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Abstract. It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging

doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging

modalities such as differential X-ray phase-contrast tomography (D-XPCT),1 which are currently limited by these

factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, recon-

structing high-resolution images from few-view tomographic measurements remains a challenging task due to the

high-frequency information loss caused by data incompleteness. In this work, a subspace-based (SuB) reconstruction

strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. By adopting a two-step

approach, the proposed method can simultaneously recover high-frequency details within a certain region of interest

(ROI) while suppressing noise and/or artifacts globally. The proposed method is investigated by use of few-view

experimental data acquired by edge-illumination D-XPCT scanner.
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1 Introduction

X-ray phase-contrast imaging (XPCI) methods continue to be actively developed and investi-

gated for characterizing soft tissue or biological samples that present limited X-ray absorption

contrast.2–8 A variety of XPCI methods have been proposed, which include propagation-based

imaging,9, 10 crystal analyzer-based imaging,11–13 grating-based imaging based on the Talbot or

Talbot-Lau effect3, 14, 15 and edge-illumination imaging.16–19 Conventional implementations of the

crystal analyzer-, grating-, and edge-illumination-based methods are generally referred to as differ-

ential XPCI methods, since they typically yield estimates of the one-dimensional (1D) derivative

of the projected real-valued component of the refractive index distribution of an object. In this

work, a tomographic implementation of differential XPCI is considered, referred to as differential

X-ray phase-contrast tomography (D-XPCT). The goal of D-XPCT is to produce an estimate of
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the real-valued component of the refractive index distribution, which describes the spatially variant

refractive properties of an object.

It will be assumed that the tomographic data function, from which an estimate of the refractive

index distribution is reconstructed, corresponds to 1D derivative with respect to the detector row

coordinate of the two-dimensional (2D) Radon transform of the refractive index distribution. This

tomographic data function can be established by application of a phase-retrieval method3, 12, 20–22

to the measured intensity data. When the data function is know at a sufficiently large number of

tomographic views,23 image reconstruction in D-XPCT can be readily accomplished by use of a

modified filtered backprojection (FBP) algorithm.1, 24, 25

However, in current implementations of D-XPCT, it may not be desirable to acquire data at

a large number of tomographic view angles. This is because D-XPCT methods are currently

limited by relatively long data-acquisition times and radiation exposures, which has hindered the

widespread application of the method to in vivo applications. Since current implementations typ-

ically utilize a ’step-and-shoot’ data-acquisition protocol, as opposed to the continuously rotating

X-ray source and detector pair utilized in a clinical CT scanner, one way to mitigate this problem is

to acquire tomographic measurements at a reduced number of view angles. The associated image

reconstruction problem is generally referred to as a ’few-view’ image reconstruction problem.26, 27

It might be worth mentioning that recently a phase CT has been developed with a lab source using

continuous rotation in a few minutes, but the limitation in that case is the approximation in the

phase retrieval.

There exists a vast literature related to few-view image reconstruction.26, 28–31 Modern few-view

image reconstruction methods are optimization-based and typically utilize an iterative method to

find a finite-dimensional estimate of the object function that approximately minimizes an objective
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function subject to constraints. In the case of D-XPCT, the object function corresponds to the re-

fractive index distribution. While existing few-view reconstruction methods can be adapted for use

in D-XPCT,32–35 there remains a need for improved methods for reconstructing high-resolution D-

XPCT images from few-view measurements. Because few-view image reconstruction corresponds

to an ill-conditioned inverse problem, a regularized solution must be computed; however the design

of an effective regularization strategy is influenced by many factors, including the characteristics

of the refractive index distribution to be estimated.

Regularization methods that promote object sparsity26, 36 are ubiquitous in the modern image

reconstruction literature. Although total variation (TV) regularization has been employed widely,

its effectiveness is degraded when the object’s gradient map is not sparse.32, 37 To mitigate this

problem, object sparsity can be promoted in a different transform domain in which the object is

sparsely represented.38 Analytical sparsifying transforms such as wavelets, curvelets, and finite

differences can be employed. Alternatively, the sparsifying transform can be adaptively learned

from a set of training data.39, 40 Moreover, multiple penalty functions can be employed in the

objective function in order to obtain a balanced regularization,41 or more complicated strategies

can be employed that achieve local TV regularization effects in the image domain.42 However, it

remains challenging to design a regularization strategy that faithfully preserves fine object features

in the reconstructed image when only few-view tomographic data are utilized.

