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a b s t r a c t 

Major application areas of the process systems engineering, such as hybrid control, scheduling and syn- 

thesis can be formulated as mixed integer linear programming (MILP) problems and are naturally sus- 

ceptible to uncertainty. Multi-parametric programming theory forms an active field of research and has 

proven to provide invaluable tools for decision making under uncertainty. While uncertainty in the right- 

hand side (RHS) and in the objective function’s coefficients (OFC) have been thoroughly studied in the 

literature, the case of left-hand side (LHS) uncertainty has attracted significantly less attention mainly 

because of the computational implications that arise in such a problem. In the present work, we pro- 

pose a novel algorithm for the analytical solution of multi-parametric MILP (mp-MILP) problems under 

global uncertainty, i.e. RHS, OFC and LHS. The exact explicit solutions and the corresponding regions of 

the parametric space are computed while a number of case studies illustrates the merits of the proposed 

algorithm. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1

 

a  

v  

e  

t  

t  

o  

b  

e  

e  

k  

e  

e  

e  

a  

t  

h  

t  

t  

a  

o  

s  

l  

i  

c  

i  

t  

m  

a  

h  

e  

(  

L  

c  

t  

t  

t  

n  

c  

r  

m  

a  

h

0

. Introduction 

Mathematical modelling is a non trivial task that requires deep

nd thorough understanding of the principles and phenomena in-

olved in the problem under study. Inevitably, mathematical mod-

lling relies on a number of assumptions and simplifications due

o lack of exact knowledge about the system under examination,

hus rendering any solution liable to uncertainty. The classification

f uncertainty in optimisation problems is a challenging task but

roadly one could classify the uncertainty as model intrinsic and

xtrinsic. Model intrinsic uncertainty refers to a number of param-

ters that the modeller does not have explicit knowledge of, e.g.

inetic constants, stoichiometric coefficients, equipment efficiency

tc. For this kind of uncertainty, the value used in the models is

xperimentally calculated or provided by the manufacturer of the

quipment; even in that case, these values cannot be known ex-

ctly and a number of assumptions is usually employed. Note that

his kind of uncertainty, appears most of the times on the left-

and side (LHS) of the constraints. On the other hand, model ex-

rinsic uncertainty refers to data that affect the model due to fac-

ors which cannot be controlled at a level of model abstraction. Ex-

mples of model extrinsic uncertainty can be regarded as, the cost
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f raw material, emissions restriction policies, product demand for

ubsequent planning periods etc. This kind of uncertainty is more

ikely to appear on the right-hand side (RHS) of the constraints and

n the objective function’s coefficients (OFC). Consideration of un-

ertainty in process systems engineering is of great importance as

t can endanger the optimality or even the feasibility of a solu-

ion that was computed in a deterministic way ( Apap and Gross-

ann, 2017; Sahinidis, 2004 ). In an effort to avoid such occasions,

 number of mathematical formulations and solution techniques

ave been proposed in the literature with the goal to create mod-

ls which are robust towards uncertainty. Stochastic programming

 Apap and Grossmann, 2017; Bertsimas and Sim, 2004; Birge and

ouveaux, 2011 ) relies on the availability of historical data which

an provide statistical information about the behaviour of uncer-

ain parameters. In stochastic programming, the unknown parame-

ers are assumed to follow a discrete probability distribution and

he decision variables are classified into two groups: “here and

ow” and “wait and see”. Depending on the instances that the un-

ertainty is expected to be revealed, the mathematical program is

eferred to as “two-stage” or “multi-stage” with the objective to

inimise the cost of the initial actions. Robust optimisation (RO),

ssumes that all constraints of the optimisation should never be

iolated and aims to provide a solution that is feasible regardless

f the extent of the actual uncertainty. Because of that, RO is of-

en conceived as conservative or worst-case oriented ( Ben-Tal and

emirovski, 2002 ). 
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Table 1 

Summary of developments in multi-parametric programming theory. 

Multi-parametric Saaty and Gass (1954) , Yuf and Zeleny (1976) , Schechter (1987) 

Linear programming 

(mp-LP) 

Gal (1995) , Borrelli et al. (2003) , Filippi (2004) , Hladík (2010) , Charitopoulos et al. (2017a) 

Multi-parametric (mixed 

integer) 

Dua et al. (2002) , Bemporad et al. (2002) , TøNdel et al. (2003) 

Quadratic programming 

(mp-(MI)QP) 

Spjøtvold et al. (2006) , Gupta et al. (2011) , Oberdieck and Pistikopoulos (2015) 

Multi-parametric mixed 

integer 

Geoffrion and Nauss (1977) , Jenkins (1990) , Acevedo and Pistikopoulos (1999) 

Linear programming 

(mp-MILP) 

Dua and Pistikopoulos (20 0 0) , Faísca et al. (2009) 

Multi-parametric (mixed 

integer) 

Dua and Pistikopoulos (1998, 1999) 

Nonlinear programming 

(mp-(MI)NLP) 

Acevedo and Salgueiro (2003) , Pistikopoulos et al. (2007) , Fotiou et al. (2006) , Charitopoulos and Dua (2016) , 

Charitopoulos et al. (2017b) 

Multi-parametric Fiacco (1990) , Dua et al. (2004) 

Global optimisation 

(mp-GO) 

Wittmann-Hohlbein and Pistikopoulos (2012a) , Oberdieck et al. (2014) 
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For the study of the effect of uncertain parameters on the op-

timal solution, the two main methodologies reported in the open

literature are: sensitivity analysis and (multi-)parametric program-

ming. The former provides information about the effect of un-

certainty around the neighbourhood of the nominal value while

the latter characterises explicitly its effect on the optimal solution

throughout the entire range of parametric variability. Next, we re-

view the developments in multi-parametric programming theory

in order to familiarise the reader with the topic of this article. 

1.1. Literature review 

Multi-parametric programming (mp-P) is an optimisation based

technique which systematically studies the effect of uncertain pa-

rameters on the optimal solution of mathematical programming

problems. Through multi-parametric programming, one aims to

compute offline, the explicit optimal solution to a mathematical

program which consists of two parts: 

• The optimisers and the optimal objective value as functions of

the uncertain parameters, i.e. x ( θ) and z ( θ), respectively. 
• The regions of the parametric space where each explicit solu-

tion remains optimal. These regions are also known and will be

referred to for the rest of the article as critical regions (CRs). 

The distinct feature of mp-P is the fact that, under the presence

of uncertainty, the need for constant re-optimisation is replaced by

efficient function evaluations that can be performed online when-

ever the uncertainty is realised. For this reason, mp-P has attracted

the interest of many researchers and the main milestones in the

history of mp-P are summarised in Table 1 . 

Gass and Saaty ( 1954, 1955a, 1955b ) shortly after the invention

of the simplex algorithm studied the parametric analysis of the

optimal solution for Linear Programming (LP) problems when un-

certain cost coefficients are considered in the objective functions.

However, the first systematic framework for (multi-)parametric lin-

ear programming (mp-LPs) problems was proposed by Gal and Ne-

doma ( 1972,1975 ) who studied the solution of mp-LPs with per-

turbation on the RHS of the constraints and/or the OFC, i.e. RIM-

mp-LP. For the case of mp-LPs the majority of the algorithms

employ the optimal basis invariancy to create the correspond-

ing CRs and compute the explicit optimisers. On the contrary,

Borrelli et al. (2003) proposed an algorithm for the solution of mp-

LPs based on the direct exploration of the parametric space study-

ing the underlying geometry of the problem. Another algorithm for

mp-LP problems was proposed by Jones and Morrari (2006) who

revisited the classic mp-LP as linear complementary problems and
mployed lexicographic perturbation to efficiently deal with de-

eneracy in mp-LPs. Note that the aforementioned algorithm can

andle RIM-mp-LP problems as well as multi-parametric quadratic

rogramming (mp-QP) problems. 

Multi-parametric mixed integer linear programming (mp-MILP)

roblems, have been studied by Acevedo and Pistikopoulos (1999) ,

ua and Pistikopoulos (20 0 0) , Li and Ierapetritou (2007a) to name

 few. For the solution of mp-MILPs the decomposition approach

f Dua and Pistikopoulos (20 0 0) has proven to be computationally

dvantageous compared to the rest. It involves an iterative scheme

etween the solution of a master MIP problem and slave mp-LPs

ntil the master MIP is infeasible. During this procedure, integer

nd parametric cuts are employed to prevent investigation of pre-

iously explored solutions. 

