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A B S T R A C T

Diffusion tensor imaging (DTI) is a promising approach for investigating the white matter microstructure of the spinal cord. However, it suffers from severe sus-
ceptibility, physiological, and instrumental artifacts present in the cord. Retrospective correction techniques are popular approaches to reduce these artifacts, because
they are widely applicable and do not increase scan time.
In this paper, we present a novel outlier rejection approach (reliability masking) which is designed to supplement existing correction approaches by excluding irre-
versibly corrupted and thus unreliable data points from the DTI index maps. Then, we investigate how chains of retrospective correction techniques including (i)
registration, (ii) registration and robust fitting, and (iii) registration, robust fitting, and reliability masking affect the statistical power of a previously reported finding
of lower fractional anisotropy values in the posterior column and lateral corticospinal tracts in cervical spondylotic myelopathy (CSM) patients.
While established post-processing steps had small effect on the statistical power of the clinical finding (slice-wise registration: �0.5%, robust fitting: þ0.6%), adding
reliability masking to the post-processing chain increased it by 4.7%. Interestingly, reliability masking and registration affected the t-score metric differently: while the
gain in statistical power due to reliability masking was mainly driven by decreased variability in both groups, registration slightly increased variability. In conclusion,
reliability masking is particularly attractive for neuroscience and clinical research studies, as it increases statistical power by reducing group variability and thus
provides a cost-efficient alternative to increasing the group size.
1. Introduction

Diffusion tensor imaging (DTI) is based on the acquisition of
diffusion-weighted MR images (Le Bihan and Breton, 1985; Merboldt
et al., 1985; Le Bihan et al., 1986) and provides information about the
tissue microstructure of the central nervous system. DTI characterizes
the magnitude, anisotropy, and orientation of the water diffusion in
each voxel using a diffusion tensor model (Basser et al., 1994a,b;
Pierpaoli et al., 1996). In contrast to the brain, the white matter (WM)
in the spinal cord has a geometry with tightly packed and mostly par-
allel aligned bundles of axons in rostral-caudal direction, where the DTI
signal is less influenced by the sparsely appearing crossing fibers. As a
consequence, DTI indices in the spinal cord can be more readily asso-
ciated with the spinal cord microstructure. For example, radial diffu-
sivity in the spinal cord has been shown to most closely correlate with
myelin content, while fractional anisotropy and axial diffusivity have
proved to be more indicative of axonal integrity and axonal
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degeneration (Budde et al., 2007, 2008; Zhang, 2010; Brennan et al.,
2013). Furthermore, spinal cord DTI has been successfully related to
various disorders with spinal cord involvement (Cohen-Adad et al.,
2011; Freund et al., 2012; Grabher et al., 2016; Wheeler-Kingshott
et al., 2013).

However, spinal cord DTI is technically challenging and considerably
lags behind brain DTI in terms of standardization. Challenges specific for
spinal cord DTI include susceptibility artifacts and physiological noise
(e.g. due to cardiac pulsation, respiratory motion, and cerebro-spinal
fluid (CSF) flow) (Barker, 2001; Stroman et al., 2014). Furthermore, its
unfavorable position in the body and the high axial resolution necessary
to robustly delineate gray and white matter can lead to severe instru-
mental artifacts including eddy currents (Jezzard et al., 1998; Moham-
madi et al., 2010), vibration artifacts (Gallichan et al., 2010; Mohammadi
et al., 2012a), gradient inhomogeneities (Bammer et al., 2003; Nagy
et al., 2007; Mohammadi et al., 2012b), and transmit RF field in-
homogeneities (Lutti et al., 2012).
ich, Switzerland.
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To reduce the aforementioned artifacts in spinal cord DTI, optimized
acquisition strategies including cardiac-gated (Wheeler-Kingshott et al.,
2002a,b; Cohen-Adad et al., 2011) and reduced field-of-view sequences
(Wheeler-Kingshott et al., 2002a,b; Finsterbusch, 2009, 2012; Rossi et al.,
2008) have been combined with retrospective correction methods. The
most commonly applied retrospective correction methods include (i)
registration-based methods to reduce misalignment (caused by e.g. sub-
jectmotion) and imagedistortions (causedbye.g. eddy currents) (Xuet al.,
2013; Mohammadi et al., 2013; Middleton et al., 2014), and (ii) robust
tensor fitting techniques (e.g. RESTORE (Chang et al., 2005), PATCH
(Zwiers, 2010), andACID robust tensorfitting (Mohammadi et al., 2013)),
to remove the effect of signal outliers (caused by e.g. subject motion or
cardiac pulsation) by discarding or down-weighting them in the tensorfit.

While several studies have demonstrated the potential of these
retrospective correction methods to improve data quality and yield more
reliable tensor estimates at single-subject level, their effect on group
differences is still understudied. Investigating the effect of retrospective
correction on between-group differences is particularly relevant for
various reasons: (i) data acquired at clinical or neuroscience sites might
have lower quality and higher level of artifact compared to those ac-
quired at basic research sites (e.g. due to the limited scan time), leading
to different performance of post-processing techniques; and (ii) several
established retrospective correction methods can improve data quality
most efficiently at tissue boundaries (e.g. ACID robust fitting is most
powerful at the interface between WM and CSF (Mohammadi et al.,
2013)), while relevant group differences are often located at the tract
centers (Grabher et al., 2016).

Although retrospective correction approaches have been shown to
significantly improve data quality in the brain, the generally higher noise
level in spinal cord DTI might lead to irreversibly corrupted voxels. Such
remaining artifacts can bias DTI index maps at single-subject level and
introduce an additional variability beside the inherent anatomical vari-
ability at group-level. This bias varies with different level of noise and
artifacts depending on acquisition-related parameters (sequence, number
of diffusion-weighted directions, etc.) and the investigated cohort, which
might be one source for the wide range of FA values reported within the
healthy spinal cord (mean FA: 0.41–0.85 (Benedetti et al., 2010; Song
et al., 2011); standard deviation: 0.02–0.22 (Song et al., 2011; Pessôa
et al., 2012)). Importantly, in studies involving multiple groups,
increased variability in DTI index maps can make a given effect size
between groups more difficult to detect.