In this work, a new method for few-view image reconstruction in D-XPCT is proposed and

investigated. A distinctive feature of the method is that the sought-after object function is decom-

posed into two components that reside in distinct subspaces. One component corresponds to the

high frequency components of the object function that reside within a certain region of interest

(ROI). The radius of the ROI is determined by the spatial frequency content of the object function
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and the number of tomographic view considered. This object component can be stably recovered

from the few-view measurement data using a Penalized Least-Squares (PLS) estimator. The sec-

ond component corresponds to the lower frequency components of the object function, over the

entire support of the object. This object component, which is slowly varying, can be accurately

estimated by use of a TV-regularized PLS estimator (PLS-TV). In this way, the high frequency

components of the object function within the ROI can be faithfully preserved, while outside of the

ROI lower-frequency components of the object can be accurately recovered and streak artifacts can

be suppressed. The proposed subspace-based method is applied to few-view experimental data ac-

quired by use of a benchtop edge-illuminiation D-XPCT system and its performance is compared

to the conventional FBP and PLS-TV methods.

2 Background

2.1 D-XPCT imaging model in semi-discrete form

It will be assumed that all functions below are compactly supported and belong to weighted L
2-

spaces. For a function f(r) that is compactly supported on a disk D ⊂ R
2, the two-dimensional

(2D) Radon transform of the function is defined as

(Rcf)(s, φ) =

∫ r

−r

f(r)δ(s− r · n)dr, (1)

where s ∈ (−r, r) denotes the detector row coordinate, φ ∈ (0, π) denotes the tomographic view

angle, and n = {cosφ, sinφ} is a unit vector making angle φ to the x-axis.

Considering the case of few-view measurement data where only a finite number of views are

available, the corresponding finite-view Radon transform can be defined by discretizing Rc with
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respect to the tomographic view angle:

(Rf)(s, φi) =

∫ r

−r

f(r)δ(s− r · ni)dr, (2)

where ni = {cosφi, sinφi} and φi belongs to a set S that contains discrete tomographic view angles

indexed with i = 1, 2, ...,M . Therefore, R is a compact operator from L2(D) into L2(Z), where

Z = [−r, r]× S.

The D-XPCT imaging model can be described as a finite-view differential Radon transform

H = DR, where D is a one-dimensional first-order derivative operator:

g(s, φi) = Hf(r) ≡ DRf(r) =
∂

∂s

∫ r

−r

f(r)δ(s− r · ni)dr. (3)

Here, g(s, φi) is a tomographic data function that is established by use of a phase retrieval method.43–46

The image reconstruction task in D-XPCT is to determine an estimate of f(r), which represents

the refractive index distribution, from knowledge of g(s, φi). When the data function g(s, φi) is

determined at a large number of view angles, this can be accomplished by use of analytical image

reconstruction algorithms.47 For example, images can be reconstructed by use of a modifed FBP

method as1

f̂FBP = R†Chg, (4)

where † indicates the adjoint operator, and Ch is a filter kernel acting as the Hilbert transform scaled

by a factor. Typically the scaling factor equals the angular spacing ∆φ if all the projections are

uniformly acquired over the π span. Here R†, usually referred to as the back projection operator,
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is mathematically equivalent to discretizing R†
c with respect to the variable φ:

(R†g)(r) =

M
∑

i=1

[

∫ r

−r

g(s, φi)δ(s− r · ni)ds]. (5)

Note that Eq. (4) appears similar to the classical FBP algorithm for CT image reconstruction,

where the reconstruction kernel has been modified. However, in the case of noisy and/or few-view

measurement data, analytic reconstruction methods are known to be suboptimal and the use of

iterative methods is highly desirable.

2.2 Null-space properties of finite-view Radon transform

The finite-view Radon transform R is a semi-discrete version of the classical Radon transform in

which only discretization of the angular variable is performed. A unique and exact reconstruction

of an arbitrary function is mathematically impossible when the tomographic data contains only a

finite number of views. This implies that the finite-view Radon transform has a non-trivial null

space. The functions in this null space, denoted as fnull, are invisible along the considered projec-

tion directions, or mathematically speaking, Rfnull = 0, where 0 is an infinite-dimensional zero

vector defined in the range of R. Correspondingly, the orthogonal complement of the null space is

defined as measurable space.

By use of various mathematical tools, for example the orthogonal function series expansions or

singular value decomposition, important insights into the null-space properties of the finite-view

Radon transform have been established.23, 48–52 Defining a compact disc support of radius r, and

assuming a set of M equispaced projections over π span, Logan48 revealed that the 2D Fourier

transform of any null-space function corresponding to the imaging operator R is negligible inside
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a disc of radius Ω in Fourier space when

Ω = M/(2πr), (6)

as illustrated in figure 1(a), where the estimate holds when M ≫ π/2 .