Multi-parametric (mixed integer) quadratic programming (mp-

MI)QP) problems form another important class of mp-P prob-

ems due to their application in optimal control schemes. The

rst algorithm for mp-QPs was devised by Dua (20 0 0) where the

arush–Kuhn–Tucker (KKT) conditions of optimality were solved

xplicitly and was later on applied in the seminal work of

emporad et al. (2002) leading to the concept of explicit model

redictive control, while in Dua et al. (2002) the mp-MIQP prob-

ems were treated. 

The global optimisation of non-convex mp-NLPs and

p-MILPs with RHS uncertainty was initially discussed by

ua et al. (2004) and the authors proposed four different para-

etric convex overestimators along with a B&B algorithm. Note

hat Fiacco (1990) had proposed a solution technique for global

ptimisation for the case of non convex multi-parametric sepa-

able NLPs restricted to a convex set. Another algorithm for the

lobal optimisation of mp-MILPs for RIM problems was proposed

y Faísca et al. (2009) . The authors follow the decomposition

cheme as in Pertsinidis et al. (1998) and Dua and Pistikopou-

os (20 0 0) where the integer vector is fixed by the solution of a

aster MINLP to global optimality and then is fixed resulting in a

lave mp-LP. Despite the merits of the aforementioned algorithm,

ecause of the non-convex nature of the problem, the comparison

rocedure of overlapping CRs is not always computationally possi-

le and thus the authors for these cases store the corresponding

olutions in a parametric envelope and the best one is chosen

nline through function evaluation. 

Wittmann-Hohlbein and Pistikopoulos (2012b) proposed a com-

utationally efficient two stage method for the approximate solu-

ion of mp-MILPs under global uncertainty. In order to handle LHS

ncertainty, the authors employ worst-case oriented RO and thus

ender the initial problem partially immune to uncertainty. The



V.M. Charitopoulos et al. / Computers and Chemical Engineering 116 (2018) 279–295 281 

p  

w  

R  

c  

A  

s  

l  

(  

p  

t  

θ  

s  

o  

t  

a  

t  

l  

d  

w  

c  

i  

o  

b  

t  

a  

s  

w  

s

1

 

m  

r  

u

m

 

n  

s  

a  

d  

c  

v  

i  

a  

b  

i

 

 

 

 

 

 

 

p  

t  

t  

p  

Table 2 

mp-MILP algorithms. 

Algorithm Uncertainty class Explicit solutions 

per CR 

RHS OFC LHS 

Acevedo and Pistikopoulos (1999) � 1 

Dua and Pistikopoulos (20 0 0) � 1 

Li and Ierapetritou (2007a) � � � 1 

Faísca et al. (2009) � � 2 

Wittmann-Hohlbein and 

Pistikopoulos (2012a) 

� 1 

Oberdieck et al. (2014) � � 1.3 
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artially immune problem is practically an RIM-mp-MILP problem

hich can be solved by existing algorithms. Note that although

O can handle efficiently LHS uncertainty, the resulting solution

an be overly conservative or even unbounded for some instances.

s far as the explicit solutions are considered, again no compari-

on procedure is followed and the determination of the best so-

ution is done via online evaluation. Later on, the same authors

 Wittmann-Hohlbein and Pistikopoulos, 2012a ) studied mp-MILP

roblems with only LHS uncertainty. When LHS is introduced to

he problem, bilinear terms arise either in the form of θ · x or

· y rendering the problem a non-convex mp-MINLP. The proposed

patial B&B scheme from this work encompasses the construction

f suitable McCormick envelopes that transform the LHS uncer-

ainty to RHS and branching schemes on the optimisation variables

nd/or uncertain parameters. Computational studies showed that

he algorithm can be computationally onerous as it results in a

arge number of CRs and also the quality of the solution is highly

ependent on the branching scheme selected. Nevertheless, this

ork underlines the complexity of the resulting mp-P when LHS is

onsidered. Global uncertainty in general mp-MILPs was also stud-

ed by Li and Ierapetritou (2007a) and the authors employed the

ptimality conditions of LPs for the definition of explicit solutions

y retrieving the corresponding optimal bases. When LHS uncer-

ainty was also considered, projection schemes were employed and

pproximations of the non-convex CRs were computed. Finally, a

olution algorithm for the single parametric case of LHS in p-LPs

as devised by Khalilpour and Karimi (2014) that included inver-

ion techniques of perturbed matrices. 

.2. Problem statement 

The aim of this article is to provide a solution algorithm for the

ost general case of mp-MILPs, i.e. the case where uncertain pa-

ameters appear simultaneously on the RHS, OFC and LHS (global

ncertainty) . 

p − MILP Global = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

z( θ) = min 

x , y 
c T ( θ) x + d T ( θ) y 

subject to : A ( θ) x + W ( θ) y ≤ b ( θ) 
�( θ) x + �( θ) y = γ( θ) 
x ∈ X ⊆ R 

n x , y ∈ { 0 , 1 } n y 
θ ∈ � ⊆ R 

� θ

(1) 

Problem (1) , is a multi-parametric programming problem with

on-convex parametric objective function and a non-convex fea-

ible set. The non-convexity of the parametric objective function

rises from the bilinear terms in the form of either c T ( θ) · x or

 

T ( θ) · y . The parametric feasible set of (1) is also non-convex be-

ause of the presence of bilinear terms between the optimisation

ariables, i.e. x and the uncertain entries of the technology matrix,

.e. A ( θ). As already stated in the previous section of the article, the

forementioned problem remains as one of the biggest challenges

ecause of its computational complexity. The challenges involved

n the solution of problem (1) are: 

• The computation of the explicit optimisers, i.e. x ( θ), and the

CRs where each explicit solution is optimal. 
• Because of the non-convex nature of the problem it is likely

that a number of CRs overlap in the same region of the para-

metric space. In order to provide at the end one explicit solu-

tion per CR, one needs to follow a comparison procedure which

in the state of the art requires solving a number of MINLPs to

global optimality. 

Many problems in PSE can be formulated as MILPs and thus

roviding a solution technique for mp-MILPs under global uncer-

ainty can significantly enhance the applied value of such solu-

ions. Acevedo and Pistikopoulos (1997) studied the problem of

lant synthesis under demand uncertainty while uncertainty in
rocess planning has also been formulated as a parametric prob-

em ( Pistikopoulos and Dua, 1998 ). Process scheduling forms an-

ther important class of problems that has been studied through

arametric programming. Ryu et al. (2007) studied the scheduling

f zero-wait batch processes and they considered variable process-

ng times after the employment of linearisation techniques. Jia and

erapetritou (2006) proposed a framework for RHS uncertainty in

cheduling problems that leads to the solution of an mp-MILP

roblem. Li and Ierapetritou (2007b) provided a generalised frame-

ork for process scheduling under uncertainty where depending

n the topology of the uncertainty (RHS, LHS, OFC) different mixed

nteger mp-P problems had to be solved. 

Despite the considerable attention that mp-P has drawn from

he research community ( Charitopoulos and Dua, 2017; Pistikopou-

os et al., 2012 ) the solution of mp-MILPs under global uncertainty

emains one of the least studied problem due to the computational

omplexity involved. In Table 2 an updated summary of the pro-

osed algorithms for mp-MILPs is presented along with the classes

f uncertainty that can be handled. In the third column of Table 2 ,

he average number of explicit solution per CR is given based on

omputational studies reported in corresponding papers. To the

est of our knowledge, no previous research work has been pro-

osed for the exact solution of problem (1) without the employ-

ent of projection or discretisation techniques or through a hybrid

ptimisation scheme. In the present work, we propose a novel al-

orithm for the exact solution of general mp-MILPs under global

ncertainty based on the principles of symbolic manipulation and

emi-algebraic geometry. A significant feature of the proposed al-

orithm lies in the exact computation of non-convex CRs where

nly one globally optimal explicit solution is stored and no need

or online comparison is needed. 

The remainder of the article is organised as follows: in

ection 2 , we introduce the reader to the main concepts that form

he basis for the present work. Then we illustrate the main steps

f the proposed algorithm while the nature of the optimal explicit

olution and the CRs is discussed. To illustrate the solution proce-

ure, in Section 3 , a number of examples are solved. Process syn-

hesis and scheduling case studies underline the potential practi-

al value of the proposed algorithm. A short discussion about the

omputational issues and non-convexity of the problem follows in

ection 4 . Finally, concluding remarks and future research direc-

ions are outlined in Section 5 . 