In this paper, we introduce a novel outlier rejection technique (reli-
ability masking) which is designed to supplement existing correction ap-
proaches by identifying and excluding unreliable voxels based on the
associated model-fit error of the diffusion tensor. It performs an auto-
matic clean-up of artifactual voxels by comparing the model-fit error to a
threshold value. To investigate the effect of the new reliability masking
approach as compared to established post-processing methods, we tested
how the statistical power of a previously reported clinical finding is
affected by (i) registration-based motion and distortion correction, (ii) a
chain comprising registration and robust fitting, and (iii) a chain
comprising registration, robust fitting, and reliability masking. The
clinical finding reported earlier (Grabher et al., 2016) showed decreased
fractional anisotropy (FA) in the posterior column and lateral cortico-
spinal tracts above the lesion in patients with cervical spondylotic
myelopathy (CSM) when compared to healthy volunteers. Reliability
masking and other retrospective correction methods discussed and
introduced in the paper are implemented in MATLAB (The MathWorks
Inc., Natwick) and will be integrated into the freely available ACID
toolbox (www.diffusiontools.com).

2. Methods

2.1. Subjects

In this study, the DTI data of 21 healthy volunteers (8 female, age:
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41.0 ± 11.4 years) and 20 patients with cervical spondylotic myelopathy
(CSM) (6 female, age: 52.0 ± 14.5 years) from a previously published
study (Grabher et al., 2016) were reanalyzed. The original study was
approved by the Ethics Committee of Zurich (ref. number: EK-2012-
0343), and all participants provided written informed consent prior to
study enrollment. The stenosis (abnormal narrowing of the spinal cord)
was at C5/C6 for 13 patients, at C6/C7 for 3 patients, at C3/C4 for 2
patients, and at C4/C5 and C7/C8 for one-one subject, respectively. For
more information on patient demographics, see Grabher et al., 2016.

2.2. Data acquisition

Scanning was performed on a 3T Skyra MRI scanner (Siemens
Healthcare, Erlangen, Germany) equipped with a RF body transmit coil
and a standard 16-channel receive-only head and neck coil. To reduce
involuntary motion in the neck area, participants wore an MRI-
compatible cervical collar (Laerdal Medicals, Stavanger, Norway). First,
a 2D T2-weighted turbo spin-echo sequence was applied to obtain an
anatomical reference of the cervical spinal cord. Twenty sagittal slices
were acquired with the following parameters: slice thickness of 2.5 mm
(10% inter-slice gap), matrix size of 384 � 384, field of view (FOV) of
220 � 220 mm2, echo time (TE) of 87 ms, repetition time (TR) of
3670 ms, flip angle of 160�, and readout bandwidth of 260 Hz/pixel.

DTI was performed using a reduced-FOV monopolar single-shot spin-
echo EPI (ss-EPI) sequence. Thirty diffusion-weighted (DW) volumes
(high diffusion-weighting, b ¼ 500 s/mm2) were acquired along with 6
T2w (low diffusion-weighting, b¼ 0 s/mm2) volumes. Four repetitions of
each DTI dataset were acquired, resulting in 144 volumes for each sub-
ject. Each volume consisted of 10 slices centered at the lower edge of the
C2 vertebral body and acquired in the axial-oblique plane, perpendicular
to the spinal cord. Acquisition parameters were: slice thickness of 5 mm
(10% inter-slice gap), FOV of 133� 30 mm2, matrix size of 176 � 40, in-
plane resolution of 0.76� 0.76 mm2 and TE of 73 ms. Cardiac gating was
used, acquiring data in blocks of two slices per cardiac cycle (concate-
nation of 5) with an acquisition window of 350 ms and a cardiac trigger
delay of 200 ms. The TR (per volume) and the total acquisition time (TA)
depended on the participant's heart rate, with nominal values of 3.5 s for
TR and 08:20 min for TA, assuming a period of 700 ms for one cardiac
cycle. To avoid fold-over artifacts in the phase-encoding direction
resulting from the reduced FOV, phase-oversampling of 50% was used
and two spatial saturation bands were placed anterior and posterior to
the spinal cord (saturation technique is described in Heidemann et al.,
2012). Zero-filling interpolation was used to double the matrix size to
352 � 80 and the apparent in-plane resolution to 0.38 � 0.38 mm2.

2.3. Motion and eddy-current correction

First, all acquired DTI volumes were cropped to an in-plane matrix
size of 80 � 80 (from the original 352 � 80) to exclude non-spinal tissue
in the readout direction. To correct for spatial misalignments and
distortion caused by bulk motion and eddy-currents, the DTI data un-
derwent an iterative affine registration procedure using a modified
version of the spm_coreg function as implemented in the ACID toolbox.
The algorithm uses a multi-target registration approach which accounts
for signal and contrast differences between shells by creating separate
registration groups for each shell. Then, each volume is registered to its
corresponding target image (in our case all DW images to a DW template
and all T2w images to a T2w template).