As a direct consequence, a function whose 2D Fourier transform is concentrated within this

frequency disk Ω can be reliably reconstructed from its M projections.52 An intuitive illustration

is provided in figure 1(b). If the frequency contents of the object do not fall into the null space

of the finite-view Radon transform, the object can be accurately reconstructed. More rigorous

mathematical proofs can be found in previous works.23, 50

Fig 1 (a) The null-space functions of the finite-view Radon transform are contained exclusively outside a disk Ω in the

Fourier domain, shown as the gray region. (b) If a to-be-imaged object has all the frequency contents confined to Ω

without overlapping the null-space region, it means the object could be reliably reconstructed.

Remark 1: The above argument has been a long-time guide for determining the angular sam-

pling requirements for a CT scan.52 For non-trucated projections, the D-XPCT data set can be

readily converted to a CT data set by use of an integral operator, without any information loss. So

the conclusion is also valid for the D-XPCT imaging scenario.

Remark 2: For an imaging operator R with the support radius and number of views already

defined, the above argument tells under what conditions the image can be reliably reconstructed,
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which does not rely on any specific reconstruction algorithm. In practice, FBP-type algorithms

taking the form of Eq. (4) have been widely implemented in CT, proving reliable reconstructions

as long as the relationship of Eq. (6) is satisfied.23, 52, 53

Remark 3: A compactly supported object theoretically does not have a strictly band-limited

frequency distribution; therefore one should keep in mind that the argument only holds when

we can assume the measurements are quasi-band-limited, which is the case in many practical

implementations.54

3 Motivation for subspace-based image reconstruction

3.1 Revisiting the FBP algorithm

When the imaging system corresponds to a field of view (FOV) of radius r that does not meet the

requirement in Eq. (6), the aforesaid angular sampling is insufficient for an accurate reconstruction

when the FBP algorithm is employed. From the perspective of the Fourier slice theorem, the ac-

quired data suffer a significant high-frequency information loss, and a blurred reconstructed image

is expected. However, it is interesting that, though the conventional FBP algorithm is known to give

rise to streak-like aliasing artifacts, the reconstructed image looks sharper and more resolution-

enhanced in comparison to the image that reflects the measurable component of the object.55 Here,

the measurable component fmeas is defined as the part of the object that lies in the measurable

space of the operator R. It can be interpreted as the least-square estimate of the object that has the

minimum L2-norm, known as the pseudo-inverse solution, which can be computed by use of the

Landweber iterative algorithm or other inversion methods.56

In order to better interpret an image produced by use of the FBP algorithm, the to-be-imaged

object f can be decomposed into two components as f = Wf + (1 − W )f . Here, W is a 0-1
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function that performs as a circular mask with the center at the origin, such that

W (~r) =



















1 if ‖~r‖ < r’

0 elsewhere,

(7)

where the radius r′ is determined as

r′ = M/(2πΩ). (8)

As introduced in Eq. (6), Ω denotes the maximum spatial frequency of the object. Motivated by

the previous null-space properties of the finite-view Radon transform, W specifies the largest ROI

that can potentially be reliably reconstructed, as will be discussed below.

Denote the FBP reconstruction operator as B = R†Ch for a given finite-view D-XPCT prob-

lem, where the back projection operator R† and filter Ch are defined as in Eq. (4). Assuming

consistent data g = Hf , an image reconstructed by use of the FBP algorithm can be expressed as

f̂FBP = Bg = WBg + (1−W )Bg. (9)

The reconstructed image within a designated ROI of radius r′ can be isolated by applying the mask

W on f̂FBP

Wf̂FBP =WBg

=WBHf

=WBHWf +WBH(1−W )f.

(10)

The first term in Eq. (10), WBHWf , describes an image of the ROI reconstructed by use of

the measurements that are solely produced from the structures inside the same ROI, as illustrated
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Fig 2 The illustration of the reconstruction over the support r and with a virtual mask W . FBP algorithm ensures that

the reconstruction of ROI within r
′ is not affected by the masked region.

by the projection profile shown in Figure 2. Note that BHWf is the reconstructed image defined

in the whole support, in which the area outside the radius r′ is not zero but may contain streak

artifacts when the number of projection views is not sufficient. However, due to the properties of

the back projection operator R†, the FBP method ensures that the reconstruction of the ROI of

radius r′ is independent of that for the masked region. Therefore, reconstructing the designated

ROI is equivalent to a conventional reconstruction problem that has a smaller FOV of radius r′.