. Methodology 

.1. Gr ̈o bner bases theory 

The key idea of the proposed algorithm is as follows. Instead

f approaching the solution of the mp-P problem numerically we

xploit concepts from computer algebra. Upon inspection, problem

1) involves bilinear terms of optimisation variables with uncertain 

arameters and within the context of computer algebra this can

e viewed as a “power-product”. Based on this inspection, Gr ̈o bner
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bases theory can be employed for the solution of square system of

equations that is derived by the 1st order KKT conditions of prob-

lem (1) . Before we proceed further it is important to provide some

formal definitions that are crucial in Gr ̈o bner bases theory. 

Let k be any field and let k [ x ] = k [ x 1 , . . . , x t ] be the ring

of polynomials in t indeterminates. Any polynomial can be de-

scribed as a sum of terms of the form: αx 
β1 
1 

. . . x 
βt 
t with α ∈ k and

βi ∈ N , i = 1 , . . . , t and the term x 
β1 
1 

. . . x 
βt 
t is called power-product.

Definition 1. Gr ̈o bner basis ( Buchberger, 2006 ) 

A set of non-zero polynomials G = { g 1 , . . . , g t } contained in an

ideal I , is called a Gr ̈o bner basis for I if and only if for all f ∈ I such

that f � = 0, there exists i ∈ { 1 , . . . , t} such that lp ( g i ) divides lp ( f ),

where lp ( ·) stands for the leading power-product of a polynomial

function. 

In the definition given, an ideal is a set of polynomials of the

form 

[ 

i = 1 ] t 
∑ 

u i g i with g i in G and arbitrary polynomials u i . The

existence of such ideal is guaranteed by the Hilbert Basis theorem

( Buchberger and Winkler, 1998 ), which also guarantees the termi-

nation of algorithms that are used for the computation of Gr ̈o bner

bases. 

Roughly speaking, within Gr ̈o bner bases theory a set of polyno-

mial V is transformed into an other set of polynomials G which is

equivalent to the former but has certain favourable computational

properties. At the core of Gr ̈o bner bases theory the Buchberger al-

gorithm is found ( Buchberger, 2006 ) which is employed for the

computation of the Gr ̈o bner basis of a specific set of polynomi-

als. Buchberger introduced within the algorithm the concept of S -

polynomials as well as provided a theorem for the proposed algo-

rithm which for the sake of space are not discussed in the present

article; however, the interested reader can refer to the book of

Buchberger and Winkler (1998) for further exposition on the sub-

ject. Apart from Buchberger’s algorithm for the computation of

Gr ̈o bner bases, Faug ̀e re devised two algorithms, F4 ( Faugere, 1999 )

and F5 ( Faugere, 1998 ) which compared to Buchberger’s algorithm

are computationally more efficient. F4 is based on linear alge-

bra principles where successive truncated Gr ̈o bner bases are cre-

ated and reductions of the polynomials are performed in parallel;

within the algorithmic routine a symbolic preprocessing step is in-

cluded as well as the author adopted the Buchberger’s criteria for

the selection of the critical pairs of power-products. 

Note, that Mathematica 10, the computer algebra system (CAS)

where the proposed algorithm is implemented uses an optimised

version of the Buchberger’s algorithm. 

2.2. Global uncertainty in general mp-MILPs 

Let us consider again the mp-MILPs under global uncertainty.

Without loss of generality consider the case where the equality

constraints are replaced by opposing inequality constraints thus

leading to the form of problem ( P master ). 

(P master ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

z( θ) = min 

x , y 
c T ( θ) x + d T ( θ) y 

subject to : A ( θ) x + W ( θ) y ≤ b ( θ) 
x ∈ X ⊆ R 

n x , y ∈ { 0 , 1 } n y 
θ ∈ � ⊆ R 

� θ

(2)

Problem ( P master ) is an mp-MILP that involves uncertain param-
eters on the RHS, LHS and OFC. The key idea is to treat both the
uncertain parameters and the binary variables as symbols and thus
reduce ( P master ) to an mp-LP under global uncertainty at the first
stage. Another idea would be to follow a decomposition scheme
similar to Dua and Pistikopoulos (20 0 0) where the decision maker
would iterate between the a Master MILP and slave symbolic mp-
LPs; however we do not explore this option in the present work
as results from the case studies indicate the dimensionality of the
inary variables do not affect significantly the computational com-
lexity of the proposed scheme. Note that idea for the relaxation
f the binary variables as uncertain parameters has been used in
ome of our previous works ( Charitopoulos and Dua, 2016; Chari-
opoulos et al., 2017b; Dua, 2015; Gueddar and Dua, 2012 ). Treating
he binary variables as uncertain parameters between their respec-
ive lower and upper bound results in a relaxed mp-MILP (R-mp-

ILP) which can be solved analytically. 

(R − mpMILP ) 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

z( θ) = min 

x , y 
c T ( θ) x + d T ( θ) y 

subject to : A( θ) x + W( θ) y ≤ b ( θ) 

x ∈ X � { x ∈ R 

n x | x min 
k 

≤ x k ≤ x max 
k 

, k = 1 , . . . , n x } 
y ∈ [0 , 1] n y 

θ ∈ � � { θ ∈ R 

n θ | θl 
min ≤ θl ≤ θmax 

l 
, l = 1 , . . . , n θ } 

(3)

The R-mp-MILP is an augmented mp-P where apart from the

ncertain parameters we consider the relaxed binary variables. For-

ulating the first order KKT conditions for the R-mp-MILP leads to

he system of Eq. (4) . 

(P ) 

{ ∇ x L (x , y , θ) = 0 

λ j (y , θ)( 
∑ n x 

k =1 
a j,k ( θ) x k + 

∑ n y 
k =1 

w j,k ( θ) y k − b j ( θ)) 
= 0 , ∀ j = 1 , . . . , m 

(4)

here L (x , y , θ, λ) = c T ( θ) x + d 

T ( θ) y + λT 
( 
∑ m 

j=1 

∑ n x 
k =1 

a j,k ( θ) x k +
 m 

j=1 

∑ n y 
k =1 

w j,k ( θ) y k − b j ( θ)) is the Lagrangian function of the R-

p-MILP problem. Solving ( P ) analytically results in the explicit

arametric expressions of the optimisation variables, i.e. x ( y , θ) and

he Lagrange multipliers, i.e. λ( y , θ) which will be used in the next

tep to evaluate the optimality and feasibility conditions, i.e. the

on-negativity of the Lagrange multipliers and the satisfaction of

he inactive constraints. The set of solutions computed at this step

re called “candidate solutions”. Candidate solutions, include so-

utions that can be locally or globally optimal or infeasible due

o constraint violation or integrality conditions. In the evaluation

f the candidate solutions the first step is to consider the non-

egativity of the Lagrange multipliers which would lead to the re-

ection of infeasible solutions. Note that by doing so, we avoid to

isit every possible integer node and thus reduce the computa-

ional burden. As next step, we impose the integrality conditions

n the binary variables, i.e. y ∈ [0 , 1] n y → y ∈ { 0 , 1 } n y ; as a result

ow the Lagrange multipliers and the vector of optimisation vari-

bles are functions of the uncertain parameters. i.e. x ( θ), λ( θ) and

he feasibility and optimality qualification is performed so as to

ompute the final “integer feasible solutions”. Note that at the end

f this step, for the “integer feasible solutions” the corresponding

Rs are given by the inequality constraints (5) and (6) . 

j ( θ) ≥ 0 , j = 1 , . . . , m �⇒ optimality conditions (5)

 j ( θ) ≤ 0 , j = 1 , . . . , m �⇒ feasibility conditions (6)

here g j ( θ) stands for the vector of inequality constraints of prob-

em (R-mpMILP) that is now explicit only in θ. If the solution under

valuation is feasible, then the inequality constraints provide a set

f parametric inequalities that form the CR of the integer feasible

olution. 

emark 1. When global uncertainty is considered in mp-MILPs the

xplicit optimisers and the optimal objective value, i.e. x ( θ) and

 ( θ), are fractional polynomial functions of the uncertain parame-

ers continuous within their respective CR but not necessarily con-

inuous in the entire parametric space. The corresponding CRs are

n general non-convex and possibly discontinuous ( Charitopoulos

t al., 2017a; Wittmann-Hohlbein and Pistikopoulos, 2012a ). 

