














evidence suggests that miR-21 has pleiotropic roles in regu-
lating these pathways, in addition to regulating EMT itself,
through the regulation of its many gene targets. For example,
in cardiac fibroblasts miR-21 silencing of PTEN results
in PKB phosphorylation and the subsequent activation of
MMP2, a known inducer of EMT (Gilles et al. 2000; Roy
et al. 2009; Radisky and Radisky 2010). This corroborates
an earlier finding that PTEN inhibits EMT through PI3K
and PKB signaling (Wang et al. 2007). Furthermore, miR-
21 silencing of its targets SPRY1, PDCD4 and SMAD7, was
shown to partly contribute to fibrogenic EMT induced by
TGFβ (Brønnum et al. 2013; Wang et al. 2014). TGFβ itself
promotes the processing of primary mir-21 to precursor
miR-21 via a SMAD-dependent signaling pathway (Davis
et al. 2008).

Thus, the role of miR-21 in regulating EMT is complex,
however, by curating the primary experimental evidence
describing these processes, the resulting data set of GO anno-
tations associated directly with miR-21 and its targets can
be used to begin to obtain a clearer picture of how miR-21
contributes to regulating EMT. In order to visualize the

role of miR-21 in EMT, it was first necessary to create the in-
teraction network of miR-21-5p with all of its validated gene
targets using Cytoscape (Shannon et al. 2003). Following this,
the Cytoscape plugins, BinGO, and GOlorize (Maere et al.
2005; Garcia et al. 2007), were used to overlay a GO term
enrichment analysis onto the network and highlight the
biological processes that are involved in EMT. Figure 2A
shows the part of the interaction network that contains tar-
gets of hsa-miR-21-5p that are involved in processes relevant
to EMT, such as “epithelial to mesenchymal transition,” “cell
adhesion” and “cell migration,” as well as various signaling
pathways, which were identified as enriched in this network
(the full interaction network of hsa-miR-21-5p is shown
in Fig. 2B and the full BinGO enrichment results are in
Supplemental Table S3). In addition to providing an im-
proved view of the participants in EMT and its regulation,
this network can assist both with identifying missing infor-
mation and with inferring putative roles for individual
proteins. As an example of information missing from the
GO database, interleukin-1 beta (IL1B) is annotated to regu-
lation of NF-κB andMAPK signaling as well as cell migration
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FIGURE 2. The role of miR-21 in epithelial-to-mesenchymal transition. (A) Part of the interaction network of hsa-miR-21-5p relevant to epithelial-
to-mesenchymal transition (EMT). The network was created using Cytoscape (Shannon et al. 2003) and enriched GO terms identified using the plu-
gins, GOlorize and BinGO (Supplemental Table S3; Maere et al. 2005; Garcia et al. 2007). Enriched GO terms relevant to EMT were selected and the
miR-21 targets annotated to these terms or their descendants were clustered together according to the related processes they are involved in. Each
entity (node) is color-coded according to the term(s) it is annotated to. Size of the nodes represents the number of times the interaction has been
captured as an annotation. The blue edges indicate interaction type “physical association,” applied when the miRNA is demonstrated to bind the
mRNA; red edges indicate interaction type “association,” applied when the experimental data does not demonstrate direct miRNA:target binding.
(B) The full interaction network of hsa-miR-21-5p; the boxed area shows the target interactions relevant to EMT, as shown in A.
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and regulation of cell adhesion, all indicative of involvement
in EMT, however IL1B was not represented in GO as being
involved in EMT. A search of the literature quickly found
evidence of this role for IL1B; expression of the EMTmarkers
SNAI1, SNAI2, and VIM is induced by IL1B in oral squa-
mous cell carcinoma cells and increases migration of these
cells (Lee et al. 2015a). This information has now been added
to the GO database, thereby making it easily accessible for
future analyses.
Putative roles of individual proteins in regulating the re-

programming of epithelial cells during EMT may also be
inferred from their existing GO annotations. An example
from Figure 2A is the dual specificity protein phosphatase
10 (DUSP10), which is well characterized as an inactivator
of MAP kinases and the MAPK signaling pathway (Zhang
et al. 2011) and also involved in regulatory T cell differentia-
tion (Chang et al. 2012); both of these roles are already rep-
resented with GO annotation. However, DUSP10 has also
been shown to inhibit cell migration in various cells (Song
et al. 2013; Png et al. 2016), and as an increase in migration is
one of the key indicators of EMT, it is possible that DUSP10
is involved in regulating EMT. The role ofDUSP10 in regulating
migration was not represented in GO at the time of our analysis,
consequently we have ensured it is now available. Together,
these roles suggest that DUSP10 may have a previously unrec-
ognized role in EMT, which is not yet reported in the experi-
mental literature, although other DUSP family members have
been associated with EMT (Boulding et al. 2016).