Both volume- (3D) and slice-wise (2D) registration were applied for
comparison purposes. The applied methods with the corresponding de-
grees of freedom are summarized in Table 1. The abbreviations x, y, and z
denote the left-right (frequency encoding), anterior-posterior (phase
encoding), and head-foot (slice selection) directions, respectively.
Allowed degrees of freedom included translation in the x- and y-direction
and scaling in the y-direction, as visual assessment of the DTI dataset
revealed the most pronounced movements in these directions. Note that

http://www.diffusiontools.com/


Table 1
Details of the applied registration methods for motion and eddy-current correction.
Volume-wise registration (i) and slice-wise registration (ii) were applied on the DTI images,
allowing translation in the x- and y-direction and scaling in the y-direction. The non-
registered dataset (0) was used for comparison purposes. Note that the 30 degrees of
freedom for slice-wise registration include 3 parameters for each slice.

Registration method Translation Scaling Number of parameters

None (0) – – –

Volume-wise (i) x, y y 3
Slice-wise (ii) x, y y 30
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translation and scaling in y are mostly caused by the constant and the
linear (y-direction) components of the eddy-currents, respectively
(Mohammadi et al., 2010). We did not correct for translation in z,
because spinal cord anatomy changes only very slowly in the rostral-
caudal direction and the application of cervical collar is also expected
to reduce involuntary motion in this direction (Yiannakas et al., 2012).
Rotation, shearing, and scaling in other direction were not included
either, because these were not substantial and were less robust
to estimate.
2.4. Robust tensor fitting

2.4.1. ACID robust fitting
This robust fitting method implemented in the ACID toolbox (referred

to as ACID robust fitting) was based on the work of Mohammadi et al.
(2013). In short, the linear regression problem of the tensor fitting is
solved by minimizing ρðεiÞ ¼ ðωiεiÞ2, where εi represents the model-fit
error associated with acquisition i and ωi represents a weighting func-
tion designed to down-weight acquisitions with high model-fit error
(Mangin et al., 2002). Similar to Zwiers (2010), the weighting function
was factorized into three components: ωi ¼ ω1iω2iω3i. The first two fac-

tors have the decaying form of ω1i ¼ exp
�
�
�
A1εi
C1

�2�
and

ω2i ¼ exp
�
�
�
A2Ei
C2

�2�
, where Ei is the model-fit error averaged across

the slice and A1 and A2 are confidence interval parameters. In this study,
we used A1 ¼ 0:1, while A2 was set to A1=3. C1 and C2 represent the
expected spread of non-outlier residuals and are estimated as C1 ¼
1:4826⋅medianðjεijÞ and C2 ¼ 1:4826⋅medianðjEijÞ (Rousseeuw and
Croux, 1993). Importantly, C1 was spatially smoothed in-plane to
improve its estimation and the robustness of tensor fitting (Zwiers,
2010). The third factor ω3i accounts for the distortion of the model-fit
error distribution from taking the logarithm of the DW signal intensity.

2.4.2. RESTORE
The RESTORE algorithm used here was implemented in the CAMINO

toolbox (Cook et al., 2006). Details about the RESTORE algorithm can be
found in Chang et al., 2005.

2.4.3. Weighted ordinary least squares approach
For comparison purposes, tensor fitting was performed using the

weighted ordinary least squares (wOLS) approach as well. The wOLS
approach used here was implemented in the ACID toolbox and represents
robust tensor fitting with parameters A1 and A2 set to 0.

For each of the three tensor fitting approaches, following voxel-wise
DTI indices were calculated: fractional anisotropy (FA), mean diffusivity
(MD), axial diffusivity (AD), radial diffusivity (RD), and root mean square
of model-fit error (ε).
2.5. Reliability masking

The root mean square model-fit error (in the following referred to
simply as model-fit error and denoted by ε) represents the remaining
difference between the data and the fitted model and thus indicates to
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what degree the diffusion tensor model explains the diffusion-weighted
data in a given voxel. An increase in model-fit error can be caused by
(i) low signal-to-noise ratio (SNR) of the dataset, (ii) high amount of
corrupted DTI volumes (outliers), and (iii) an inappropriate tensor model
to explain the underlying complexity of diffusion (i.e. the single-tensor
model does not describe the DW signal adequately).

Robust fitting can substantially reduce the bias introduced by the
signal outliers if the amount of outliers is sufficiently low (i.e. the median
of the model-fit error is not substantially increased by the outliers).
However, it fails to remove the bias if signal outliers appear more
frequently (and thereby substantially increase the median model-fit
error), or if the SNR of the dataset is low. In our method, we used the
model-fit error map to identify voxels irreversibly biased by a high level
of outliers or low SNR. A voxel is considered unreliable if the corre-
spondingmodel-fit error (ε) exceeds a threshold εthr determined at group-
level. By thresholding the model-fit error map, a binary reliability mask
MREL is created:

MRELðrÞ ¼
�
1 if εðrÞ< εthr
0 if εðrÞ � εthr

�
: (1)

In a procedure called reliability masking, MREL is applied on the DTI
index maps to exclude non-reliable voxels from the analysis.

2.6. Spatial normalization

All DTI index maps (including model-fit error maps) were spatially
normalized to a self-constructed template that shares the same physical
coordinates with the MNI-Poly-AMU template (Fonov et al., 2014). The
template was created by (i) registering the individual DTI maps in the
control group to the MNI-Poly-AMU template (res.:
0.5 � 0.5� 0.5 mm3) using the spm_coreg algorithm and MD and T2w as
source and target image, respectively, (ii) averaging all maps, and (iii)
reslicing the resulting image to a resolution of 0.2� 0.2� 1.0 mm3). To
use complementary contrast information, the normalization to the so
created template was driven by the DTI index maps, rather than by the
DW volumes. Non-linear registration of the DTI index maps was per-
formed using the FA voxel-based statistics (FA-VBS) toolbox (Moham-
madi et al., 2012c) with refined spatial normalization parameters and
taking the anatomy of the spinal cord into account (e.g. the degree of
freedom of the spatial transformation along the z-direction was reduced
due to the symmetry of the cord in this direction). After normalization,
all images were resliced to the native resolution
(0.38 � 0.38 � 5.5 mm3). Note that during the normalization, the im-
ages were cropped along the z-direction, slightly reducing the FOV in
this direction. Consequently, after resampling to the native resolution,
the number of slices was reduced from 10 to 9, resulting in one missing
slice (slice 10).