Because of the combinatorial nature of the problem, it is com-

on issue mp-P that some CRs may co-exist in the same space
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Table 3 

Possible outcomes in the definition of CR INT . 

Case 1 CR 1 ⊆CR 2 which means that all constraints of CR 2 are redundant and CR INT = CR 1 
Case 2 CR 1 ⊇CR 2 which means that all constraints of CR 1 are redundant and CR INT = CR 2 
Case 3 The CR INT is defined by a set of active constraints from both CR 1 and CR 2 as both 

CRs have some non-redundant constraints 
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nd thus requiring some dominance criterion so as to decide upon

he dominant CR in the common parametric space; in this work

e follow the same procedure for the comparison and dominance

f overlapping CRs from our latest work ( Charitopoulos and Dua,

016; Charitopoulos et al., 2017a ). 

.3. Cylindrical algebraic decomposition and comparison of 

verlapping CRs 

Defining redundant constraints and computing the new CRs

ithin the comparison procedure is a non-trivial task, especially

or non-convex problems. A comparison procedure for explicit

olutions valid in the same parametric space can be found in

cevedo and Pistikopoulos (1997) . This procedure is applicable

nly for the case of convex CRs, i.e. when the CRs are defined as a

et of linear inequality constraints. In general, while solving a mp-

ILP problem under global uncertainty it can happen that two dif-

erent parametric solutions, i.e. z 1 ( θ) and z 2 ( θ) to be feasible in the

ame parametric space. The comparison procedure aims to identify

he regions where: 

 1 ( θ) − z 2 ( θ) ≤ 0 (7) 

nd 

 2 ( θ) − z 1 ( θ) ≤ 0 (8) 

iven that z 1 ( θ) is valid in CR 1 and z 2 ( θ) is valid in CR 2 . The first

tep is to compute C R INT = C R 1 ∩ C R 2 . 

.3.1. Computation of CR INT and redundant constraints. 

Excluding the case that CR INT = ∅ there are three possible out-

omes in the definition of the CR INT which are described in Table 3

In Fig. 1 the different cases for the definition of the CR INT can

e envisaged. 

For illustration purposes assume that the following two ran-

omly generated CRs, given by Eqs. (9) and (10) , are under exam-

nation. We have chosen to illustrate a case that one of the CRs is

onvex the other one non-convex and their overlap ( CR INT ) is non-

onvex as well, in order to underline the salient feature of the pro-

osed algorithm, i.e. computing exact non-convex CRs. Graphically,

n the parametric space CR 1 and CR 2 are presented in Fig. 2 . 

R 1 = 

{
0 ≤ θ1 , θ2 , θ3 ≤ 1 

θ1 − θ2 

θ1 
+ 25 θ3 ≥ 25 

(9) 

R 2 = 

{
0 ≤ θ1 , θ2 , θ3 ≤ 1 

θ3 − θ1 ≥ 0 . 5 θ2 
(10) 

CR 1 is non-convex while CR 2 is convex as polyhedral and thus

reviously proposed methods for computing their potential over-

ap are not applicable without some kind of convex approxima-

ion. Moreover, identifying redundant constraints and computing

he “dominant” CRs infers a problem of solving inequalities which

re quantified by logical operators ( ∃ , ∀ , ∧ , ¬ etc.). It can be un-

erstood that posing the problem of computing the overlap be-

ween two CRs is equivalent to posing the question “is there any

ange of uncertain parameters for which any inequalities that form

he CRs are simultaneously satisfied?”. This question can be in

urn postulated as the following quantified mathematical formula:

∃ θ| C R i ∧ C R j , for i � = j } where ∧ stands for the “logical and” op-

rator. One of the most widely known and used algorithms for
he solution of quantified systems of inequalities is the Cylin-

rical Algebraic Decomposition (CAD) algorithm ( Jirstrand, 1995;

trzebo ́nski, 20 0 0 ). In brief, one by computing the CAD of a sys-

em of inequalities after a number of projection in the decision

pace (the parametric space in the case of interest for the present

ork) partitions the space into a sets of, typically non-convex, re-

ions where each inequality retains a constant sign. By doing so,

ne can evaluate whether a set of inequalities is satisfied within

ertain regions and at the end compute the final solution to the

ystem of inequalities (in our case, a CR itself, an overlap among

ifferent CRs or the region of the parametric space where an ex-

licit solution dominates another). For a detailed exposition on the

ubject of cylindrical algebraic decomposition the interested reader

s referred to the tutorial article of Jirstrand (1995) . 

As mentioned above, in the present work Mathematica was em-

loyed for the analytic solution of the mp-MILP under global un-

ertainty. Specifically, for the comparison procedure the command

Reduce” was employed which involves an implementation of the

AD algorithm. “Reduce” is a command in Mathematica that qual-

fies sets of conditional arguments within a given set of parame-

ers and computes a new set within which these conditional state-

ents are satisfied. A detailed exposition on the specifics of the

unction can be found in Strzebo ́nski (20 0 0) where the author

etails the different strategies employed internally in Mathemat-

ca. For example in the definition of the intersection of two CRs

 CR INT ), “Reduce” identifies the redundant constraints of both CRs

nd computes the region of parametric space where both CRs ex-

sts; for the case that the CRs do not overlap the output of “Re-

uce” is a “False” statement equivalent to the argument CR INT = ∅ . 
Defining the CR INT thus infers computing the CAD of the para-

etric space where both CR 1 and CR 2 are always valid and a part
f its mathematical expression is given by Eq. (11) . In Fig. 1 the
eshed area of the parametric space represents the overlap of the

wo CRs. 

R INT = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 < θ1 ≤ 0 . 049 

{
0 ≤ θ2 ≤ θ1 (20 + θ1 ) 

0 . 2 − 0 . 04 θ1 + 

0 . 04 θ2 

θ1 
≤ θ3 ≤ 1 

0 . 049 ≤ θ1 ≤ 0 . 099 

{
0 ≤ θ2 ≤ 1 

0 . 2 − 0 . 04 θ1 + 

0 . 04 θ2 

θ1 
≤ θ3 ≤ 1 

. 

. 

. 

. 

. 

. 

0 . 5 ≤ θ1 ≤ 1 

{
0 ≤ θ2 < 2 − 2 θ1 

θ1 + 0 . 5 θ2 ≤ θ3 ≤ 1 

(11) 

The redundant constraints from each CR can be computed as

C CR i 
= { θ| θ ∈ (CR i ∧ (¬ CR INT )) } , ∀ i = 1 , 2 using CAD computations.

.3.2. Computation of CR REST and the final non-overlapping CRs. 

After the definition of the CR INT the dominance criterion can be

xpressed by the conditional inequality (12) . 

 1 ( θ) − z 2 ( θ) ≤ 0 , θ ∈ CR INT (12) 

As a next step, excluding the case that CR INT = ∅ , the compar-

son procedure is continued and a new set of conditional state-

ents is qualified, given by (12) . The output of this step is used

o as to define the CR REST i 
, given by (13) and (14) , while the two

odified CRs after the comparison procedure no longer overlap. 

R REST 1 = { θ| θ ∈ (CR INT ∧ ( z 1 ( θ) ≤ z 2 ( θ) ) } (13) 
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Fig. 1. Definition of CR INT . 
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R REST 2 = { θ| θ ∈ (CR INT ∧ ( z 1 ( θ) ≥ z 2 ( θ) ) } (14)

Following the comparison procedure for the previous illustra-

tive case, assume that z 1 ( θ) − z 2 ( θ) = −2 θ1 − 19 θ2 + 2 θ3 − 68 . In

order to identify the dominant solution for the illustrative case

the related CAD is computed in order to evaluate (12) . The out-

put of the “Reduce” in the present case a new set of inequalities,

namely CR Rest ; this is the fraction of CR INT in which z 1 ( θ) ≤ z 2 ( θ).

More specifically in the case, the explicit solution of CR 1 is always

dominant in the overlap of the two CRs and thus C R REST 1 
≡ C R INT 

while CR REST 2 
= ∅ . 

