model for a large ice
sheet, a variety of work has been carried out to simulate and
understand the wave propagation features in the polar regions.
By using the matched eigenfunction expansions (MEE), Fox
and Squire2 constructed the solution for waves propagat-
ing from open water to a region below a semi-infinite ice
sheet. The results showed that wave reflection would become
stronger for a shorter wave. It was also found that there was a
critical incident angle, larger than which, the waves would
be totally reflected for any wave numbers. The unknowns
in the eigenfunction expansions can be also solved through
introducing an inner product of orthogonality, e.g., done by
Sahoo, Yip, and Chwang3 in which various ice edge condi-
tions were examined. Other solution methods are also possible.
Balmforth and Craster,4 for example, solved the semi-infinite
ice sheet problem using the Wiener-Hopf method. Further-
more, in that work, several non-dimensional parameters were
introduced, through which it was found that the thin plate
model could give nearly the same results as those by the

a)Author to whom correspondence should be addressed: g.wu@ucl.ac.uk.
Tel.: +44 20 7679 3870. Fax: +44 20 7388 0180.

Timoskenko-Mindlin model even for quite thick ice sheets.
The ice sheet may not always be sufficiently large so that it
can be treated as semi-infinite. There are also many cases
in which the finite width of the ice sheet may have to be
taken into account. Based on the solution for waves from open
water to the semi-infinite ice sheet together with the Stokes
time reverse, Meylan and Squire5 constructed an approxi-
mate solution for waves propagating through an ice floe, the
accuracy of which was verified by the exact solution con-
structed through the Green function method.6 For an ice
floe, it was found that there were a series of discrete fre-
quencies at which the reflection coefficient was zero. Similar
phenomenon could be also found in the polynya problem,
e.g., in the work of Chung and Linton7 where the solution
was built via the residue calculus technique. A more gen-
eral case was considered by Williams and Squire8 through
the Wiener-Hopf technique, i.e., the water surface was cov-
ered by three plates with different properties and the polynya
could be treated with the thickness of the middle plate taken as
zero.

In the above work, the ice sheet is assumed to be perfect.
However, in many cases, the ice sheet may be imperfect, and
one of such examples is the ice sheet with cracks. By following
the MEE procedure in the work of Fox and Squire,2 Barrett
and Squire9 solved the propagation of waves through an ice
with a crack for finite water depth and found that there was
a specific period at which perfect transmission would occur.
Based on the Green function for an infinite homogeneous ice
sheet, Squire and Dixon10 obtained an analytical solution for
infinite water depth, and the trend of the variation of reflection
coefficient was found to be similar to that for finite water depth.
The solution procedure was then extended to the problem for
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the ice sheet with many cracks by Squire and Dixon,11 and
the results showed that perfect transmissions would occur at
a discrete of periods. By first dividing the problem into the
symmetric and anti-symmetric parts, Evans and Porter12 found
the analytical solution in the series form, for a single crack
problem with finite water depth and an oblique incident wave.
Specifically, the edge waves were found to be possible. Later,
Porter and Evans13 solved the problem of wave propagation
through multiple cracks, and it was found that there were some
stopping bands for the case with a semi-infinite array of cracks,
within which the transmission coefficient was zero. Porter and
Evans14 also derived the solution for the ice sheet with finite
length cracks.

In this work, we shall consider the problem of wave inter-
action with a body of arbitrary shape submerged below an
ice sheet with multiple arbitrarily spaced cracks, which is an
extension of the previous work by Li, Wu, and Ji15 on a cir-
cular cylinder submerged below an ice sheet with the single
crack problem through the analytical method. The multiple-
crack problem has many practical applications. As noted by
Squire and Dixon11 or Porter and Evans,13 for example, in
the polar regions, there may be an area where the ice is frac-
tured into floes that are presented at high concentrations, e.g.,
the shear zone that forms between moving and stationary
sea ice.

It may be noticed that there have already been some studies
on the coupled wave/body/ice interactions, motivated by devel-
opment in the Arctic engineering. For an infinite homogeneous
ice sheet, Li, Shi, and Wu16 obtained the analytical solution for
a circular cylinder undergoing large amplitude oscillations. By
using the MEE, Sturova derived the Green function in a series
form, for the cases of water surface covered by a semi-infinite
ice sheet,17 an infinite ice sheet with a crack,18 and an ice
floe or a polynya.19 Through the Fourier transform technique,
Li, Wu, and Ji15 derived the Green function for the ice sheet
with a crack in a simple integral form, and the multipoles for
a submerged circular cylinder were further obtained. For a
floating body on a polynya, Ren, Wu, and Thomas20 obtained
an analytical solution for a rectangle through MEE, and quite
oscillatory behaviors of the hydrodynamic forces against the
wave frequency have been observed. To solve the problem for
a body of arbitrary shape, Li, Shi, and Wu21 used the hybrid
method which combined the eigenfunction expansion method
and the boundary element method. When the gap between
the body and the ice was large, the wide spacing approxima-
tion could be constructed, through which the mechanisms of

the oscillatory features of the hydrodynamic forces could be
uncovered.22

The paper is organized as follows. In Sec. II, the lin-
earized boundary value problem for the velocity potential is
presented, and the conditions at the cracks are described. In
Sec. III A, the Green function satisfying all the boundary
conditions except that on the body surface is first derived,
based on which the velocity potential is solved in Sec. III B
through the source distribution method, and the solution
for pure wave/crack interaction problem is obtained in an
explicit form in Sec. III C. Numerical results are presented
and discussed in Sec. IV, and conclusions are drawn in
Sec. V.

II. MATHEMATICAL MODEL

We consider the interaction problem of a wave with a
body submerged below an ice sheet with multiple arbitrar-
ily spaced parallel cracks, as shown in Fig. 1. A Cartesian
coordinate system Oxyz is defined, with the x-axis along the
undisturbed mean upper surface of the fluid, z-axis pointing
vertically upwards, and y-axis being parallel to the cracks. The
ice sheet with uniform properties is extended from x = �∞ to
x = +∞. Its draught is assumed to be zero, and the N parallel
cracks are assumed to be located at x = ci, i = 1,2, . . ., N, with
ci < ci+1, as shown in the figure.

The fluid with density ρ and depth H is assumed to be
inviscid, incompressible, and homogeneous, and its motion
is assumed to be irrotational. Under the assumption that the
amplitude of the wave motion is small compared to its length
and the dimension of the body, the linearized velocity poten-
tial theory can be used to describe the fluid flow. By further
assuming that the motion is sinusoidal in time with radian fre-
quency ω, the total velocity potential Φ can be written in the
following form:

Φ(x, z, t) = Re


α0φ0(x, z)eiωt +

3∑
j=1

iωαjφj(x, z)eiωt


, (1)

where φ0 contains the incident potential φI and diffracted
potential φD, α0 is the amplitude of the incident wave, and
φj (j = 1, 2, 3) is the radiation potential due to body oscilla-
tion with complex amplitude αj in three degrees of freedom,
i.e., translations in the x and z directions, respectively, and
rotation about the y-axis pointing into the paper. Here a two-
dimensional problem has been implied, and both the body

FIG. 1. Coordinate system and sketch of the problem.
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and incoming wave are assumed to have the constant cross
section in the y direction.

