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Abstract | Causal inference, which involves progressing from confounded statistical associations to 

evidence of causal relationships,  is essential across the biomedical, behavioural and social sciences; 

it can reveal complex pathways underlying diseases and traits and help to prioritize targets for 

interventions. Recent progress in genetic epidemiology — including statistical innovation, massive 

genotyped datasets and novel computational tools for deep data mining — has fostered the intense 

development of methods exploiting genetic data and relatedness to strengthen causal inference in 

observational research. In this Review, we describe how such genetically informed methods differ in 

their rationale, applicability and inherent limitations, and outline how they should be integrated in 

future to offer a rich causal inference toolbox. 
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Introduction 
Identifying causal risk and protective factors  for relevant phenotypes  constitutes a core objective across the 

biomedical, behavioural and social sciences. Examples of causal questions — some resolved, some still 

controversial — include the following. Is vitamin E a protective factor for coronary heart disease (CHD)? Is 

the same true for high-density-lipoprotein cholesterol (HDL-C)? Does higher income protect against 

depression? Does maternal smoking during pregnancy lower offspring birth weight? Does cannabis use 

increase the risk of schizophrenia or is there an effect in the reverse direction? Answering such causal 

questions can advance fundamental knowledge of complex aetiological pathways and profoundly impact 

applied settings such as public health and policy1. 
 

The quest to answer causal questions faces major challenges. A primary challenge is confounding , in which a 

variable (or set of variables) causally influences both the risk factor and the outcome (e.g. income affecting 

vitamin E intake and CHD). Confounding can generate associations between risk factors and outcomes in the 

absence of causal relationships. Genetic confounding occurs when genetic factors generate confounding (e.g. 

variants associated with HDL-C also directly affect CHD). Challenges to causal inference, detailed in BOX 1, 

can lead to spurious findings in observational epidemiology, because adjusting for key confounders is 

typically insufficient. For example, two major observational studies concluded that higher consumption of 

vitamin E reduces risk for CHD2,3. These findings, reported in major media outlets, led to a substantial 

increase in vitamin E consumption4. However, subsequent randomized controlled trials (RCTs) reported null 

findings5. This illustrates the potentially disruptive impact of incorrect inference on our aetiological 

understanding of diseases and on public health.  
 

RCTs, often regarded as the ‘gold standard’ for causal inference, suffer from their own methodological 

shortcomings and may be infeasible and unethical (e.g. random allocation to smoking during pregnancy)6–8. 

RCTs are also inefficient in the absence of reliable evidence to prioritize targets, e.g. low drug development 

success rates result in $2.6 billion costs per approved drug9. To tackle the limitations of RCTs and the 

challenges of causal inference, methods to strengthen causal inference in observational research have been 

developed over the past decades. Among causal inference methods , genetically informed methods  represent 

powerful tools to account for genetic and environmental confounding. By genetically informed, we mean 

methods that exploit genetic information embedded in the study design, including data on familial 

relationships and/or on genetic variation. 
 

Key features of the genome and its transmission at conception make such genetically informed methods 

particularly valuable for causal inference. First, the expected degree of genetic similarity is known for 

different types of relationships, which is exploited in family-based designs to control for genetic and 

environmental confounding10. Second, the genetic sequence is fixed from conception and therefore free from 

reverse causation (BOX 1)11. Third, the genome is randomized at conception, which is critical for the use of 

genetic variants as instrumental variables to strengthen causal inference, as implemented in Mendelian 

randomization (MR)12. Critical developments in recent years have allowed greatly increased applications of 

genetically informed methods. First, rapid methodological innovations in the use of genetic variants as 

instrumental variables has extended the range of phenotypes that can be studied and enabled more robust 

causal inference13. Second, the recent availability of massive genotyped and phenotyped datasets has 

considerably expanded the applicability of these methods14,15. Third, novel informatics tools allow data 

mining of these resources at phenome-wide scale16,17. This has led to converging interests between 

epidemiologists, primarily concerned with modifiable exposures in the population, and geneticists, concerned 

with molecular mechanisms underlying diseases, traits and behaviours. 
 

In light of these developments, we provide an integrative review of the current range of genetically informed 

methods to strengthen causal inference. Considering these methods together allows us to outline a coherent 

framework to understand their commonalities and differences, and to explain how they should be integrated 

in the future to offer a rich causal inference toolbox. We start by delineating the counterfactual approach to 

causal inference, which offers a unifying language to understand current genetically informed methods for 
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causal inference. We then discuss such methods in the following sections, describing family-based methods 

and implementations of MR. Finally, we detail emerging methods that move the field forward by embedding 

genetic instruments within family-based designs and by adopting phenome-wide approaches to causal 

inference. We will not consider non-genetically informed methods for causal inference (see Refs1,18,19) nor the 

use of family-based and genetic variation data to dissect the genetic architecture of phenotypes (see Refs20,21). 
  
[H1] A causal inference framework 
The counterfactual (also known as ‘potential outcomes’) approach offers a unifying framework for causal 
inference that is relevant to genetically informed designs22. In a counterfactual scenario, an individual is 
simultaneously exposed and non-exposed to a risk factor. In this hypothetical setting in which everything 
besides the exposure is the same, a causal effect can be defined as a difference in outcomes in the exposed 
and non-exposed scenarios. For example, if an individual survives after a heart transplant, but the same 
individual dies without the transplant, we can conclude that the heart transplant caused survival in this 
individual. Naturally, such a scenario is impossible as an individual cannot be simultaneously exposed and 
non-exposed to a risk factor. Consequently, strict causal inference cannot be achieved because the 
counterfactual is missing in reality22. All causal inference methods — including RCTs — aim to approximate 
this ideal scenario by investigating substitutes that enable causal inference under reasonable assumptions. 
 

To attain consistent causal inference, achieving or sufficiently approximating exchangeability is essential23. 

Intuitively, exchangeability occurs when exposed and non-exposed groups are balanced on all confounders. 

In observational studies, vitamin E consumers were not exchangeable with non-consumers (e.g. because of 

their income), leading to biased estimates. In subsequent RCTs, randomization ensured exchangeability and 

their findings suggested no protective effect of vitamin E. Conditional exchangeability — when 

exchangeability holds in each stratum of a confounder — is sufficient to remove residual confounding and to 

compute consistent causal estimates if the confounder (or set of confounders) is controlled for.  
 

Directed acyclic graphs (DAGs) provide a formal yet intuitive representation of causal inference24. A directed 

arrow between two variables indicates a causal relationship, i.e. the (counterfactual) values of the variable at 

the origin cause corresponding (potential) outcomes in the variable at the destination. It can be useful to 

conceive of the causal effect as the result of an intervention on the variable at the origin, holding all other 

variables constant. As depicted in BOX 2, figure part a, ‘blocking’ all confounders of an association between 

a risk factor and an outcome can ensure conditional exchangeability. Genetically informed designs can 

approximate conditional exchangeability in two main ways. First, following the instrumental variable 

approach, genetic factors predicting an exposure can be used to estimate the effect of the exposure on an 

outcome (BOX 2, figure part b). Second, designs such as the twin design can be used to control for genetic 

confounding and, to some extent, environmental confounding (BOX 2 figure part c). BOX 2, figure part d 

combines these two approaches and constitutes a general representation of causal inference using genetically 

informed designs. The designs we present in the following sections can be understood by referring to this 

general representation. Importantly, genetically informed designs for causal inference do not focus on genetic 

information as an end objective. Rather, they exploit genetic information as a means to attain reasonable 

substitutes to the counterfactual situation in order to estimate consistent causal effects.  
 
 Family-based designs 
Family-based designs have been exploited to strengthen causal inference in observational research for 
decades and can tackle a wide range of causal questions, from the role of smoking during pregnancy on birth 
weight25 to the impact of income on depression26. Family-based designs rely on a priori knowledge of genetic 
relatedness — or absence thereof — between family members (e.g. identical twins versus adopted siblings). 
As such, genotyping is not necessarily required. Family-based designs for causal inference have in common 
their ability to control for (some) genetic confounding. They differ with regard to: the extent to which they 
control for genetic confounding; their ability to control for non-genetic confounding; and their applicability. 
 
