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Major application areas of the process systems engineering, such as hybrid control, scheduling and syn-
thesis can be formulated as mixed integer linear programming (MILP) problems and are naturally sus-
ceptible to uncertainty. Multi-parametric programming theory forms an active field of research and has
proven to provide invaluable tools for decision making under uncertainty. While uncertainty in the right-
hand side (RHS) and in the objective function’s coefficients (OFC) have been thoroughly studied in the
literature, the case of left-hand side (LHS) uncertainty has attracted significantly less attention mainly
because of the computational implications that arise in such a problem. In the present work, we pro-
pose a novel algorithm for the analytical solution of multi-parametric MILP (mp-MILP) problems under
global uncertainty, i.e. RHS, OFC and LHS. The exact explicit solutions and the corresponding regions of
the parametric space are computed while a number of case studies illustrates the merits of the proposed

Grobner bases

Process scheduling algorithm.
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1. Introduction

Mathematical modelling is a non trivial task that requires deep
and thorough understanding of the principles and phenomena in-
volved in the problem under study. Inevitably, mathematical mod-
elling relies on a number of assumptions and simplifications due
to lack of exact knowledge about the system under examination,
thus rendering any solution liable to uncertainty. The classification
of uncertainty in optimisation problems is a challenging task but
broadly one could classify the uncertainty as model intrinsic and
extrinsic. Model intrinsic uncertainty refers to a number of param-
eters that the modeller does not have explicit knowledge of, e.g.
kinetic constants, stoichiometric coefficients, equipment efficiency
etc. For this kind of uncertainty, the value used in the models is
experimentally calculated or provided by the manufacturer of the
equipment; even in that case, these values cannot be known ex-
actly and a number of assumptions is usually employed. Note that
this kind of uncertainty, appears most of the times on the left-
hand side (LHS) of the constraints. On the other hand, model ex-
trinsic uncertainty refers to data that affect the model due to fac-
tors which cannot be controlled at a level of model abstraction. Ex-
amples of model extrinsic uncertainty can be regarded as, the cost
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of raw material, emissions restriction policies, product demand for
subsequent planning periods etc. This kind of uncertainty is more
likely to appear on the right-hand side (RHS) of the constraints and
in the objective function’s coefficients (OFC). Consideration of un-
certainty in process systems engineering is of great importance as
it can endanger the optimality or even the feasibility of a solu-
tion that was computed in a deterministic way (Apap and Gross-
mann, 2017; Sahinidis, 2004). In an effort to avoid such occasions,
a number of mathematical formulations and solution techniques
have been proposed in the literature with the goal to create mod-
els which are robust towards uncertainty. Stochastic programming
(Apap and Grossmann, 2017; Bertsimas and Sim, 2004; Birge and
Louveaux, 2011) relies on the availability of historical data which
can provide statistical information about the behaviour of uncer-
tain parameters. In stochastic programming, the unknown parame-
ters are assumed to follow a discrete probability distribution and
the decision variables are classified into two groups: “here and
now” and “wait and see”. Depending on the instances that the un-
certainty is expected to be revealed, the mathematical program is
referred to as “two-stage” or “multi-stage” with the objective to
minimise the cost of the initial actions. Robust optimisation (RO),
assumes that all constraints of the optimisation should never be
violated and aims to provide a solution that is feasible regardless
of the extent of the actual uncertainty. Because of that, RO is of-
ten conceived as conservative or worst-case oriented (Ben-Tal and
Nemirovski, 2002).

0098-1354/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
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Table 1
Summary of developments in multi-parametric programming theory.

Multi-parametric
Linear programming
(mp-LP)

Multi-parametric (mixed
integer)

Quadratic programming
(mp-(MI)QP)

Multi-parametric mixed
integer

Linear programming
(mp-MILP)

Multi-parametric (mixed
integer)

Nonlinear programming
(mp-(MI)NLP)

Multi-parametric
Global optimisation
(mp-GO)

Dua and Pistikopoulos (1998, 1999)

Charitopoulos et al. (2017b)
Fiacco (1990), Dua et al. (2004)

Saaty and Gass (1954), Yuf and Zeleny (1976), Schechter (1987)
Gal (1995), Borrelli et al. (2003), Filippi (2004), Hladik (2010), Charitopoulos et al. (2017a)

Dua et al. (2002), Bemporad et al. (2002), TeNdel et al. (2003)

Spjetvold et al. (2006), Gupta et al. (2011), Oberdieck and Pistikopoulos (2015)

Geoffrion and Nauss (1977), Jenkins (1990), Acevedo and Pistikopoulos (1999)

Dua and Pistikopoulos (2000), Faisca et al. (2009)

Acevedo and Salgueiro (2003), Pistikopoulos et al. (2007), Fotiou et al. (2006), Charitopoulos and Dua (2016),

Wittmann-Hohlbein and Pistikopoulos (2012a), Oberdieck et al. (2014)

For the study of the effect of uncertain parameters on the op-
timal solution, the two main methodologies reported in the open
literature are: sensitivity analysis and (multi-)parametric program-
ming. The former provides information about the effect of un-
certainty around the neighbourhood of the nominal value while
the latter characterises explicitly its effect on the optimal solution
throughout the entire range of parametric variability. Next, we re-
view the developments in multi-parametric programming theory
in order to familiarise the reader with the topic of this article.

1.1. Literature review

Multi-parametric programming (mp-P) is an optimisation based
technique which systematically studies the effect of uncertain pa-
rameters on the optimal solution of mathematical programming
problems. Through multi-parametric programming, one aims to
compute offline, the explicit optimal solution to a mathematical
program which consists of two parts:

o The optimisers and the optimal objective value as functions of
the uncertain parameters, i.e. x(#) and z(@), respectively.

o The regions of the parametric space where each explicit solu-
tion remains optimal. These regions are also known and will be
referred to for the rest of the article as critical regions (CRs).

The distinct feature of mp-P is the fact that, under the presence
of uncertainty, the need for constant re-optimisation is replaced by
efficient function evaluations that can be performed online when-
ever the uncertainty is realised. For this reason, mp-P has attracted
the interest of many researchers and the main milestones in the
history of mp-P are summarised in Table 1.

Gass and Saaty (1954, 1955a, 1955b) shortly after the invention
of the simplex algorithm studied the parametric analysis of the
optimal solution for Linear Programming (LP) problems when un-
certain cost coefficients are considered in the objective functions.
However, the first systematic framework for (multi-)parametric lin-
ear programming (mp-LPs) problems was proposed by Gal and Ne-
doma (1972,1975) who studied the solution of mp-LPs with per-
turbation on the RHS of the constraints and/or the OFC, i.e. RIM-
mp-LP. For the case of mp-LPs the majority of the algorithms
employ the optimal basis invariancy to create the correspond-
ing CRs and compute the explicit optimisers. On the contrary,
Borrelli et al. (2003) proposed an algorithm for the solution of mp-
LPs based on the direct exploration of the parametric space study-
ing the underlying geometry of the problem. Another algorithm for
mp-LP problems was proposed by Jones and Morrari (2006) who
revisited the classic mp-LP as linear complementary problems and

employed lexicographic perturbation to efficiently deal with de-
generacy in mp-LPs. Note that the aforementioned algorithm can
handle RIM-mp-LP problems as well as multi-parametric quadratic
programming (mp-QP) problems.

Multi-parametric mixed integer linear programming (mp-MILP)
problems, have been studied by Acevedo and Pistikopoulos (1999),
Dua and Pistikopoulos (2000), Li and lerapetritou (2007a) to name
a few. For the solution of mp-MILPs the decomposition approach
of Dua and Pistikopoulos (2000) has proven to be computationally
advantageous compared to the rest. It involves an iterative scheme
between the solution of a master MIP problem and slave mp-LPs
until the master MIP is infeasible. During this procedure, integer
and parametric cuts are employed to prevent investigation of pre-
viously explored solutions.

Multi-parametric (mixed integer) quadratic programming (mp-
(MI)QP) problems form another important class of mp-P prob-
lems due to their application in optimal control schemes. The
first algorithm for mp-QPs was devised by Dua (2000) where the
Karush-Kuhn-Tucker (KKT) conditions of optimality were solved
explicitly and was later on applied in the seminal work of
Bemporad et al. (2002) leading to the concept of explicit model
predictive control, while in Dua et al. (2002) the mp-MIQP prob-
lems were treated.