2.7. ROI generation

Four white matter quadrant masks were created by merging multiple
spinal cord pathways defined in the Spinal Cord Toolbox in the form of
probability atlases (Levy et al., 2015). The resultant merged probabilistic
atlases were thresholded at 0.1 to obtain binary quadrant masks. Care
was taken to include only those pathways that did not pose significant
risk of partial volume effects with the gray matter (GM). In doing so, only
24 of the total 30 pathways were involved in the quadrant generation.
The location and composition of the quadrants are illustrated in Fig. 1.
Furthermore, a white matter (WM)mask was also created by merging the
four quadrant masks. Quadrant masks were used for the qualitative
validation of reliability masking (Fig. 4), while WM mask was used for
the rest of the analyses. To account for potential inconsistency between
the quadrants and the template and remaining misregistration between
the normalized DTI maps and the template, additional subject-specific
spinal cord masks were applied on each DTI map. These subject-



Fig. 1. Binary masks of white matter quadrants are illustrated in red (Quadrant 1), blue (Quadrant 2), yellow (Quadrant 3), and green (Quadrant 4) in each slice. The masks are overlaid on
the FA template resliced to the native resolution. The schematic locations of the white matter quadrants are also shown at the bottom right. Each quadrant is made up of multiple white
matter pathways defined in the Spinal Cord Toolbox and listed on the right. Note that slice 10 is missing, because the images were slightly cropped in the z-direction during normalization,
reducing the number of slices from 10 to 9.
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specific SC masks were drawn manually on the normalized average T2w
(b ¼ 0 s/mm2) image.
2.8. Determining the optimal threshold for reliability masking

To determine the optimal threshold for reliability masking we mini-
mized the standard error of the mean (sem) of the FA sampling distri-
bution in each group. Standard error of the mean measures the precision
for an estimated population mean (lower value means higher precision)
and is calculated by the formula:

semðFAÞ ¼ stdðFAÞffiffiffiffi
N

p ; (2)

where sem and std denote the standard error of the mean and the stan-
dard deviation, respectively, andN denotes the number of voxels (sample
size) in the sampling distribution. This approach was based on the idea to
remove as many voxels as possible from the heavy lower tail of the FA
distribution (as artifacts manifest mostly as lower FA values) but at the
same time to remove as few voxels as possible to preserve statisti-
cal power.
2.9. Statistical analysis

To quantify the effect of reliability masking on the individual DTI
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maps, both histogram (based on the sampling distribution) and ROI
analysis were performed in the WM.

2.9.1. Histogram analysis in WM
All voxels within the intersection of the WM mask and the subject-

specific SC masks were pooled across all subjects within a given group
(control or CSM group). In this way, two large sampling distributions
were created for each DTI scalar map.

2.9.2. ROI analysis in WM
DTI scalar values were averaged within the intersection of the WM

mask and the subject-specific spinal cord mask to obtain a single value for
each subject.

2.9.3. ROI analysis in SPM cluster
To quantify the effect of post-processing on the investigated FA

clinical finding (Grabher et al., 2016), a voxel-wise t-map was created
using two-sample t-test with unequal variances:

t ¼ meanðFActrlÞ �meanðFACSMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
stdðFActrlÞ2

Nctrl
þ stdðFACSM Þ2

NCSM

q

≡
''difference between means''

''standard error of difference between means''

(3)



Fig. 2. The figure shows a binary mask (yellow) indicating the locations of significant FA differences between CSM patients and controls, overlaid on the FA template. We refer to this
binary mask as significant cluster throughout the study and use it to evaluate the effect of artifact correction methods on the investigated clinical finding.
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where operators mean and std are performed across subjects within a
given voxel. To correct for multiple comparisons, the t-map was thresh-
olded at p ¼ 0.01 (uncorrected) followed by an SPM cluster-level extent
threshold of 0.05. Significant clusters were merged into a binary mask
representing the areas of FA group differences (Fig. 2). Then, the
resulting t-map was averaged within the significant cluster binary mask
to obtain a single t-score t quantifying the statistical power of the clinical
finding. Furthermore, the numerator (“difference between means”) and
denominator (“standard error of difference between means”) (sed) of Eq.
(3) were also averaged within the significant cluster to obtain single
values representing the average voxel-wise difference between means
and the average voxel-wise standard error of difference between means,
respectively. The procedure was then repeated for each processing chain
including (0) no registration þ wOLS fitting, (i) registration þ wOLS
fitting, (ii) registration þ robust fitting, and (iii) registration þ robust
fitting þ reliability masking. Note that the voxel removal in reliability
masking is taken into account in Eq. (3) in the parameters Nctrl and NCSM .