If Ω = M/(2πr′) holds, it is reasonable to directly apply the argument stated in Section 2.2 to

establish that this ROI can be reliably reconstructed by use of the FBP algorithm. Mathematically

speaking, WBHWf = Wf .

The second term of Eq. (10), WBH(1 − W )f , namely represents the streak artifacts present

in the ROI that is backprojected from the source (1−W )f corresponding to the structures outside

the ROI. It can be denoted as an error term ǫ, and will be further discussed it in Section 3.2.

In summary, by rewriting Eq. (10) it can be concluded that

Wf̂FBP = Wf + ǫ. (11)

This suggests that, for few-view tomographic reconstruction, although the information is not suf-

ficient enough to accurately recover the entire image by use of an un-regularized reconstruction
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operator, there is still an opportunity to reliably estimate the object within a restricted ROI when ǫ

is small.

3.2 The recovery of the object’s high-frequency contents

Given the imaging operator H and the data function g, an optimization problem is proposed based

on Eq. (11) in order to extract certain high-frequency components of f that are usually difficult to

retrieve:

f1 = argmin
f

‖f‖2

s.t. Hf = (C − 1)g,

(12)

where the filter C = HR†Ch, and Ch is a scaled Hilbert transform operator as specified in Eq. (4).

Mathematically, one can demonstrate that

Wf1 = Wfnull + ǫ, (13)

where the determination of W is guided by the aforesaid rule of Eq. (8), and fnull denotes the null

component of the object in terms of the imaging operator H. Details regarding this interpretation

are provided in the appendix.

As suggested by the Fourier slice theorem, fnull mainly contains high-frequency information

that is insufficiently sampled in the Fourier domain. As a consequence, Eq. (13) suggests that the

recovery of Wf1 can yield useful high-frequency information regarding the object within the ROI

of radius r′, which is generally a challenge for few-view image reconstruction methods.
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Note that the solution of Eq. (12) also satisfies

f1 = argmin
f

‖Hf − (C − 1)g‖2, (14)

when a Landweber-type iterative algorithm is employed starting from a zero intial guess.57

Remark 1: Since W is non-invertible, it should be noted HWfnull = 0 is generally not true.

Therefore by definition Wfnull is not a null-space function of the imaging system, and the recovery

of Wfnull does not violate linear operator theory.

Remark 2: Under certain conditions, the error term ǫ could be insignificant. This could occur,

for example, if the outside-ROI structures are weak in magnitude or sparse in spatial distribution.

Also, if the outside-ROI structures corresponds to lower frequencies, ǫ can be negligible. This

could be understood by a similar analysis as stated in section 2.2, which implies a lower-frequency

object could have a larger “artifact-free” zone. Particularly, if the outside-ROI structures have

Ω 6 M/(2πR), then they won’t produce any streak artifacts over the entire object support R, and

ǫ is consequently zero.

4 Subspace-based image reconstruction method

4.1 General forms of the discrete imaging model

Many iterative image reconstruction algorithms require a discrete imaging model, and a natural

way to obtain this is to discretize the semi-continuous model in Eq. (3). When a digital detec-

tor is employed, the data function corresponds to an ordered collection of numbers. Since the
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reconstruction problem is inherently 2D, we will denote the discrete data function as

g[k, φi] = g(s, φi)|s=k∆d
, (15)

where k is integer-valued detector element index along the transverse direction, and ∆d denotes

the detector element dimension. Let the vector g ∈ R
K×M denote a lexicographically ordered

representation of g[k, φi]. The dimension of g is the product of the number of detector row elements

K and the number of view angles M .

In order to obtain a finite-dimensional approximate representation of the object function, a

linear N-dimensional approximation of f(r) can be formed as

fa(r) =
N−1
∑

n=0

f̃nβn(r), (16)

where the subscript a indicates that fa(r) is an approximation of f(r), {βn(r)} are a set of expan-

sion functions, and {f̃n} are the corresponding expansion coefficients. Let f be a N × 1 vector of

expansion coefficients that has an n-th element given by f̃n. Rather than the conventional pixel ba-

sis functions, the Kaiser-Bessel window expansion functions33, 58 (or usually referred to as “blobs”)

were employed in this study. This choice has the attractive feature that the derivative of the Radon

transforms of the expansion functions can be computed analytically, thereby circumventing the

need to numerically approximate them.