 Sibling and twin designs. These designs approximate the counterfactual situation because a non-exposed 

sibling or twin represents a natural match to their exposed co-sibling or twin10,27. Siblings and dizygotic (DZ) 
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twins share 50% of their segregated genetic material on average. Monozygotic twins (MZ) share 100% of 

their genetic material (with exceptions28). By definition, shared environmental factors are all environmental 

factors that contribute to the similarity of family members, and are 100% in common between the two 

members of a sibling, DZ, or MZ pair. In the case of a binary exposure, some sibling and twin designs for 

causal inference therefore compare outcomes in exposed versus non-exposed pair members. Genetic 

confounding is entirely controlled for only in MZ twins (i.e. blocking all backdoor paths through G in BOX 

2, figure part c) yielding more accurate causal estimates than siblings or DZ twins. Sibling and twin designs 

also control for confounding by shared environment. For example, as parental age at birth does not differ 

between members of a twin pair, confounding effects of parental age are removed. A powerful feature of 

these designs is that they account for unobserved confounding by unmeasured genetic variation or shared 

environment. Effect estimation in these models, also called family fixed effects models, is straightforward for 

discordant designs (binary exposure) and differences designs (continuous exposure)10,29–31. Other estimation 

methods can be used such as structural equation modelling 32. 
 
Sibling and twin designs have been applied to a variety of causal questions in many disciplines, for example: 

confirming that smoking causes lung cancer33 but also lowers long-term earnings34; and suggesting that 

higher income and access to green spaces are protective factors for depression26,35. Longitudinal extensions of 

these designs constitute powerful tools to study the duration of effects and reciprocal relationships. For 

example, evidence from a twin differences design shows that the consequences of exposure to bullying in 

childhood might be shorter term than suggested by classical longitudinal studies36. Using a longitudinal twin 

differences design, attention-deficit hyperactivity disorder (ADHD) symptoms have been shown to be more 

predictive of future autistic spectrum disorder (ASD) symptoms than the reverse, i.e., ASD symptoms 

predicting future ADHD symptoms37. 
 

Although they control more stringently for confounders than non-genetically informed designs, sibling and 

twin designs are limited in that they cannot account by design for non-shared environmental confounding. 

For example, MZ twins discordant for smoking could differ in other lifestyle choices such as alcohol 

consumption, which may confound the association between smoking and outcomes. Controlling for relevant 

observed non-shared environmental confounders, such as alcohol consumption, can mitigate this issue (i.e. 

controlling for the non-shared component of O but not U in BOX 2, figure part c; see also Ref38). 

Furthermore, measurement error can be a problem in twin and sibling causal inference designs as different 

degrees of measurement error between the causal and caused variables can bias inference. This can be 

addressed by directly modelling measurement error when it can be estimated or by conducting a sensitivity 

analysis to determine how much difference in measurement error is needed to change the conclusion38–40. 

Another important limitation concerns exposures that do not vary between pair members. For example, twins 

are perfectly matched for parental age or family income, and such exposures that do not vary within the 

family cannot be used as predictors in discordant or differences designs. By contrast, parental age can differ 

between siblings, and the sibling design has been used to demonstrate that paternal age at birth is likely to 

have widespread effects on offspring psychiatric and academic outcomes that often remain undetected in 

classical observational studies41. 
 

  Adoption-at-birth and in-vitro fertilization design. These designs compare associations between risk factors 

and outcomes in genetically related and unrelated parent–child pairs. Adopted children are genetically 

unrelated to their adoptive parents. In-vitro fertilization (IVF) can use either parental gametes (genetically 

related) or donor gametes (genetically unrelated) for fertilization. Associations in genetically unrelated pairs 

are free from genetic confounding due to passive gene–environment correlation (BOX 1). These designs are 

appropriate for examining intergenerational effects. For example, smoking during pregnancy associates with 

lower birth weight. However, maternal genetic factors contribute to smoking during pregnancy; when 

transmitted to the offspring, the same genetic factors may influence birth weight, thereby generating an 

association even in the absence of an effect of smoking. An IVF study demonstrated that smoking during 

pregnancy was predictive of lower birth weight in both genetically related and unrelated mother–child dyads, 

ruling out genetic confounding25. Similarly, the adoption-at-birth design has been used to investigate the role 
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of parental psychiatric morbidity in child developmental outcomes42. The key limitation of these designs is 

that, unlike MZ twins, they do not control for environmental confounding. Therefore, it becomes necessary to 

adjust for observed confounders, with the limitations inherent in that approach.  
 
 Direction of causation model. The classical twin design aims to decompose the variance of a phenotype into 

heritability (additive (A) and dominance (D) effects), and environmental influences (subdivided into shared 

(C) and non-shared (E) effects). The insight behind the direction of causation (DoC) model is to use these 

A(D)CE components as instruments to investigate causal relationships (similar to BOX 2, figure part b). 

Interestingly, using A(D)CE components of each phenotype as instruments for the other phenotype enables 

the investigation of reciprocal causal relationships in cross-sectional designs (similar to bidirectional MR, see 

below)43,44. The DoC model has been implemented for example to investigate the genetic overlap between 

cognitive functions and schizophrenia. Findings showed that around a quarter of the variance in liability to 

schizophrenia was explained by variation in cognitive function45. However, the scope of application of the 

DoC model has been limited, as a condition required for its implementation is that the variance components 

should not be equal for both phenotypes. This condition can be satisfied for example when unequal 

proportions of variance are explained by A, C and E for each phenotype or when ADE components explain 

one phenotype and ACE components the other. More-similar components lead to decreasing statistical power.  
 
 Mendelian randomization 
Over the past decade, MR has become a method of choice to strengthen causal inference in observational 
research. MR is used to investigate an ever-growing set of causal questions, from the role of molecular 
biomarkers in CHD to behavioural questions such as possible reciprocal effects between cannabis use and 
schizophrenia. In contrast with family-based designs described in the previous section, MR exploits 
genotyping data, most often in unrelated individuals. MR is founded on the realization that a genetic variant 
associated with an exposure X can be used as an instrumental variable to estimate the causal effect of X on an 
outcome of interest (BOX 2, figure part b)11,12,46. Genetic instruments — typically single nucleotide 
polymorphisms (SNPs), although other sequence variants could be used — can approximate the 
counterfactual situation. Individuals carrying the risk allele have higher (or lower) levels of X on average 
than individuals with no risk allele. According to Mendel’s laws of segregation and independent assortment, 
we can assume that the resulting exposed and non-exposed groups satisfy the condition of 
exchangeability47,48. When certain assumptions are satisfied (see below), a difference in the outcome between 
individuals with and without the risk allele can only be attributed to the causal influence of X. To a certain 
extent, MR can thus be construed as a natural experiment analogue to RCTs in which participants are 
allocated to different exposure levels independently of confounding12,49 (hence the term Mendelian 
randomization, as ‘genetic allocation’, similar to randomized allocation, generates variation in the exposure 
that, under assumptions, should be unaffected by confounding).  
 