The global optimisation of non-convex mp-NLPs and
mp-MILPs with RHS uncertainty was initially discussed by
Dua et al. (2004) and the authors proposed four different para-
metric convex overestimators along with a B&B algorithm. Note
that Fiacco (1990) had proposed a solution technique for global
optimisation for the case of non convex multi-parametric sepa-
rable NLPs restricted to a convex set. Another algorithm for the
global optimisation of mp-MILPs for RIM problems was proposed
by Faisca et al. (2009). The authors follow the decomposition
scheme as in Pertsinidis et al. (1998) and Dua and Pistikopou-
los (2000) where the integer vector is fixed by the solution of a
master MINLP to global optimality and then is fixed resulting in a
slave mp-LP. Despite the merits of the aforementioned algorithm,
because of the non-convex nature of the problem, the comparison
procedure of overlapping CRs is not always computationally possi-
ble and thus the authors for these cases store the corresponding
solutions in a parametric envelope and the best one is chosen
online through function evaluation.

Wittmann-Hohlbein and Pistikopoulos (2012b) proposed a com-
putationally efficient two stage method for the approximate solu-
tion of mp-MILPs under global uncertainty. In order to handle LHS
uncertainty, the authors employ worst-case oriented RO and thus
render the initial problem partially immune to uncertainty. The
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partially immune problem is practically an RIM-mp-MILP problem
which can be solved by existing algorithms. Note that although
RO can handle efficiently LHS uncertainty, the resulting solution
can be overly conservative or even unbounded for some instances.
As far as the explicit solutions are considered, again no compari-
son procedure is followed and the determination of the best so-
lution is done via online evaluation. Later on, the same authors
(Wittmann-Hohlbein and Pistikopoulos, 2012a) studied mp-MILP
problems with only LHS uncertainty. When LHS is introduced to
the problem, bilinear terms arise either in the form of 6-x or
0 -y rendering the problem a non-convex mp-MINLP. The proposed
spatial B&B scheme from this work encompasses the construction
of suitable McCormick envelopes that transform the LHS uncer-
tainty to RHS and branching schemes on the optimisation variables
and/or uncertain parameters. Computational studies showed that
the algorithm can be computationally onerous as it results in a
large number of CRs and also the quality of the solution is highly
dependent on the branching scheme selected. Nevertheless, this
work underlines the complexity of the resulting mp-P when LHS is
considered. Global uncertainty in general mp-MILPs was also stud-
ied by Li and lerapetritou (2007a) and the authors employed the
optimality conditions of LPs for the definition of explicit solutions
by retrieving the corresponding optimal bases. When LHS uncer-
tainty was also considered, projection schemes were employed and
approximations of the non-convex CRs were computed. Finally, a
solution algorithm for the single parametric case of LHS in p-LPs
was devised by Khalilpour and Karimi (2014) that included inver-
sion techniques of perturbed matrices.

1.2. Problem statement

The aim of this article is to provide a solution algorithm for the
most general case of mp-MILPs, i.e. the case where uncertain pa-
rameters appear simultaneously on the RHS, OFC and LHS (global
uncertainty).

z(0) = n)}lyn T (@)x+dT(0)y

A)x+W(0)y <b(0)
A@)x+¥(@)y=y®) 1)
xeX CR™ ye{0,1}"
0c®cRXo

Problem (1), is a multi-parametric programming problem with
non-convex parametric objective function and a non-convex fea-
sible set. The non-convexity of the parametric objective function
arises from the bilinear terms in the form of either c’(0)-x or
d’(#)-y. The parametric feasible set of (1) is also non-convex be-
cause of the presence of bilinear terms between the optimisation
variables, i.e. X and the uncertain entries of the technology matrix,
i.e. A(@). As already stated in the previous section of the article, the
aforementioned problem remains as one of the biggest challenges
because of its computational complexity. The challenges involved
in the solution of problem (1) are:

subjectto :
mp — MILPgopa =

e The computation of the explicit optimisers, i.e. x(@), and the
CRs where each explicit solution is optimal.

e Because of the non-convex nature of the problem it is likely
that a number of CRs overlap in the same region of the para-
metric space. In order to provide at the end one explicit solu-
tion per CR, one needs to follow a comparison procedure which
in the state of the art requires solving a number of MINLPs to
global optimality.

Many problems in PSE can be formulated as MILPs and thus
providing a solution technique for mp-MILPs under global uncer-
tainty can significantly enhance the applied value of such solu-
tions. Acevedo and Pistikopoulos (1997) studied the problem of
plant synthesis under demand uncertainty while uncertainty in

Table 2
mp-MILP algorithms.

Algorithm Uncertainty class Explicit solutions
per CR
RHS OFC LHS
Acevedo and Pistikopoulos (1999) v 1
Dua and Pistikopoulos (2000) v 1
Li and lerapetritou (2007a) v v v 1
Faisca et al. (2009) v v 2
Wittmann-Hohlbein and v 1
Pistikopoulos (2012a)
Oberdieck et al. (2014) v v 13

process planning has also been formulated as a parametric prob-
lem (Pistikopoulos and Dua, 1998). Process scheduling forms an-
other important class of problems that has been studied through
parametric programming. Ryu et al. (2007) studied the scheduling
of zero-wait batch processes and they considered variable process-
ing times after the employment of linearisation techniques. Jia and
lerapetritou (2006) proposed a framework for RHS uncertainty in
scheduling problems that leads to the solution of an mp-MILP
problem. Li and lerapetritou (2007b) provided a generalised frame-
work for process scheduling under uncertainty where depending
on the topology of the uncertainty (RHS, LHS, OFC) different mixed
integer mp-P problems had to be solved.

Despite the considerable attention that mp-P has drawn from
the research community (Charitopoulos and Dua, 2017; Pistikopou-
los et al., 2012) the solution of mp-MILPs under global uncertainty
remains one of the least studied problem due to the computational
complexity involved. In Table 2 an updated summary of the pro-
posed algorithms for mp-MILPs is presented along with the classes
of uncertainty that can be handled. In the third column of Table 2,
the average number of explicit solution per CR is given based on
computational studies reported in corresponding papers. To the
best of our knowledge, no previous research work has been pro-
posed for the exact solution of problem (1) without the employ-
ment of projection or discretisation techniques or through a hybrid
optimisation scheme. In the present work, we propose a novel al-
gorithm for the exact solution of general mp-MILPs under global
uncertainty based on the principles of symbolic manipulation and
semi-algebraic geometry. A significant feature of the proposed al-
gorithm lies in the exact computation of non-convex CRs where
only one globally optimal explicit solution is stored and no need
for online comparison is needed.

The remainder of the article is organised as follows: in
Section 2, we introduce the reader to the main concepts that form
the basis for the present work. Then we illustrate the main steps
of the proposed algorithm while the nature of the optimal explicit
solution and the CRs is discussed. To illustrate the solution proce-
dure, in Section 3, a number of examples are solved. Process syn-
thesis and scheduling case studies underline the potential practi-
cal value of the proposed algorithm. A short discussion about the
computational issues and non-convexity of the problem follows in
Section 4. Finally, concluding remarks and future research direc-
tions are outlined in Section 5.

2. Methodology
2.1. Grobner bases theory

The key idea of the proposed algorithm is as follows. Instead
of approaching the solution of the mp-P problem numerically we
exploit concepts from computer algebra. Upon inspection, problem
(1) involves bilinear terms of optimisation variables with uncertain
parameters and within the context of computer algebra this can
be viewed as a “power-product”. Based on this inspection, Grébner
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bases theory can be employed for the solution of square system of
equations that is derived by the 1st order KKT conditions of prob-
lem (1). Before we proceed further it is important to provide some
formal definitions that are crucial in Grébner bases theory.

Let k be any field and let k[X]=Kk[x{,...,x:] be the ring
of polynomials in t indeterminates. Any polynomial can be de-
scribed as a sum of terms of the form: ozx’131 ...xff with o ek and

BieN, i=1,...,t and the term x’f1 ...xf‘ is called power-product.

Definition 1. Grobner basis (Buchberger, 2006)

A set of non-zero polynomials G = {g;,..., g} contained in an
ideal I, is called a Grébner basis for I if and only if for all fel such
that f+#0, there exists ie {1,...,t} such that Ip(g;) divides Ip(f),
where Ip(-) stands for the leading power-product of a polynomial
function.