With the defined discrete data function g and object function f, a system matrix H employing

the generalized Kaiser-Bessel window functions was constructed32 and a discrete imaging model
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was formed as

g = Hf . (17)

It should be noted that some blob parameters (e.g. radius, specific shape) may also affect the sys-

tem matrix stablity and the reconstruction performance. The optimal parameter selections have

been described in the literature.32, 59, 60 Equation (17) can be employed with iterative image recon-

struction algorithms for estimation of f from knowledge of g and H. From the estimated f , the

object function estimate - the sought after image - can be obtained by use of Eq. (16).

4.2 Proposed iterative reconstruction method

Equation (11) implies that, for a given object, the FBP algorithm can produce images that depict

high-frequency structures within a ROI whose radius is dependent on the number of tomographic

views. However, the FBP algorithm usually does not effectively mitigate noise. Also, it produces

severe streak artifacts outside the ROI when the number of views is insufficient. Meanwhile, the

conventional TV-regularized iterative algorithm can effectively suppress noises and artifacts, but it

also brings the risk of removing desired subtle structures.

In order to synergically combine the two reconstruction methods, we propose a subspace-based

(SuB) reconstruction strategy, and reconstruct the images in a two-step, iterative approach that can

be more robust against the noise.

Similar to the decomposition step described in the previous section, the reconstructed image f

is denoted as the sum of two images f1 and f2 by

f = W f1 + f2, (18)

14



where f1 and f2 can be computed respectively via a two-step approach as shown in Eq. (19) and

(20). We first compute f1 by solving

f1 = argmin
f

‖Hf − (C − 1)g‖2, (19)

with a gradient-descent algorithm and a zero initial guess. Subsequently, the object component

W f1 is fixed and f2 is estimated as:

f2 = argmin
f

‖H(W f1 + f)− g‖2 + λ‖f‖TV , (20)

where ‖·‖TV indicates the total-variation semi norm.42

As suggested in Section 3.2, the first sub-problem [Eq. (19)] produces an estimate of W f1

that mainly contains the high-frequency contents of the object inside the designated ROI. In the

second sub-problem [Eq. (20)], a TV-penalized least square (PLS-TV) estimator is employed for

estimating f2. Note that by subtracting the contribution of high-frequency component from the

measurements, f2 will mainly contain low-frequency contents, which is considered smoother and

therefore more suitable for the application of TV regularization.

Therefore, the proposed sub-space image reconstruction method, referred to as the Sub-PLS-

TV method, includes the following potential benefits:

- The high-frequency details within the designated ROI can be stably recovered from measured

few-view data.

- The global TV regularization is still employed for the purpose of suppressing noise and streak

artifacts over the entire object domain.
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- Since the two subspaces are naturally constrained in the second sub-problem, in the recon-

structed image the transitions at the ROI boundaries are smooth.

Below, the proposed Sub-PLS-TV method, the FBP method, and the conventional PLS-TV

method will be compared through numerical studies. The PLS-TV method corresponds to itera-

tively solving the following optimization problem

f̂PLS = argmin
f

‖Hf − g‖2 + λ‖f‖TV, (21)

which has been widely used for few-view CT image reconstruction.42 A modern iterative recon-

struction algorithm based on the FISTA acceleration framework61 is employed for the two iterative

methods.

5 Results

5.1 Computer-simulation studies

Computer-simulation studies were conducted to demonstrate and validate the proposed SuB-PLS-

TV image reconstruction method. A 1024 × 1024 numerical phantom was generated, shown in

Fig. 3, which contained a lumpy background with slowly varying magnitude and a disk with fast

varying ripple fluctuations. Differential phase-contrast measurement data corresponding to 90

tomographic views evenly distributed over 180 degrees were generated by projecting the phantom

using the system matrix H introduced in Section 4.1. Consequently, the system matrix used for

data generation exactly matches the one used for reconstruction in this simulation study. In order

to mitigate the inverse crime, here 5% Gaussian noise was added in the simulated data. Note that
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Fig 3 (a) The complete phantom. (b) A zoomed-in region of the central part of the phantom with adjusted gray-

value window. The dashed circle indicates the designated ROI where the capability of reconstructing high-frequency

structures is expected. (c) The extracted profile of the phantom across the center.

the model mismatch will be inherently present in the experimental study that is discussed in the

next section.

In the phantom, the random background was generated based on the recommended parameters

for mimicking the statistical texture of mammographic images.62 The rippled disk represents the

high-frequency details that normally bring challenges for few-view image reconstruction. For

simplicity, the ripple was designed to have a constant spatial frequency at 6 pixels/cycle that was

verified as the phantom’s upper frequency limit by examing its 2D Fourier spectrum. Therefore,

based on Eq. (6), a ROI could be designated with the radius r = M/(2πΩ) = 86 pixels in which

the high frequency structures are expected to be well recovered. In this study, the radius of the

rippled disk was also made as large as r for the purpose of demonstrating the maximum ability of

reconstructing high-frequency structures.