A classic example relies on variants in the CRP gene to assess the health consequences of elevated circulating 

C-reactive protein (CRP), a marker of systemic inflammation50,51. In an early study, the SNP rs1059 was used 

as an instrument to investigate whether elevated CRP levels influence blood pressure. The concentration of 

CRP was 1.81 mg/L (log) in carriers of the GG genotype and 1.39 in non-carriers (p<0.001)51. Strikingly, 

although circulating CRP levels were strongly associated with many measured confounders such as low-

density-lipoprotein cholesterol (LDL-C) and socioeconomic status, the genetic instrument was independent of 

all measured confounders. This suggests exchangeability between GG carriers and non-carriers and illustrates 

the benefits of using genetic instruments rather than observed CRP levels for causal inference. Comparing 

outcomes between GG carriers and non-carriers suggested no causal relationship, with systolic blood pressure 

of 147 mmHg in both groups (p=0.98). Subsequently, MR analyses have demonstrated that: CRP is likely to 

be a simple marker rather than a causal risk factor for many phenotypes, including CHD, lung function, and 

depression, although unexpected suggestive evidence of a protective effect on schizophrenia has recently 

been reported52–55; and similar to vitamin E, vitamin D levels appear unlikely to be causally related to CHD56 

but appear to be causal for multiple sclerosis57. 
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To derive reliable causal estimates from MR, genetic instruments must satisfy instrumental variable 

assumptions. The core assumptions are not fully testable and constitute a serious threat to inference validity 

(BOX 3). Genetic instruments extracted from a single gene with a well-understood biological function, such 

as CRP, are more likely to meet these assumptions, enabling reliable causal inference and providing targets 

for pharmacological interventions13. However, such monogenic instruments are unavailable for many 

exposures, leaving only imperfect instruments. Highly polygenic influences on most phenotypes imply small 

individual SNP effects, which creates potential problems with weak instruments unless large samples are 

used58. Polygenicity also implies that pleiotropy is widespread59, potentially (but not necessarily) resulting in 

invalid instruments (detail in BOX 3). Fortunately, polygenicity also provides an antidote, in the form of 

multiple instruments for any given exposure. In recent years, considerable efforts have been devoted to 

extensions of MR allowing for multiple imperfect instruments, which we consider in the following section60–

62.  
 

  Extensions of Mendelian randomization 
[H2] Dealing with imperfect instruments. Modelling multiple imperfect instruments together can 
substantially increase power48,63 and mitigate problems due to weak instruments58,64,65. Figure 1a illustrates 
the use of multiple instruments derived from relevant genome-wide association studies (GWAS) to assess the 
effect of LDL-C on CHD. Estimates of the association between genetic instruments and CHD (βzy) are 
regressed on estimates of the association between instruments and LDL-C (βzx, see BOX 3). We expect that, 
if LDL-C→CHD is causal, then instruments with larger effects on LDL-C should have proportionally larger 
effects on CHD. The slope of this regression estimates the causal effect; a flat line implies no causation. The 
effect estimated from multiple instruments is more precise than the effect based on a single SNP (FIG. 1a). 
 

As illustrated in Figure 1a, most but not all SNPs are aligned with the regression line, resulting in 

heterogeneity in causal estimates. In the context of MR, heterogeneity occurs when estimates derived from 

each genetic variant do not all converge to the same causal estimate. Heterogeneity, which can be assessed 

via graphical inspection and statistical tests, can result in misleading causal conclusions. Heterogeneity may 

stem in part from pleiotropy (BOX 3): in addition to its effect on CHD through LDL-C, a SNP may have an 

effect through other pathways, explaining a greater or lower than expected association with CHD. Several 

methods jointly modelling multiple instruments have been proposed to allow for such invalid instruments 

(see Table 1; these methods cannot be implemented for instruments using a single genetic variant, for which 

the validity of the instrument has to be assumed). For example, MR-Egger regression quantifies pleiotropy by 

estimating an intercept in addition to the slope in the regression shown in Figure 1a, and can yield consistent 

causal estimates even when all individual instruments are invalid60. Compared to the inverse-variance 

weighted method, which does not account for unbalanced pleiotropy (see Table 1), the MR-Egger regression 

estimate is reduced for LDL-C and more so for HDL-C (FIG. 1a,b).  
 
 Bidirectional MR. This approach investigates possible reciprocal causal relationships between two 
phenotypes. For example, cannabis use has been implicated in the aetiology of schizophrenia but reverse 
causation is possible66. Bidirectional MR uses genetic instruments for cannabis use to investigate the 
cannabis→schizophrenia relationship and genetic instruments for schizophrenia to investigate 
schizophrenia→cannabis (FIG. 1c,d). A first attempt to investigate this question demonstrated that 
bidirectional causal influences are plausible66,67. Importantly, reverse causation between an exposure and an 
outcome violates an assumption of MR that is explicit in the directed effect of X on Y (BOX 3, figure part a). 
Therefore, results from bidirectional MR can currently only be regarded as suggestive (see the legend of 
Figure 1). 
 
 Multivariable MR. This method considers several exposures simultaneously and thus allows direct 

modelling of possible pleiotropic pathways that would violate MR assumptions68,69. For example, SNPs 

associated with either HDL-C, LDL-C or triglycerides are often associated with the other two. Therefore, 

genetic instruments for HDL-C may affect CHD through pathways other than HDL-C levels, violating a key 

assumption of MR. Recently, multivariable MR and MR-Egger regression have been combined to further test 

for pleiotropy62. Using multivariable MR-Egger regression, we updated previous findings65 based on the most 
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recent GWAS for lipids and CHD14,70. Findings confirm the robustness of the effects of LDL-C; however, the 

ostensibly protective role of HDL-C reported in univariate analyses is not confirmed when using 

multivariable MR-Egger regression (FIG. 1a,b and legend).  
  
[H2] Intergenerational MR. Similar to the IVF design, intergenerational MR capitalizes on information 
regarding the mother–child genetic relatedness to account for passive gene–environment correlation. In 
contrast to the IVF design, intergenerational MR exploits measured genotypes and accounts for 
environmental confounding. Intergenerational MR was implemented to demonstrate that higher maternal 
body mass index (BMI) and higher levels of fasting glucose predict larger birth weight in offspring71. 
Importantly, simply deriving instruments from maternal genotypes cannot rule out passive gene–environment 
correlation. Indeed, the association between maternal genetic instruments and offspring outcomes may arise 
from the transmission of risk alleles rather than from the causal influence of maternal BMI. Controlling for 
the genetic instrument in the offspring is a first step to address this issue. However, it creates a collider bias 
(BOX 2) with the paternal genotype, reintroducing confounding72. Two approaches have been proposed to 
deal with this problem: controlling for paternal genotypes (requiring genotypes on mother, father, and 
child)72; and second, splitting the genetic instrument for the mother into two instruments comprising the non-
transmitted and transmitted alleles73. The non-transmitted alleles enable causal estimation whereas the 
transmitted alleles reflect genetic transmission. Notably, splitting the genetic instrument substantially limits 
power, because power in MR largely depends on how much variance in the predictor is explained by the 
genetic instrument63. 
 
[H1] Emerging approaches 
MR studies described in the two previous sections typically involve: first, selecting a set of SNPs as 
instruments; second, using these instruments to investigate one (or a few) risk factor(s) and one outcome; and 
third, testing whether they are causally related. Here, we describe emerging approaches that go beyond these 
three features, in particular by exploiting genome-wide and phenome-wide information to delineate complex 
pathways between multiple phenotypes. 
 
[H2] Polygenic scores. Genetic instruments derived from allelic scores typically use a limited number of 
SNPs, from a few to a few hundred, thereby leaving out most causal SNPs in the genome and potentially 
limiting power. The justification for such severe ascertainment is that polygenic scores with many more SNPs 
are more likely to violate instrumental variable assumptions (see BOX 3). First, polygenic instruments are 
more likely to correlate with confounders. For example, one study showed that both allelic scores made of 
known variants and truly polygenic scores using hundreds of thousands of SNPs for BMI, LDL-C and CRP 
predicted diseases as expected74. However, the polygenic scores were less specific, associating with more 
traits and thus more potential confounders, thereby constituting questionable instruments for their respective 
exposure (see also Ref75). Dynastic effects (BOX 3) are a special case, where a genetic instrument acts as a 
proxy not only for the exposure (e.g. child BMI) but also an environmental effect (e.g. the obesogenic 
environment created by parents). Second, polygenic instruments are likely to include many variants with 
problematic pleiotropic effects, i.e. influencing the outcome not exclusively via the exposure (BOX 3).  
 