Mass conservation requires that the potential φj satisfies
Laplace’s equation throughout the fluid or

∇2φj = 0, ( j = 0, 1, 2, 3). (2)

The ice sheet is modeled as a continuous elastic plate with uni-
form properties, i.e., thickness h, density ρ0, Young’s modulus
E, and Poisson’s ratio ν are all constant. Thus the boundary
condition on the ice sheet can be given as(

L
∂4

∂x4
− mω2 + ρg

)
∂φj

∂z
− ρω2φj = 0, (x , ci, z = 0), (3)

where L = Eh3/[12(1 − ν2)] and m = hρ0 are the effective
flexural rigidity and mass per unit area of the ice sheet. At the
ice cracks, zero bending moment and shear force are assumed
there, which gives

∂2

∂x2

(
∂φj

∂z

)
= 0 and

∂3

∂x3

(
∂φj

∂z

)
= 0, (x = ci, z = 0). (4)

The impermeable condition on the body surface can be written
as

∂φ0

∂n
= 0 and

∂φj

∂n
= nj, ( j = 1, 2, 3), (5)

where n1 and n2 are, respectively, the x and z components of
the unit normal vector~n pointing into the body. n3 = (z− z′)n1

− (x − x′)n2 is the component related to the rotational mode
about y-axis, with (x′, z′) as the rotational centre. Similarly,
on the flat seabed, the following condition should also be
enforced:

∂φj

∂z
= 0, (z = −H). (6)

The radiation condition at infinity requires the wave to
propagate outwards, i.e.,

lim
x→±∞

(
∂φD

∂x
± iλφD

)
= 0 and lim

x→±∞

(
∂φj

∂x
± iλφj

)
= 0,

( j = 1, 2, 3),
(7)

where λ is the purely positive real root of the following
dispersion equation for a flexural gravity wave in the ice sheet:

K(ω, λ) ≡ (Lλ4 + ρg − mω2)λ tanh(λH) − ρω2 = 0. (8)

III. SOLUTION PROCEDURES
A. Velocity potential due to a single source:
The Green function

The Green function G(x, z; x0, z0) is defined as the velocity
potential at point p(x, z) due to a source at q(x0, z0), which
satisfies the following equation:

∇2G = 2πδ(x − x0)δ(z − z0), (9)

throughout the fluid and the same boundary conditions as those
in Eqs. (3), (4), (6), and (7). Here, δ(x) is the Dirac delta-
function.

By following the procedure in the work of Li, Wu, and
Ji15 who derived the Green function for an ice sheet with a

single crack in an integral form, G for multiple parallel cracks
can be written as

G = Gice(x, z; x0, z0)

+
N∑

i = 1

[
AN ,i

∂G1(x − ci, z)
∂x

+ BN ,iG1(x − ci, z)

]
, (10)

where

Gice = ln
( r1

H

)
+ ln

( r2

H

)
− 2

∫
D

e−kH

k
{P(k)Z(z)Z(z0)cos[k(x − x0)] + 1}dk (11)

and

G1(x, z) =
L
π

∫
D

Z(z)
K(ω, k)Z(0)

k2 cos(kx)dk, (12)

with

Z(z) = cosh[k(z + H)] (13)

and

P(k) =
(Lk4 + ρg − mω2)k + ρω2

K(ω, k)Z(0)
. (14)

Here r1 is the distance between p and q and r2 is the distance
between p and the mirror image of q about the flat seabed
z = �H. To satisfy the radiation condition at infinity, the inte-
gration route D in Gice and G1 from 0 to +∞ should pass over
the pole at k = λ. Gice in Eq. (10) is in fact the Green function
without cracks. Each pair of the terms in the square brackets
corresponds to each crack, and AN ,i and BN ,i represent the
jumps of the displacement and the slope on both sides of the
crack. Thus at x = ci,(

∂G
∂z

)x=c−i

x=c+
i

= AN ,i(x0, z0), (z = 0), (15)

(
∂2G
∂z∂x

)x=c−i

x=c+
i

= BN ,i(x0, z0), (z = 0). (16)

It may be noticed that G1 and Gice can be related through the
following equation:15

G1(x, z) =
L

2πρω2



∂3Gice(x0, z0; x, z)

∂z0∂x2
0

x0=0,z0=0

. (17)

The summation in Eq. (10) involving G1 is introduced to
satisfy the conditions in Eq. (4) at each crack, which can be
used to determine the two sets of unknown coefficients AN ,i

and BN ,i. Thus at the crack of x = cj, we have

lim
z→0
x→cj

Gzxx =
2πρω2

L
[G1(x − x0, z0)]x=cj

+ lim
z→0
x→cj

N∑
i=1

[
AN ,i

∂4G1(x − ci, z)

∂z∂x3

+ BN ,i
∂3G1(x − ci, z)

∂z∂x2

]
= 0 (18)
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and

lim
z→0
x→cj

Gzxxx =
2πρω2

L

[
∂G1(x − x0, z0)

∂x

]

x=cj

+ lim
z→0
x→cj

N∑
i=1

[
AN ,i

∂5G1(x − ci, z)

∂z∂x4

+ BN ,i
∂4G1(x − ci, z)

∂z∂x3

]
= 0, (19)

in which Eq. (17) has been used. Similar to that in the work of
Li, Wu, and Ji,15 we have

I1
N ,ji = lim

z→0
x→cj

∂3G1(x − ci, z)

∂z∂x2

= −
1
π

∫
D

ρω2 − (ρg − mω2)k tanh(kH)
K(ω, k)

cos[k(cj − ci)]dk,

(20)

I2
N ,ji = lim

z→0
x→cj

∂4G1(x − ci, z)

∂z∂x3

=
1
π

∫
D

ρω2 − (ρg − mω2)k tanh(kH)
K(ω, k)

k sin[k(cj − ci)]dk,

(21)

I3
N ,ji = lim

z→0
x→cj

∂5G1(x − ci, z)

∂z∂x4

=
1
π

∫
D

ρω2 − (ρg−mω2)k tanh(kH)
K(ω, k)

k2 cos[k(cj − ci)]dk.

(22)

It may be noticed that here we have I1
N ,ji = I1

N ,ij and I1
N ,ii =

I1
N ,11, I2

N ,ji = −I2
N ,ij, I3

N ,ji = I3
N ,ij, and I3

N ,ii = I3
N ,11. Substituting

Eqs. (20)–(22) into Eqs. (18) and (19) at each ice crack of x =
cj (j = 1,2, . . ., N), we can obtain totally 2N equations. Thus

the two set of unknown coefficients AN ,i and BN ,i with i = 1,2,
. . ., N can be found through a matrix equation H·A = U or



0 · · · I2
N ,1N I1

N ,11 · · · I1
N ,1N

...
. . .

...
...

. . .
...

I2
N ,N1 · · · 0 I1

N ,N1 · · · I1
N ,NN

I3
N ,11 · · · I3

N ,1N 0 · · · I2
N ,1N

...
. . .

...
...

. . .
...

I3
N ,N1 · · · I3

N ,NN I2
N ,N1 · · · 0






AN ,1

...

AN ,N

BN ,1

...

BN ,N




=




UN ,1

...

UN ,N

VN ,1

...

VN ,N




,

(23)
where

UN ,j(x0, z0) = −
2πρω2

L
[G1(x − x0, z0)]x=cj , (24)

VN ,j(x0, z0) = −
2πρω2

L

[
∂G1(x − x0, z0)

∂x

]

x=cj

. (25)

From Eq. (23), we can obtain A = H�1·U. It may be noticed
that the matrix H depends on only the relative positions of the
ice cracks and is independent of the source position. Therefore,
H�1 can be computed in advance and is valid for any location
of the source point. We may assume that Cij are the coefficients
of H�1, which provides

AN ,i =

N∑
j=1

CijUN ,j +
N∑

j=1

Ci( j+N)VN ,j, (26)

BN ,i =

N∑
j=1

C(i+N)jUN ,j +
N∑

j=1

C(i+N)( j+N)VN ,j. (27)

Substituting Eqs. (26) and (27) into Eq. (10) and noticing

[G1(x − x0, z0)]x=cj = [G1(x0 − x, z0)]x=cj , (28)
[
∂G1(x − x0, z0)

∂x

]

x=cj

= −

[
∂G1(x0 − x, z0)

∂x0

]

x=cj

, (29)

we can obtain

G = Gice(x, z; x0, z0) +
2πρω2

L

N∑
i = 1

N∑
j=1




[
Ci( j+N)

∂G1(x − ci, z)
∂x

∂G1(x0 − cj, z0)

∂x0
− C(i+N)jG1(x − ci, z)G1(x0 − cj, z0)

]

+

[
C(i+N)( j+N)G1(x − ci, z)

∂G1(x0 − cj, z0)

∂x0
− Cij

∂G1(x − ci, z)
∂x

G1(x0 − cj, z0)

] 


. (30)

It can be shown (see Appendix A) that for G(x, z; x0, z0),
(x, z) and (x0, z0) are exchangeable. This together with Eq. (30)
indicates that

Ci( j+N) = Cj(i+N), C(i+N)j = C( j+N)i, Cij = −C( j+N)(i+N), (31)

which can also be obtained from the symmetric and skew
symmetric natures of the sub matrixes of H.

