How does learning emerge in science classrooms?

Dr Mark Hardman, UCL Institute of Education, London, UK

https://ioe.academia.edu/MarkHardman
SMART Spaces

SMART Spaces is an EEF and Wellcome funded project that has shown good promise in improving revision for students. We are now moving to the next stage of the project and you have a chance to be part of a research project looking to improve attainment in Chemistry in AQA GCSE combined science.

Revision model
Be part of a RCT to determine the effect of SMART Spaces revision materials on attainment in the GCSEs in summer 2019

Teaching model
A smaller pilot looking at the benefits of SMART Spaces to affect teaching and learning. The intervention will be administered at intervals during the teaching and we will be investigating how teacher practice changes with any changes in student knowledge.

Contact
https://bit.ly/2IM0CZi
@SMARTSpaces_EDU
@agittner
maria.cockerill@qub.ac.uk
Half day conference
The Science of Learning Science (SoLS)
1pm Friday 22nd June
Notre Dame High School, Sheffield
Speakers: @chemDrK @timjay

Contact
@SMARTSpaces_EDU
or
@agittner
for more details
Outline

a) The problem with ‘concepts’.
b) What do teachers do to support learning?
c) What do pupils learn from in classrooms?
d) Discussion
The Problem of Concepts

Curricula specify the conceptual understanding that pupils must:

1. Defining concepts
2. Overcoming dualism
3. Guiding practice

Working out how concepts develop is really hard.
1. Defining concepts

The Classical View in Science Education

→ Constructivism

- Bruner, Goodnow & Austin (1956): learning of logically specified concepts
- Inhelder & Piaget (1964): growth of logic in child and how they were learned

Representation of abstract/logical entities

Bruner

Piaget
1. Defining concepts

Still no consensus around what concepts are. (Clement, 2008; Vosniadou, 2008)

An example (Graham et al., 2013)

\(n=11, \text{ 17 year-olds, advanced further mathematics} \)

1. Small group discussion of what a force is → make poster
2. Discuss horizontal forces on aeroplane, what can forces do?
3. Take ideas around ball being tossed:

- **Up**
 - 8 say resultant is up
 - 2 say down
 - 1 does not respond

- **Top**
 - All 11 say no resultant

- **Down**
 - All 11 say resultant is down
The Classical View in Science Education
→ Conceptual Change

1. Defining concepts

- Psychological literature focuses on categories; no real use in science education.
- So scientists draw on philosophy of science (DiSessa, 2006; Özdemir & Clark, 2007)

Concepts as Coherent
McCloskey (1983)
- Naïve theories e.g. impetus
- Change following conflict

Concepts as fragmented
DiSessa (1983)
- Partial understandings e.g. balance
- Pieced together & revised

Sociocultural view
Graham et al. (2013), Mercer (2007)
- Pupils respond to social context
- Concepts are shared (to some extent)
2. Overcoming dualism

The issue with ‘concepts’
(and how we already know this)

Concepts are ill-defined abstractions

• “The term concept is one that everybody uses and nobody explains – still less defines” (Toulmin, 1972, p.8)
• “The “conceptual” part of the conceptual change label must be treated less literally.” (DiSessa, 2006, p.265)

- Mental representations
- P-prims
- Theories
- Beliefs
- Mental models
- Cognitive structure
- Ontologies

• “numerous different representational structures, with different processes operating on them, can be formulated to explain any given research finding.” (Kosslyn, 1978, p.219)
2. Overcoming dualism

The issue with ‘concepts’ (and how we already know this)

Concepts vs thinking
• “a change in what a person is thinking (which is what a researcher can hope to directly infer by interpreting data elicited at any one time) from one time to another, may, or may not, reflect a substantive change in the underlying cognitive structure (which is only partially and less directly reflected in research data).” (Brock & Taber, 2016, p.5)

vs perception, maturation, sensorimotor operations
• “mental images have their own laws which are different both from the laws of perceptions and from those of operations.” (Inhelder & Piaget, 1964, p.295)

Social or cognitive?
• “any new empirical evidence is unlikely to lead to a simple theoretical resolution in favor of an extreme situative or cognitive explanation of conceptual change.” (Mercer, 2007, p.77)
How should teachers promote conceptual change?

3. Guiding practice

- **Concepts as Coherent**
 - e.g. McCloskey (1983)
 - Introduce counterevidence & present new theory

- **Concepts as fragmented**
 - e.g. DiSessa (1983)
 - Weave together fragments

- **Competing concepts view**
 - e.g. Potvin et al. (2015)
 - Instruction first

- **Sociocultural view**
 - e.g. Graham et al. (2013)
 - Discussion / group work

No consensus around practice
3. Guiding practice

Arguments against ‘constructivist teaching’

Empirical Evidence

- “Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching” Kirschner, Sweller, Clark (2006)
 → Return to guided instruction and cognitive psychology research

‘Pedagogic vagueness’

Assessment ➔ ‘Activity’ ➔ Concept acquisition
3 significant challenges:

1. Defining concepts
2. Overcoming dualism
3. Guiding practice

Focusing on teaching ‘concepts’ is not helpful.
Outline

a) The problem with ‘concepts’.

b) What do teachers do to support learning?

c) What do pupils learn from in classrooms?

d) Discussion
Does focus on ‘cognition’ help?