After the CR REST regions are computed the final CRs can be com-

puted as follows: 

R 

f in 
1 

= { θ| θ ∈ (CR 1 ∧ (¬ CR REST 2 ) } (15)

R 

f in 
2 

= { θ| θ ∈ (CR 2 ∧ (¬ CR REST 1 ) } (16)

R 

f in 
2 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

θ3 ≤ 1 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

θ1 = 0 

{
θ2 = 0 & θ3 ≥ 0 

0 ≤ θ2 ≤ 1 & 0 . 5 θ2 ≤ θ3 

θ1 > 0 & θ1 (θ1 + 20) < θ2 ≤ 1 & θ1 + 0

θ1 = 0 . 0498 & 0 ≤ θ2 ≤ 1 & 0 . 5 θ2 + 0 . 0498 

θ2 ≥ 0 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 . 04 θ1 + θ3 < 0 . 2 + 

0 . 04 θ2 

θ1 
& θ1 + 0 . 5 θ2 ≤ θ3 

⎧ ⎪ ⎨ 

⎪ ⎩ 

θ

0
0

θ1 = 0 . 0992 & 0 . 5 θ2 + 0 . 0992 ≤ θ3 & θ3 < 0 . 40
0 < θ1 < 0 . 0498 & θ2 = θ1 (20 + θ1 ) & θ1 + 0 . 5 θ2 ≤ θ3 
Finally, the two CRs that no longer overlap are presented graph-

cally in Fig. 3 , the mathematical expression of CR 2 is given by

q. (17) while the mathematical expression of CR 1 remains the

ame as the one given by Eq. (9) . Notice that z 1 ( θ) is globally op-

imal in CR 
f in 
1 

and z 2 ( θ) is globally optimal in CR 
f in 
2 

. 

 

≤ θ3 

< 0 . 198 + 0 . 8019 θ2 

 . 0992 & θ1 (θ1 (θ1 + 0 . 48 θ2 − 0 . 272) 
0 . 0769 θ2 + 0 . 0153) + 0 . 003 θ2 < 0) 

 

< 0 . 0498 & θ2 < θ1 (θ1 + 20) 
8 < θ1 < 0 . 0992 & θ2 ≤ 1 . 

 θ2 + 0 . 196 

(17)

A flowchart of the main steps for the exact solution of general

p-MILPs under global uncertainty is given in Algorithm 1 while

 more elaborate description is given in Algorithm S.2. 

emark 2. Note that when LHS uncertainty is considered in the

oefficients of the binary variables exact linearisation techniques

an be employed to transform the LHS to RHS uncertainty. More

pecifically, following the Glover transformation ( Glover, 1975 ) the

roduct between an uncertain parameter and a binary variable,

or the case of non-negative uncertain parameter, can be ex-

ressed with the help of an artificial variable, i.e. θRHS = θ · y , as:

(y − 1) θup + θ ≤ θ ≤ θup , θ ≤ θ . 



V.M. Charitopoulos et al. / Computers and Chemical Engineering 116 (2018) 279–295 285 

Algorithm 1: Algorithm for global mp-MILPs. 

Input: mp-MILP problem 

Output: 	: List of explicit solutions and their 

correspondingCRs 

1: ( x ( y , θ) , λ( y , θ) , z ( y θ)) ← ( void , void , ∞ ) 

2: LIST ← ∅ 
3: Formulate the 1 st order KKT conditions of problem (3) 

4: Solve problem (P 1 ) using Gr ̈o bner Bases for ( x (y θ) , λ(y , θ) ) 

5: if problem (P 1 ) is infeasible then : 

6: 	 = ∅ 
7: else : 

8: Add ( x ( y , θ) , λ( y , θ) ) to LIST 

9: while κ ≤ length(LIST) : 

10: for j = 1 , m : 

11: Substitute (λκ
j 
(y , θ)) in inequalities (5) 

12: if inequalities (5) hold for some θ ∈ � then : 

13: Keep element ( x κ (y , θ) , λκ
(y , θ) ) to LIST 

14: else : 

15: Remove element ( x κ (y , θ) , λκ
(y , θ) ) fr om LIST 

16: end if 

17: end for 

18: end while 

19: while κ ≤ length(LIST) : 

20: y ∈ [0 , 1] n y → y ∈ 0 , 1 n y (Integrality conditions on y ) 

21: for j = 1 , m : 

22: Substitute (x κ (y , θ) , λκ
j (y , θ)) in inequalities (5) − (6) 

23: if inequalities (5) − (6) hold for some θ ∈ � then : 

24: for ω = 1 , 2 n y : 

25: CR 

ω 
κ � { θ ∈ �| λκ

j 
( θ) ≥ 0 ∧ g j ( x 

κ ( θ)) ≤ 0 } 
26: for each CR 

ω 
κ check CR 

ω 
κ ∩ CR 

ω ′ 
κ ′ : 

27: if CR 

ω 
κ ∩ CR 

ω ′ 
κ ′ � = ∅ then : 

28: Perform dominance criterion 

29: end if 

30: end for 

31: Add element (x ω κ (θ ) , z ω κ (θ ) , CR 

ω 
κ ) to 	

32: else CR 

ω 
κ � ∅ and (x ω κ (θ ) , λω 

κ (θ )) is infeasible solution 

33: end if 

34: end for 

35: end while 

36: end if 

37: return 	

Fig. 2. CR 1 and CR 2 in the parametric space. 

Fig. 3. Final non-overlapping CRs in the parametric space. 
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emark 3. Note that despite the fact that in the proposed algo-

ithm we refer only to binary variables the algorithm is applica-

le to integer variables too, as illustrated in a similar work by

ua (2015) . 

. Case studies 

In the present section the main steps of the proposed algorithm

re demonstrated on a number of illustrative examples and case

tudies. 

.1. Example 1: mp-MILP with LHS uncertainty 

In order to illustrate to applicability of the proposed method-

logy for the case of mp-MILPs we consider the following mp-

ILP problem with LHS uncertainty ( Wittmann-Hohlbein and Pis-

ikopoulos, 2012a ). 

HS − mpMILP 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

z(θ ) = min 

x,y 
(−2 x 1 − x 2 + y 1 + y 2 ) 

subject to : x 1 + (3 + θ1 ) x 2 + y 1 ≤ 9 

(2 + θ2 ) x 1 + x 2 − y 2 ≤ 8 

x 1 − y 1 + y 2 ≤ 4 

0 ≤ x 1 ≤ 4 , 0 ≤ x 2 ≤ 3 

y 1 , 2 ∈ { 0 , 1 } , −10 ≤ θ1 , 2 ≤ 10 

(18) 

Following the proposed algorithm, first the Lagrangian function

f problem (18) is formulated as shown in Eq. (19) . 

 (x 1 , x 2 , y 1 , y 2 , θ1 , θ2 , λ1 , λ2 , λ3 , λ4 , λ5 , λ6 , λ7 ) 

= −2 x 1 − x 2 + y 1 + y 2 + λ1 (x 1 + (3 + θ1 ) x 2 + y 1 − 9) 

+ λ2 (2 + θ2 ) x 1 + x 2 − y 2 − 8 ) + λ3 (x 1 − y 1 + y 2 − 4) 

+ λ4 (−x 1 ) + λ5 (−x 2) + λ6 (x 1 − 4) + λ7 (x 2 − 4) (19) 

Next, the gradient of the Lagrangian is computed with respect

o the optimisation variables, i.e. x 1 , x 2 and is given in Eq. (20) . 

 x 1 ,x 2 L = [( θ2 + 2) λ2 + λ1 + λ3 − λ4 + λ6 − 2 , ( θ1 + 3) λ1 

+ λ2 − λ5 + λ7 − 1] T (20) 
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Table 4 

Candidate solutions of LHS − mpMILP . 