3. Results

3.1. Determining the optimal threshold for reliability masking (histogram
analysis in WM)

Both factors composing the standard error of the mean (sem) of the
Fig. 3. The composite figure shows how reliability masking with varying thresholds εthr affects
sample size, and standard error of themean (sem) in the control (A) andCSMgroup (B). Values are g
the median model-fit error (ε) in the corresponding group. The threshold resulting in the lowest s
group, indicated by red dashed line).
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FA sampling distribution in WM (standard deviation and sample size
measured via number of voxels N- see also Eq. (2)) decreased continu-
ously with decreasing threshold for reliability masking (Fig. 3). However,
their different rate of decrease resulted in a minimum of the sem (red
curve in Fig. 3) for both groups, at 1:90⋅εctrl for the control and at εthr ¼
2:26⋅εcsm for the CSM group. These threshold values were considered
optimal for the corresponding groups and were used in all subse-
quent analyses.
3.2. Qualitative assessment of reliability masking in WM

Reliability masking was qualitatively validated for its ability to
remove voxels contaminated with artifacts with high spatial specificity.
Fig. 4 illustrates the performance of reliability masking in different sce-
narios: in an artifact-free slice (Fig. 4A), in slices affected by isolated local
artifacts (Fig. 4B and C), and in a slice with a global artifact (Fig. 4D). If
the frequency of outliers among the DW volumes is too high, or in case of
low SNR of the dataset, voxels in FA maps will be irreversibly biased and
should be excluded from the analysis. Note that there is a great corre-
spondence between artefactual voxels (either clustered in one part of the
cord or appearing in the whole slice) and high model-fit error in all of
these examples (Fig. 4B–D). Consequently, reliability masking can
robustly and automatically remove artefactual voxels with great spatial
specificity.
various properties of the FA sampling distribution in the WM including standard deviation,
iven relative to the datawithout reliabilitymasking and threshold is expressed inmultiples of
em was considered optimal (εthr ¼ 1:90⋅εctrl , for the control and εthr ¼ 2:26⋅εcsm for the CSM



Fig. 4. Four examples of how artifacts in spinal cord DTI manifest themselves in the FA map, the map of root-mean-square model-fit error (rmsðεÞ) (shortly referred to as model-fit error
map throughout the paper), and the DTI signal itself: (A) features an artifact-free slice, (B) and (C) show slices with a regional artifact affecting the ventral and left part of the spinal cord,
respectively, and (D) shows a more global artifact affecting the whole slice. (E) depicts a schematic spinal cord, illustrating the location of the white matter quadrants (also see Fig. 1).
Subplots (A)–(D) are divided into two parts. At the top, FA and model-fit error (ε) maps of the corresponding slice are displayed. At the bottom, the quadrant-averaged DTI signal intensity
across all DTI volumes (b ¼ 0 s/mm2 and b ¼ 500 s/mm2 volumes) in each quadrant is shown (blue line) along with the quadrant-averaged model-fit error (difference between the
observation and the model) (red line). Stars above the plots indicate whether the given quadrant is moderately (*) or strongly (**) affected by artifacts. In the model-fit error maps, the red
contour lines enclose the areas that are not removed by reliability masking when using the optimal threshold. Note that artefactual voxels in the FA maps are associated with high model-fit
error and are effectively removed: in (B) and (C) half of the slice, in (D) the whole slice is removed. Also note that the T2-weighted (b ¼ 0 s/mm2) and diffusion-weighted (b ¼ 500 s/mm2)
volumes are clearly distinguishable in the signal plot with the b ¼ 0 s/mm2 volumes (four blocks of six consecutive volumes) having higher intensities than the b ¼ 500 s/mm2 volumes (F).
In an artifact-free slice (A), the SNR and the contrast between b ¼ 0 s/mm2 and b ¼ 500 s/mm2 images are high.
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Fig. 5. The two upper subfigures show the distribution of the model-fit error in the WM in the control (A) and CSM group (B). The threshold value for reliability masking is indicated by a
red dashed line, above which all voxels are excluded during reliability masking. Model-fit error was expressed in multiples of the median value across these voxels (ε). The rest of the
subfigures (C)–(J) show how reliability masking changes the sampling distribution of DTI indices in both groups. After reliability masking, the distribution of all DTI indices gets narrower
and slightly shifted, reducing the standard deviation by 4–10% for all indices and changing the mean by±0–5% (for FA: positive; for MD, AD, RD: negative).

G. David et al. NeuroImage 158 (2017) 296–307
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Table 2
Summary of the changes in the sampling distribution of the DTI indices due to reliability masking. The sampling distributions were created by pooling all WM voxels across all subjects in the
control and CSM group, respectively.

FA MD AD RD

ctrl csm ctrl csm ctrl csm ctrl csm

Mean þ1.54% þ1.90% �1.68% �2.53% �0.42% �1.10% �3.76% �4.59%
std �8.53% �7.20% �6.69% �8.05% �4.11% �5.28% �8.95% �9.60%
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3.3. Quantitative assessment of reliability masking (histogram analysis in
WM)

Reliability masking altered the sampling distribution of the DTI
indices within the WM, as illustrated for all indices including model-fit
error in Fig. 5. The distribution of model-fit error was not Gaussian
and was positively skewed toward higher values in both groups (Fig. 5A
and B). Reliability masking introduces a cut-off at the threshold value in
this distribution (red dashed line in Fig. 5A and B). Notably, reliability
masking reduced the negative skewness of the FA distribution and the
positive skewness of the MD and RD distributions in both groups, making
these distributions more symmetric. The shape of the AD distribution did
not change substantially. In accordance with these observations, the
standard deviation of all distributions was reduced in both groups, where
the highest decrease was found in RD (�9–10%) and the smallest in AD
(-4-5%) (Table 2). The reduction in std was slightly higher for the CSM
group in all metrics (except for FA). The mean of the distribution was
Fig. 6. The figure shows the group mean and standard deviation of WM DTI indices before (dar
ACID robust fitting after slice-wise registration. The group mean of the DTI indices changed only
group standard deviation decreased substantially for FA (control vs. CSM group: �15.62% vs.
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increased for FA and decreased for MD, AD, and MD, although these
changes were considerably smaller compared to the standard deviation.
Again, the highest and lowest change was found in RD (-3-5%) and AD
(�0–1%), respectively, and the changes were higher in the CSM group for
all indices.