Learning is associated with memory ➔

“memory is the residue of thought”

Willingham (2009, p. 41)

What causes thought?

Meaningful?

Images?

Repeated?
Where is the cognition?

Learning as the adaptation of nested, complex systems:

- Subject
 - Newton’s laws
 - Pedagogic practice
- Classroom
 - Models, drawings
 - Interactions
- Brain
 - Gestures
 - Speech
 - Emergent cognition
 - Neural response

Cognition is emergent
Video analysis - what do expert teachers do?

(Riordan, 2014)

a) Expert microteaching (1 hour x 6)

b) Verbal protocols (30 min x 6)

c) Retrospective debriefing (30 min x 6)

Teachers are involved in the interpretation of their classroom practice
Important questions from the questioning route (for the Expert Microteaching Interviews):

Please tell me what is happening to the hot tea and the cold ice cube in as much detail as you can.

Please sort these cards onto the spaces on the two mats quickly: one for living things and the other for non-living things.

Please imagine you walk into a completely dark room with that torch on and you see teddy. Please make a quick sketch showing the torch, teddy and your eye which explains how you can see the bear.
How is the data analysed?

NVivo 9 software was used to help manage and analyse this large data set.

1) **Video** recorded from two different angles.
2) **Transcript** made from the videos.
3) **Coding grid** developed from the transcript.
4) **Model** developed using the transcript and coding grid.

~15 hours of video
18,737 references coded
What were the findings?

- redirect
- clarify
- transfer
- use a learning method

Techniques
- support
- use a stratagem
- use an activity
- condition

Tactics
- persuade
- group
- use timing

Strategy
What is the teacher doing?

• Supporting the development of cognition.
• Crafting that cognition: feedback, questions, actions/gesture etc.
Oh, I'm moving the torch as well.
1a:320-324
What is the teacher doing?

- Making some cognition ‘meaningful’.
Outline

a) The problem with ‘concepts’.

b) What do teachers do to support learning?

c) What do pupils learn from in classrooms?

d) Discussion
How do pupils learn chromatography?

• What activities, explanations, models etc do pupils learn from in your classroom?
Current project (SES funded)

research methods:

a) Expert teaching (1 hr x3)

b) Teacher verbal protocols (2 hrs x3)

c) Student verbal protocols (2 hrs x3)

d) Retrospective debriefing (2 hrs x3)

Naturalistic setting

Teacher interpretation

Pupil interpretation

Coding together
What is involved in learning science? Coding so far suggests...

Materials & Models

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>RT (min)</th>
<th>Peak Name</th>
<th>Area</th>
<th>Area %</th>
<th>Height</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>Peak 1</td>
<td>350</td>
<td>60.35</td>
<td>110</td>
<td>50.70</td>
</tr>
<tr>
<td>2</td>
<td>1.02</td>
<td>Peak 2</td>
<td>180</td>
<td>31.03</td>
<td>79</td>
<td>36.40</td>
</tr>
<tr>
<td>3</td>
<td>2.7</td>
<td>Peak 3</td>
<td>50</td>
<td>8.62</td>
<td>28</td>
<td>12.90</td>
</tr>
</tbody>
</table>

Physical model

Visual model

Mathematical model

The experiment - chromatographs

Gesture
What is involved in learning science? Coding so far suggests...

Narrative & Meaning

- Written / verbal analogies
 - “the ink lets go.”

- Narrative: generating explanations / answering Qs

Context - purpose

Applications of Chromatography
- Forensics
- Research
- Pharmaceutical industry

Feedback & correcting

See also...
Some tentative ideas:

I. Pupils learn through the specific models and representations presented: this is part of cognition (episodol → semantic memory)

II. Pupils continually generate narrative:
 - ‘Miscognitions’ (vs direct instruction)
 - Feedback and correcting
 - Different problems

III. Meaning making is important: jokes, contexts, relationships, what is valued, emotions.
Positioning this research

Explore
- Theoretical work
- Exploratory work in classrooms

Distil
- Suggest implications
- Design interventions

Test
- Pilot
- Efficacy trial
- Effectiveness trial
Outline

a) The problem with ‘concepts’. ✓
b) What do teachers do to support learning? ✓
c) What do pupils learn from in classrooms? ✓
d) Discussion

• What do you think?
• Is this at all helpful?
• What needs work?
References (1)

References (2)

SMART Spaces.

SMART Spaces is an EEF and Wellcome funded project that has shown good promise in improving revision for students. We are now moving to the next stage of the project and you have a chance to be part of a research project looking to improve attainment in Chemistry in AQA GCSE combined science.

Revision model
Be part of a RCT to determine the effect of SMART Spaces revision materials on attainment in the GCSEs in summer 2019

Teaching model
A smaller pilot looking at the benefits of SMART Spaces to affect teaching and learning. The intervention will be administered at intervals during the teaching and we will be investigating how teacher practice changes with any changes in student knowledge.

Contact
https://bit.ly/2IM0CZi
@SMARTSpaces_EDU
@agittner
maria.cockerill@qub.ac.uk
Half day conference
The Science of Learning Science (SoLS)
1pm Friday 22nd June
Notre Dame High School, Sheffield
Speakers: @chemDrK @timjay

Contact
@SMARTSpaces_EDU
or
@agittner
for more details