In the definition given, an ideal is a set of polynomials of the

form i:[l]tZuigi with g; in G and arbitrary polynomials u;. The
existence of such ideal is guaranteed by the Hilbert Basis theorem
(Buchberger and Winkler, 1998), which also guarantees the termi-
nation of algorithms that are used for the computation of Grébner
bases.

Roughly speaking, within Grobner bases theory a set of polyno-
mial V is transformed into an other set of polynomials G which is
equivalent to the former but has certain favourable computational
properties. At the core of Grébner bases theory the Buchberger al-
gorithm is found (Buchberger, 2006) which is employed for the
computation of the Grébner basis of a specific set of polynomi-
als. Buchberger introduced within the algorithm the concept of S-
polynomials as well as provided a theorem for the proposed algo-
rithm which for the sake of space are not discussed in the present
article; however, the interested reader can refer to the book of
Buchberger and Winkler (1998) for further exposition on the sub-
ject. Apart from Buchberger’s algorithm for the computation of
Grobner bases, Faugeére devised two algorithms, F4 (Faugere, 1999)
and F5 (Faugere, 1998) which compared to Buchberger's algorithm
are computationally more efficient. F4 is based on linear alge-
bra principles where successive truncated Grobner bases are cre-
ated and reductions of the polynomials are performed in parallel;
within the algorithmic routine a symbolic preprocessing step is in-
cluded as well as the author adopted the Buchberger’s criteria for
the selection of the critical pairs of power-products.

Note, that Mathematica 10, the computer algebra system (CAS)
where the proposed algorithm is implemented uses an optimised
version of the Buchberger’s algorithm.

2.2. Global uncertainty in general mp-MILPs

Let us consider again the mp-MILPs under global uncertainty.
Without loss of generality consider the case where the equality
constraints are replaced by opposing inequality constraints thus
leading to the form of problem (Pmgster)-

z(0) = nxnyn ch(@)x+dT @)y

A@)Xx+W(B)y < b(8) (2)
XeX CR™ ye {0, 1}v
0cO®cRXe

(Pmaster) = SubjeCt to:

Problem (Pmgster) is an mp-MILP that involves uncertain param-
eters on the RHS, LHS and OFC. The key idea is to treat both the
uncertain parameters and the binary variables as symbols and thus
reduce (Pmgster) to an mp-LP under global uncertainty at the first
stage. Another idea would be to follow a decomposition scheme
similar to Dua and Pistikopoulos (2000) where the decision maker
would iterate between the a Master MILP and slave symbolic mp-
LPs; however we do not explore this option in the present work
as results from the case studies indicate the dimensionality of the

binary variables do not affect significantly the computational com-
plexity of the proposed scheme. Note that idea for the relaxation
of the binary variables as uncertain parameters has been used in
some of our previous works (Charitopoulos and Dua, 2016; Chari-
topoulos et al., 2017b; Dua, 2015; Gueddar and Dua, 2012). Treating
the binary variables as uncertain parameters between their respec-
tive lower and upper bound results in a relaxed mp-MILP (R-mp-
MILP) which can be solved analytically.

z(0) = rg(nyn cl@)x +d"(0)y
subjectto : A(@)x +W(0)y < b(0)
(R—mpMILP) { x € X £ {x € R™|xM" <X, <xM* k=1,..., ng (3)
ye[0 1] _
0€®é{0€Rn"|0[mm SQ( 59,’““", 121,...,n9}

The R-mp-MILP is an augmented mp-P where apart from the
uncertain parameters we consider the relaxed binary variables. For-
mulating the first order KKT conditions for the R-mp-MILP leads to
the system of Eq. (4).

Vil(X,y, 0) =0
(P)L Aj(y. 0) (00X + X0 Wi (@)y, — b (0)) (4)
=0,Vj=1,....m

where L(x,y, 0, 1) =cT(®)x +dT (0)y + XT(ZTﬂZZX:laj‘k(G)xk +
ZT=1ZZ’;1Wj_k(0)yk —bj(#)) is the Lagrangian function of the R-
mp-MILP problem. Solving (P) analytically results in the explicit
parametric expressions of the optimisation variables, i.e. x(y, #) and
the Lagrange multipliers, i.e. A(y,#) which will be used in the next
step to evaluate the optimality and feasibility conditions, i.e. the
non-negativity of the Lagrange multipliers and the satisfaction of
the inactive constraints. The set of solutions computed at this step
are called “candidate solutions”. Candidate solutions, include so-
lutions that can be locally or globally optimal or infeasible due
to constraint violation or integrality conditions. In the evaluation
of the candidate solutions the first step is to consider the non-
negativity of the Lagrange multipliers which would lead to the re-
jection of infeasible solutions. Note that by doing so, we avoid to
visit every possible integer node and thus reduce the computa-
tional burden. As next step, we impose the integrality conditions
on the binary variables, i.e. y € [0,1]Y — y € {0, 1}"V; as a result
now the Lagrange multipliers and the vector of optimisation vari-
ables are functions of the uncertain parameters. i.e. x(#),A(#) and
the feasibility and optimality qualification is performed so as to
compute the final “integer feasible solutions”. Note that at the end
of this step, for the “integer feasible solutions” the corresponding
CRs are given by the inequality constraints (5) and (6).

Aj(0) =0, j=1,...,m = optimality conditions (5)

gi(#) <0, j=1,...,m = feasibility conditions (6)

where g;(f) stands for the vector of inequality constraints of prob-
lem (R-mpMILP) that is now explicit only in . If the solution under
evaluation is feasible, then the inequality constraints provide a set
of parametric inequalities that form the CR of the integer feasible
solution.

Remark 1. When global uncertainty is considered in mp-MILPs the
explicit optimisers and the optimal objective value, i.e. x(#) and
z(#), are fractional polynomial functions of the uncertain parame-
ters continuous within their respective CR but not necessarily con-
tinuous in the entire parametric space. The corresponding CRs are
in general non-convex and possibly discontinuous (Charitopoulos
et al.,, 2017a; Wittmann-Hohlbein and Pistikopoulos, 2012a).

Because of the combinatorial nature of the problem, it is com-
mon issue mp-P that some CRs may co-exist in the same space
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Table 3
Possible outcomes in the definition of CRyyr.

Case 1
Case 2
Case 3

CR, €CR; which means that all constraints of CR, are redundant and CRjyy = CRy
CR;2CR;, which means that all constraints of CR; are redundant and CRyy = CR;
The CRjnr is defined by a set of active constraints from both CRyand CR; as both

CRs have some non-redundant constraints

and thus requiring some dominance criterion so as to decide upon
the dominant CR in the common parametric space; in this work
we follow the same procedure for the comparison and dominance
of overlapping CRs from our latest work (Charitopoulos and Dua,
2016; Charitopoulos et al., 2017a).

2.3. Cylindrical algebraic decomposition and comparison of
overlapping CRs

Defining redundant constraints and computing the new CRs
within the comparison procedure is a non-trivial task, especially
for non-convex problems. A comparison procedure for explicit
solutions valid in the same parametric space can be found in
Acevedo and Pistikopoulos (1997). This procedure is applicable
only for the case of convex CRs, i.e. when the CRs are defined as a
set of linear inequality constraints. In general, while solving a mp-
MILP problem under global uncertainty it can happen that two dif-
ferent parametric solutions, i.e. z;(#) and z,(#) to be feasible in the
same parametric space. The comparison procedure aims to identify
the regions where:

z1(0) —z,(0) <0 (7)
and
2,(0) —z1(6) <0 (8)

given that z;(@) is valid in CR; and z,(#) is valid in CR,. The first
step is to compute CRiyy = CR; NCR; .

2.3.1. Computation of CRyyt and redundant constraints.

Excluding the case that CRjyy = ¢ there are three possible out-
comes in the definition of the CRjyr which are described in Table 3

In Fig. 1 the different cases for the definition of the CRjr can
be envisaged.

For illustration purposes assume that the following two ran-
domly generated CRs, given by Eqs. (9) and (10), are under exam-
ination. We have chosen to illustrate a case that one of the CRs is
convex the other one non-convex and their overlap (CRjr) is non-
convex as well, in order to underline the salient feature of the pro-
posed algorithm, i.e. computing exact non-convex CRs. Graphically,
in the parametric space CR; and CR, are presented in Fig. 2.