DISCUSSION

There are numerous resources providing various types of data
for miRNAs, most of which include a combination of pre-
dicted and experimental evidence concerning sequence, ex-
pression and targets (for a review, see Akhtar et al. 2016),
but there are few that provide reliable, experimentally based
functional data for miRNAs that is both human- and com-
puter-readable. This article demonstrates the need for high-
quality functional annotation for miRNAs by presenting
examples of inconsistencies that are found in existing
miRNA target databases, largely due to the lack of a direct
link between the experimental literature and the information
in the miRNA database. One resource that can provide this
direct link is GO, which has already proven essential for
navigating the knowledge of protein-coding genes (a search
of PubMed with the phrase “gene ontology” identified
>11,400 papers in April 2017); our data set extends this col-
lection of gene products to include miRNAs. One of the ma-
jor uses of GO annotation data is in GO term enrichment
analysis, which supports the identification of commonalities
in a list of gene products. For example, a researcher may wish
to determine the roles of a list of miRNAs that are differen-
tially regulated in a specific disease in order to discover which
processes or pathways are affected. Prior to the creation of
our miRNA GO annotation data set, it was impossible to per-

form standard GO term enrichment analyses on the verified
roles of miRNAs, due to the lack of computationally accessi-
ble functional information. Instead, researchers carry out the
analysis on the predicted targets of the miRNAs, which can
number into the thousands. Numerous studies of this kind
have been published (for a selection, see Bleazard et al.
2015), however it has been demonstrated that the most com-
mon approach currently used for miRNA pathway analysis is
biased toward cell cycle and cancer pathways, regardless of
the condition or disease of interest (Godard and van Eyll 2015).
At present, all human miRNA GO annotations available

through miRBase (Kozomara and Griffiths-Jones 2014),
Ensembl (Yates et al. 2016), NCBI Gene (Brown et al. 2015),
the GO Consortium (The Gene Ontology Consortium
2017) and miRNA:target interactions available from the
PSICQUIC web service (del-Toro et al. 2013) have been cre-
ated by the BHF-UCL functional gene annotation initiative.
With our data, users can be confident that the interactors
shown have been experimentally validated and are not based
on computational prediction or text-mining. Furthermore,
with the increasing number of experimentally validated func-
tional annotations that our project associates directly with
miRNAs, more meaningful enrichment analyses of miRNAs
is within sight. The GO annotations can be incorporated
into networks, created with our curatedmiRNA:target interac-
tions, to determine which processes or pathways the miRNAs
directly regulate through these interactions.
Using the miRNA functional annotations that are freely

available in our resource, we have illustrated the positive im-
pact that these can have on functional and network analyses.
The curation approach we use can be used by anyone wishing
to improve representation of miRNA function in any area of
biology for any species. Our miRNA resource is at an early
stage, but as it expands, it will further increase the visibility
of the miRNA-focused experimental research being pub-
lished, allowing it to be included in the most commonly
used analysis tools, such as DAVID and g:Profiler. MiRNA
functional analysis will therefore become increasingly mean-
ingful and accurate, thus informing hypotheses for future
research into disease therapies.

Future work

Functional analysis of gene products requires a substantial
body of annotation to provide statistically significant results,
therefore ongoing biocuration of miRNAs will continue
to provide additional annotations, ensuring well-populated
and high-quality data sets that complement the existing GO
and molecular interaction resources for genes and proteins.
MiRNAs are increasingly being studied for their therapeutic
potential in cardiovascular, and many other, diseases, so it
is critical that the results of these studies are reflected in bio-
informatic resources. To date, miRNAs involved in angiogen-
esis, early heart development and aneurysm-related processes
have been curated. In order for our resource to be of
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maximum utility to translational medicine and enhance the
efforts for providing therapeutics targets, our biocuration
will continue to focus on pathways and processes that are tar-
gets for therapeutic applications.