x 1 x 2 λ1 λ2 λ3 λ4 λ5 λ6 λ7 

1 8 θ1 + y 1 + θ1 y 2 +3 y 2 +15 
θ1 θ2 +2 θ1 +3 θ2 +5 

9 θ2 −θ2 y 1 −2 y 1 −y 2 +10 
θ1 θ2 +2 θ1 +3 θ2 +5 

θ2 

θ1 θ2 +2 θ1 +3 θ2 +5 
2 θ1 +5 

θ1 θ2 +2 θ1 +3 θ2 +5 
0 0 0 0 0 

2 0 8 + y 2 0 1 0 θ2 0 0 0 

3 4 y 2 − 4 θ2 0 1 0 0 0 −θ2 0 

4 y 1 − y 2 + 4 −4 θ2 − θ2 y 1 − 2 y 1 + θ2 y 2 + 3 y 2 0 1 −θ2 0 0 0 0 

5 y 2 +8 
θ2 +2 

0 0 2 
θ2 +2 

0 0 − θ2 

θ2 +2 
0 0 

6 y 2 +5 
θ2 +2 

3 0 2 
θ2 +2 

0 0 0 0 θ2 

θ2 +2 

7 4 3 0 0 0 0 0 2 1 

8 4 0 0 0 0 0 −1 2 0 

9 0 3 0 0 0 −2 0 0 1 

10 0 0 0 0 0 −2 −1 0 0 

11 4 + y 1 − y 2 3 0 0 2 0 0 0 1 

12 y 1 − y 2 + 4 0 0 0 2 0 −1 0 0 

13 0 9 −y 1 
θ1 +3 

1 
θ1 +3 

0 0 − 2 θ1 +5 
θ1 +3 

0 0 0 

14 4 5 −y 1 
θ1 +3 

1 
θ1 +3 

0 0 0 0 2 θ1 +5 
θ1 +3 

0 

15 y 1 − y 2 + 4 − 2 y 1 −y 2 −5 
θ1 +3 

1 
θ1 +3 

2 θ1 +5 
θ1 +3 

0 0 0 0 0 

16 9 − y 1 0 0 0 0 0 5 + θ1 0 0 

17 −y 1 − 3 θ1 3 2 0 0 0 0 0 −5 − 2 θ1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Final CRs of the LHS-mp-MILP. 
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Note that the components of the gradient of the Lagrangian are

explicit in θ and λ and also because of the existence of uncertain

parameters in the constraint matrix nonlinear products of the form

λ · θ are present. After the gradient of the Lagrangian is computed,

the first order KKT conditions are formulated and this results in a

square system of 9 equations and 9 unknowns. More specifically,

n x equations are from the condition that the gradient of the La-

grangian must be zero and n g equations are given by the strict

complementary slackness conditions. Solving the KKT system, re-

sults in 17 candidate solutions as shown in Table 4 . 

It takes 0.12 s for Mathematica to compute 17 candidate so-

lutions for problem (18) of which, after qualifying with the non-

negativity condition of the Lagrange multipliers, the 8th, 9th and

12th candidate solutions are removed from further consideration.

By substituting the explicit expressions of the optimisation vari-

ables, i.e. x 1 ( y , θ) and x 2 ( y , θ), in the inequality constraints the fea-

sibility of the candidate solutions is examined. At this point, based

on the proposed algorithm, the integrality conditions are imposed

on the binary variables and this results in the explicit expressions

of the optimisation variables and the Lagrange multipliers in θ and

the 56 solutions that are now left, based on each possible inte-

ger combination of the binary variables, are called “integer candi-

date solutions”. For these solutions, the feasibility and optimality

conditions are qualified next. The output of the qualification with

the feasibility and optimality conditions can either be an empty

set, meaning that the corresponding integer candidate solution is

integer infeasible, or a set of parametric inequalities that denote

a region in the parametric space. If that region in the parametric

space exists, then this is called the CR of the integer feasible so-

lution; otherwise this solution is removed. Because of the combi-

natorial nature of the problem, some of the feasible solutions after

this step were found to overlap and the comparison procedure was

employed. The final explicit solution is given in Table 5 . 

In Fig. 4 the final partition of the parametric space is shown af-

ter the comparison procedure so as to highlight that the optimal

partition does not consist only of polyhedral regions. This can be

further understood by the explicit expressions of the correspond-

ing CRs that involve fractional terms. A visual representation of

the optimal objective function in the parametric space is shown in

Fig. 5 where the non-convexity of the underlying problem is dis-

tinct. 

3.2. Example 2: mp-MILP with global uncertainty 

Next the following numerical example is considered from

Wittmann-Hohlbein and Pistikopoulos (2012b) . Uncertainty is con-
idered in the cost coefficients of both continuous and binary vari-

bles, the LHS and the RHS of the constraints. 

(P 2 ) := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

z( θ) = min 

x,y 
(6 . 4 + 0 . 25 θ1 ) x 1 + 6 x 2 

+(7 . 5 + 0 . 3 θ1 ) y 1 + 5 . 5 y 2 
Subject to: 0 . 8 x 1 + (0 . 67 + 0 . 015 θ1 ) x 2 ≥ 10 + θ2 

x 1 ≤ 40 y 1 
x 2 ≤ 40 y 2 
x 1 , 2 ≥ 0 

y 1 , 2 ∈ { 0 , 1 } 
−20 ≤ θ1 , 2 ≤ 20 

Solving the problem based on the proposed algorithm, 8 candi-

ate set of solutions are computed out of which 2 are rejected be-

ause of violation of the non-negativity of the Lagrange multipliers.

ext, for the remaining six candidate solutions, the integrality con-

itions are imposed and thus 24 integer candidate solutions arise.

ote that after this step, both the Lagrange multipliers and the op-

imisation variables are explicit functions of the uncertain parame-

ers as shown in Table S.1, for the case that the binary variables are
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Table 5 

Optimal explicit solutions and CRs of LHS-mp-MILP. 

i y 1 y 2 x i 1 x i 2 z i CR i 

1 0 0 (−8 θ1 −15) 
θ1 θ2 +2 θ1 +3 θ2 +5 

−9 θ2 −10 
θ1 θ2 +2 θ1 +3 θ2 +5 

2(−8 θ1 −15) −9 θ2 −10 
θ1 θ2 +2 θ1 +3 θ2 +5 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{
− 5 

6 
≤ θ1 ≤ 0 

0 ≤ θ2 ≤ −6 θ1 −5 
3 θ1 {

θ1 ≥ 0 

θ2 ≤ 0 

2 0 0 4 −4 θ2 −8 + 4 θ2 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{
θ1 ≤ − 5 

6 

0 ≤ θ2 {
− 5 

6 
≤ θ1 ≤ 0 

θ2 ≥ −6 θ1 −5 
3 θ1 

3 0 0 − 5 
2+ θ2 

3 −3 − 10 
2+ θ2 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{
θ1 ≤ − 4 

3 

− 3 
4 

≤ θ2 ≤ 0 {
− 4 

3 
≤ θ1 

- 5 
12+4 θ1 

≤θ2 ≤ 0 

4 0 0 4 3 −11 

{
θ1 ≤ − 4 

3 

θ2 ≤ − 3 
4 

5 0 0 4 − 5 
3+ θ1 

−8 − 5 
3+ θ1 

{
θ1 ≥ − 4 

3 

θ2 ≤ − 5 
12+4 θ1 

Table 6 

Results of example 2. 

(a) Explicit solution of example 2 

x 1 x 2 y 1 y 2 z ( θ) 

if [ θ1 θ2 ] ∈ CR 1 0 0 1 0 0 . 3 θ1 + 7 . 5 

if [ θ1 θ2 ] ∈ CR 2 0 66 . 67 θ2 +666 . 67 
θ1 +44 . 67 

0 1 5 . 5 θ1 +400 θ2 +4245 . 67 
θ1 +44 . 67 

if [ θ1 θ2 ] ∈ CR 3 1 . 25 θ2 + 12 . 5 0 1 0 0 . 3125 θ1 θ2 + 3 . 425 θ1 + 8 θ2 + 87 . 5 

(b) Critical regions of example 2 

Critical regions Mathematical expression 

CR 1 := 

{
−20 ≤ θ1 ≤ 20 

−20 ≤ θ2 ≤ −10 

CR 2 := 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{
0 ≤ θ1 ≤ 20 

−10 ≤ θ2 ≤ −8 {
−0 . 0675 ≤ θ1 ≤ 0 

−8 ≤ θ2 ≤ θ1 (−10 . 96 θ1 −751 . 947)+1079 . 47 
θ1 ( θ1 +70 . 2667) −136 . 533 

CR 3 := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

{
−20 ≤ θ1 ≤ −0 . 0675 

−10 ≤ θ2 ≤ 20 

−0 . 0675 ≤ θ1 ≤ 0 

{
θ1 (−10 . 96 θ1 −751 . 947)+1079 . 47 

θ1 ( θ1 +70 . 2667) −136 . 533 
≤ θ2 ≤ 20 

−10 ≤ θ2 ≤ −8 {
0 ≤ θ1 ≤ 20 

−8 ≤ θ2 ≤ 20 

Fig. 5. 3D plot of the optimal objective function in the parametric space. 
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xed to be 1. The final explicit results along with the correspond-

ng CRs are given in Table 6 

It is interesting to note that the second final parametric solu-

ion is discontinuous at θ1 = 44 . 667 . Despite that the present work

s based on the grounds of computer algebra and symbolic manip-

lation, the answer for this discontinuity can be given from a lin-

ar algebra perspective. For the second explicit solution, the active

onstraints are the first one and the non-negativity of x . The cor-
1 
esponding technology matrix is given in (21) . 

 acti v e = [ −0 . 8 − 0 . 67 − 0 . 015 θ1 , −1 0] (21) 

Now, if the integrality constraints are dropped and the problem

s considered as an LP, for this solution to be basic the basic matrix,

.e. A acti v e , has to be invertible and thus its determinant has to be

on-zero. For the determinant of (21) to be nonzero it is computed

hat −0 . 8 + 0 . 67 + 0 . 015 θ1 � = 0 → θ1 � = 44 . 667 and justifies why z 2
ecomes discontinuous at this point, which however is beyond the

xamined region for the present case study. 