A possible strategy for circumventing these issues is to integrate polygenic scores, used as instruments, with 

family-based designs, either family fixed effects31,76 or DoC models77. In family fixed effects models, 

differences in the outcome between siblings (or DZ twins) can be explained using differences in sibling's 

polygenic scores as an instrument31. Given the properties of family fixed effects designs (see above) such an 

instrument is independent of all confounders shared between siblings. Dynastic effects are also controlled for 

because environmental conditions created by the parents are shared between siblings. Notably, dynastic 

effects are not controlled for in MR on unrelated individuals, highlighting the benefit of embedding genetic 

instruments within family-based designs. More generally, MR is only absolute in within-family designs, as 

the genetic material is randomized in transmission from parent to child, whereas the ‘randomization’ is 

approximate at a population level78,79. 
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A DoC model integrating a polygenic score as an instrument can be identified in several ways, entailing 
trade-offs between different assumptions77. One possibility is to assume the absence of non-shared 
environmental confounding, similar to the twin differences design (see above). This enables direct estimation 
of pleiotropic effects, by modelling both directed paths from the instrument to the exposure and from the 
instrument to the outcome. Releasing the no-pleiotropy assumption in this way provides a promising method 
to account for the pleiotropy introduced by the use of polygenic scores. Theoretical and empirical research 
regarding these models is still limited but can develop in diverse ways. For example, an increased number of 
parameters could be identified by including a wider range of relationships from extended pedigrees or 
distantly related individuals, potentially reducing the assumptions required77. 
 
[H2] Phenome-wide approaches and shared aetiology. The wide availability of summary association 
statistics 80 enables phenome-wide approaches to investigate relationships between thousands of phenotypes. 
Genetic correlations quantify the magnitude of the shared genetic aetiology between phenotypes16 (FIG. 2a). 
Often, the existence of shared genetic aetiology is more relevant than strict causality, such as when an 
intervention on the exposure cannot be achieved, as for adult height74 or age at menarche81. In these cases, 
strict adherence to the MR assumption of no pleiotropy is less important than the demonstration that the 
phenotypes have a common aetiology. Further investigating what gives rise to this shared aetiology can also 
offer new avenues for interventions if we can identify underlying common causal pathways (illustrated by P 
in BOX 3, figure part b). Genetic correlation estimates are limited in that regard as they do not identify where 
in the genome shared loci reside, nor do they elucidate mechanisms underlying cross-phenotype 
relationships59. Phenome-wide association studies (PheWAS) or multi-trait GWAS approaches can help in 
identifying shared loci82–84, i.e. genetic variants influencing two or more phenotypes. For example, a 
nonsynonymous variant in the zinc transporter SLC39A8 associates with schizophrenia, Parkinson disease 
and height85. Identifying such shared loci can be achieved via colocalization methods [G]. Two phenotypes 
colocalize in a genetic region when it contains variants that associate with both phenotypes. This reflects 
three possible scenarios: first is causality, in which the SNP effect on one phenotype is mediated by its effect 
on the second phenotype; second is pleiotropy, in which the same SNP independently affects both 
phenotypes; and third is linkage disequilibrium (LD), in which two or more SNPs in LD affect different 
phenotypes86 (BOX 3). Colocalization tests and related methods can provide evidence in favour of the first 
two scenarios over the third scenario, thereby indicating that at least one causal variant in the genetic region 
influences the two traits, pointing towards a common causal pathway, which may constitute a target for 
intervention85–89. 
 
The mechanisms underlying cross-phenotype relationships can be further elucidated by attempting to 
distinguish between the first and second scenarios. One approach is to test for asymmetry between two 
phenotypes, asymmetry being defined as the situation where the SNPs most strongly associated with one 
phenotype predict the other phenotype, but the reverse is not true85. For example, the top SNPs for LDL-C 
predict CHD, but those for CHD do not predict LDL-C. Such asymmetry is interpreted as more consistent 
with causal relationships between the two phenotypes (the first scenario) rather than the cross-phenotype 
association being generated by shared pathways (the second scenario). A study of 42 phenotypes identified 
five pairs of putative causally related phenotypes, including evidence for higher BMI leading to type 2 
diabetes but not the reverse85. Notably, this asymmetry analysis would be underpowered to detect cases of 
true reciprocal causal relationships of similar magnitude. Furthermore, spurious asymmetry patterns can arise 
in principle through particular algebraic relationships between SNP effects, causal effects and effects of 
unmeasured confounders.  
 
Such methods can also be applied to probe relationships between phenotypes and biomarkers, such as gene 
expression. Transcriptome-wide association studies (TWAS) using measured gene expression are susceptible 
to the same biases as observational studies. Conversely, using summary statistics from expression 
quantitative trait locus (eQTL) studies and from GWAS enables the detection of genetic variants that affect 
both expression levels and endpoint phenotypes (the second scenario). Such analyses can help to identify 
functionally relevant genes, for example by pinpointing TNF receptor associated factor 1 (TRAF1) rather than 
complement C5 (C5) as the most functionally relevant gene in the TRAF1–C5 locus for rheumatoid arthritis. 
Furthermore, when several eQTLs are detected, asymmetry analysis can be implemented to estimate the 
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causal effect of gene expression on endpoint phenotypes59. The same remarks apply to epigenome-wide 
association studies (EWAS) to assess the aetiological role of DNA methylation levels.  
 
To summarize, genetically informed phenome-wide approaches can help in: better understanding the shared 
aetiology between phenotypes; prioritizing putative causal relationships; and refining functional knowledge. 
 

[H2] Dissecting exposures and delineating pathways. Causal questions typically lead to testing whether one 

exposure causes one outcome. However, exposures are often heterogeneous, conflating distinct sub-

components. Such heterogeneous exposures can lead to heterogeneity in causal estimates even in the absence 

of pleiotropy. BMI is an example of a heterogeneous exposure that could be refined into appetite, 

adipogenesis, and cardiopulmonary fitness subcomponents. When available, genetic instruments indexing 

these different subcomponents may provide more specific causal effects and intervention targets90. 

Furthermore, a complex network of pathways often relates multiple exposures to multiple outcomes. 

Mapping out pathways from exposures to outcomes may provide additional targets for intervention, for 

example by determining the mediating role of inflammation markers or hormones. As a result, instead of 

examining a single arrow from one exposure to one outcome, causal analyses may start to resemble causal 

maps unravelling networks of relationships between phenotypes, as illustrated in Figure 2b91. Figure 2b also 

illustrates the concept of a network of causal relationships, e.g. smoking is protective for type 2 diabetes via 

its effect of lowering BMI (see Refs92,93). To establish such causal maps, different methods outlined in this 

Review can be implemented, such as network MR that exploits a different genetic instrument to probe each 

arrow in the network94, or longitudinal twin designs with relevant phenotypes and biomarkers.  
 
[H1] Conclusions and future perspectives 
 
In this Review, we have described the common logic underlying the use of genetically informed methods to 

strengthen causal inference, based on the counterfactual approach. We have shown that such genetically 

informed methods already form a worthy toolbox for causal inference. Researchers can select appropriate 

tools depending on the characteristics of their research question and data: if exposure varies within families, 

twin and sibling designs can be considered; if we can find monogenic or polygenic instruments to adequately 

proxy the exposure, MR and extensions are available; if reverse causation is suspected, the DoC models and 

bidirectional MR can be explored; if prior knowledge exists regarding possible pleiotropic pathways, 

multivariable MR is recommended; to investigate the intergenerational transmission of risk, adoption, IVF 

and intergenerational MR can be applied; if the aim is to identify causal pathways shared between multiple 

phenotypes, colocalization methods are appropriate. These methods can be further integrated to develop this 

toolbox and offer new avenues for research. In particular, emerging approaches embedding polygenic 

instruments within family-based designs can address certain limitations of both approaches. In addition, 

integrating MR, colocalization methods, and phenome-wide approaches can allow researchers to identify 

putative causal relationships and shared causal pathways that are relevant to many phenotypes. In future, 

methodological advances are likely to enrich this toolbox, and applications across disciplines should expand 

accordingly.  