We compared the performances of three methods: FBP, PLS-TV, and the proposed SuB-PLS-
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TV method. For both iterative methods, the regularization parameter λ was swept over a wide

range to show the overall tendency of image quality. A series of typical reconstructed images

corresponding to progressively increasing TV parameters (i.e. 1e−4, 1e−3, 1e−2 and 1e−1) are

shown in Figs. 4 and 5, for the designated ROI region and an outside-ROI region, respectively.

In the designated ROI (Fig. 4), the conventional PLS-TV method was ineffective at recovering

the high-frequency ripples of the disk, no matter how we tuned the regularization parameter. TV

regularization smooths the noisy background but meanwhile suppresses high-frequency details. As

opposed to this, the proposed SuB-PLS-TV method selectively applies the TV regularization to the

low-frequency subspace, and is thus able to preserve the high-contrast ripples within the ROI. Also,

the proposed method still gains the benefits of noise suppression by using TV regularization, which

is a significant advantage over the analytical FBP method. Since the lumpy background contains

mostly low-frequency contents, there are no discernible streak artifacts shown in the designated

ROI, suggesting that the error term in Eq. (13) is negligible.

In an outside-ROI region (Fig. 5), where streak artifacts occur in the image reconstructed by the

FBP method, the SuB-PLS-TV method still outperforms the alternative iterative method in terms

of artifact suppression. This is credited to the novel cost function design of the sub-problem in

Eq. (20). The subtraction of the contribution of W f1 from the measurement data leads to more

accurate estimation of f2 representing the accurate low-frequency structures over the entire image.

Line profiles were extracted from the reconstructed images and superimposed on the corre-

sponding profiles through the true phantom. The profile through the center, as depicted in Fig. 3,

crosses the designated ROI and an outside-ROI region where the streak artifacts would occur. Fig-

ure 6 shows a series of profiles corresponding to the PLS-TV reconstructed images with increasing

TV regularization parameters. Figure 7 shows a series of profiles corresponding to the SuB-PLS-
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Fig 4 The comparison of reconstructed images inside the designated ROI. (a) Phantom; (b)-(e) The PLS-TV method

with increasing TV regularization parameter values; (f) FBP method; (g)-(j) The proposed SuB-PLS-TV method with

progressively increasing TV regularization parameter values.

Fig 5 The comparison of reconstructed images outside the designated ROI. (a) Phantom; (b)-(e) The PLS-TV recon-

struction results with increasing TV regularization parameter values; (f) FBP method; (g)-(j) The proposed SuB-PLS-

TV reconstruction results with progressively increasing TV regularization parameter values.
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Fig 6 The profiles extracted from the conventional PLS-TV reconstructed images with increasing regularization pa-

rameter values (blue) and the corresponding ground truth (red).

Fig 7 The profiles extracted from the SuB-PLS-TV reconstructed images with increasing regularization parameter

values (blue) and the corresponding ground truth (red).

TV results with increasing TV regularization parameters. Profiles through the reconstructed images

for the inside and outside ROI are highlighted by dashed squares. Again, the SuB-PLS-TV method

yields a reconstruction result that is visually more consistent with the ground truth. By tuning

the regularization parameter, it performs better than the conventional PLS-TV method in terms of

balancing the recovery of high-frequency ripples and the suppression of background noise and/or

streak artifacts.

In order to verify the statistical significance of the claimed improvement of image quality, the

studies above were repeated by use of an ensemble of 500 noisy simulated sinograms. The noise
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Fig 8 The mean MSE (top row) and SSIM (bottom row) values corresponding to images reconstructed by use of the

PLS-TV (blue curve) and Sub-PLS-TV (red curve) methods as a function of regularization parameter value. Also

shown are the 95% confidence intervals. The left and right columns correspond to the ROIs shown in Figs. 4 and 5,

respectively.

model and level were the same as described above. From these data, ensembles of noisy recon-

structed images were produced by use of the PLS-TV and Sub-PLS-TV methods corresponding to

different regularization parameter values. From each ensemble of reconstructed images, the mean

square error (MSE) and structure similarity index (SSIM) were computed in the two ROIs that

were considered in Figs. 4 and 5. These values are plotted as a function of regularization param-

eter value in Fig. 8. The 95% confidence intervals are also displayed. The range of regularization

parameter values is wider than that considered in Figs. 4 and 5 for the purpose of including the

turning point of the curves. Note that when λ is large enough, both MSE and SSIM performances

will eventually degrade. These results confirm that the improved performance of the Sub-PLS-TV
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method is statistically significant.