Maximizing the use of our miRNA GO annotations is one
of our key objectives. Consequently, we are in discussions
with several high-profile bioinformatic resource providers
to enable the inclusion of the annotations in their databases
or analysis tools, including RNAcentral (The RNAcentral
Consortium 2015), DAVID (Huang et al. 2008), g:Profiler
(Reimand et al. 2016) and PANTHER (Mi et al. 2013).
Since many functional analysis tools obtain their GO anno-
tation data from Ensembl (e.g., g:Profiler), NCBI (e.g.,
DAVID), or directly from the GO Consortium annotation
files (e.g., PANTHER, VLAD [Richardson and Bult 2015],
Ontologizer [Bauer et al. 2008]), we anticipate that modifica-
tion of these tools to incorporate miRNA GO annotations will
require relatively low investment by the providers. Combining
miRNA, gene, protein and macromolecular complex annota-
tions within the same analysis tools will enable more complex
data sets to be analyzed, for example, noncoding and coding
transcriptomic data.

Finally, community biocuration has proven extremely suc-
cessful for certain biological communities, e.g., Schizosac-
charomyces pombe (Rutherford et al. 2014) and Arabidopsis
thaliana (Berardini et al. 2012); we hope to leverage the col-
laborative spirit of the miRNA community in order to engage
researchers with improving bioinformatic resources through
biocuration. One way forward with this is the GO curation of
experimentally validated miRNA:target interactions, which
follows a strict set of guidelines that can be easily quality
checked. Development of a simple tool for use by researchers
and authors to capture published experimentally validated
miRNA targets will be investigated for this purpose.
Researchers wishing to contribute to these resources now
can send primary research papers suitable for biocuration
to us at goannotation@ucl.ac.uk.

MATERIALS AND METHODS

Curation procedure

In order to create the data set of miRNA functional annotation using
GO vocabulary, standard GO annotation procedures were followed,
in addition to adhering to the guidelines for biocuration of the
functional roles of miRNAs and their experimentally validated
target genes (Balakrishnan et al. 2013; Huntley et al. 2014, 2016)
(http://wiki.geneontology.org/index.php/MicroRNA_GO_annota
tion_manual). One of the most important criteria for curating a
miRNA is the identification of the miRNA sequence used in
experimental assays from any given paper, which is used by biocu-
rators to find the appropriate identifier in RNAcentral (The
RNAcentral Consortium 2015) to associate GO terms with. The
seed sequence is a major contributor for miRNA interaction
with 3′ UTR target gene sequences; an alteration of just one nucle-
otide of the seed sequence can change the spectrum of the mRNAs

targeted by the miRNA by over 50% (Hughes et al. 2011; Hill et al.
2014). This difference in target spectrum can lead to either regu-
lation of alternative processes than is usual for the miRNA, and/or
differential regulation of a process or pathway the miRNA usually
regulates. If the sequence of the miRNA is not reported in the pa-
per, or it is not traceable through a citation or a product catalog
number, then the experimental data relating to that miRNA can-
not be curated. It is, therefore, essential that authors provide an
exact sequence for all miRNAs studied, so that their experimental
data can be correctly represented in bioinformatic databases.

Curation approach

To maximize the value of the annotations to the research commu-
nity, a biological process-based approach is taken to curating
miRNAs (Alam-Faruque et al. 2011). This approach involves taking
a specific process or pathway and curating all miRNAs that have
been experimentally demonstrated as having a role. This allows
the functions and roles of many miRNAs to be covered in the con-
text of that process or pathway and provides a comprehensive
representation of that knowledge in the GO database. Within this
approach, published papers that include experimentally verified
functional data are prioritized for curation. On occasion a miRNA-
centric approach is taken, which provides detailed knowledge about
a single miRNA and its involvement in a variety of processes. The
miRNA-centric approach is time-consuming—each miRNA can
target hundreds of miRNAs and therefore affect many processes—
but does not provide a complete insight into any single process;
therefore the process-centric approach is regarded as providing
the most impactful information.