3.4. Effect of reliability masking on group-level results (ROI analysis in
WM)

As a consequence of the altered distribution of DTI indices, group-
level results were also affected by reliability masking (Fig. 6). While
the group mean of the WM DTI indices changed only minimally by
±0–2% (for FA: positive; for MD, RD: negative), its group standard de-
viation was reduced substantially by 4–18%, with the exception of AD.
The highest and lowest changes in mean and std were found in RD and
AD, respectively (Table 3).
k gray bars) and after (light gray bars) reliability masking. DTI maps were generated using
minimally with a slight increase in FA and small decrease in MD and RD. As opposed, the
�8.52%), MD (�13.61% vs. �4.59%), and RD (�18.25% vs. �7.58%).



Table 3
Summary of the changes in the group mean and standard deviation of DTI indices due to reliability masking. Group mean and standard deviation were calculated on the DTI indices averaged
within the WM (ROI analysis). Note that in contrast to Table 2., data were not pooled across the histogram of all subjects but across the ROI within individual subjects. As a consequence, the
sample size corresponds to the number of subjects instead of the number of voxels within the histogram.

FA MD AD RD

ctrl csm ctrl csm ctrl csm ctrl csm

Mean þ0.45% þ1.09% �0.81% �0.73% �0.22% þ0.02% �1.98% �1.83%
std �15.62% �8.52% �13.61% �4.59% �4.72% þ2.56% �18.25% �7.58%
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3.5. Comparison of retrospective correction techniques (ROI analysis in
SPM cluster)

We tested how different chains of retrospective correction techniques
affected the clinical spinal cord DTI finding compared to the unprocessed
case (Fig. 7A). Both volume- (VW) and slice-wise (SW) registration (in
combination with wOLS fitting) increased the difference between group
means (VW:þ0.5%, SW:þ2.5%) and the standard error of the difference
between group means (sed) (VW:þ2.7%, SW:þ2.4%), overall minimally
affecting the t-score (VW: �1.2%, SW: �0.5%). A chain comprising SW
registration and either of two different robust fitting methods (RESTORE
or ACID robust fitting) produced similar results as the previous chain in
terms of difference between group means (RESTORE: þ0.4%, ACID r.f.:
þ2.9%), sed (RESTORE: þ2.2%, ACID r.f.: þ2.5%), and t-score
(RESTORE: �1.35%, ACID r.f.: þ0.1%). A chain comprising SW regis-
tration, ACID robust fitting, and reliability masking yielded higher dif-
ference between group means (þ3.7%) and slightly lower sed (�0.6%),
increasing the t-score considerably (þ4.9%).

To disentangle the individual contribution of each chain element to
the above changes, we also tested the effect of each additional step
compared to the previous one. Robust fitting affected the t-score
(RESTORE: �0.9%, ACID r.f.: þ0.6%) and the sed (RESTORE: �0.2%,
ACID r.f.: þ0.1%) only minimally, while the difference between group
means was decreased for RESTORE (RESTORE: �2.1%, ACID r.f.:
þ0.4%). Application of reliability masking on the SW registration and
ACID robust fitting chain had little effect on the difference between
group means (þ0.8%), but considerably reduced sed (�3.0%) and
increased t-score (4.7%).

4. Discussion

This paper investigates how established post-processing steps for
Fig. 7. Comparison of retrospective artifact correction methods in terms of their effect on a clini
(black), difference between group means (light gray), and standard error of the group differen
chains of artifact correction techniques are tested: 1. registration using volume- (VW) or slice-wis
robust fitting, and 3. registration þ ACID robust fitting þ reliability masking using the optimal
changes compared to the unprocessed dataset. (B) depicts the same processing chains as (A) b
increased the difference between group means and sed, but overall minimally affected the t-sco
between groups was decreased by RESTORE. However, their influence on the t-score was rath
ference between group means almost unaffected.
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artifact correction (i.e. registration and robust fitting) and a novel
outlier rejection technique (reliability masking) introduced in this paper
can improve the statistical power of a previously described clinical
finding of reduced FA values between healthy subjects and patients
with cervical spondylotic myelopathy. We found that the t-score of this
clinical finding was minimally affected by applying established post-
processing steps, while supplementing the post-processing pipeline by
reliability masking improved the t-score considerably. When separately
viewing the two factors that underlie the t-score (i.e. differences be-
tween FA group means, and standard error of the difference between
group means, sed), we found that reliability masking substantially
decreased the sed but had only little effect on the difference in mean FA,
suggesting that the gain in t-value is driven by reduced variability in
both groups.

4.1. Reliability masking

Reliability masking is designed to supplement established retro-
spective artifact correction techniques such as registration and robust
tensor fitting by performing a clean-up of irreversibly biased voxels in
the DTI index maps (see Fig. 4). Established robust fitting techniques
(e.g. RESTORE (Chang et al., 2005), PATCH (Zwiers, 2010), and ACID
robust fitting (Mohammadi et al., 2013)) exclude (down-weight) un-
reliable data points from the model-fit in an iterative manner (i.e. not
all data points are used for model fitting). A common feature of these
methods is that they operate at the single-subject level (i.e. in each
subject independently). In many situations (high level of outliers, low
SNR, etc.), however, voxels are irreversibly corrupted and robust tensor
fitting methods fail to fully remove the bias introduced by these arti-
facts. Reliability masking aims to identify the irreversibly corrupted
voxels in the DTI index maps by the corresponding root-mean-square
model-fit error (shortly referred to as model-fit error). In contrast to
cal FA group-difference between controls and CSM patients. Plotted are two-sample t-score
ce (sed) (gray) averaged within the cluster of significant effect (see Fig. 2) (A). Different
e (SW) registration þ wOLS fitting, 2. registration þ robust fitting using RESTORE or ACID
thresholds (control: εthr ¼ 1:90⋅εctrl , CSM: ε thr ¼ 2:26⋅εcsm). The values are given as relative
ut the values are given as relative changes compared to the previous chain. SW and VW
re. Both RESTORE and ACID robust fitting affected the sed minimally, while the difference
er small. Reliability masking increased the t-score and decreased the sed, leaving the dif-
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established robust fitting techniques, reliability masking is applied after
tensor fitting and removes unreliable data points. In each subject,
reliability masking compares the map of model-fit error with a
threshold value determined at group-level. Voxels with model-fit error
exceeding this threshold are considered unreliable and are discarded
from the subsequent analysis. Determining the threshold at group-level
ensures that the outlier detection is not affected by globally high model-
fit errors in single subjects. It is important to stress that reliability
masking has to be treated as a supplementary outlier rejection tech-
nique, not a competitor to robust fitting.