5.2 Experimental studies

The proposed reconstruction method was also validated by use of an experimental D-XPCT data

set produced by a benchtop edge-illumination X-ray phase contrast CT system built at University

College London.63, 64 The sample was a dung beetle. The complete tomographic data set contained

720 views with an angular spacing of 0.5◦, from which a reference image could be generated via

the FBP algorithm, which is shown in Fig 9. Detailed features of the object are visible in the

zoomed-in region.

Fig 9 (a) The reference image of the object produced by use of the FBP algorithm and the complete data. (b) A

zoomed-in region of the central part of the image correspoding to the designated ROI 1©

For the few-view image reconstruction studies, a subset of 120 uniformly spaced views over

a 180◦ span were extracted from the complete data set. This reduction in the number of mea-

surements can reduce the acquisition times by one-sixth, resulting in a total time savings of an

hour. Assuming the object’s maximum frequency of interest is approximately 10 mm−1, a central

ROI with the radius of 2 mm (150 pixels) can be designated, where a reliable reconstruction of
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Fig 10 The comparison of the reconstructed ROI 2© by use of FBP, PLS-TV and SuB-PLS-TV methods.

high-frequency structures is expected. The designated ROI is labeled as region 1© in Fig 9. Three

smaller windows 2©- 4© inside this ROI, as well as an outside-ROI region 5©, will be inspected for

evaluating the few-view reconstruction performances.

Figure 10 shows the reconstructed ROI images corresponding to the region 2© labeled in Fig 9.

The LS image indicates the least-square estimate of the object (i.e. Eq. (21) with λ = 0). It exhibits

blurring appearance due to the nature of few-view data acquisition and the consequent insufficient

sampling of high frequency contents in the Fourier domain. The image reconstructed by use of the

FBP method preserves high-frequency details, but also contains a considerable amount of noise.

In the bottom row, a series of images reconstructed by the PLS-TV method are shown with a wide

range of increasing regularization parameter values that are listed in Table 1. As demonstrated

before, they either appear blurred or oversmoothed. Instead, the proposed SuB-PLS-TV method

provides promising results. The plotted ellipse highlights the structures that bear a close resem-

blance with the reference image while the conventional PLS-TV images do not have. In this study,
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the choice of the regularization parameter value for the presented SuB-PLS-TV image is fixed the

same as the one for the third PLS-TV image for all Figs. (10)-(13).

Similar observations resulted when examining the other two ROIs labeled as region 3© and 4©.

The reconstructed images and the comparison between different methods are shown in Figs 11

and 12. Again, all the images reconstructed by use of the PLS-TV method do not show the trend

of resolving those fine structures, but the proposed SuB-PLS-TV method could produce a noise-

suppressed and more natrual looking image that is very close to the reference.

Fig 11 The comparison of the reconstructed ROI 3© by use of FBP, PLS-TV and SuB-PLS-TV methods.

Figure 13 shows a typical region 5© outside the designated central ROI 1©. In this case, the

SuB-LS-TV image gives a cleaner background compared with the FBP algorithm. It also visually

outperforms the PLS-TV image in terms of restoring the structures located far from the center as

indicated in the plotted ellipse.

All the images in Figs. (10)-(13) reconstructed by use of the PLS-TV, FBP and SuB-PLS-

24



Fig 12 The comparison of the reconstructed ROI 4© by use of FBP, PLS-TV and SuB-PLS-TV methods.

Fig 13 The comparison of the reconstructed region 5© outside the designated ROI by use of FBP, PLS-TV and SuB-

PLS-TV methods.
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TV methods were quantitatively evaluated in terms of Mean Square Error (MSE) and Structure

Similarity Index (SSIM), as shown in Table 1. The images reconstructed from the complete dataset

were served as the golden standard when computing all the figure of merits. In this study, a wide

range of TV parameter values was scanned in order to reflect the overall trend of the performances

for the conventional PLS-TV method. It can be observed that, in all listed regions, the SuB-PLS-

TV method with an optimal TV parameter value (λ = 3e−8) produced the lower MSE and higer

SSIM values no matter what TV parameter value was chosen for the PLS-TV method. These

results are consistent with the computer-simulation studies.