B. Solution through the source distribution method

As shown in Appendix B, the velocity potential at p(x, z)
in the fluid can be expressed through a source distribution

σj(x, z) over the body surface SB only or

φj(x, z) =
∫

SB

σj(x0, z0)G(x, z; x0, z0)dS, (32)

and no source distribution is needed on other surfaces. We may
notice that the integration is carried out with respect to (x0, z0),
and the velocity potential φj(x, z) satisfies all the boundary
conditions apart from that on the body surface, which will
be used to determine the source distribution σj(x0, z0). To do
that, we differentiate both sides of Eq. (32) with respect to the
normal direction at p ∈ SB or
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∂φj(x, z)

∂np
= −α(x, z)σj(x, z) +

∫
SB

σj(x0, z0)
∂G(x, z; x0, z0)

∂np
dS,

(33)
where α is the solid angle at (x, z).

For the radiation problem, ∂φj/∂n = nj can be used directly
in Eq. (33). However, for the diffraction problem, we should
first divide φD into two parts:

φD = φ
1
D + φ2

D, (34)

where φ1
D is the diffraction potential by the cracks to φI and

φ2
D is that by the body to ϕ = φI +φ1

D. When the incident wave
propagates from x = �∞ to x = +∞, φI can be written in the
following form:

φI = Ie−iλx cosh[λ(z + H)]
cosh(λH)

, (35)

with I = g/iω. As in the work of Li, Wu, and Ji,15 applying
Green’s second identity to φ1

D and G in Eq. (10) over the fluid
boundary S, we obtain

2πφ1
D(x, z) =

∫
S

[
φ1

D(x0, z0)
∂G(x, z; x0, z0)

∂nq

−G(x, z; x0, z0)
∂φ1

D(x0, z0)

∂nq


dS, (36)

where the derivative and integration are carried out with respect
to (x0, z0). Invoking the boundary conditions for φ1

D and G, only
the ice sheet will remain on the right hand side of Eq. (36).
Using the condition in Eq. (3) and through integrating by parts,
Eq. (36) can be further given as

2πφ1
D(x, z) =

L

ρω2

N∑
i=1


*
,

∂4φ1
D

∂x3
0∂z0

∂G
∂z0

−
∂3φ1

D

∂x2
0∂z0

∂2G
∂x0∂z0

+
-

x0=c−i

x0=c+
i

 z0=0

. (37)

Substituting Eqs. (15) and (16) into the above equation and
noticing that ϕ = φI + φ1

D should satisfy the crack conditions
in Eq. (4), φ1

D in Eq. (37) can be given as

φ1
D(x, z) = −

ILλ3

2πρω2
tanh(λH)

×

N∑
j=1

e−iλci
[
iλAN ,i(x, z) + BN ,i(x, z)

]
. (38)

By further applying Eqs. (26) and (27) to the above equation,
we can obtain

φ1
D(x, z) = −Iλ3 tanh(λH)

N∑
i=1

N∑
j=1

e−iλci

×

{ [
iλCi( j+N) + C(i+N)( j+N)

] ∂G1(x − cj, z)

∂x

−
[
iλCij + C(i+N)j

]
G1(x − cj, z)

}
. (39)

As ϕ = φI + φ1
D satisfies the conditions at the crack, φ2

D
then should also satisfy these conditions. Thus we can apply
Eq. (33) to φ2

D by using ∂φ2
D/∂n = −∂ϕ/∂n on the body

surface.

C. Reflection and transmission coefficients
for wave/crack interaction

Invoking Eq. (39), we can also obtain the reflection and
transmission coefficients explicitly for a wave propagating
across the cracks. Letting x→±∞ and by applying the Fourier
integrals Eq. (13.16) in the work of Wehausen and Laitone23

to the right hand sides of Eqs. (28) and (29), we have

lim
x→±∞

G1(x − cj, z) = −iL
λ2e±iλcj

K ′(ω, λ)
e∓iλx cosh[λ(z + H)]

cosh(λH)
, (40)

lim
x→±∞

∂G1(x − cj, z)

∂x
= ∓L

λ3e±iλcj

K ′(ω, λ)
e∓iλx cosh[λ(z + H)]

cosh(λH)
.

(41)

From these two equations together with Eqs. (39) and (35), the
asymptotic expression of the potential ϕ can be given as

ϕ(x, z) =




I × Tce−iλx cosh[λ(z + H)]
cosh(λH)

, x → +∞

I
(
e−iλx + Rce+iλx

) cosh[λ(z + H)]
cosh(λH)

, x → −∞
,

(42)

where T c and Rc are, respectively, the transmission and reflec-
tion coefficients. Substituting Eqs. (40) and (41) into Eq. (39),
we can obtain

Tc = 1 − Lλ5 tanh(λH)
K ′(ω, λ)

N∑
i=1

N∑
j=1

e−iλ(ci−cj)

×
[
iC(i+N)j − iλ2Ci( j+N) − λCij − λC(i+N)( j+N)

]
,

(43)

Rc = −Lλ5 tanh(λH)
K ′(ω, λ)

N∑
i=1

N∑
j=1

e−iλ(ci+cj)

×
[
iC(i+N)j + iλ2Ci( j+N) − λCij + λC(i+N)( j+N)

]
.

(44)

Invoking Eq. (31), Eqs. (43) and (44) can be also given as

Tc = 1 − 2iLλ5 tanh(λH)
K ′(ω, λ)

N∑
i=1

N∑
j=i

hij

{
cos

[
λ(ci − cj)

]

×
[
C(i+N)j − λ

2Ci( j+N)

]
− λ sin

[
λ(ci − cj)

]
(Cji − Cij)

}
,

(45)

Rc = −Lλ5 tanh(λH)
K ′(ω, λ)

N∑
i=1

N∑
j=i

e−iλ(ci+cj)hij

×
[
iC(i+N)j + iλ2Ci( j+N) − λCij − λCji

]
, (46)

where hij = 1 if i = j and hij = 2 if i , j. It may be noticed that
T c and Rc should satisfy the energy balance equation9 or

|Tc |
2 + |Rc |

2 = 1. (47)
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D. Hydrodynamic force

After the velocity potentials have been found, the pres-
sure can be obtained through the linear Bernoulli equation.
Integrating the dynamic pressure over the mean wetted body
surface, the hydrodynamic force then can be obtained. For the
radiation potential, we have

τij = µij − i
λij

ω
= ρ

∫
SB

φjnidS, (48)

where µij and λij are, respectively, the added mass and damping
coefficient. For the diffraction potential, we have

fE,i = −iωρ
∫

SB

φ0nidS, (49)

where f E ,i is the wave exciting force due to the incident
potential φI with unit amplitude and its diffraction.