 
[H2] Methodological advances. We expect a continued burgeoning of method developments for genetically 
informed causal inference designs. Progress in the near future should lead to yet more robust MR estimators. 
Methods to refine genetic instruments by leveraging functional knowledge should yield more insightful 
inferences (e.g. dissecting the effects of heterogeneous exposures). We have outlined how integrating genetic 
instruments with family-based designs can mitigate problems of MR, such as dynastic effects. This is 
reminiscent of family-based genetic association tests developed to control for population stratification. 
Adapting those approaches to the MR paradigm could prove fruitful, for example by conditioning on parental 
genotypes or by treating family effects as random95,96. A further promising area is the use of genome-wide 
information. As shown in BOX 3, figure part d, fully capturing genetic factors confounding an association 
would enable better causal inference. However, although polygenic scores are increasingly powerful, they 
currently explain only a small amount of the variability in phenotypes97. We propose that, similar to 
multivariable adjustment in non-genetic epidemiology and other disciplines, polygenic scores can still be 
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used in a sensitivity analysis to assess the likelihood that a relationship of interest results entirely from 
genetic confounding (BOX 4).  
 
[H2] Rapid expansion of applications across disciplines. New, more powerful GWAS, multi-trait GWAS, 
PheWAS, TWAS and EWAS will considerably increase the scope of applications and the reliability of the 
methods described in this Review. Inexpensive microarrays also enable genotyping on specific samples such 
as twins (e.g. TwinsUK98, Twins Early Development Study (TEDS)99), or birth cohort studies (e.g. the 
Norwegian Mother and Child Cohort Study (MoBa)100 and the Avon Longitudinal Study of Parents and 
Children (ALSPAC)101); data from such samples can be combined, encouraging a wider application of the 
aforementioned methods combining family-based designs with genome-wide data. Applications of 
genetically informed methods for causal inference in medicine already provide evidence of palpable benefits, 
with pharmaceutical companies implementing these methods for: first, validating (or invalidating) existing 
drug targets (e.g. discarding CRP or HDL-C for CHD prevention); second, identifying possible off-target 
effects; third, repurposing existing drugs; and fourth, discovering new targets13,102,103. Disciplines that 
traditionally have largely ignored the role of genetics can no longer justify doing so, such as social sciences 
and economics104. Genetically informed causal inference methods should become routine wherever possible, 
at the very least to consider the possibility of genetic confounding. 
 
[H2] Pitfalls of causal inference. Conclusions drawn from causal inference methods are only as good as the 
modelling decisions made and to the extent that assumptions are credible105. Assessing credibility requires in-
depth knowledge of the question, which, for example, is unlikely in massive hypothesis-free causal inference 
exercises, such as phenome-wide approaches13. The causal map in Figure 2b shows examples of implausible 
cases resulting from hypothesis-free approaches. Furthermore, each method makes a different set of 
assumptions, which cannot always be appropriately evaluated. Therefore, triangulation — when conclusions 
from several study designs converge — will play an increasingly important role in strengthening evidence for 
causality106,107 98. Overall, one should not expect that a single existing or future method for causal inference in 
observational settings will provide a definitive answer to a causal question. Rather, such methods can 
substantially improve the strength of evidence on a continuum from mere association to established causality.  
 
In summary, causal inference using genetically informed designs has a long history but has undergone rapid 
and exciting developments in recent years, with research already reaping valuable benefits. A rich and 
growing toolbox of genetically informed methods to strengthen causal inference is becoming available, with 
applications across the biomedical and behavioural sciences and in new areas including social sciences and 
behavioural economics.  
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Box 1 | Challenges to causal inference 
 

Even the poster child of causal relationships — smoking cigarettes causes lung cancer — was once 

controversial. In 1957, Ronald Fisher, a founding father of modern statistics and statistical genetics, and 

himself a smoker, qualified smoking as “possibly an entirely imaginary cause” for lung cancer108. He argued 

that the observed association was due to genetic confounding, in his words “a common cause, in this case the 

individual genotype”. Most putative causal relationships are much harder to establish than this one and 

confounding is the major challenge for causal inference. Confounding occurs when a third variable causes 

both the risk factor and the outcome (Fisher's ‘common cause’), generating a spurious association. Genetic 

confounding occurs when ‘individual genotype’ is the third variable, in other words, when genetic factors 

affecting the environmental exposure also directly affect the outcome (e.g., genetic factors affecting both 

cigarette smoking and lung cancer in the figure)7. Pleiotropy, a concept related to genetic confounding, is 

detailed in BOX 3.  
 

Gene–environment correlation109, can generate genetic confounding. Active or evocative gene–environment 

correlations occur when the environment experienced by an individual is partly influenced by their 

genotypes. Such gene–environment correlation explains why even ‘environmental variables’ such as 

educational attainment (see the figure) or bullying victimization are partly heritable110–112. Similarly, genetic 

variants in the CHRNA5–A3–B4 nicotinic receptor subunit gene cluster reliably predict smoking heaviness in 

smokers113,114. An exposure such as smoking can thus be genetically influenced. Importantly, gene–

environment correlations do not always generate confounding. This is because genetic variants may be 

associated with the exposure (here, smoking) but only indirectly associated with outcomes through that 

exposure. In such cases, these genetic proxies for exposures can be used to probe the causal role of these 

exposures on diverse outcomes (see the Mendelian randomization section in the main text). Passive gene–

environment correlation occurs when children inherit parental genetic variants that contribute to the 

environment that parents create109. For example, smoking during pregnancy is genetically influenced and the 

offspring can receive both the genetic variants associated with smoking and the smoking environment. Such 

passive gene–environment correlation can confound observed associations between smoking during 

pregnancy and offspring’s outcomes (see the figure).  
 

Reverse causation constitutes another major issue. Even if causal relationships are established between risk 

factors and outcomes, the direction may remain unclear. Reverse causation is relevant to many causal 

questions, e.g., does alcohol abuse cause depression or does depression lead to alcohol abuse (see the figure). 

No reverse causation exists between germline genetic variants and phenotypes. For example, alcohol abuse 

may cause a disease or alcohol abuse may increase in response to disease onset. But germline genetic variants 

associated with alcohol abuse will not be modified by disease onset47, which is advantageous when using 

genetic variants for causal inference (BOX 3).  
 

Measurement error in the exposure or the outcome can hinder the detection of causal effects, e.g., in the 

figure, imprecise measures of alcohol abuse may prevent the detection of its effect on depression. 

Conversely, even slight measurement error in confounders can lead to biased estimates as confounders are 

not appropriately controlled for115. Genetic proxies of exposures can be less susceptible to measurement error 

and reporting bias (e.g. variants in the nicotinic receptor gene cluster predict objective measures of tobacco 

exposure better than they predict self-reported smoking113).  
 
Misidentification occurs when the putative causal risk factor is only correlated with the true causal risk factor, 

e.g., in the figure, the tobacco inside the cannabis joint causes cancer, rather than the cannabis per se116. 

Misidentification may also happen when a genetic proxy for a given exposure is not entirely relevant to that 

exposure (BOX 3), yielding causal estimates that do not accurately reflect the effect of the exposure under 

scrutiny. 
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Box 2 | Directed acyclic graphs for causal inference exploiting genetics 
 

Directed acyclic graphs (DAGs) provide a useful graphical language for causal inference in general and for 

genetically informed causal inference methods in particular. DAGs displayed here provide a conceptual 

framework to understand methods presented in this Review: part a of the figure illustrates key DAG 

concepts; parts b and c represent two main ways in which genetically informed designs can strengthen causal 

inference; and part d shows how these two approaches can be merged into a single representation.  

 

The figure, part a, illustrates four alternative DAG structures. 