Table 1 Quantitative evaluation of the reconstructed images in MSE and SSIM

PLS-TV w/ increasing TV parameter FBP SuB-

PLS-TV

λ 1e−8 2e−8 3e−8 4e−8 5e−8 5e−7 5e−6 5e−5 - 3e−8

2©
MSE 5.030 4.972 5.029 4.991 4.901 4.433 4.307 6.351 4.771 4.292

SSIM 0.667 0.671 0.675 0.675 0.681 0.712 0.717 0.615 0.683 0.754

3©
MSE 5.296 5.229 4.975 4.924 4.799 4.272 4.207 5.914 4.529 4.185

SSIM 0.685 0.690 0.708 0.706 0.714 0.746 0.746 0.674 0.768 0.777

4©
MSE 5.082 5.021 4.880 4.818 4.739 4.318 4.242 6.627 4.728 4.209

SSIM 0.681 0.687 0.700 0.699 0.705 0.729 0.729 0.632 0.728 0.774

5©
MSE 4.401 4.212 4.110 4.085 4.079 3.731 3.731 5.917 5.480 3.625

SSIM 0.560 0.579 0.588 0.589 0.589 0.612 0.614 0.526 0.450 0.623

6 Conclusion

A new subspace-based reconstruction strategy was proposed and investigated for use in few-view

D-XPCT image reconstruction. It possesses the attractive feature that subtle structures can be ac-

curately reconstructed within a designated ROI, while the entire FOV can be effectively regularized

to mitigate noise and streaking artifacts. More specifically, the object is split into two components

that represent the high-frequency and low-frequency subspaces, respectively. The resulting two-

step iterative method is expected to mitigate the high-frequency information loss caused by data
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incompleteness and produce better images than those produced by use of a conventional PLS-TV

estimator. The proposed SuB-PLS-TV method was validated by a computer-simulated data set as

well as an experimental data set acquired from an edge-illumination XPCT scanner.

The proposed reconstruction method can be applied with all XPCI imaging modalities that pro-

duce differential phase-contrast data. It can also be readily extended to conventional CT scenarios

by use of a modified filter C = RR†C0 in Eq. (12), where C0 is the ramp filter in this case. In

practical applications, the prior information regarding the maximum frequency of the sample may

not be known, but Ω can be preset based on the maximum frequency of interest in terms of a spe-

cific imaging purpose. The projection data might need to be preprocessed with a low-pass filter

according to the cut-off frequency Ω. Multiple trials for determining an ideal Ω may be necessary

before the resulting image quality is fully optimized. Note that there is always a trade off between

the frequency setting Ω and the size of the recoverable ROI.

It is worthy noting that the error term ǫ presented in Eq. (13) might affect the reconstructed

images. When ǫ is not small, generally the reconstructed ROI is still sharp but the recovery of the

high-frequency structures is at the cost of the appearance of streak artifacts. However, it should

be noted that in the medical imaging field the task-based image assessment is widely promoted.56

In some imaging applications, resolution-enhaced images are useful for diagnostic purposes even

though the artifacts are sometimes present, and the proposed strategy is able to provide such a

solution.

Appendix A: The derivation of the high-frequency subspace

Below we describe how Eq. (13) is derived, in which we claim Wf1 = Wfnull + ǫ, where f1 is the

solution of the optimization problem stated in Eq. (12), fnull is denoted as the null component of
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the object with respect to the D-XPCT imaging operator H = DR, and ǫ is the same error term as

presented in Eq. (11).

Consider the optimization problem proposed in Eq. (12)

f1 = argmin
f

‖f‖2

s.t. Hf = (C − 1)g.

By use of the pseudo-inverse of the imaging operator, denoted as H#, the solution of the above

optimization problem can be expressed analytically as

f1 =H#(C − 1)g

=H#Cg −H#g.

By use of the filter C = HR†Ch, as specified in Eq. (12), and the defined forward operator

H = DR, we can expand the above equation

f1 =H#HR†Chg −H#g

=(DR)#(DR)R†Chg −H#g

=R#D#DRR†Chg −H#g.

In common situations where there is no truncation in the projection data, the derivative operator

D is actually invertible with the properly defined boundary conditions. Therefore, D#D can be

cancelled such that

f1 =R#RR†Chg −H#g

=R†Chg −H#g,
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in which the identity R#RR† = R† is a property for linear operators.56 Note that R†Chg is exactly

the FBP image as indicated in Eq. (4). This establishes that

f1 =f̂FBP −H#g.

By applying the mask W to f1 and using the conclusion Wf̂FBP = Wf + ǫ stated in Eq. (11),

Wf1 =Wf̂FBP −WH#g

=Wf −WH#g + ǫ

=W (f −H#g) + ǫ.

Since the measurable component of the object fmeas is equivalent to H#g,

Wf1 =W (f − fmeas) + ǫ

=Wfnull + ǫ,

which yields the conclusion in Eq. (13).
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