IV. NUMERICAL RESULTS
A. Wave propagation across the cracks
without the body

We first consider the case of a wave propagating across
the cracks without the body. This has been studied previously
by Porter and Evans13 through introducing a pair of canonical
single crack functions ψ1 and ψ2 for a source located at the
crack, which can be related to G1 and ∂G1/∂x in Eq. (10) as
follows:

ψ1(x, z) = −
1
ρg

G1(x, z),ψ2(x, z) = −
1
ρg

∂G1(x, z)
∂x

, (50)

after the typos in their Eq. (2.29) are corrected. To carry
out the comparisons, the parameters are chosen as E =
5 GPa, ν = 0.3, h = 1 m, ρ0 = 925 kg/m3, ρ = 1025 kg/m3,
g = 9.81 m/s2, and H = 40 m, which are the same as those in the
work of Porter and Evans.13 The modulus of the transmission
coefficient |T c| is plotted in Fig. 2, against the dimensionless

wave number λh, for two cracks or N = 2. Two different dis-
tances between the cracks are considered, with c2 = �c1 = 20h
and c2 = �c1 = 0.25h, respectively, and the results are shown
in Figs. 2(a) and 2(b), respectively. The energy balance equa-
tion Eq. (47) has been used to check the accuracy of results.
It can be seen from the figure that there is no visible differ-
ence between the present results and those given by Porter and
Evans.13 This verifies the present formulation and numerical
procedure.

Compared with Fig. 2(b), we can observe from Fig. 2(a)
that when the two cracks are more widely spaced, |T c| shows a
quite oscillatory behavior with respect to λh. When the spac-
ing between the two cracks is large, we may take into account
only the traveling wave components generated by each crack
as in the wide polynya problem22 and ignore those evanescent
modes. We assume that the reflection and transmission coeffi-
cients for a single crack at the origin are R and T, respectively.
Let l = c2 � c1. When the incident wave of I0 = Ie−iλc1 in
Eq. (35) from x = �∞ passes the first crack at x = c1, it will
arrive at the second crack at x = c2 and then be reflected back
to the first crack at x = c1 as an incident wave from the right,
with

I1 = (Ie−iλc1 )(Te−iλl)(Re−iλl). (51)

Here the term in the second parenthesis reflects the effective
incident wave to the second crack, which is reflected through
R and then travels back to crack one over a distance l. I1 then
contributes to the reflection and transmission of crack one as

R1 = T × I1, T1 = R × I1. (52)

The wave of T1 above will then travel to crack two again and
then return back to crack one. Following the same argument,
we have

I2 = T1 × Re−2iλl, R2 = T × I2, T2 = R × I2. (53)

It is then obvious that

In = Tn−1 × Re−2iλl, Rn = T × In, Tn = R × In. (54)

FIG. 2. Modulus of the transmission coefficient |T c | for
wave propagation across two cracks. (a) c2 = �c1 = 20h
and (b) c2 = �c1 = 0.25h. Solid lines: results computed by
the present method; dashed lines: results given in Porter
and Evans.13 The dotted-dashed line in (b) is for c2 = �c1
= 0.05h.
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From this, In can be written as

In = In−1 × R2e−2iλl =
T
R

(Ie−iλc1 )(R2e−2iλl)n, (55)

which provides

Rn =
T2

R

(
Ie−iλc1

) (
R2e−2iλl

)n
, (56)

Tn = T
(
Ie−iλc1

) (
R2e−2iλl

)n
. (57)

It may be noticed that although Eq. (55) is valid for n ≥ 2,
Eq. (56) is correct for n ≥ 1, while Eq. (57) is correct for n ≥ 0.
From Eq. (56) and noticing the definition of Rc in Eq. (42), we
have

Rc = e−2iλc1


R +

T2

R

∞∑
n=1

(
R2e−2iλl

)n


= e−2iλc1

[
R +

RT2e−2iλl

1 − R2e−2iλl

]
. (58)

Similarly, from Eq. (57), we have

Tc = Te+iλc1


T
(
Ie−iλc1

) ∞∑
n=0

(
R2e−2iλl

)n

=

T2

1 − R2e−2iλl
.

(59)
The above equations may be also obtained by matching the
travelling wave from x = c1 to the right and that from x = c2

to the left, as in the wide polynya problem.22 Then similar to
Li, Shi, and Wu,22 it can be shown from Eq. (58) that |Rc| will
reach its peaks and troughs, respectively, when

λl = nπ − π/2 + Arg(R) (60)

and
λl = nπ + Arg(R), (61)

which, respectively, correspond to the troughs and peaks of
|T c| based on Eq. (59). Here n is an integer which ensures
λ > 0, and Arg indicates the argument of the complex num-
ber. In particular, when Eq. (61) is satisfied, |Rc| = 0 and
|T c| = 1. It should be pointed out that the value of Arg(R)
for a single crack depends on the location of the crack or
the relative horizontal location of x = 0 to the crack. When
the horizontal location of the origin of the coordinate sys-
tem is chosen differently, the value of Arg(R) will be dif-
ferent. Accordingly the results on the right hand sides of
Eqs. (60) and (61) will be different. However, what is more
important here is how these results vary with n, which is
not affected by Arg(R). It may be also interesting to link
Eqs. (60) and (61) with the natural sloshing modes of a rect-
angular tank (e.g., Ref. 24). In fact, the former is virtually
the same as that for the odd mode and the latter for the even
mode.

We may investigate the travelling wave between the two
cracks. Invoking Eq. (57), we have the wave transmitting from
crack one and propagating along the x-axis as

wT = e−iλ(x−c1)

T
(
Ie−iλc1

) ∞∑
n=0

(
R2e−2iλl

)n

=

ITe−iλx

1 − R2e−2iλl
.

(62)
Similarly, the wave reflected by crack two and travelling in the
opposite direction can be written as

wR =
IRTe−iλle+iλx

1 − R2e−2iλl
, (63)

where 2c2 = l has been used. Invoking Eqs. (62) and (63), we
have

w = wT + wR = IT
e−iλx + |R|e−i[λl−Arg(R)]e+iλx

1 − |R|2e−2i[λl−Arg(R)]
. (64)

It is known that for the wave propagating through a single
crack, there exists one λh at which |R| = 0 (e.g., Ref. 12).
This together with Eq. (64) indicates that there may be only
the wave propagating to the positive x-axis at this special
wave number. Invoking Eq. (47), we also have that |R| < 1,
and when |R| = 1, |T | = 0. This together with Eq. (64) indi-
cates that there will be no exact standing wave between two
cracks.

From Fig. 2(b), we can see that the results for two nar-
rowly spaced cracks follow more closely the pattern of a
single crack. It is particularly the case at a long wave, in
which the gap between the cracks becomes smaller relative
to the wavelength. As λh further increases, it can be seen that
except the sharp spikes within the range of λh ∈ (0.1, 0.12),
|T c| follows the same pattern as that for a single crack.
However, they are not the same, as the gap is no longer
small relative to the wavelength. To see the trend when the
gap decreases, the result is also provided in Fig. 2(b) for
c2 = �c1 = 0.05h, and its curve is much closer to that of
a single crack apart from a single point at which the result
changes rapidly. The reason for the rapid variation of |T c|
at this particular frequency has been discussed by Porter and
Evans.13

B. Body submerged below an ice sheet
with two cracks

To solve Eq. (33) numerically, the body surface SB is
divided into NB straight line segments. On each segment, the
source strength σj is assumed to be constant and the dis-
cretized equation is enforced at the centre of the element,
which means that the solid angle α in Eq. (33) can always
be taken as π. In this section and Sec. IV C, the numerical
results are presented in the dimensionless form, based on a
characteristic length scale, density of water ρ = 1025 kg m�3,
and acceleration due to gravity g = 9.80 ms�2. When it is
not specifically specified, the properties of the ice sheet are
taken as

E = 5 GPa, ν = 0.3, ρ0 = 922.5 kg m−3, h = 1 m, H = 100 m,

(65)

which are similar to those in the work of Sturova19 to provide
physically meaningful results. The considered body will be
an ellipse or (x − x′)2/a2 + (z − z′)2/b2 = 1, where a and b
are the half axes of the body in the x and z directions, respec-
tively. The rotational centre is taken to be at the geometric
centre of the body or (x′, z′), and a is chosen as the charac-
teristic length for nondimensionalisation. Unless specified, the
numerical results are obtained by dividing the body surface into
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FIG. 3. Hydrodynamic coefficients of a submerged cir-
cular cylinder with a single crack on the left. Solid lines:
c1 = �10; dotted lines: ice sheet without crack. Open
circles: analytical solutions based on the multipole expan-
sion. (a = 1, b = 1, x′ = 0, z′ = �1.2, H = 20, h = 0.2,
m = 0.18, L = 72.932).