0<6,6,,05<1
CRy = {9] — % 42560, > 25 9)
_J0=<64,6,,6;<1
CR2 - {93 — 91 > 0592 (10)

CR; is non-convex while CR, is convex as polyhedral and thus
previously proposed methods for computing their potential over-
lap are not applicable without some kind of convex approxima-
tion. Moreover, identifying redundant constraints and computing
the “dominant” CRs infers a problem of solving inequalities which
are quantified by logical operators (3,V,A,— etc.). It can be un-
derstood that posing the problem of computing the overlap be-
tween two CRs is equivalent to posing the question “is there any
range of uncertain parameters for which any inequalities that form
the CRs are simultaneously satisfied?”. This question can be in
turn postulated as the following quantified mathematical formula:
{30ICR; ACR;, for i+ j} where A stands for the “logical and” op-
erator. One of the most widely known and used algorithms for

the solution of quantified systems of inequalities is the Cylin-
drical Algebraic Decomposition (CAD) algorithm (Jirstrand, 1995;
Strzebonski, 2000). In brief, one by computing the CAD of a sys-
tem of inequalities after a number of projection in the decision
space (the parametric space in the case of interest for the present
work) partitions the space into a sets of, typically non-convex, re-
gions where each inequality retains a constant sign. By doing so,
one can evaluate whether a set of inequalities is satisfied within
certain regions and at the end compute the final solution to the
system of inequalities (in our case, a CR itself, an overlap among
different CRs or the region of the parametric space where an ex-
plicit solution dominates another). For a detailed exposition on the
subject of cylindrical algebraic decomposition the interested reader
is referred to the tutorial article of Jirstrand (1995).

As mentioned above, in the present work Mathematica was em-
ployed for the analytic solution of the mp-MILP under global un-
certainty. Specifically, for the comparison procedure the command
“Reduce” was employed which involves an implementation of the
CAD algorithm. “Reduce” is a command in Mathematica that qual-
ifies sets of conditional arguments within a given set of parame-
ters and computes a new set within which these conditional state-
ments are satisfied. A detailed exposition on the specifics of the
function can be found in Strzebofski (2000) where the author
details the different strategies employed internally in Mathemat-
ica. For example in the definition of the intersection of two CRs
(CRinvt), “Reduce” identifies the redundant constraints of both CRs
and computes the region of parametric space where both CRs ex-
ists; for the case that the CRs do not overlap the output of “Re-
duce” is a “False” statement equivalent to the argument CRjy = ¢.

Defining the CRjyr thus infers computing the CAD of the para-
metric space where both CR; and CR, are always valid and a part
of its mathematical expression is given by Eq. (11). In Fig. 1 the
meshed area of the parametric space represents the overlap of the
two CRs.

0 <6, <6:1(20+61)
02-0.046; + 232 <05 <1
0<6,<1

02-0.040; + 232 < 60; <1

CRint = § - (11)

0 <6, <0.049

0.049 <6, < 0.099{

0592<2—29]
91-‘1-0.592593 <1

0.550151{

The redundant constraints from each CR can be computed as
RCcr, = {01 0 € (CR; A (=CRin7))}. Vi =1, 2 using CAD computations.

2.3.2. Computation of CRggst and the final non-overlapping CRs.
After the definition of the CRjyr the dominance criterion can be
expressed by the conditional inequality (12).

21(0) —2,(0) <0, 0 € CRiyy (12)

As a next step, excluding the case that CRjyr = ¢, the compar-
ison procedure is continued and a new set of conditional state-
ments is qualified, given by (12). The output of this step is used

so as to define the CRgesr;, given by (13) and (14), while the two
modified CRs after the comparison procedure no longer overlap.

CRrest, = {010 € (CRint A (21(0) < 22(0))) (13)



284 V.M. Charitopoulos et al./Computers and Chemical Engineering 116 (2018) 279-295

6,

6,

(a) Case 1 (CRINT = CR1)

6,

(c) Case 3 (CRinT = CR1 NCR2)

6,

e‘l

(b) Case 2 (CRINT = CRQ)

6,

6,

(d) Case 4 (CRinT = 0)

Fig. 1. Definition of CRjr.

CRresr, = {01 0 € (CRinr A (21(0) > 22(0))} (14)

Following the comparison procedure for the previous illustra-
tive case, assume that z;(0) —z,(0) = —26; — 196, + 265 — 68. In
order to identify the dominant solution for the illustrative case

6; > 0.0992 & 6;(61(61 +0.486, — 0.272)

Finally, the two CRs that no longer overlap are presented graph-
ically in Fig. 3, the mathematical expression of CR, is given by
Eq. (17) while the mathematical expression of CR; remains the
same as the one given by Eq. (9). Notice that z1(f)) is globally op-
timal in CR{m and z,(#) is globally optimal in CR;”.

(17)
—0.07696, + 0.0153) + 0.0036, < 0)

0 <6, <0.0498 & 6, < 6,(6, +20)
0.0498 < 0; < 0.0992 & 9, < 1.

0, =0 92 =0 & 93 >0
1= 0<6,<1 &0.56,<6;
03<116,>0 & 01(01 +20) <6, <1 &6;+0.50, <05
i 0; =0.0498 &0<6,<1&0.50,+0.0498 < f; < 0.198 + 0.80196,
CR)" =
g, > 0] 0:0401 +63 <02+ 05 & 61 +0.56, < 65
6; = 0.0992 & 0.56, +0.0992 < f3 & 63 < 0.403186; + 0.196
0<6; <0.0498 & 6, =60,(20+0;) & 6, +0.50, <63 < 1

the related CAD is computed in order to evaluate (12). The out-
put of the “Reduce” in the present case a new set of inequalities,
namely CRges; this is the fraction of CRyy in which z;(6) <z,(0).
More specifically in the case, the explicit solution of CR; is always
dominant in the overlap of the two CRs and thus CRggsy, = CRiny
while CRREST2 =0.

After the CRpgst regions are computed the final CRs can be com-

puted as follows:
CR]™ ={0] 0 & (CRy A (~CRgest,)} (15)

CRY™ ={0] 0  (CRy A (—=CRgest, )} (16)

A flowchart of the main steps for the exact solution of general
mp-MILPs under global uncertainty is given in Algorithm 1 while
a more elaborate description is given in Algorithm S.2.

Remark 2. Note that when LHS uncertainty is considered in the
coefficients of the binary variables exact linearisation techniques
can be employed to transform the LHS to RHS uncertainty. More
specifically, following the Glover transformation (Glover, 1975) the
product between an uncertain parameter and a binary variable,
for the case of non-negative uncertain parameter, can be ex-
pressed with the help of an artificial variable, i.e. Ogys =6 -y, as:
Y —=1)0"P 46 < Opys < 0"P, Ogys < 0.
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Algorithm 1: Algorithm for global mp-MILPs.

Input: mp-MILP problem
Output: Q: List of explicit solutions and their

correspondingCRs

1: (x(y, 0). A(y. 0). z(y0)) < (void, void, )

2: LIST < ¢

3: Formulate the 15t order KKT conditions of problem (3)

4: Solve problem (P; ) using Grébner Bases for (x(y @), A(y, 0))
5: if problem (P;) is infeasible then :

6: Q=90

7: else :

8 Add (x(y. 0), A(y. 6)) toLIST

9: while x < length(LIST) :

10: forj=1, m:

11: Substitute (AJ’.‘ (y, 0)) ininequalities (5)

12: if inequalities (5) hold for some 6 < © then :

13: Keep element (x* (y, 6), A“(y, 0)) toLIST
14: else :

15: Remove element (X (y, 6), A“ (y, )) from LIST
16: end if

17 end for

18: end while

19: while x < length(LIST) :

20: ye[0,1]% — y e 0, 1" (Integrality conditions ony)
21: forj=1, m:

22: Substitute (x* (y, ), Xf (y, #)) ininequalities (5) — (6)
23: ifinequalities (5) — (6) hold for some § € © then :
24: forow =1, 2" :

25: CR? 2 {f € B (0) = 0 A gi(x(9)) =0}
26: for each CR¢check CR¢ N CRY, :

27: if CRY N CRY + ¢then :

28: Perform dominance criterion

29: end if

30: end for

31: Add element (x¢(0), z2(6), CRY) to 2

32: elseCRY? £ gand (x2(6), A2(0)) is infeasible solution
33: end if

34: end for

35: end while

36: end if

37: return €2

63

0.0

Fig. 2. CR; and CR; in the parametric space.