Solid arrows represent a directed causal path. No arrow means no 

directed path. In (i), A→B→C is a directed path: all arrows point 

forwards. In (ii), A←C→B is a backdoor or unblocked path: A is 

associated with B through C. Such an unblocked path creates an 

observed association between A and B, even in the absence of a 

causal path (no A→B). C is thus a confounder, generating a 

correlation between A and B, despite neither causing the other. In 

‘potential outcomes’ terminology, exposed and non-exposed 

participants on factor A are not exchangeable. Formally, 

exchangeability requires that potential outcomes are independent 

of the observed exposure22. For example, we assume that, in a 

randomized controlled trial (RCT), observed levels of B in the treatment group (A1) would have been the 

same in the control group (A0) had control participants been exposed to the treatment. Here, C prevents 

exchangeability, leading to a biased estimate of A→B. In (iii), C is a collider: arrows ‘collide’ at C. The path 

A→C←B is blocked: A is not associated with B through C. Controlling for a collider (C) creates a spurious 

correlation between A and B. In (iv), the exposure–outcome path X→Y (red) is confounded. Controlling for 

C (the square around C) blocks the backdoor path X←C→Y. However, controlling for the collider C 

unblocks the path X←A--B→Y, which confounds X→Y. Controlling for C alone is therefore not sufficient, 

but controlling in addition for either A or B solves this problem, by blocking this newly created path (see 

Ref117). To ensure conditional exchangeability of exposed and non-exposed individuals, all backdoor paths 

between X and Y should be blocked. When this is achieved (here by controlling for C and A or B), then X is 

‘d-separated ’ from Y, which provides an unconfounded causal estimate of X→Y.  
 

The figure, part b illustrates an instrumental variable analysis, 

using an instrument Z to estimate X→Y. To conclude that X is 

a causal risk factor for Y, three assumptions must be satisfied: 

relevance , exchangeability, and exclusion restriction [G]. 

Relevance implies that the chosen instrument Z reliably predicts 

the risk factor of interest (solid Z→X arrow). Second, the 

instrument must be independent of all observed (O) and 

unobserved (U) confounders to ensure exchangeability between 

exposed and non-exposed individuals (no Z→O,U). Third, 

exclusion restriction means that, conditional on exposure and 

confounders, the instrument is independent of the outcome. More intuitively, exclusion restriction signifies 

that the genetic instrument must affect the outcome exclusively through its effect on X (i.e. solid path 

Z→X→Y but no other path from Z to Y)118.  



Genetics and causal inference     13 

 

In the figure, part c, G represents a latent variable capturing all 

genetic influences on X, Y and O,U. Note that the previous 

conditions for an instrumental approach are not satisfied: G 

directly influences both Y and O,U. To estimate the causal effect 

of X on Y — i.e. to d-separate X from Y — it is necessary to 

adjust for G and O,U. Naturally, d-separation is challenging 

because all relevant genetic variants and environmental 

confounders must have been identified and measured without 

error, which highlights the difficulty of causal inference in 

observational research. 
 
The figure, part d provides a general representation of 

approaches for causal inference using genetic data, 

combining the instrumental and the direct control for 

confounders. Note that the dashed lines represent violations 

of instrumental variable assumptions: instrument Z is 

related to confounders; Z is directly related to Y; Z is 

associated with Y through its association with other genetic 

factors (G), due to shared genetic ancestry (Sga)119; Z is 

associated with Y via Sa→O,U (e.g. shared cultural ancestry 

affecting social factors). Z–G interactions and Z–O,U 

interactions, not represented here, can also generate 

assumption violations. 
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Box 3 | Mendelian randomization: principles and assumptions 
 

A genetic instrument Z must satisfy the assumptions of relevance, exchangeability, and exclusion restriction 

(BOX 2). Relevance can be tested by using genetic association studies for X, which provide an effect size 

estimate (βzx) and a test of significance120 (see the figure, part a). Exchangeability can be tested by verifying 

whether Z predicts observed confounders (dashed 

Z→O representing associations that should not be 

present). For example, a genetic instrument for C-

reactive protein (CRP) was found to be independent of 

21 potential observed confounders of the association 

between CRP and coronary heart disease (CHD)120. 

Generally, genetic instruments are likely to provide 

more reliable causal estimates of X→Y (red) than 

direct estimates using observed X and Y, even when 

controlling for observed risk factors. One study121 

demonstrated that 96 behavioural, socioeconomic and 

physiological characteristics were strongly 

interrelated. By contrast, genetic variants showed no 

more associations with these potential confounders 

than expected by chance. Despite these encouraging findings, exchangeability cannot be proven because 

some relevant confounders may be unobserved. To fulfil the exclusion restriction assumption, there should be 

no direct causal path from Z to Y. Note that the observed βzy is not null. However, the exclusion restriction 

assumption implies that the observed βzy results only from the indirect effect through X, i.e. βzy = βzx*βxy. 

Based on observed βzx and βzy, we can therefore estimate the causal estimate (βxy), using the ratio βxy = 

βzy/βzx. A relevant instrument can be weak (significant but small βzx). A weak instrument leads to a small 

denominator (βzx), which results in imprecise estimates, and biases the estimated causal effect towards the 

observational association when βzx and βzy are estimated in the same sample, or towards the null when they 

are estimated in independent samples122. Notably, if the three aforementioned assumptions are satisfied, we 

can conclude that X causes Y, but additional parametric assumptions (e.g. linearity) are required for the ratio 

to be reliable120.  
 

The notion of pleiotropy123 — when a genetic locus affects more than one phenotype — is key when 

assessing exclusion restriction. Mediated pleiotropy124 (also called vertical pleiotropy125, or causality86) 

occurs when Z and Y associate because Z affects Y through X. This fulfils the exclusion restriction 

assumption and is consistent with causality. Unmediated or biological pleiotropy124 (horizontal pleiotropy125, 

or simply pleiotropy86) is when Z affects both X and Y but through different pathways. Such pleiotropy can 

be: direct, as in the path from Z to Y in the figure, part a, or indirect either via O,U or via intermediate 

pathways P in the figure, part b. This type of 

pleiotropy is informative about shared aetiology (X 

and Y are both caused by P) but the instrument will 

yield biased βxy. Finally, spurious pleiotropy124 is 

when two (rather than one) causal variants explain Z 

and Y but the variants are in linkage disequilibrium 

— i.e. associated because of shared ancestry (Sga in 

the figure, part b)119. Exclusion restriction is violated 

as the observed βzy not only reflects Z→X→Y but 

also the association via other variant(s) in G. Note 

that Z need not be a causal variant for X. Z can be 

tagging a causal variant affecting X if both tagging 

and causal variants fulfil exchangeability and 

exclusion restriction assumptions118. Finally, dynastic effects also violate the exclusion restriction 

assumption76. Dynastic effects occur when parental genotypes affect the child via the environment that 
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parents create for their child by affecting the parental phenotype accordingly (also called ‘genetic nurture’ as 

genotypes affect the nurturing environment126). As a result, the genetic instrument in the child is correlated 

with the environment created by the parents. Dynastic effects therefore open a backdoor path between 

instruments and outcomes via parental environments.  
 

Genetic instruments have additional advantages (e.g. reducing reverse causation, reporting bias, and 

measurement error) and limitations (e.g. limited power, population stratification, and developmental 

compensation) that are summarized elsewhere12,48,49,120.  
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Box 4 | Sensitivity analyses using genome-wide data 

 

We outline here possible avenues to further utilize genome-wide data for causal inference. Unlike Mendelian 

randomization (MR), the approach suggested here does not follow instrumental variable principles. Instead, it 

builds on a classical multivariable framework in epidemiology, with the additional advantage of directly 

modelling genetic confounding (see part c versus part b of the figure in Box 2). A drawback of classic 

multivariable approaches (e.g. multivariable regression) is their inability to control for unobserved 

confounding. Here, we propose a sensitivity analysis to assess the extent to which estimates might result from 

unobserved confounding, in particular genetic 

confounding. Such a method could represent 

an alternative when no appropriate genetic 

instrument is available, which may frequently 

happen for complex phenotypes of interest to 

social scientists (e.g., income).  

 

Sensitivity analyses constitute common 

epidemiological tools to probe the robustness 

of findings. One such sensitivity analysis 

aims to assess to what extent the estimate of 

the effect of an exposure X on an outcome Y 

(βxy) would change if additional confounders 

were observed. In other words, how large 

should unobserved confounding be for the 

observed association to become null? A similar approach, schematically represented in the figure, can be 

adopted using polygenic scores and heritability estimates to test the likelihood that the association partly or 

fully results from genetic confounding.  