NB = 240 straight line segments, from which convergence has
been achieved.

Here, we shall first consider wave interaction with a circu-
lar cylinder or a = b submerged below an ice sheet, with a single
crack on the left side of the body. Results are provided for
c1 = �10. The computed hydrodynamic coefficients are shown
in Fig. 3, against the dimensionless wave number λ, while
the corresponding wave exciting force is presented in Fig. 4.

Only nonzero results are given as the rotation of a circular
cylinder about its centre will not disturb the fluid. Similar
to the procedure in Appendix A in the work of Li, Wu, and
Ji,15 it can be shown that τij = τji, i.e., µi j and λij given by
Eq. (48) are symmetric. Thus only one of them is plotted
in the figure. The results from analytical solutions based on
multipole expansions15 are also provided in each figure for
comparison. It can be seen from these figures that there is

FIG. 4. Wave exciting force on a submerged circular
cylinder with a single crack on the left. Solid lines:
c1 = �10; dotted lines: ice sheet without crack. Open
circles: analytical solutions based on the multipole expan-
sion. (a = 1, b = 1, x′ = 0, z′ = �1.2, H = 20, h = 0.2,
m = 0.18, L = 72.932).
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FIG. 5. Hydrodynamic coefficients of a submerged cir-
cular cylinder with a crack on its each side. Solid lines:
c1 = �5; dashed lines: c1 = �10; dotted-dashed lines:
c1 = �15; dotted lines: ice sheet without the crack.
(a = 1, b = 1, x′ = 0, z′ = �1.2, H = 20, h = 0.2,
m = 0.18, L = 72.932).

no visible difference between the present results and those
analytical solutions, i.e., the present numerical procedure is
accurate.

After the accuracy of the present method has been veri-
fied through a single crack, we next consider the case in which
two cracks are located symmetrically about the body centre or
c2 =�c1. The hydrodynamic coefficients with c1 =�5,�10,�15
are shown in Fig. 5, while the wave exciting force is provided
in Fig. 6. Since the problem is symmetric about x = 0, we have
τkj = 0 for odd k + j, which are omitted from the figures. When
λ is very small, we can see from Figs. 5 and 6 that the results for
ice sheets with two cracks tend to those without cracks. This is
because as λ → 0, the condition in Eq. (3) tends to ∂φj/∂z
= 0, which means that ∂3φj/∂z∂x2 → 0 and ∂4φj/∂z∂x3

→ 0 hold on the whole ice sheet, i.e., the crack conditions are
satisfied automatically. In such a condition, results for an ice
sheet with any number of cracks will then tend to those without
crack.

As λ increases, it can be seen from these figures that the
results for the ice sheet without the crack change smoothly.
However, for the case with two cracks, the results show a quite
oscillatory behavior. Compared with Fig. 3, we can see in Fig. 5
that the added mass can reach a large peak at some frequencies,
which is followed immediately by a negative trough. This can
be explained through the approximate solution in Appendix C
based on the wide spacing approximation. For a circular cylin-
der and noticing c2 = �c1, we can simplify ε1

j and ε2
j in

Eqs. (C2) and (C3) as

ε1
j = (−1) jε2

j and ε2
j =

A−j R

e+iλl − [r0 + (−1) jt0]R
, (66)

where A+
j = (−1) jA−j , t0 = t−0 = t+

0 , and r0 = r−0 = r+
0 for a

body symmetric about its middle plane have been used.25 Sub-
stituting Eq. (66) into Eq. (C1) and using f ◦−E,k = 2I ρωQ0CgA−k
and f ◦+E,k = (−1)k f ◦−E,k , we can write τkj as

FIG. 6. Wave exciting force on a submerged circular
cylinder with a crack on its each side. Solid lines: c1 =
�5; dashed lines: c1 = �10; dotted-dashed lines: c1 = �15,
dotted lines: ice sheet without the crack. (a = 1, b = 1,
x′ = 0, z′ = �1.2, H = 20, h = 0.2, m = 0.18, L = 72.932).
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τkj = τ
o
kj + 2iρQ0Cg

[
(−1)k+j + 1

]
Akj, (67)

where

Akj =
A−k A−j R

e+iλl − [r0 + (−1) jt0]R
, (68)

with

Q0 =
ρω(Lλ4 + ρg)

(Lλ4 + ρg − mω2)2
, (69)

Cg =
2Lλ3ω

Lλ4 + ρg
+
ω

2λ

[
1 +

2λH
sinh(2λH)

]
Lλ4 + ρg − mω2

Lλ4 + ρg
.

(70)
Invoking Eq. (68), we have that when δλ = λl equals

δe = 2nπ + Arg
{
[r0 + (−1) jt0]R

}
, (71)

|Akj | will reach its peaks. Similar to Eq. (8.6.49) in the work of
Mei, Stiassnie, and Yue,25 we have

r0 + (−1) jt0 = −e2iArg(A−j ), (72)

which gives

|r0 + (−1) jt0 | = 1 and Arg[r0 + (−1) jt0] = 2Arg(A−j ) + π.
(73)

Near δe at each n, we may write δλ = δe + ∆. Equation (68)
becomes

Ajj ≈ |A
−
j A−j R|

|R| − e−i∆

| |R| − ei∆ |2
, (74)

where Eq. (73) has been used. Substituting the above equation
into Eq. (67), we have

µjj ≈ µ
o
jj − 4ρQ0Cg |A

−
j A−j R|

sin ∆

| |R| − ei∆ |2
, (75)

λjj ≈ λ
o
jj + 4ρωQ0Cg |A

−
j A−j R|

cos ∆ − |R|

| |R| − ei∆ |2
. (76)

As λ increases, we have |R|≈ 1, which leads to | |R|−ei∆ | ≈ 0 as
∆≈ 0. Then invoking Eq. (75), we have that the added mass will
change from a large positive peak to a large negative trough,
through following the sign of sin∆, while invoking Eq. (76),
we have that the damping coefficient will have a large peak at
δλ = δe, but there will be no sharp variation from the peak to
trough due to the term cos∆. For the wave exciting force, we
can simplify Eq. (C11) as

FIG. 7. Hydrodynamic coefficients of a submerged cir-
cular cylinder with two cracks on its left side. Solid lines:
c1 = �20 and c2 = �10; dashed lines: c1 = �30 and c2 =
�10; dotted-dashed lines: c1 = �40 and c2 = �10; dotted
lines: ice sheet without the crack. (a = 1, b = 1, x′ = 0,
z′ = �1.2, H = 20, h = 0.2, m = 0.18, L = 72.932).
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FIG. 8. Wave exciting force on a submerged circular
cylinder with two cracks on its left side. Solid lines: c1 =
�20 and c2 = �10; dashed lines: c1 = �30 and c2 = �10;
dotted-dashed lines: c1 = �40 and c2 = �10; dotted lines:
ice sheet without the crack. (a = 1, b = 1, x′ = 0, z′ = �1.2,
H = 20, h = 0.2, m = 0.18, L = 72.932).

fE,j =
f ◦−E,j Te+iλl

e+iλl − [r0 + (−1) jt0]R
. (77)

Then similar to Eq. (68), we can conclude that �� f E ,j �� will
have a large peak at δλ = δe, as can be observed in Fig. 6. It
should be noticed that the above discussions are suitable for a
body with arbitrary shape, which is symmetric about its middle
plane.