Fig. 3. Final non-overlapping CRs in the parametric space.

Remark 3. Note that despite the fact that in the proposed algo-
rithm we refer only to binary variables the algorithm is applica-
ble to integer variables too, as illustrated in a similar work by
Dua (2015).

3. Case studies

In the present section the main steps of the proposed algorithm
are demonstrated on a number of illustrative examples and case
studies.

3.1. Example 1: mp-MILP with LHS uncertainty

In order to illustrate to applicability of the proposed method-
ology for the case of mp-MILPs we consider the following mp-
MILP problem with LHS uncertainty (Wittmann-Hohlbein and Pis-
tikopoulos, 2012a).

2(0) = H)}iyﬂ(—le — X2 +Y1+Y2)
subjectto: x4+ 3 +60)x+y1 <9

Q2+0)x14+x -y, <8
LHS — mpMILP
X1—=y1+y2<4

0<x1<4,0<x,<3
y12€{0,1}, -10<6;, <10
(18)

Following the proposed algorithm, first the Lagrangian function
of problem (18) is formulated as shown in Eq. (19).

L(X1a XZ’.VL)’Z, 91s 92# A’lv )\’Zv }"3v }"4s )\‘55 )\‘65 )\'7)
= =2 X +Y1+Y2+ A&+ G+ 0% +y1 - 9)
+ A2 +02)x1 +X —y2 —8) + A3(X1 —y1 +y2 — 4)
+ Aa(=x1) + As5(=X2) + Ag(x1 —4) + A7 (x2 — 4) (19)
Next, the gradient of the Lagrangian is computed with respect
to the optimisation variables, i.e. x;, X, and is given in Eq. (20).
Vxl,sz = [(92 + 2))\,2 + A+ )\,3 — Ag+ )\45 -2, (91 + 3))\,1
+)\,2—)\,5+)L7—1]T (20)
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Table 4
Candidate solutions of LHS — mpMILP.
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Note that the components of the gradient of the Lagrangian are
explicit in @ and A and also because of the existence of uncertain
parameters in the constraint matrix nonlinear products of the form
A -0 are present. After the gradient of the Lagrangian is computed,
the first order KKT conditions are formulated and this results in a
square system of 9 equations and 9 unknowns. More specifically,
ny equations are from the condition that the gradient of the La-
grangian must be zero and ng equations are given by the strict
complementary slackness conditions. Solving the KKT system, re-
sults in 17 candidate solutions as shown in Table 4.

It takes 0.12 s for Mathematica to compute 17 candidate so-
lutions for problem (18) of which, after qualifying with the non-
negativity condition of the Lagrange multipliers, the 8th, 9th and
12th candidate solutions are removed from further consideration.
By substituting the explicit expressions of the optimisation vari-
ables, i.e. x;(y,#) and x,(y,#), in the inequality constraints the fea-
sibility of the candidate solutions is examined. At this point, based
on the proposed algorithm, the integrality conditions are imposed
on the binary variables and this results in the explicit expressions
of the optimisation variables and the Lagrange multipliers in 6 and
the 56 solutions that are now left, based on each possible inte-
ger combination of the binary variables, are called “integer candi-
date solutions”. For these solutions, the feasibility and optimality
conditions are qualified next. The output of the qualification with
the feasibility and optimality conditions can either be an empty
set, meaning that the corresponding integer candidate solution is
integer infeasible, or a set of parametric inequalities that denote
a region in the parametric space. If that region in the parametric
space exists, then this is called the CR of the integer feasible so-
lution; otherwise this solution is removed. Because of the combi-
natorial nature of the problem, some of the feasible solutions after
this step were found to overlap and the comparison procedure was
employed. The final explicit solution is given in Table 5.

In Fig. 4 the final partition of the parametric space is shown af-
ter the comparison procedure so as to highlight that the optimal
partition does not consist only of polyhedral regions. This can be
further understood by the explicit expressions of the correspond-
ing CRs that involve fractional terms. A visual representation of
the optimal objective function in the parametric space is shown in
Fig. 5 where the non-convexity of the underlying problem is dis-
tinct.

3.2. Example 2: mp-MILP with global uncertainty

Next the following numerical example is considered from
Wittmann-Hohlbein and Pistikopoulos (2012b). Uncertainty is con-

CR, CR,

CR,

= CR, CR;

=10 -5 0 5 10
0,

Fig. 4. Final CRs of the LHS-mp-MILP.

sidered in the cost coefficients of both continuous and binary vari-
ables, the LHS and the RHS of the constraints.

2(0) = l‘l)‘(lg}l‘l (64 —+ 02591 )X] + 6X2

+(7.5+0.361)y; +5.55,

0.8x; + (0.67 + 0.0156)x, > 10 + 6,
X1 < 40y,

Xy < 40y,

X12>0

Y12 €1{0,1}

-20 < 91,2 < 20

Subject to:
(Py) :=

Solving the problem based on the proposed algorithm, 8 candi-
date set of solutions are computed out of which 2 are rejected be-
cause of violation of the non-negativity of the Lagrange multipliers.
Next, for the remaining six candidate solutions, the integrality con-
ditions are imposed and thus 24 integer candidate solutions arise.
Note that after this step, both the Lagrange multipliers and the op-
timisation variables are explicit functions of the uncertain parame-
ters as shown in Table S.1, for the case that the binary variables are
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Table 5
Optimal explicit solutions and CRs of LHS-mp-MILP.
i ynoy oA ) z CR;
-5 = 60; <0
1 0 0 (-86,-15) ~96,-10 2(-86,-15)-96,~10 0<6, < 52
0,6,+26,+30,+5 6,0,+260,+360,+5 6,0,+20,+360,+5 01 >0
02 < 0
6, < —%
0< 92
2 4 —4 844 B
0 0 6, 8 + 46, 7% <0, <0
—66,-5
0 = =5
0 < *%
_3-<6,<0
5 10 7=t =
3.0 0 -3 3 -3- 10 ise
~iap; <02 =0
_4
4 0 0 4 3 -1 O = -3
92 < -7
91 >4
5 _8_ 5 3
>0 0 * 340 8- = {92 < —wim
Table 6
Results of example 2.
(a) Explicit solution of example 2
X X Vi ¥y 2(0)
if[0:6,] cCRy O 0 0 030, +75
; 66.676,+666.67 5.50,+4006, +4245.67
if[010,] € CR, 0 W 1 W
if[010,] € CRs 1256, +125 0 0 0.31256, 6, + 3.4250, + 86, + 87.5

(b) Critical regions of example 2

Critical regions Mathematical expression

-20<6, <-10
0<6, <20
-10<6, <-8
~0.0675 <6, <0

Ry {720 <6, <20

CRZ =

_ 01(~10.960, ~751.947)+1079.47
8 <0 < 5 G S703667)- 13655

—20 <6, <-0.0675

-10<6, <20

CR;3 :=

0<6, <20
-8<6,<20

—0.0675 <6, < 0{

01 (~10.966, —751.947)+1079.47
6, (6,+70.2667)—136.533 = 02 =20

-10<6,<-8

===
eSS

S
SISOt S
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=T
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Fig. 5. 3D plot of the optimal objective function in the parametric space.

fixed to be 1. The final explicit results along with the correspond-
ing CRs are given in Table 6

It is interesting to note that the second final parametric solu-
tion is discontinuous at #; = 44.667. Despite that the present work
is based on the grounds of computer algebra and symbolic manip-
ulation, the answer for this discontinuity can be given from a lin-
ear algebra perspective. For the second explicit solution, the active
constraints are the first one and the non-negativity of x;. The cor-

responding technology matrix is given in (21).

Agctive = [-0.8  —0.67 —0.0156;, -1 0] (21)

Now, if the integrality constraints are dropped and the problem
is considered as an LP, for this solution to be basic the basic matrix,
i.e. Ageives has to be invertible and thus its determinant has to be
non-zero. For the determinant of (21) to be nonzero it is computed
that —0.8 +0.67 + 0.01560; # 0 — 01 # 44.667 and justifies why z,
becomes discontinuous at this point, which however is beyond the
examined region for the present case study.