When applied on the FAmaps, reliability masking preferably removes
voxels from the heavy lower-tail of the distribution, thereby decreasing
the standard deviation (control: �8.5%, CSM: �7.2%) and slightly
increasing the mean (control: þ1.5%, CSM: þ1.9%) of the FA sampling
distribution the WM voxels. This is consistent with the hypothesis that
outliers mostly manifest themselves as artificially low FA values (Chang
et al., 2012). This notion has also been supported by visual inspection of
the FA and the corresponding model-fit error maps: in most cases,
excluded areas in FA featured visually recognizable artifacts (see Fig. 4B
and D for artificially low FA values). When supplementing the processing
chain of SW registration and ACID robust fitting by reliability masking,
the statistical power of the investigated clinical finding (as measured by
the mean two-sample t-score within the cluster of significant region) was
increased by 4.7% (Fig. 7B).

The only input reliability masking requires is the threshold for
model-fit error (εthr). This parameter is critical as it determines the
threshold above which a voxel is considered artefactual. The choice of
εthr also affects the number of excluded voxels (Fig. 3), the sampling
distribution of DTI indices (Fig. 5), and group-level results (Figs. 6 and
7). To determine the optimal threshold, we minimized the standard
error of the mean of the sampling distribution of the metrics of interest
(here FA in the WM). The rationale behind minimizing the FA stan-
dard error of the mean across a homogenous pool of voxels (such as
spinal cord WM) for determining the optimal threshold is that this
approach favors reduction in the FA standard deviation (counteracting
the artificially high variability in the presents of artifacts) while at the
same time penalizing removal of voxels (taking into account the in-
fluence of decreased sample size on the statistical power). Although
both the FA standard deviation and the number of voxels are a
continuously decreasing function of the threshold (Fig. 3), the sem of
FA had a distinct peak in both groups representing the optimal
threshold. The distribution of DTI indices (e.g. FA) and model-fit error
across the region of interest can vary with acquisition protocols and
subject groups. For example, in a clinically important scenario,
severely impaired tissue in pathology has altered diffusion profile,
where the single tensor model may not hold anymore, potentially
leading to increased model-fit error. Thus, in pathological subjects the
assumptions of reliability masking (high model-fit error is due to
outliers or low SNR) might not hold any more, leading to exclusion of
the voxels with pathology, which reduces the effect size of the group
difference. In our patient cohort, this phenomenon is probably not that
pronounced, as our imaging FOV was rostral to the injury site (in the
‘normal appearing white matter’) in 18/20 patients. Nevertheless, we
observed that the distribution of model-fit error was skewed toward
higher values in the CSM patients compared to controls. Therefore, we
recommend to explore the optimal threshold in each group and study
separately.

Since the investigated clinical finding involved an FA group differ-
ence, in this paper we primarily focused on the effect of reliability
masking on FA. However, we also investigated how reliability masking
affects the sampling distributions and the group-level results of other DTI
scalar values including MD, AD, and RD in both groups (Figs. 5 and 6 and
Tables 2 and 3). Of all the metrics (including FA), the distribution of RD
showed the greatest changes due to reliability masking, suggesting that
RD is most prone to outliers. As opposed, AD barely showed any changes,
suggesting that AD is most robust to outliers.
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4.2. Robust fitting

We found that robust tensor fitting implemented in ACID only mini-
mally affected the statistical power (þ0.6%), while the most commonly
used RESTORE approach reduced it by 0.9% compared to wOLS fitting.
This difference can be caused by differences in the algorithm, but most
probably is due to different parameter settings used in both algorithms.
An important parameter for robust fitting is the confidence interval
parameter (A1 in ACID robust fitting, see methods for details) that affects
the range in model-fit error within which volumes are not considered
outliers. A higher A1 excludes more outliers, but can lead to a less stable
tensor fit and noise enhancement as the tensor is fit on a smaller set of
data. Finding an optimal A1 is thus a tradeoff between removing as many
outliers as possible to reduce the bias and keeping as many data points as
possible to retain SNR. When using A1 ¼ 0:3 (more aggressive outlier
rejection) instead of the default A1 ¼ 0:1 used in this study, we obtained
similar t-score changes to RESTORE (�1.1%). In summary, the influence
of robust fitting on the t-score depended on the algorithm and parameters
used, but the overall effect was rather limited. One reason could be that
while our clinical finding was located within WM tracts (Fig. 2), ACID
robust fitting has been shown to improve data quality mostly at tissue
boundaries (Mohammadi et al., 2013).

4.3. Motion and eddy-current correction

Registration-based post-processing techniques have been previously
demonstrated to reduce motion and eddy-current related distortion ar-
tifacts in the DTI data. In our data, we found that registration minimizes
the most prominent motion artifact, the displacement of the cord along
the phase-encoding direction (data not shown). We also found that slice-
wise registration is superior to volume-wise registration in correcting
single slices with large displacements. However, both slice- and volume-
wise registrations had minimal effect on the statistical power of the
investigated between-group difference (�1.2% and �0.5%, respec-
tively). When combined with robust fitting and reliability masking, we
applied slice-wise registration due to its superior performance over
volume-wise registration. Note that slice-wise registration precludes
correction for through-slice motion. However, we do not consider it as a
disadvantage, since spinal cord anatomy changes only very slowly in the
rostral-caudal direction and the application of cervical collar is also ex-
pected to reduce involuntary motion in this direction (Yiannakas
et al., 2012).