In Figs. 7 and 8, we show the results for the case in which
both cracks are located on the left side of the body. It can
be seen that the hydrodynamic coefficients globally follow
the similar oscillations to those in Fig. 3 for a single crack.
However, there are also some local oscillations. It may be
understood that when the two cracks are located far away from
the body, the effect on the body by the wave diffraction by these
two cracks could be considered jointly. The result in Eq. (C10)
for a single crack can be used in such a case once R for a single
crack is replaced by Rc for two cracks. It should also be noted
that R in Eq. (C10) corresponds to the incident wave from
x = +∞ and the crack at x = 0. Accordingly, Rc should corre-
spond to the wave from x = +∞, which encounters the crack at
x = 0 first and then the crack at x = c1 � c2. Equation (58) is for
the wave from x = �∞, which encounters the first and second
cracks at x = c1 and c2, respectively. To use the equation for
the current case, we can reverse the wave direction and also
the direction of the x axis. Replacing c1 in Eq. (58) with x = 0
which is the position of the first crack in the current case, we
have

Rc = R +
RT2e−2iλl

1 − R2e−2iλl
. (78)

Then Eq. (C10) can be given as

ε2
j =

A−j Rc

e−2iλc2 − r0Rc
. (79)

Here c2 is used in Eq. (79), as to the body this is the place
where the reflection wave is originated. Substituting Eq. (79)
into Eq. (C1) and using f ◦−E,k = 2I ρωQ0CgA−k , we have

τkj = τ
o
kj + 2iρQ0CgBkj, (80)

where

Bkj =
RcA−k A−j

e−2iλc2 − r0Rc
. (81)

The above equation indicates that |Bkj | will reach its peaks
when λc2 = nπ−Arg(r0Rc)/2. However, for the circular cylin-
der case, we have r0 ≈ 0.15 Substituting this into Eq. (81), we
obtain

Bkj ≈ RcA−k A−j e+2iλc2 . (82)

Here, we first notice that it does not have the small denomina-
tor in Bkj, which has led to the behavior of the hydrodynamic
coefficients of a cylinder between two cracks discussed previ-
ously. Then we can see that both the added mass and damping
coefficient will oscillate around the corresponding result for
the ice sheet without the crack sinusoidally in the form of
e+2iλc2 , as can be observed in Fig. 3. They also vary with Rc

whose denominator can also be small, as can be seen from
Eq. (78). At this frequency, τkj changes sharply and a spike

FIG. 9. Reflection coefficient for the wave propagating
across the cracks without the elliptical cylinder. Solid
lines: N = 1; dashed lines: N = 2; dotted-dashed lines:
N = 3; dotted lines: N = 4. (b) is the local amplification of
(a). (a = 1, l = 20, H = 20, h = 0.2, m = 0.18, L = 72.932).
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can be observed in Fig. 7. The spike will appear approximately
periodically with a period of λl = π. As discussed in Sec. IV A,
there are a series of discrete wave numbers at which Rc = 0,
indicating that the hydrodynamic coefficients in Eq. (80) will
be the same as those for the ice sheet without the crack. For the
wave exciting force, the approximation of an equivalent crack
can also be used. Substituting Eq. (C15) into Eq. (C11), and
replacing T with T c which is for the wave from x = �∞ and
two cracks located at x = c1 � c2 and x = 0, respectively, for

the reason discussed above Eq. (78), we have

fE,k = f ◦−E,kTc
e−2iλc2

e−2iλc2 − r0Rc
, (83)

the denominator of which is the same as that of Eq. (81). Sim-
ilarly, for the circular cylinder case, Eq. (83) can be further
simplified as

fE,k ≈ f ◦−E,kTc, (84)

FIG. 10. Hydrodynamic coefficients of a submerged
elliptical cylinder with evenly equally distributed cracks.
Solid lines: N = 2; dashed lines: N = 4; dotted-dashed
lines N = 6; dotted lines: N = 8. (a = 1, b = 0.5, l = 20,
x′ = 0, z′ = �1.2, H = 20, h = 0.2, m = 0.18, L = 72.932).
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where r0 ≈ 0 has been used. In the above equation, T c can
be obtained from Eq. (59) directly. Although Eqs. (58) and
(59) are obtained from the wide spacing approximation, |Rc|2

+ |T c|2 = 1 is satisfied, as |R|2 + |T |2 = 1. Thus |T c| ≤ 1, which
means that | fE,k | ≤ |f ◦−E,k |, i.e., the wave exciting force here will
be always smaller than that on the cylinder submerged below
the ice sheet without the crack, apart from at some discrete
points where |T c| = 1, which is reflected in Figs. 4 and 8. From
Eqs. (58) and (59), we can also find that the denominators of Rc

and T c are the same. Thus the oscillatory behaviors of spikes
of the hydrodynamic coefficients in Eqs. (80) and (83) are the
same, which can be seen in Figs. 7 and 8.

C. Body submerged below an ice sheet
with multiple cracks

Here we consider the interaction of the wave with a body
submerged below an ice sheet with N cracks. The body shape
is defined as an ellipse with b/a = 0.5. The cracks are evenly
distributed with ci = �l/2 � (N /2 � i)l for i = 1, . . ., N /2. Since
both the body and the crack distribution are symmetric about
x = 0, we have τkj = 0 for odd k + j. The computed added mass
and damping coefficient are shown in Fig. 10, against λ, while
in Fig. 11 the wave exciting force is provided, for N = 2, 4, 6, 8.
It can be seen from these figures that the hydrodynamic coef-
ficients and wave exciting forces for each case all tend to the
same value when λ→ 0, for the reason discussed in Sec. IV B.
As λ increases, the typical feature of the hydrodynamic forces
is oscillation due to that the waves will be continuously
reflected between the cracks and the body. It is interesting
to see that away from the extremes, the hydrodynamic forces
for N > 1 are very close to each other, and near the extremes
larger N leads to more smaller oscillations. We may use the
wide spacing approximation again to analyze the behavior of

the results. When the cracks nearest to the body are relatively
far away, Eq. (68) can be used provided that R is replaced by
Rc due to the wave from x = +∞ and N /2 cracks located at
ci=(i � N /2)l. It becomes

Akj =
A−k A−j Rc

e+iλl − [r0 + (−1) jt0]Rc
, (85)

where cN/2+1 − cN/2 = l has been used. Similarly, for the same
crack distribution as earlier, Eq. (77) can be used, provided
that T is replaced by T c due to the wave from x = �∞,

fE,j =
f ◦−E,j Tce+iλl

e+iλl − [r0 + (−1) jt0]Rc
. (86)

As discussed by Porter and Evans13 for wave/crack interac-
tion without the body, there exist stopping bands when the
incident wave propagates through the semi-infinite array of
equally spaced cracks, within which |Rc| = 1 and |T c| = 0.
For a finite array of cracks, as can be seen in Fig. 9, |Rc| ≈ 1
within the near stopping bands, and |Rc| has a sharp variation
from the near stopping band to the non-stopping band. Each
of the non-stopping bands is quite narrow, within which there
are more peaks at larger N. Within the near stopping bands,
the results for different N are then expected to be similar, as
|Rc| ≈ 1 in Eqs. (85) and (86). In the very narrow non-stopping
bands, the sharp variation of Rc will lead to additional spikes in
Eqs. (85) and (86). As there are more peaks within the narrow
non-stopping band at larger N, correspondingly, there will be
more oscillations in Eqs. (85) and (86) within this band. All
these are reflected in Figs. 10 and 11.