.3. Example 3: mp-MILP global uncertainty 

This example is taken from Wittmann-Hohlbein and Pistikopou-

os (2012b) and includes uncertain entries in the RHS, OFC and

HS. 

(P 3 ) := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

z( θ) = min 

x,y 
θ1 x 1 + x 2 + y 1 

Subject to : x 1 + θ3 x 2 + x 4 = 1 + θ1 y 2 
−x 1 + x 2 + x 3 = θ2 + 2 y 1 
y 2 − y 1 ≤ 0 

x i ≥ 0 , ∀ i = 1 , . . . , 4 

y 1 , 2 ∈ { 0 , 1 } 
−5 ≤ θ1 , 2 , 3 ≤ 5 
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Table 7 

Explicit solutions of example 3. 

x 1 x 2 x 3 x 4 y 1 y 2 z ( θ) 

if [ θ1 θ2 , θ3 ] ∈ CR 1 1 0 θ2 + 3 0 1 0 θ1 + 1 

if [ θ1 θ2 , θ3 ] ∈ CR 2 1 0 θ2 + 1 0 0 0 θ1 

if [ θ1 θ2 , θ3 ] ∈ CR 3 
θ1 −θ2 θ3 −2 θ3 +1 

θ3 +1 
θ2 + θ1 +3 

θ3 +1 
0 0 1 1 

θ2 
1 −θ1 (( θ2 +2) θ3 −2)+ θ2 + θ3 +4 

θ3 +1 

if [ θ1 θ2 , θ3 ] ∈ CR 4 
−θ2 θ3 −2 θ3 +1 

θ3 +1 
θ2 +3 
θ3 +1 

0 0 1 0 θ1 (−θ2 ) θ3 −2 θ1 θ3 + θ1 + θ2 + θ3 +4 
θ3 +1 

if [ θ1 θ2 , θ3 ] ∈ CR 5 
−θ2 θ3 −2 θ3 +1 

θ3 +1 
θ2 +1 
θ3 +1 

0 0 0 0 - θ1 θ2 θ3 + θ1 + θ2 +1 
θ3 +1 

if [ θ1 θ2 , θ3 ] ∈ CR 6 0 0 θ2 + 2 0 1 0 1 

if [ θ1 θ2 , θ3 ] ∈ CR 7 0 0 θ2 0 0 0 0 

if [ θ1 θ2 , θ3 ] ∈ CR 8 −θ2 − 2 0 0 θ2 + 3 1 0 - θ1 θ2 − 2 θ1 + 1 

if [ θ1 θ2 , θ3 ] ∈ CR 9 −θ2 0 0 θ2 + 1 0 0 −θ1 θ2 
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The solution of the problem returns 6 candidate set of solutions

and after the integrality conditions are imposed 13 integer candi-

date solutions are obtained; note that the 13 integer candidate so-

lutions are now parametric only in θ. Qualifying with the primal

and dual optimality conditions 13 explicit solutions and CRs are

computed and the comparison procedure follows next. At this step,

a number of different integer solutions were found to be cost-wise

identical and thus dominance in these case cannot be proven. For

these cases, we investigated two different scenarios where in the

first one the solutions of integer vector y = [1 1] were preferred to

those with integer vector y = [1 0] and vice versa but for the sake

of space only the first scenario is reported herein in Table 7 and

Table S.2. Note that the final explicit solutions are in general frac-

tional polynomial functions of θ and the CRs are non-convex with

a number of them discontinuous as shown in Fig. 6 , e.g. CR 9 . 

For the sake of space the mathematical expression of CR 5 is

omitted as it was found to be three pages long. The explicit math-

ematical expressions of the CRs given in Tables S.2–S.4 show that

CRs are not necessarily convex while in the present example the

order of polynomials involved are up to 3. Finally, it is worth notic-

ing that even though CR 4 and CR 5 are individually fragmented, at

the final representation of the parametric space in Fig. S.1 the fea-

sible solution set is compact and the objective function continuous

across the different regions. 

3.4. Example 4: mp-MILP global 

Another example involving global uncertainty was adopted

from Dua and Pistikopoulos (20 0 0) . The corresponding mp-MILP

under global uncertainty is given in ( P 4 ). 

(P 4 ) := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

z( θ) = min 

x,y 
− θ1 x 1 − 2 x 2 + 10 y 1 + 5 y 2 

Subject to : x 1 + θ3 x 2 ≤ 20 

x 1 + 2 x 2 ≤ 12 

x 1 ≤ 10 

x 2 ≤ 10 

x 1 ≤ 20 y 1 
x 2 ≤ 20 y 2 
x 1 − x 2 ≤ θ2 − 4 

1 ≤ y 1 + y 2 
x i ≥ 0 , ∀ i = 1 , 2 

y 1 , 2 ∈ { 0 , 1 } 
1 ≤ θ1 ≤ 6 , 0 ≤ θ2 , 3 ≤ 5 

Following the proposed algorithm the first order KKT system of

equations is solved so as to compute symbolically the optimisation

variables and the Lagrange multipliers as functions of the binary

variables and the uncertain parameters, i.e. x 1, 2 ( y 1 , y 2 , θ1 , θ2 , θ3 )

and λ1 , ... , 10 ( y 1 , y 2 , θ1 , θ2 , θ3 ) , respectively. Note that despite that

the optimisation variables are two we seek analytical solution of

the Lagrange multipliers thus 12 variables in total. For the specific

system of equations, 30 candidate solutions are computed of which

9 are integer feasible and are subsequently examined for overlaps.

An example of overlapping solutions is the first candidate solution
or the case that both binary variables are equal to 1, i.e. CR 111 ,

nd the ninth candidate integer solution for the binary vector [1

], i.e. CR 910 . In Fig. 7 a graphical representation of the two over-

apping regions is given where their overlap is marked with gray

olour. Once the overlapping regions are identified the comparison

rocedure is enabled. For this specific case the solution of the so-

ution stored in CR 910 was found to be inferior compared to the

ne stored in CR 111 and as a result the overlap ( CR INT ) was sub-

racted from CR 910 . Graphically this procedure is shown in Fig. 8

here from the initial CR the part of the overlap where this CR is

nferior is getting cut off and thus resulting in the computation of

he new CR. Mathematically, this procedure requires the elimina-

ion of the quantifiers in the corresponding Boolean formula and

he computation of the semi-algebraic set where the correspond-

ng conditions can be satisfied always. 

In order to compute the final globally optimal explicit solutions

f the present examples, during the identification of overlapping

Rs, 18 comparisons where performed and 4 final solutions are

omputed. It is worth mentioning that in the present example,

ome of the solutions with different integer vectors were found to

e cost-wise identical and thus the comparison procedure could

ot prove dominance of either one. In those cases, we decided to

eep both of the CRs and after the termination of the algorithm in

 post-processing step CRs with identical solutions were merged.

he explicit solutions of the example ( P 4 ) are given in Table 8 and

he corresponding CRs in Table S.5. The graphical partition of the

arametric space is envisaged in Fig. S.2. 

.5. Example 5: mp-MILP global 

This example involves uncertain parameters in the objective

unction’s coefficient, the right-hand side of the second constraint

nd for left-hand side uncertainty we consider coefficients of con-

inuous and binary variables. The four uncertain parameters are al-

owed to vary between 0 and 10. 