3.3. Example 3: mp-MILP global uncertainty

This example is taken from Wittmann-Hohlbein and Pistikopou-
los (2012b) and includes uncertain entries in the RHS, OFC and
LHS.

z2(0) =
Subject to :

min6@ix; + X, +y1
Xy

X1 +93X2 + X4 = 1 +91y2
—X1 + X2 + X3 =0, + 2y
y2-y1=0
x>0,Vi=1,...,4
y12€{0,1}
—5=<0123<5

P3) :=
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Table 7
Explicit solutions of example 3.
X1 X2 X3 X4 A1 Y2 %(6)

if[01605,05] e CRy 1 0 6+3 0 1 0 6+1
lf[91 92,93] € CR, 1 0 6, +1 0 0 0 64
if[6165,63] € CRy 7"19*22";2;93”31“ —523;?;3 0 0 11 —:;2 (::2*22?:3"%;2;";*9;*44
i =0,0,-205+ + — = +61+0,+03 +
if[6162,63] € CRy 2=, ot 0 0 1 0 Lt Mt
if[0162,05] € Ry~ af20utl el 0 0 0 0  DbbOaG
if[616,,05] cCRg O 0 +2 0 1 0
lf[91 92,93] € CR7 0 0 02 0 0 0 0
if[6010,,05] e CRg -6, —2 0 0 6,+3 1 0 -016, — 20, +1
if[01 62,031 € CRy 6, 0 0 6,+1 0 0 —6,6,

The solution of the problem returns 6 candidate set of solutions
and after the integrality conditions are imposed 13 integer candi-
date solutions are obtained; note that the 13 integer candidate so-
lutions are now parametric only in €. Qualifying with the primal
and dual optimality conditions 13 explicit solutions and CRs are
computed and the comparison procedure follows next. At this step,
a number of different integer solutions were found to be cost-wise
identical and thus dominance in these case cannot be proven. For
these cases, we investigated two different scenarios where in the
first one the solutions of integer vector y = [1 1] were preferred to
those with integer vector y = [1 0] and vice versa but for the sake
of space only the first scenario is reported herein in Table 7 and
Table S.2. Note that the final explicit solutions are in general frac-
tional polynomial functions of @ and the CRs are non-convex with
a number of them discontinuous as shown in Fig. 6, e.g. CRq.

For the sake of space the mathematical expression of CRs is
omitted as it was found to be three pages long. The explicit math-
ematical expressions of the CRs given in Tables S.2-S.4 show that
CRs are not necessarily convex while in the present example the
order of polynomials involved are up to 3. Finally, it is worth notic-
ing that even though CR4 and CRs are individually fragmented, at
the final representation of the parametric space in Fig. S.1 the fea-
sible solution set is compact and the objective function continuous
across the different regions.

3.4. Example 4: mp-MILP global

Another example involving global uncertainty was adopted
from Dua and Pistikopoulos (2000). The corresponding mp-MILP
under global uncertainty is given in (Py).

z(0) =
Subject to :

n}}}n — 01%1 — 2%, + 10y + 5y»

X1+93X2 520
X1+ 2%, <12
X1§lO

Xy <10

X1 < 20y,

Xy < 20y,

X1 —Xx<6,-4
1<yi+y
x>0,Vi=1,2
Y12 € {0’1}
1<61<6,0<6;35<5

(Py) :=

Following the proposed algorithm the first order KKT system of
equations is solved so as to compute symbolically the optimisation
variables and the Lagrange multipliers as functions of the binary
variables and the uncertain parameters, i.e. X1 2(¥1,Y2,601.62,603)
,,,,, 101, ¥2. 01, 05, 03), respectively. Note that despite that
the optimisation variables are two we seek analytical solution of
the Lagrange multipliers thus 12 variables in total. For the specific
system of equations, 30 candidate solutions are computed of which
9 are integer feasible and are subsequently examined for overlaps.
An example of overlapping solutions is the first candidate solution

for the case that both binary variables are equal to 1, i.e. CRyyq,
and the ninth candidate integer solution for the binary vector [1
0], i.e. CRgyp. In Fig. 7 a graphical representation of the two over-
lapping regions is given where their overlap is marked with gray
colour. Once the overlapping regions are identified the comparison
procedure is enabled. For this specific case the solution of the so-
lution stored in CRgig was found to be inferior compared to the
one stored in CRy;; and as a result the overlap (CRjyr) was sub-
tracted from CRgqg. Graphically this procedure is shown in Fig. 8
where from the initial CR the part of the overlap where this CR is
inferior is getting cut off and thus resulting in the computation of
the new CR. Mathematically, this procedure requires the elimina-
tion of the quantifiers in the corresponding Boolean formula and
the computation of the semi-algebraic set where the correspond-
ing conditions can be satisfied always.

In order to compute the final globally optimal explicit solutions
of the present examples, during the identification of overlapping
CRs, 18 comparisons where performed and 4 final solutions are
computed. It is worth mentioning that in the present example,
some of the solutions with different integer vectors were found to
be cost-wise identical and thus the comparison procedure could
not prove dominance of either one. In those cases, we decided to
keep both of the CRs and after the termination of the algorithm in
a post-processing step CRs with identical solutions were merged.
The explicit solutions of the example (P4) are given in Table 8 and
the corresponding CRs in Table S.5. The graphical partition of the
parametric space is envisaged in Fig. S.2.

3.5. Example 5: mp-MILP global

This example involves uncertain parameters in the objective
function’s coefficient, the right-hand side of the second constraint
and for left-hand side uncertainty we consider coefficients of con-
tinuous and binary variables. The four uncertain parameters are al-
lowed to vary between 0 and 10.

z(0) =
Subject to :

n)}iyn (=3 +061)x1 — 8% +4y1 +2y>

X1 +x, <13 +92

(5 + 93))(1 — 4X2 < 20
—8x1 +22x; <121

X1 < 041

Xy < 20y,

—4x1 —x; < -8
X12>0

y12€{0,1}
0=<6i234=<10

(P5) :=

The first step of the proposed algorithm results in 26 candidate
solutions. The final integer feasible solutions are 7. From these, 3
explicit solutions are discarded after the dominance procedure and
thus the final optimal explicit solutions are 4 and given in Table 9.
The corresponding CRs are given in Table S.6.
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(g) CR7 (h) CRs () CRo

Fig. 6. Critical regions of (Ps).

Table 8
Explicit solutions of (Py).

X1 X2 Y1 Y2 2(0)
if[01 605,051 e R, £ b6 1 1 1(=201(6, +2) +20, +13)
i? {zl 22,33} e CRy 7“’2;1)&”0 429‘:612 0 1 *91((92*4)93;3231)+292+503—43
if[610,,03]€CRs 0 6 0 1 -7
lf[91 02,93] € CR4 0 20 0 1 — 4

65 03

289
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Table 9
Explicit solutions of example 5.
X1 X2 Az Y2 2(0)

; 461 121651765 4626, —4186; —4212
if[6162,03,04] € CRy 39+116; 20478 1 1 16,439
if[6102,05,04] € CRy % % 1 1 55"‘19%
if[0102,03,04] € CRs 11(1%292) 225;0392 1 1 (116, (292+15)365(zsoz+423))
1f[91 92,93,94] € CR4 94 (12]%2804) 1 1 (91 - %)04 —38

CRo1p

[’4\(" #H | 77 [/ CRy11

7

|
|
: 6
e
’JQ 8

o Y j

CRr

CRrewg o

o

Fig. 8. Graphical illustration of the computation of new CR after the comparison
procedure in the parametric space.

3.6. Process synthesis under global uncertainty

3.6.1. Case study 1

The present case study deals with the selection between two
chemical reactors for the manufacture of a chemical product. As-
sume that the engineer has to choose between a reactor I, the
selection of which is denoted by the binary variable yq, that can
accomplish higher conversion rate at more cost. The other option
is reactor II, the selection of which is denoted by y,, that pro-
vides lower production yield at lower cost. The aim is to minimise
the cost. However, the data that are available are not reliable and
thus uncertain parameters have to be considered for the produc-
tion cost, the production yield and the demand. The problem is

formulated as a mp-MILP under global uncertainty as follows:

2(0) = rrxliyn (6.4 4 0.2501)x1 + (6 — G6)x>
+(7.5+0.361)y1 +5.5y,
Subjectto:  0.8x; + (0.67 +0.0156;)x, > 10 + 6,
Osx1 < O3y,
(Po) := O4x; < 40y,
x>0,Vi=1,2
y12€{0,1}

2<6;<10,0<6, <10, 0 <63 <200
1<6,<4,0<05<4,0<6<8

The total number of candidate solutions are 8 as shown in Table
S.7.