 

Two cases corresponding to two outcomes are represented, one outcome being more strongly influenced by X 

as shown by the standardized bivariate estimates of βxy on the Y-axis: 0.25 (red) and 0.15 (blue). The first 

step is to compute polygenic scores corresponding to each outcome using increasing p-value thresholds, 

which leads to more single nucleotide polymorphisms (SNPs) being used to generate the polygenic scores127. 

This first step results in several polygenic scores predicting increasing levels of variance in each outcome 

(represented on the X-axis in the figure with 5% and 9% of the variance explained in the two outcomes by the 

resulting polygenic scores). We then regress Y on X to estimate βxy while controlling for the polygenic score 

explaining 5% of the variance, and then repeat the operation with the polygenic score explaining 9% of the 

variance. This should lead to a progressive decrease in βxy, proportional to the amount of genetic 

confounding, as represented in the polygenic scores section of the figure. However, this would still only 

capture a small fraction of genetic confounding because even genome-wide polygenic scores may not capture 

all genetic influences on Y. Available heritability estimates for Y, based on both SNP and twin data, provide 

useful benchmarks for the sensitivity analysis. We can estimate βxy in an ideal scenario where available 

polygenic scores capture the entire heritability of the outcome, thereby estimating the full impact of genetic 

confounding on βxy. As shown in the figure, these scenarios can be based on available estimates of SNP-

heritability (i.e. heritability explained collectively by common SNPs) or twin-heritability. Lines in the figure 

therefore represent the decrease in βxy as a function of the variance explained in Y by genetic factors. The 

following estimates of βxy are represented: (i) bivariate estimate; (ii) estimates when controlling for observed 

polygenic scores (here two); (iii) estimate under the SNP-heritability scenario (here 30% of variance 

explained); (iv) estimate under the twin-heritability scenario (here 60% of variance explained). Two 

possibilities are represented: βxy is still significant even under the twin-heritability scenario (red); βxy is 

already non-significant under the SNP-heritability scenario (blue). The sensitivity analysis therefore allows us 

to assess how likely it is that a given effect is entirely genetically confounded. It can be expanded in at least 

two ways: (i) by including polygenic scores for X and Y; and (ii) by integrating known environmental 

confounders.  
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Figure 1 | Including multiple instruments in Mendelian randomization. Each dot corresponds to 
one genetic variant, with 95% confidence interval (CI) of its association with the risk factor (horizontal) and 
the outcome (vertical). Regression lines correspond to different estimators (listed in the legend and explained 
in Table 1); numerical results are given for the inverse variance weighted (IVW) and MR-Egger regression 
methods. a | Association between low-density lipoprotein cholesterol (LDL-C) and coronary heart disease 
(CHD) (138 single nucleotide polymorphisms (SNPs)). Causal estimate derived from a single SNP 
(rs11591147) is 0.53 (95%CI: 0.30–0.77), which is less precise than the estimate derived from all SNPs (0.47; 
95%CI: 0.40–0.54); Multivariable MR-Egger estimate (386 SNPs) is 0.41 (95%CI: 0.34–0.48); all estimates 
are consistent with causality. b | Association between high-density lipoprotein cholesterol HDL-C and CHD 
(183 SNPs). Multivariable MR-Egger estimate is –0.03 (95%CI: –0.10–0.03), which is not consistent with 
causality. c | Association between initiation of cannabis use and schizophrenia (21 SNPs); the IVW estimate is 
consistent with causality. d | Association between schizophrenia and initiation of cannabis use (107 SNPs); the 
IVW estimate is consistent with causality. Bidirectional MR (c and d) requires that the instrumental variable 
assumptions hold in both directions. Instruments with direct effects on both exposure and outcome are not 
informative on the direction of causality. Additional details on the data sources and analysis methods to 
generate this figure are provided in Supplementary information S1 (box). 

 
 

Figure 2 | Causal mapping. Phenotypes of interest for various fields were selected to illustrate the 
possibilities and the pitfalls of a phenome-wide causal map. Estimates (see below) were computed based on 
association summary statistics for each phenotype. Only significant estimates at p<0.001 are shown. a | Genetic 
correlations were estimated between all phenotypes using linkage disequilibrium (LD) score regression16 
implemented in LD Hub (link in further information) b | Mendelian randomization (MR) causal effects were 
estimated in both directions for all phenotypes using an inverse variance weighted estimator, implemented in 
MR-base (link in further information). The map shows causal relationships in expected directions, such as low-
density lipoprotein cholesterol (LDL-C) to coronary heart disease (CHD) and not the reverse, or from body 
mass index (BMI) to type 2 diabetes (T2D). However, some relationships are also not plausible, such as years 
of education determining childhood IQ. Overall, therefore, genetic correlations indicate shared genetic 
aetiology between phenotypes, which can be dissected in MR analyses to better assess whether they arise from 
pleiotropic effects and/or from causal effects in either or both directions. Phenome-wide analyses help in 
prioritizing plausible causal relationships and should be considered as an invitation to further probe the causal 
nature of detected relationships; however, they do not provide a definitive answer, as illustrated by the output 
of some implausible causal relationships. Upstream filtering based on a priori knowledge (e.g. temporality 
precludes a causal relationship from years of education to childhood IQ) or evidence from other designs can 
further increase causal evidence. Additional details on the data sources and analysis methods to generate this 
figure are provided in Supplementary information S1 (box). 
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Table 1. | Estimators for Mendelian randomization using summary statistics  

Implementation Limitations Refs 

Inverse variance weighted (IVW)-based methods  

The IVW method involves a weighted linear 

regression of SNP effects on the outcome on SNP 

effects on the risk factor, without an intercept 

term. The regression slope is equivalent to a 

weighted average of the ratio estimates (BOX 3), 

based on the precision of the causal estimate for 

each SNP used as an instrumenta,b. IVW methods 

are more powerful than other methods (e.g. MR-

Egger). 

Unlike the other methods described below, IVW cannot account for 

directional (unbalanced) pleiotropyc. Balanced pleiotropic effectsd 

can be accounted for in random effects IVW models (by allowing 

for heterogeneity) if the InSIDE assumptione holds true.  

128 

Methods based on Egger regression  

Linear regression with an intercept term using 

inverse variance weightsa,b. MR-Egger regression 

provides consistent estimates even if all genetic 

instrumental variables are invalid under the 

InSIDE assumptionc. This analysis is robust to 

directional (unbalanced) pleiotropyc. The intercept 

can be interpreted as the average pleiotropic effect 

across the genetic instrumental variables. 

Significance of the intercept term indicates the 

presence of unbalanced pleiotropy or violation of 

the InSIDE assumptione.  

Egger regression is less efficient and powerful than other methods 

because it allows for heterogeneity due to pleiotropy. It requires the 

InSIDE assumptione.  

60 

Median-based methods  

Median-based methods allow some (but not all) 

instrumental variables to be invalid instruments. 

The median estimate is obtained by first 

calculating the ratio causal estimate for each 

instrumental variable and then taking their median. 

In the unweighted version, each genetic 

instrumental variable receives equal weight in the 

analysis. In the weighted version, the median is 

calculated using the inverse variance weightsb. 

Median-based methods are more robust to 

directional pleiotropy than IVW and are more 

robust to individual genetic variants with outlying 

causal estimates than IVW and MR-Egger 

regression.  

These methods assume that at least 50% of the instrumental 

variables are valid instruments (unweighted median estimates) or 

that the instrumental variables that represent 50% of the weight in 

the analysis are valid instruments (weighted median estimates). 

61 

 

Mode-based methods  

These methods allow the majority of the genetic 

instrumental variables to be invalid instruments 

under the ZEMPA assumptionf. In the unweighted 

version of the mode estimate, each genetic 

instrumental variable receives equal weight in the 

analysis. In the weighted version, the mode is 

calculated using the inverse variance weightsb. 