Computations are then carried out for odd N, which
are distributed symmetrically about the body center, i.e.,

FIG. 11. Wave exciting force on a submerged ellipti-
cal cylinder with evenly equally distributed cracks. Solid
lines: N = 2; dashed lines: N = 4; dotted-dashed lines
N = 6; dotted lines: N = 8. (a = 1, b = 0.5, l = 20, x′ = 0,
z′ = �1.2, H = 20, h = 0.2, m = 0.18, L = 72.932).
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ci = −l/2 − [(N − 1)/2 − i]l for i = 1, . . ., (N � 1)/2 and
c(N+1)/2 = 0. Figure 12 shows the added mass and damping
coefficient against λ, while Fig. 13 gives the results for the
wave exciting force. The parameters adopted are the same as
those in Figs. 10 and 11, except that there is an additional
crack located at the origin. It should be noticed that if we com-
bine the middle crack at the origin and the cylinder as a single
problem, then Eqs. (85) and (86) can be used again, provided
that A−j , r0, and t0 are for the cylinder submerged below an

ice sheet with a crack at the origin. It may be noted that Rc

and T c in both cases are the same, indicating that the local
spikes in Figs. 12 and 13 should be similar to those in Figs. 10
and 11. It may be also noted that Eq. (72) remains valid for
the ice sheet with cracks, but the argument of [r0 + (−1) jt0] is
different from that for the ice sheet without the crack. From
this, we can expect that the large peaks corresponding to δe

in Eq. (71) should occur at different λ, as can be observed
through the comparison of Figs. 12 and 13 with Figs. 10 and 11.

FIG. 12. Similar to Fig. 10, but with an additional crack
at the origin. Solid lines: N = 3; dashed lines: N = 5;
dotted-dashed lines N = 7; dotted lines: N = 1. (a = 1,
b = 0.5, l = 20, x′ = 0, z′ = �1.2, H = 20, h = 0.2,
m = 0.18, L = 72.932).
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FIG. 13. Similar to Fig. 11, but with an additional crack
at the origin. Solid lines: N = 3; dashed lines: N = 5;
dotted-dashed lines N = 7; dotted lines: N = 1. (a = 1,
b = 0.5, l = 20, x′ = 0, z′ = �1.2, H = 20, h = 0.2,
m = 0.18, L = 72.932).

However, it can be seen from Figs. 12 and 13 that the large
peaks corresponding to λ ≈ 1.47 in the roll mode disappear.
It may be noticed that the large peaks are due to the wave
reflection from the cracks, which can be seen as a scattering
problem for the body. From the dotted lines in Fig. 13, it can be
observed that at λ ≈ 1.47 we have that the wave exciting force
in the roll mode is nearly zero when there is a single crack at
the origin. This together with Eqs. (C1) and (C11) indicates
that at λ ≈ 1.47 we have τ33 ≈ τo

33 and f E ,3 ≈ 0, as reflected
in Figs. 12 and 13, respectively. Similar phenomenon can be
also seen in the sway mode at λ ≈ 0.96.

V. CONCLUSIONS

The solution for the interaction problem of the wave with
a body submerged below an ice sheet with multiple arbitrar-
ily spaced cracks has been presented. The procedure starts
from the Green function satisfying both the ice sheet and
crack conditions, based on which the velocity potentials are
solved through the method of source distribution over the
body surface only. The problem of wave diffraction by the
cracks without the body is solved explicitly by using the
derived Green function. The numerical procedure is verified
through the comparison with the results from the existing work.
Extensive results are provided and analyzed for a submerged
cylinder, from which the main conclusions can be drawn as
follows:

(1) The derived Green function is an effective approach
for the wave diffraction problem by the cracks with-
out the body, and an explicit result can be obtained
directly.

(2) For wave interaction with two widely spaced cracks,
when the localized evanescent waves are ignored, the

deflection of the middle ice sheet between the two
cracks is found to be oscillatory with the wave num-
ber, and no exact standing wave can be expected within
the middle ice sheet. When the space between the two
cracks is reduced, the reflection and transmission coef-
ficients will tend to that for a single crack except in a
small region near a frequency, where a sharp variation
occurs.

(3) For a body submerged below an ice sheet with one crack
on its each side, at some specific frequencies, the added
mass can reach a large peak which is followed immedi-
ately by a negative trough, while at the same frequency
the damping coefficient and modulus of the wave excit-
ing force will have large peaks, but there will be no sharp
variation from the peak to trough.

(4) For a body submerged below an ice sheet with two
cracks on one side, the hydrodynamic coefficients and
wave exciting forces will follow similar overall oscilla-
tions as those of a single crack. However, there are also
some local oscillations in the case of two cracks.

(5) There exist stopping bands when the incident wave prop-
agates through the semi-infinite array of equally spaced
cracks without the body. For a finite array of cracks,
within the near stopping bands, the reflection coeffi-
cients from different numbers of cracks are approxi-
mately the same, while within the narrow non-stopping
bands, more cracks lead to much more oscillations of the
reflection coefficient. These are consistent with those
observed by Porter and Evans.13

(6) For a body submerged below an ice sheet with multiple
cracks distributed symmetrically about the body centre,
away from the extremes, the hydrodynamic coefficients
and wave exciting forces for the ice sheet with different
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numbers of cracks are very close to each other within
the stopping bands, and near the extremes, more cracks
will lead to much more local smaller oscillations within
the non-stopping bands.

The present work is another step forward for the highly
complex wave/structure/ice interaction problem. In particular,
some new findings have been obtained for bodies below the
ice sheet with multiple cracks. However, the Green function
was constructed based on the assumption of a homogeneous ice
sheet of uniform physical properties. In reality, the variation of
the physical properties of the ice sheet in many cases may need
to be taken into account. Also, all the boundary conditions are
linearized, which is invalid when the surface wave and body
motion amplitudes are large, relative to the wavelength and the
body dimension. Further work will be undertaken to consider
these and other effects to provide reliable results for a wide
range of practical problems.
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APPENDIX A: SYMMETRY PROPERTY
OF THE GREEN FUNCTION

Assuming that Ga(x, z; xa
0 , za

0) and Gb(x, z; xb
0 , zb

0) are two
solutions for the field equation (9) and then applying Green’s
second identity to them, we have

2π
[
Ga

(
xb

0 , zb
0; xa

0 , za
0

)
− Gb

(
xa

0 , za
0; xb

0 , zb
0

)]

=

∫
S


Ga

(
x, z; xa

0 , za
0

) ∂Gb
(
x, z; xb

0 , zb
0

)
∂n

−Gb
(
x, z; xb

0 , zb
0

) ∂Ga
(
x, z; xa

0 , za
0

)
∂n


dS, (A1)

where the fluid boundary S is comprised of the seabed SH , ice
sheet SI , and two vertical lines S±∞ at x = ±∞, respectively.
Noticing that both Ga and Gb satisfy the boundary conditions
in Eqs. (3), (4), (6), and (7), we have that only the integral over
the ice sheet will remain on the right hand side of Eq. (A1).
According to the condition in Eq. (3), and integrating by parts,
Eq. (A1) can be rewritten as

2π
[
Ga

(
xb

0 , zb
0; xa

0 , za
0

)
− Gb

(
xa

0 , za
0; xb

0 , zb
0

)]

=
L

ρω2

N∑
i=1

[(
∂4Ga

∂x3∂z

∂Gb

∂z
−
∂3Ga

∂x2∂z

∂2Gb

∂x∂z

+
∂3Gb

∂x2∂z

∂2Ga

∂x∂z
−
∂4Gb

∂x3∂z

∂Ga

∂z

)x=c−i

x=c+
i

 z=0

. (A2)

Invoking the crack conditions in Eq. (4), Eq. (A2) further
provides

Ga
(
xb

0 , zb
0; xa

0 , za
0

)
− Gb

(
xa

0 , za
0; xb

0 , zb
0

)
= 0. (A3)

This means that for the Green function G(x, z; x0, z0), (x, z)
and (x0, z0) are exchangeable or G(x0, z0; x, z) = G(x, z;
x0, z0).