Following the steps of Algorithm 1, 4 integer feasible paramet-
ric solutions are found and the final ones are 3. Notice, that al-
though the number of candidate solutions does not grow, the de-
gree of power-products that appear in the optimisers and the La-
grange multipliers grows. The final explicit solutions of the case
study 1 are given in Table 10 while the corresponding CRs in
Table 11.

3.6.2. Case study 2

The present case study is a variant of a process synthesis prob-
lem adopted from Biegler et al. (1997). Within the synthesis prob-
lem, uncertainty in process demand, operation cost and conversion
rate, namely 01,6, and 63, respectively. As shown in figure, the
process refers to the production of a chemical C (x5) which can
be achieved either through process unit Il or III; for the produc-
tion of C, a chemical species B (x, 3) needs to be converted. B, can
be either purchased directly from the market (x4) or manufactured
through process I with raw material A (x;) as feed (see Fig. 9).

The corresponding MILP under global uncertainty is formulated
as an mp-MILP as follows,

z(0) = r;(nyn 2.5%1 + (4 + 61)xy + 5.5x3 + 10y,
+15y, + 20y3 — 18x5
Subjectto: 0.9x; —X; —X3+Xx4=0

X5 =0.82X2+93X3
2§X5§5+92

X1 < 16y,

Xy < 30y,

X3 < 30y3
Ya+y3=1

X4§14

0.4x, <5+ 6,
x>0,Vi=1,...,5
yie{0,1},Vi=1,2,3
0<6; <5

0<6, <5

0.75 <63 <0.95

(Py) =

The LHS uncertainty involved in (P;) is located in the second
equality constraint and represents uncertainty in the conversion
coefficient. Solving problem (P;) results in 97 candidate solutions.
Evaluating with the optimality and integrality conditions results in
3 integer feasible solutions. Two of these solutions are found to
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Table 10
Explicit solutions of case study 1.
X1 X2 1 Y2 2(9)
if[6162,63,04,05,06] € Ry 122G0utl0) g 1 0 1250020, 160 e t100) 4 0,36, +7.5
if[61 02,65,604,05,06] € CR, 125(92(?:“09” 0 0 0 125(0.259.+%:1)(9294+1094)
if[0163,03,04,05,06] € CRs 0 20 1 230A6pN0

Table 11
Critical regions of case study 1.

Critical regions ~ Mathematical expression

2<6,<10

6, <10

26.8+0.66;
10+6,

s <8

<4

{

05 <4

CR;:
b5 < 75

O4>1

s <6

9454

0<6s

0595

2<6,<10

0<6, <10

0 <63 <200

B <o <a

65 =0

0<65<8

2<6, <10

0<6, <10

0 < 65 <200

1< s < i

0<0s<4

6<6;<8

CR;:

CR3:

50 + 56, < 65 <200

0 <65 < 50 + 56,
0.225186;
475(1+0.16,)

X4

II
0.82x,
X2
v
CF——
A
X3 03X3
III

Fig. 9. Superstructure of case study 2.

overlap and the comparison procedure is employed, resulting in
two final optimal solutions which are given in Table 12 along with
their corresponding CRs.

3.7. Process scheduling under global uncertainty

In order to illustrate the generality and applicability of the pro-
posed algorithm the case of process scheduling under global un-
certainty is examined. Scheduling problems have been studied in
the past using multi-parametric programming techniques (Li and
lerapetritou, 2007b; Ryu et al., 2007; Wittmann-Hohlbein and Pis-

tikopoulos, 2012b), however the case of simultaneous variations on
the LHS, RHS and OFC has yet to be treated.

Our point of departure is the multi-stage zero-wait batch
scheduling problem formulation as proposed by Ryu et al. (2007).
The model employs a time slot based formulation for the sequenc-
ing decisions among different products. At each time slot (s) only
one product (i) can be manufactured and the corresponding assign-
ment is modelled using the binary variable y ;. The model assumes
unlimited intermediate storage and thus the objective is to min-
imise the makespan of the process (Cy, ).

z(9) =minCs; (22)
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Table 12
Explicit results of (P;).
X X X, Xl XL Yoo ¥ vz CR;
0<6,<5
0342<6, <15
63 < 0.691 + 0.1736
1 0 0 1.05266, + 5.2631 1.05266, + 5.2631 5+6, 0 0 1 —12.216, — 41.052 3= + !
15<6; <5
93 =< 0.95
0.75 < 64

0342 <6, <15
0.691 +0.1736, < 653 < 0.95

0,+5) 0,+5) O1+4) (0 +5) _ _
2 0 2 0 £ 546, 0 1 0 X 186, -75 0<6,<5 0 <6, <0342
0.75 <63 <0.95
Table 13
Subject to - (23) Effect of the dimensionality of the uncertain parameters (ny) on the number of
: CRs computed (ncg) and the solution time.
N ny ner CPU(s)
E Vsi =1 Vi (24) 2 1 3.83
B 3 4 8.46
4 4 9.24
N 5 5 1156
E ysi =1 Vs (25) 6 5 24038
i
N
Gj = CS_]._1+§ :)'sipij Vi>1, i (26) leading to more responsive operations. To this end, the effect of
; the dimensionality of uncertain parameters on the solution time
N of the proposed algorithm was examined and the corresponding
: . results are shown in Table 13.
Gj=z CS‘U|*1+Zys’P“ Viz |l j (27) Breaking down the computational burden associated with the
! dimensionality of the uncertain parameters it should be high-
Gi>0 (28) lighted that the CPU time (s) needed by the first computational
I= step of the algorithm is not affected (computation of the candidate
solutions). However, the second major computational step (com-
ysi € {0, 1} (29) putation of the CRs and the comparison procedure) scales quite

Eqgs. (24)and (25) are used to ensure that only one product can
be processed at a time in each stage while Eqs. (26) and (27) are
employed to compute the completion time of the time slot s in
stage j (Cgj). The processing time of product i in stage j (Py) is
considered as uncertain while equipment availability can be in-
cluded by adding a new vector of uncertain parameters on the RHS
of Egs. (26) and (27). Another type of uncertainty on the LHS of
Eqs. (26) and (27) can be included if a time proportional to the
completion time is considered as a buffer for maintenance or other
reason, i.e. 0C.

3.7.1. Two-stage scheduling problem under global uncertainty

Initially we consider only 3 products and 2 stages (instance Pg)
with the corresponding data given in the supplementary material
in Table S.8. It is assumed that the processing time for product B at
stage j, is uncertain and uniformly distributed as 4 <6, <8. There
exist two “buffer” times proportional to the completion time of the
third slot of the first stage (Cg3j1) and the first time slot of sec-
ond stage (Csyj2) both uniformly distributed as 0.8 <6 3 <1.2. Fol-
lowing the proposed algorithm in 2.46 s, four globally optimal ex-
plicit solutions are found and their expressions are given Table S.9.
As shown in Table S.9 two optimal integer configurations of the
schedule are computed throughout the range of parameter vari-
ability: C— A — B and B— A — C; insights like this are of great im-
portance for responsive and effective process operations as it be-
comes explicitly known that even if there is a significant degree of
variability in the processing time of product B there is no need to
change the task sequencing.

The use of multi-parametric programming in scheduling prob-
lems is appealing due to the ability to compute offline schedules
that can be readily employed once the uncertainty is realised, thus

quickly.

Next, the case of 5 products scheduling of the two stage man-
ufacturing process was studied in order to test the proposed algo-
rithm for the case of increased dimensionality of the integer vec-
tor. This instance (Pg), involves 25 binary variables, 21 constraints
and 31 continuous variables and in 4,048.3 s a total of 234,600
candidate solutions were computed out of which 25,920 candidate
solutions were linearly independent and thus considered for the
next steps of the algorithm. The computation of the integer fea-
sible candidate solutions returns 1136 explicit solutions together
with the related CRs in 1900 s. The final partition of the paramet-
ric space involves 3 overlapping CRs with explicit solutions that re-
sult in the same explicit objective value, Cs;(#) = 21 + 6, and thus
no CR can be proven to be dominant. The sequencing decisions in-
volved in the overlapping CRs are two alternatives, more specif-
ically, the two integer optimal sequences are: D—-E—C—A—B
and D— A— C— E— B. The explicit solutions are given in Table
S.10.