Mode-based methods are more robust to 

directional pleiotropy than IVW and more 

powerful than MR-Egger regression. 

The methods assume that the largest number of instrumental 

variable estimates comes from valid instruments (ZEMPA 

assumptionf), i.e. that the invalid instrumental variables have 

heterogeneous effect estimates. They have less power than IVW 

and median methods. 

129,130 

 

Multiple methods   

In practice, it is recommended to apply each of these methods to assess the robustness of the assumptions relevant for 

the different estimators, including the IVW estimator (all instruments are valid), the Egger estimator (all instruments 

131 
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may be invalid if the ‘InSIDE’ assumptione is verified) and the median and modal estimators (a subset of genetic 

variants are valid instruments). 

 
aCan also be calculated using robust estimates, which downweights the contribution of IVs with outlying ratio estimates. This can 

reduce bias and imprecision due to the influence of outlying variants. bCan also be calculated using penalized estimates, which 

downweights/penalizes the contribution of IVs with heterogeneous ratio estimates and gives more weight to genetic variants with 

homogeneous ratio estimates. This can reduce bias and imprecision if a small number of candidate instruments have heterogeneous 

or outlying causal estimates. cDirectional (unbalanced) pleiotropy. Pleiotropic effects are more (or less) likely to be positive than 

negative, resulting in an average pleiotropic effect that is different to zero (significant intercept in MR-Egger regression under the 

InSIDE assumption). dBalanced pleiotropy. Pleiotropic effects are equally likely to be positive as negative (i.e. ratio estimates for 

individual SNPs above or below the true causal value), resulting in a null average pleiotropic effect. eThe InSIDE assumption. The 

instrument strength independent of direct effects (InSIDE) is the assumption that pleiotropic effects are independent of the effects 

on the exposure, which is untestable and is violated when the pleiotropic effects act via confounders of the exposure and outcome. 
fZEMPA assumption. The zero modal pleiotropy assumption (ZEMPA) states that the largest subset of genetic instrumental 

variables with the same ratio estimate comprises the valid instruments. SNP, single nucleotide polymorphism. 
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GLOSSARY 
 
Causal risk and protective factors  
Factors whose different values predict different risks of the outcome (either an elevated risk or a 
protective effect), all other factors being held constant. 5 
 
Phenotypes 
Measurable individual characteristics.  
  
Confounding 10 
A phenomenon whereby a variable (the confounder) has a causal effect on both the risk factor and the outcome, 

generating a spurious association between the two. 

 
Genetic confounding 
Confounding created by genetic factors influencing both the risk factor and the outcome.  15 
 
Causal inference methods 
Methods that aim to clarify the causal status of a risk factor, either by providing a direct estimate of 
the causal effect or by ruling out possible sources of confounding (e.g. removing the possibility of 
genetic confounding). 20 
 
Genetically informed methods 
Methods that use genetic information, such as known genetic relationships (e.g. twins) or genetic 
variation data.  
 25 
Instrumental variables 

Variables that are used as a proxy for an exposure X to estimate the causal effect of X on an 
outcome. This variable must be robustly associated with X, independent of all confounders of the 
effect of X on an outcome Y, and its effect on Y must be entirely mediated by X. 
 30 
Mendelian randomization 
A method that uses single nucleotide polymorphisms associated with an exposure, as instruments to 
probe the causal nature of the relationship between this exposure and an outcome of interest.  
 
Counterfactual 35 
(Also known as potential outcomes). The counterfactual is a treatment (or value of a risk factor) that an 
individual is not exposed to. The potential outcome is the outcome that would obtain under this 
counterfactual treatment. 
 
Exchangeability  40 
Verified when the expected outcome in the non-treated group would have been the same as the outcome in the treated 

group, if subjects in the non-treated group had received the treatment. Conditional exchangeability occurs when 

exchangeability is verified in each stratum of a confounder, after conditioning (adjusting) for the confounder. 

 

Genetic relatedness 45 
Occurs when two individuals share a proportion of their genome identical by descent, as a result of 
inheritance from a recent common ancestor.  
 
Backdoor paths 
(Also known as unlocked paths). A path between an exposure X and an outcome Y through a 50 
confounder, which biases the estimation of the causal effect of X on Y. 
 

Structural equation modelling 

Multivariate statistical technique combining factor analysis and regression analysis to estimate 
networks of relationships between latent and observed variables. 55 
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Sensitivity analysis 

An analysis conducted to assess how robust an association of interest is to potential unobserved 
confounding or other sources of bias 
 5 
 
Heritability 
The proportion of variance in a phenotype that can be attributed to genetic differences among 
individuals in a given population. Narrow-sense heritability estimates additive genetic effects. 
Broad-sense heritability includes both additive and dominance effects. 10 
 
Environmental influences 
Environmental influences that contribute to make two individuals (e.g. twins) similar to each other 
(shared environmental influences) or dissimilar (non-shared environmental influences). 
 15 
Single nucleotide polymorphisms 
(SNPs). DNA sequence variation arising from differences in a single nucleotide: adenine (A), 
thymine (T), cytosine (C) or guanine (G). 
 
Polygenic 20 
Influenced by variants in many genes. 
 
Pleiotropy 
Occurs when a genetic locus (e.g. a single nucleotide polymorphism (SNP)) affects more than one trait. 
 25 
Genome-wide association studies 

(GWAS). Studies in which each of hundreds of thousands to millions of genetic variants is tested for 
an association with a phenotype. 
 

Heterogeneity 30 
Whether in meta-analyses or in Mendelian randomization analyses using many genetic instruments, 
heterogeneity occurs when several estimates of the same effect do not converge towards the same 
value.  
 
Collider bias 35 
When a variable (the collider) is independently caused by the exposure and outcome of interest, controlling for it creates 

an association between exposure and outcome.  

 
Allelic scores 
Computed as a polygenic score, but summarizes genetic information derived from a few to a few 40 
hundred single nucleotide polymorphisms (SNPs) as opposed to polygenic scores, which rely on 
thousands up to all SNPs in the genome.  
 
Polygenic scores 
Individual-level scores that summarize genetic risk (or protection) for a given phenotype. For each 45 
single nucleotide polymorphism (SNP), a score is computed by counting effect alleles in an 
individual and weighting them by the effect size of this SNP. A polygenic score is computed 
summing scores from a large number, potentially all, of the SNPs in the genome.  
 

Dynastic effects 50 
Occur when genetic variants in parents are transmitted to the offspring but also contribute to 
parental phenotype and in turn to the environment experienced by the child. This induces a 
correlation between offspring genotypes and offspring's environment.  
 

Summary association statistics 55 



Genetics and causal inference     22 

Effect sizes and standard errors derived from a genome-wide association study for each single 
nucleotide polymorphism. They may include other summary statistics (e.g. allele frequency, 
imputation accuracy).  
 
Genetic correlations 5 
The correlation between causal effect sizes for two phenotypes across single nucleotide 
polymorphisms (SNPs). Typically reported as the correlation across the whole genome, and will 
differ when restricted to pleiotropic SNPs only. 
 
Phenome-wide association studies 10 
(PheWAS). These studies estimate the association of one or a few genetic variants of particular 
interest against many phenotypes, i.e. a selection of all possible phenotypes or phenome.  
 

Colocalization methods 
When a genetic region contains variants associated with more than one phenotype, colocalization 15 
methods aim to determine whether this is due to shared or distinct causal variants.  
 
Linkage disequilibrium 
Non-random associations between alleles at different loci. 
 20 
D-separated 
An exposure X and an outcome Y are d-separated through the process of d-separation, in which all backdoor 
paths between X and Y are blocked, to estimate the unconfounded effect of X on Y. 
 
Relevance 25 
A core assumption of instrumental variable estimation, whereby the instrument used must be 
robustly associated with the exposure of interest.  
 
Exclusion restriction 

A core assumption of instrumental variable estimation, whereby the effect of the instrument on the 30 
outcome must act entirely through its effect on the exposure (i.e. not directly and not via 
confounders or other mediators).  
 
 
 35 
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