APPENDIX B: THE SOURCE DISTRIBUTION
FORMULA FOR THE VELOCITY POTENTIAL

Similar to Eq. (A1), applying Green’s second identity to
φj and G in Eq. (10), we have

2πφj(x0, z0) =
∫

S

[
φj(x, z)

∂G(x, z; x0, z0)
∂n

−G(x, z; x0, z0)
∂φj(x, z)

∂n

]
dS, (B1)

where S = SH + SI + S±∞ + SB with SB as the body surface.
It may be noticed that when (x0, z0) is fixed, G satisfies the
boundary conditions for varying (x, z), and vice versa for fixed
(x, z) and varying (x0, z0). Thus φj(x0, z0) on the left hand
side of Eq. (B1) satisfies the ice sheet and crack conditions.
Invoking the boundary conditions for φj and G, and integrating
by parts, Eq. (B1) can be rewritten as

2πφj(x0, z0) =
∫

SB

[
φj(x, z)

∂G(x, z; x0, z0)
∂n

−G(x, z; x0, z0)
∂φj(x, z)

∂n

]
dS

+
L

ρω2

N∑
i=1


*
,

∂4φj

∂x3∂z

∂G
∂z
−

∂3φj

∂x2∂z

∂2G
∂x∂z

+
∂3G

∂x2∂z

∂2φj

∂x∂z
−

∂4G

∂x3∂z

∂φj

∂z
+
-

x=c−i

x=c+
i

 z=0

. (B2)

Invoking the crack conditions in Eq. (4) for φj and G, and using
the symmetry property of G, Eq. (B2) can be further given as

2πφj(x0, z0) =
∫

SB

[
φj(x, z)

∂G(x0, z0; x, z)
∂n

−G(x0, z0; x, z)
∂φj(x, z)

∂n

]
dS, (B3)

or exchanging the symbols (x, z) and (x0, z0) for φj and G on
both sides of Eq. (B3),

2πφj(x, z) =
∫

SB

[
φj(x0, z0)

∂G(x, z; x0, z0)
∂n

−G(x, z; x0, z0)
∂φj(x0, z0)

∂n

]
dS. (B4)

It may be noticed that in Eq. (B3) the normal derivative and
integration are carried out with respect to (x, z), while in
Eq. (B4) those are carried out with respect to (x0, z0). In the
inner domain bounded by the body surface SB, we introduce
a potential ϕj which satisfies the Laplace equation and the
following boundary conditions:



057107-17 Li, Wu, and Ji Phys. Fluids 30, 057107 (2018)

ϕj = φj on SB. (B5)

Applying Green’s second identity to ϕj(x0, z0) and G(x, z; x0,
z0), we have

0 =
∫

SB

[
ϕj(x0, z0)

∂G(x, z; x0, z0)
∂n

−G(x, z; x0, z0)
∂ϕj(x0, z0)

∂n

]
dS. (B6)

Subtracting Eq. (B6) from Eq. (B4) provides

2πφj(x, z) =
∫

SB

{ [
φj(x0, z0) − ϕj(x0, z0)

] ∂G(x, z; x0, z0)
∂n

−G(x, z; x0, z0)

[
∂φj(x0, z0)

∂n
−
∂ϕj(x0, z0)

∂n

]}
dS.

(B7)

Invoking Eq. (B5), Eq. (B7) can be further written as

φj(x, z) =
∫

SB

σj(x0, z0)G(x, z; x0, z0)dS, (B8)

where

σj(x0, z0) =
1

2π

[
∂ϕj(x0, z0)

∂n
−
∂φj(x0, z0)

∂n

]
. (B9)

APPENDIX C: SIMPLIFIED SOLUTIONS FOR ONE
CRACK ON EACH SIDE OF THE BODY

For the radiation problem, similar to Eq. (40) in the work
of Li, Shi, and Wu,22 based on the wide spacing approximation,
we have

τkj = τ
o
kj − ε

1
j f ◦+E,k/g − ε

2
j f ◦−E,k/g, (C1)

where the superscript o means the results are for the
ice sheet without the crack, and + and � in f ◦E,k indi-
cate that the wave exciting force is for the incident wave
propagating opposite and along the x-axis, respectively.
Here

ε1
j = −

(A−j t−0 − A+
j r−0 )R2eiλ(c1−c2) + A+

j Re−iλ(c1+c2)

(t+
0 t−0 − r+

0 r−0 )R2eiλ(c1−c2) − e−iλ(c1−c2) + r−0 Reiλ(c1+c2) + r+
0 Re−iλ(c1+c2)

, (C2)

ε2
j = −

(A+
j t+

0 − A−j r+
0 )R2eiλ(c1−c2) + A−j Reiλ(c1+c2)

(t+
0 t−0 − r+

0 r−0 )R2eiλ(c1−c2) − e−iλ(c1−c2) + r−0 Reiλ(c1+c2) + r+
0 Re−iλ(c1+c2)

, (C3)

with A±j , t±0 , and r±0 , respectively, being the asymptotic values
of the radiation potential ψr

j and scattering potential ψs±
0 for

the ice sheet without the crack or

ψr
j = A±j e∓iλx cosh[λ(z + H)]

cosh(λH)
as x → ±∞(k = 1, 2, 3), (C4)

ψs+
0 =

(
e+iλx + r+

0 e−iλx
) cosh[λ(z + H)]

cosh(λH)
as x → +∞, (C5)

ψs+
0 = t+

0 e+iλx cosh[λ(z + H)]
cosh(λH)

as x → −∞, (C6)

ψs−
0 = t−0 e−iλx cosh[λ(z + H)]

cosh(λH)
as x → +∞, (C7)

ψs−
0 =

(
e−iλx + r−0 e+iλx

) cosh[λ(z + H)]
cosh(λH)

as x → −∞. (C8)

Here R (T ) is the reflection (transmission) coefficient for a
wave propagating across the crack at the origin. When there is
only a single crack on the left side of the body or the crack at
c2 is removed, Eqs. (C2) and (C3) become

ε1
j = 0, (C9)

ε2
j = −

A−j R

r−0 R − e−2iλc1
. (C10)

For the scattering problem, we have

fE,k = γ1f ◦+E,k + γ2f ◦−E,k , (C11)

where

γ1 = −
t−0 RTe−iλ(c1+c2)

(t−0 t+
0 − r−0 r+

0 )R2eiλ(c1−c2) − e−iλ(c1−c2) + r−0 Re+iλ(c1+c2) + r+
0 Re−iλ(c1+c2)

, (C12)

γ2 = −
(e−iλ(c1−c2) − r+

0 Re−iλ(c1+c2))T

(t−0 t+
0 − r−0 r+

0 )R2eiλ(c1−c2) − e−iλ(c1−c2) + r−0 Re+iλ(c1+c2) + r+
0 Re−iλ(c1+c2)

. (C13)
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When the crack at c2 is removed, the above two equations can
be simplified as

γ1 = 0, (C14)

γ2 = −
Te−2iλc1

r−0 R − e−2iλc1
. (C15)

It should be noticed that the above equations are based on the
assumption that the horizontal coordinate of the body centre
is zero.
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