4.4. Methodological considerations

4.4.1. Effect of post-processing on group differences
Similar to neuroscience and clinical studies, we used two-sample t-

test to investigate the effect of post-processing methods on the group
statistics. As shown in Eq. (3), the resulting t-score is affected by both the
difference between group means (numerator of the formula) and the
standard error of the difference between means (denominator of the
formula) which represents the precision for the estimated difference
between means. Since both the true population difference and the true
(anatomical) variabilities are unknown, interpretation of t-score is not
straightforward. However, while outliers in the dataset do not necessarily
affect the group difference (if both groups are equally affected), they do
increase the standard error of the difference between means. Therefore,
we considered reduction in standard error beneficial as a sign of suc-
cessful outlier removal and we refrained from interpreting changes in the
group difference. Our analysis showed that the 4.7% gain in the t-score
due to reliability masking was mainly driven by a decrease in standard
error (�3.0%) and to a small degree by an increase in group difference
(þ0.8%). This is not surprising in light of the fact the reliability masking
decreased the group standard deviation to a much higher degree than it
increased group mean. Investigating the driving force behind changes in
t-score also revealed that despite registration methods had minimal
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influence on the t-score, they increased both group difference (þ0.5% for
VW, þ2.5% for SW) and standard error (þ2.7% for VW, þ2.4% for SW),
canceling each other's effect. Furthermore, the t-score decrease of 3% due
to RESTORE is attributed to a decrease in the group difference of the
same amount.

4.4.2. Artifacts in spinal cord DTI
Data exploration including visual inspection of DTI volumes along

with DTI index and model-fit error maps is essential to recognize arti-
facts. Robust fitting and reliability masking works on the same principle
but automatizes the clean-up procedure. An advantage of reliability
masking is its ability to remove artifactual voxels with great spatial
specificity, without the need for excluding whole slices. While several
types of artifacts can affect the whole slice (bulk motion, eddy-current
related distortions, etc.), other artifacts (cardiac pulsation, respiratory
motion, CSF flow, incomplete saturation in reduced FOV imaging, etc.)
are localized in a well-defined part of the spinal cord (see Fig. 4B–C).
Although we used a cardiac-gated DW sequence, the gating may not be
equally effective in all subjects. Imperfect saturation of the outer volume
in the reduced-FOV sequence can also lead to local ghosts in the spinal
cord, which can be corrected by reliability masking. Another important
artifact in spinal cord DTI that can be corrected by reliability masking is
partial volume effects (e.g. at the CSF white matter boundary). However,
there are more specific and efficient methods for partial volume correc-
tion (Levy et al., 2015) and for free-water elimination (Pasternak et al.,
2009). In order to reduce the influence of partial volume effects between
CSF and white matter and to disregard the obvious quality improvement
associated with the exclusion of those voxels at the boundary, we
excluded boundary voxels by applying subject-specific spinal cord masks
on the normalized DTI maps, which were drawn in a rather conserva-
tive way.

4.4.3. Beyond-tensor models
In principle, reliability masking is compatible with any model-based

diffusion-weighted imaging method (DTI or higher-order models) that
provides an appropriate model-fit error. Depending on the model used,
reliability masking inherits all the limitations associatedwith it. Since the
model-fit error is used to identify outlier voxels, any situation where the
model fails to describe the underlying diffusion signal might bias the
outlier detection. For example, model-fit error in DTI is elevated in voxels
where the single tensor model is not valid due to complex fiber config-
uration (crossing fibers, fanning fibers, etc.), possibly resulting in label-
ing these voxels as outliers. Although such complex fiber structures do
exist in the spinal cord, their effect on the DTI signal is rather negligible
compared to the brain.

4.4.4. Applying reliability masking in native or group space
Reliability masking can be performed either before or after normali-

zation of the model-fit error maps. In the before-normalization approach,
binary masks created by reliability masking are interpolated during
normalization, artificially reducing values in the voxels adjacent to the
excluded ones. In the after-normalization approach, model-fit error maps
are interpolated during normalization, i.e. model-fit error decreases in
voxels with originally high values and increases in voxels adjacent to
them, which might slightly change the boundary of the binary reliability
mask. We recommend using the ‘after-normalization’ approach, since
thresholding the model-fit error maps highly mitigates the effect of
interpolation.

4.4.5. Reliability masking in group analysis
Reliability masking removes voxels in the calculated DTI index maps,

reducing the number of available voxels for the voxel- or ROI-based
analysis. At the optimal threshold, 9.8% and 8.3% of all voxels are
removed in the control and CSM group, respectively. In a voxel-wise
analysis, reliability masking thus leads to varying degrees of freedom
in each voxel. This has to be taken into consideration when designing the
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experiment and interpreting the results. For example, it is not straight-
forward to use functional neuroimaging software (e.g. SPM in a VBM-
style analysis) to visualize group-differences after reliability masking,
since statistical methods require the same sample size across voxels (e.g.
for performing multiple comparison).

5. Conclusion

We have developed a novel outlier rejecting technique (reliability
masking) that supplements established artifact correction methods
(registration, robust fitting) and tested its impact on the statistical power
of a previously reported clinical finding in spinal cord DTI. We found that
reliability masking increased the statistical power of this clinical finding
more efficiently than established correctionmethods. Reliability masking
is particularly attractive for increasing the statistical power of neurosci-
ence and clinical research studies, as it efficiently reduces group vari-
ability of existing data and thus provides a cost-efficient alternative to
increasing the group size.
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