Molecular interaction data set for miRNAs
and their targets

A molecular interaction data set (“EBI-GOA-miRNA”) was created
in PSI-MI format andmade available on the PSICQUICweb service,
to enable computational access to miRNA interactions with their
experimentally validated targets. The source of the information in
this data set is GO annotations that we have created containing
experimentally verified miRNA:target interaction data. GO annota-
tions used for this purpose conform to the following criteria; the
“Database Object ID” field of the GO annotation file must be a
miRNA, specified by an RNAcentral ID, AND the “Annotation
Extension” field must contain an mRNA target, specified by an
Ensembl gene ID (del-Toro et al. 2013; Huntley et al. 2014). For
the PSICQUIC specification, those interactions described with the
Molecular Function GO term mRNA binding involved in post-
transcriptional gene silencing (GO:1903231) are assigned interac-
tion type “physical association,” indicating direct binding of the
miRNA to the mRNA target. Interactions described only with one
of the following GO Biological Process terms: gene silencing by
miRNA (GO:0035195); miRNA mediated inhibition of translation
(GO:0035278); mRNA cleavage involved in gene silencing by
miRNA (GO:0035279); deadenylation involved in gene silencing by
miRNA (GO:0098806), but without the Molecular Function term
above are assigned the interaction type “association,” indicating
that the evidence demonstrated miRNA regulation of the target
only (see “Data set availability” section below for the file format in-
formation and access to this data set).
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Network analyses

Details of the data sets and software used are given to allow repro-
duction of these analyses.

Interaction network of miR-29 family

Themolecular interaction network of themiR-29 family was created
in Cytoscape v3.2.1 using our “EBI-GOA-miRNA”molecular inter-
action data set (January 2017). The interaction network was seeded
with the three miR-29 family identifiers from RNAcentral: hsa-miR-
29a-3p: URS00002F4D78_9606; hsa-miR-29b-3p: URS000024463E_
9606; hsa-miR-29c-3p: URS0000272A3D_9606.

Functional analysis of miR-21 and its targets

The molecular interaction network of hsa-miR-21-5p
(URS000039ED8D_9606) was created in Cytoscape using our
“EBI-GOA-miRNA” data set (March 2017). GO term enrichment
was subsequently performed on the network using the Cytoscape
plugins BinGO (Maere et al. 2005) and GOlorize (Garcia et al.
2007). The files used in the GO enrichment were as follows: Gene
Ontology; go-basic.obo (May 10, 2017) downloaded from the
GO Consortium website (http://geneontology.org/page/download-
ontology), the gene association files goa_human_rna.gaf and goa_
human.gaf from May 8, 2017 were downloaded from the EMBL-EBI
ftp site (ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/HUMAN/) and
merged into a single file before upload into the BinGO application.

DATA DEPOSITION

The molecular interaction data set, “EBI-GOA-miRNA,” is available
from the PSICQUIC web service (http://www.ebi.ac.uk/Tools/
webservices/psicquic/view/home.xhtml) and the QuickGO web
service (http://www.ebi.ac.uk/QuickGO/psicquic-rna/webservices/
current/search/interactor/∗) or from directly within Cytoscape.
The data set is in PSI-MITAB 2.7 format, which is described
at https://psicquic.github.io/MITAB27Format.html. MiRNA GO
annotations are deposited in the UniProt-GOA database via the
curation tool Protein2GO (Huntley et al. 2015) using RNAcentral
identifiers to indicate the species-specific miRNA, e.g., RNAcentral:
URS000039ED8D_9606 identifies human miR-21-5p. The annota-
tions are distributed in Gene Association Format 2.1 (GAF2.1) and
Gene Product Association Data format 1.1 (GPAD1.1) annotation
files, which can be downloaded from the UniProt-GOA ftp site
(ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/) from the relevant spe-
cies file; e.g., the annotations for human miRNAs are found in the
files goa_human_rna.gaf and goa_human_rna.gpa for GAF2.1 and
GPAD1.1 format, respectively. These files are updated every four
weeks at which time the GAF2.1 file is also distributed to the GO
Consortium ftp site (ftp://ftp.geneontology.org/pub/go/gene-associ-
ations/). The project is funded by the British Heart Foundation
(BHF) to create cardiovascular-related GO annotations; therefore,
these annotations can be identified by the source “BHF-UCL” locat-
ed in the “Assigned_By” field of the GAF2.1 and GPAD1.1 files. The
miRNA annotations can also be accessed via the UniProt GO browser
QuickGO and the GO Consortium’s AmiGO browser; e.g., the entry
for hsa-miR-21-5p can be viewed in QuickGO at http://www.ebi.ac.
uk/QuickGO/annotations?geneProductId=URS000039ED8D_9606

and in AmiGO at http://amigo.geneontology.org/amigo/gene_pro
duct/RNAcentral:URS000039ED8D_9606.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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