3.7.2. Multi-objective three stage scheduling problem under global
uncertainty

Finally, the scheduling of a 3 stage process as indicated in
Fig. 10 was examined. Related data and a more detailed descrip-
tion of case study can be found in the work of Ryu et al. (2007).

The manufacture of four products was considered and the un-
certainty has as follows : 67 €[10, 15] as the processing time of
product B in stage 2, 6, €[0.9, 1.1] to model the possibility of a
buffer time that is proportional to the completion time of time
slot 4 in stage 1, 65 €[0, 4] to model equipment availability of the
mixer and finally we consider a modification of the objective in a
weighted sum multi-objective sense where 8,4 [0, 1] indicates the
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Fig. 10. 3 stage process for scheduling.
Table 14

Multi-parametric expressions of the weighted sum objective function of the three
stage scheduling problem along with the related sequencing decisions.

CRy ABCDE CRy3  12(1-6,) — %ﬁr“‘) ABCED
CR, ABDCE  CRy4 ABEDC
CR3 ABCDE CRys 6(1—6,) — % BADEC
CRy ABCDE  CRyg BAECD
CRs ACBDE C(Ry;  6(1—0,) — “0390% CADBE
CRs %% 1+14(1-6,) ACDEB CRy CAEBD
CR; ACDBE CRig 6(1—6,) — %ﬁrm) ACEDB
CRs ABCDE  CRy ACEDB
CRy ABCDE CRy 12(1-6,) — %}95*16) ABCED
CRo ACBDE  CRyp ABEDC
CRn ACDEB  CRy ABCED
CRi» ACDBE  CRy, ABEDC

different preferences of the decision maker with respect to min-
imising the completion time of the fourth time slot of stages 3 and
1. The algebraic model with the incorporated uncertainty is given
by Egs. (5.1)-(S.13) and can be found in the supplementary ma-
terial. Following the proposed algorithm, the KKT system is solved
and 688,320 candidate solutions are returned in 13781.9 s. Some of
the solutions involve linearly dependent solutions sets, by neglect-
ing these solutions the final full-dimensional candidate solutions
are 36,863 which are explicit only in (6, y). Screening the candi-
date solutions for dual and primal feasibility and computing their
CRs takes 808.78 s and the output involves 144 CRs. After 177.4 s
the comparison procedure has removed overlapping CRs that can
be proven to be inferior and the final optimal explicit solution in-
volves 24 CRs and the corresponding multi-parametric expressions
of the optimisers. In Table 14 the explicit weighted sum function
is given along with the related scheduling sequence.

An example of the mathematical expressions that define the re-
lated CRs is given in Eq. (30), for the case of CRy;.

09<6,<1.1
f,+067 =74 = 30
0<6;<12-6 (30)
10<6; <12

CR22 =

4. Discussion

Having demonstrated the main computational steps and appli-
cability of the proposed algorithm in the following section a dis-
cussion on computational issues and the non-convexity of the un-
derlying optimisation problem is presented.

4.1. Computational statistics

Computing the exact explicit solution for mp-MILPs under
global uncertainty is one of the most general and challenging prob-
lems and as a result it is computationally intensive. In the current

Table 15

Computational statistics of the proposed algorithm with respect to the
dimensionality of the inequality constraints (ng), continuous variables
(ny), binary variables (n,) and uncertain parameters (1 ).

ng Ny ny ng Candidate solutions  Total CPU (s)

Py 7 2 2 2 17 0.35

P, 5 2 2 2 8 0.18

Ps 7 4 2 3 6 1.24

Py 10 2 2 3 30 2.54

Ps 8 2 2 4 26 1.95

Ps 5 2 2 6 8 146

P; 15 5 3 3 97 15.41

Pg 11 17 9 5 202 8.46

Py 21 31 25 3 25,920 5948.3
Py 23 35 16 4 36,863 14768.08

work, the proposed algorithm was tested on a number of numer-
ical examples and two case studies of small scale. In Table 15, a
summary of the problems’ statistics is provided along with the
number of candidate solutions that are found.

The number of candidate solutions that are parametric in y and
0 grows rapidly with the number of constraints and continuous
variables with more dependence on the number of constraints. On
the other hand, as illustrated in the case studies, the number of
uncertain parameters and binary variables does not affect the scal-
ability of the proposed algorithm and the reason is twofold: (i)
within the proposed algorithm both of them are treated as sym-
bols until a certain step, leaving the initial computation of the can-
didate solutions unaffected; (ii) for the candidate solutions com-
puted, not all the integer nodes are explored as some of them are
rejected based on the primal or dual feasibility conditions of the
problem.

Especially for the first example the proposed algorithm required
less than 20 comparisons between overlapping solutions while
the same example for half range of uncertainty required in the
best case the solution of 3331 MINLPs and one mp-LP follow-
ing the algorithm proposed in Wittmann-Hohlbein and Pistikopou-
los (2012a). This leads to significant reduction in computational ef-
fort in comparison to approximation based techniques presented in
the literature

4.2. Non-convexity of the underlying problem

As introduced in the “Problem statement” section and illus-
trated through the case studies, the underlying optimisation prob-
lem can be highly non-convex. The main reason is the presence
of bilinear terms that appear as product between the uncertain
parameters and the continuous/integer variables. As illustrated in
Wittmann-Hohlbein and Pistikopoulos (2012b), in order to over-
come this issue, global optimisation techniques should be em-
ployed that could lead to computationally intractable problems for
a modest size example. The case of bilinear terms is undoubtedly
one of the most well studied problem in the global optimisation
literature and remains still a rather active field of research because
of its frequent occurrence as part of important applications. In our
present work, we elegantly circumvent the treatment of bilinear
terms through symbolic manipulation of the uncertain parameters.
Furthermore, as shown, the problem can be discontinuous at some
instances which further exacerbates the computational effort re-
quired.

Although bilinear terms pose a tough difficulty in the solution
of mp-MILPs under global uncertainty, a possibly even more tough
problem nested within the solution is the definition of overlapping
CRs and the comparison procedure that needs to be employed for
its treatment. As discussed previously, in the most general case the
optimisers and thus the optimal explicit value is a fractional poly-
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nomial function of the uncertain parameters. Previous works have
proposed to store overlapping solutions in “parametric envelopes”
where two solutions are stored and the best one is chosen via on-
line function evaluation. Although this could be a possible solution,
it is not the optimal one as it still requires an additional evaluation
procedure for the decision maker. In order to overcome this issue,
we do not consider the conventional polyhedral based definition of
CRs but we generalised the their nature as “semi-algebraic sets”.
Defining the CRs as semi-algebraic sets where a certain number of
conditions hold, in conjunction with the symbolic manipulation we
are able to efficiently compare overlapping solutions, characterising
the overlap and most importantly computing the exact non-convex
CRs. This is due to the fact that a semi-algebraic set can be manip-
ulated in a disjunctive way and thus divide a large complex CR into
more simple one to ease the complexity of the calculations and at
the end reconnect them as a union.

5. Concluding remarks and future research direction

In this work we presented a novel algorithm for the solution of
general mp-MILPs that are subject to global uncertainty. We pre-
sented through a number of case studies the applicability and gen-
erality of the proposed framework as well as some instances that
the proposed framework outperforms in accuracy and/or computa-
tional complexity other algorithms in the literature. Using symbolic
manipulation software to analytically solve the system of equations
derived by the first order KKT conditions, the exact solution of the
general mp-MILPs was computed together with the corresponding
non-convex CRs. The algorithm scales reasonably with the dimen-
sionality of the binary variables and the uncertain parameters for
the cases presented. However, the current bottleneck is that the
number of initial candidate solutions grows rapidly with the num-
ber of constraints and variables. Current developments in symbolic
manipulation, solution of polynomial equations as well as parallel
computing are expected to benefit the practical value of this algo-
rithm. The fractional polynomial nature of the exact explicit solu-
tion poses another major challenge as the degree of polynomials
encountered grows with the dimensionality of the parametric vec-
tor.

Current research in our group is targeted towards the devel-
opment of hybrid schemes for problems under global uncertainty
that could lead to computationally less intensive solution proce-
dures. The findings of present work will be used to study the struc-
ture of the underlying optimisation problem and aid towards fur-
ther improvements, while a more efficient implementation of the
proposed algorithm in a tailored programming environment is an
on-going work.
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