(P 5 ) := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

z( θ) = min 

x,y 
(−3 + θ1 ) x 1 − 8 x 2 + 4 y 1 + 2 y 2 

Subject to : x 1 + x 2 ≤ 13 + θ2 

(5 + θ3 ) x 1 − 4 x 2 ≤ 20 

−8 x 1 + 22 x 2 ≤ 121 

x 1 ≤ θ4 y 1 
x 2 ≤ 20 y 2 
−4 x 1 − x 2 ≤ −8 

x 1 , 2 ≥ 0 

y 1 , 2 ∈ { 0 , 1 } 
0 ≤ θ1 , 2 , 3 , 4 ≤ 10 

The first step of the proposed algorithm results in 26 candidate

olutions. The final integer feasible solutions are 7. From these, 3

xplicit solutions are discarded after the dominance procedure and

hus the final optimal explicit solutions are 4 and given in Table 9 .

he corresponding CRs are given in Table S.6. 
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Fig. 6. Critical regions of ( P 3 ). 

Table 8 

Explicit solutions of ( P 4 ). 

x 1 x 2 y 1 y 2 z ( θ) 

if [ θ1 θ2 , θ3 ] ∈ CR 1 
4+2 θ2 

3 
16 −θ2 

3 
1 1 1 

3 
(−2 θ1 (θ2 + 2) + 2 θ2 + 13) 

if [ θ1 θ2 , θ3 ] ∈ CR 2 
(θ2 −4) θ3 +20 

θ3 +1 
24 −θ2 

θ3 +1 
0 1 −θ1 ((θ2 −4) θ3 +20)+2 θ2 +5 θ3 −43 

θ3 +1 

if [ θ1 θ2 , θ3 ] ∈ CR 3 0 6 0 1 −7 

if [ θ1 θ2 , θ3 ] ∈ CR 4 0 20 
θ3 

0 1 5 − 40 
θ3 
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Table 9 

Explicit solutions of example 5. 

x 1 x 2 y 1 y 2 z ( θ) 

if [ θ1 θ2 , θ3 , θ4 ] ∈ CR 1 
461 

39+11 θ3 

121 θ3 +765 
22 θ3 +78 

1 1 462 θ1 −418 θ3 −4212 
11 θ3 +39 

if [ θ1 θ2 , θ3 , θ4 ] ∈ CR 2 
55 
96 

137 
24 

1 1 55 θ1 −3973 
96 

if [ θ1 θ2 , θ3 , θ4 ] ∈ CR 3 
11(15+2 θ2 ) 

30 
225+8 θ2 

30 
1 1 (11 θ1 (2 θ2 +15) −5(26 θ2 +423)) 

30 

if [ θ1 θ2 , θ3 , θ4 ] ∈ CR 4 θ4 
(121+8 θ4 ) 

22 
1 1 

(
θ1 − 65 

11 

)
θ4 − 38 

Fig. 7. Instance of overlapping CRs in the parametric space. 

Fig. 8. Graphical illustration of the computation of new CR after the comparison 

procedure in the parametric space. 
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3.6. Process synthesis under global uncertainty 

3.6.1. Case study 1 

The present case study deals with the selection between two

chemical reactors for the manufacture of a chemical product. As-

sume that the engineer has to choose between a reactor I, the

selection of which is denoted by the binary variable y 1 , that can

accomplish higher conversion rate at more cost. The other option

is reactor II, the selection of which is denoted by y 2 , that pro-

vides lower production yield at lower cost. The aim is to minimise

the cost. However, the data that are available are not reliable and

thus uncertain parameters have to be considered for the produc-

tion cost, the production yield and the demand. The problem is
ormulated as a mp-MILP under global uncertainty as follows: 

(P 6 ) := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

z( θ) = min 

x , y 
(6 . 4 + 0 . 25 θ1 ) x 1 + (6 − θ6 ) x 2 

+(7 . 5 + 0 . 3 θ1 ) y 1 + 5 . 5 y 2 
Subject to: 0 . 8 x 1 + (0 . 67 + 0 . 015 θ1 ) x 2 ≥ 10 + θ2 

θ5 x 1 ≤ θ3 y 1 
θ4 x 2 ≤ 40 y 2 
x i ≥ 0 , ∀ i = 1 , 2 

y 1 , 2 ∈ { 0 , 1 } 
2 ≤ θ1 ≤ 10 , 0 ≤ θ2 ≤ 10 , 0 ≤ θ3 ≤ 200 

1 ≤ θ4 ≤ 4 , 0 ≤ θ5 ≤ 4 , 0 ≤ θ6 ≤ 8 

The total number of candidate solutions are 8 as shown in Table

.7. 

Following the steps of Algorithm 1 , 4 integer feasible paramet-

ic solutions are found and the final ones are 3. Notice, that al-

hough the number of candidate solutions does not grow, the de-

ree of power-products that appear in the optimisers and the La-

range multipliers grows. The final explicit solutions of the case

tudy 1 are given in Table 10 while the corresponding CRs in

able 11 . 

.6.2. Case study 2 

The present case study is a variant of a process synthesis prob-

em adopted from Biegler et al. (1997) . Within the synthesis prob-

em, uncertainty in process demand, operation cost and conversion

ate, namely θ1 , θ2 and θ3 , respectively. As shown in figure, the

rocess refers to the production of a chemical C ( x 5 ) which can

e achieved either through process unit II or III; for the produc-

ion of C, a chemical species B ( x 2, 3 ) needs to be converted. B, can

e either purchased directly from the market ( x 4 ) or manufactured

hrough process I with raw material A ( x 1 ) as feed (see Fig. 9 ). 

The corresponding MILP under global uncertainty is formulated

s an mp-MILP as follows, 

(P 7 ) := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

z( θ) = min 

x , y 
2 . 5 x 1 + (4 + θ1 ) x 2 + 5 . 5 x 3 + 10 y 1 

+15 y 2 + 20 y 3 − 18 x 5 
Subject to : 0 . 9 x 1 − x 2 − x 3 + x 4 = 0 

x 5 = 0 . 82 x 2 + θ3 x 3 
2 ≤ x 5 ≤ 5 + θ2 

x 1 ≤ 16 y 1 
x 2 ≤ 30 y 2 
x 3 ≤ 30 y 3 
y 2 + y 3 ≥ 1 

x 4 ≤ 14 

0 . 4 x 1 ≤ 5 + θ2 

x i ≥ 0 , ∀ i = 1 , . . . , 5 

y i ∈ { 0 , 1 } , ∀ i = 1 , 2 , 3 

0 ≤ θ1 ≤ 5 

0 ≤ θ2 ≤ 5 

0 . 75 ≤ θ3 ≤ 0 . 95 

The LHS uncertainty involved in ( P 7 ) is located in the second

quality constraint and represents uncertainty in the conversion

oefficient. Solving problem ( P 7 ) results in 97 candidate solutions.

valuating with the optimality and integrality conditions results in

 integer feasible solutions. Two of these solutions are found to
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Table 10 

Explicit solutions of case study 1. 

x 1 x 2 y 1 y 2 z ( θ) 

if [ θ1 θ2 , θ3 , θ4 , θ5 , θ6 ] ∈ CR 1 
1 . 25( θ2 θ4 +10 θ4 ) 

θ4 
0 1 0 1 . 25(0 . 25 θ1 +6 . 4)( θ2 θ4 +10 θ4 ) 

θ4 
+ 0 . 3 θ1 + 7 . 5 

if [ θ1 θ2 , θ3 , θ4 , θ5 , θ6 ] ∈ CR 2 
1 . 25( θ2 θ4 +10 θ4 ) 

θ4 
0 0 0 1 . 25(0 . 25 θ1 +6 . 4)( θ2 θ4 +10 θ4 ) 

θ4 

if [ θ1 θ2 , θ3 , θ4 , θ5 , θ6 ] ∈ CR 3 0 40 
θ4 

0 1 5 . 5 θ4 −40 . θ6 +240 
θ4 

Table 11 

Critical regions of case study 1. 

Critical regions Mathematical expression 

CR 1 := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 ≤ θ1 ≤ 10 

θ2 ≤ 10 

0 ≤ θ3 ≤ 5 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

{
26 . 8+0 . 6 θ1 

10+ θ2 
< 4 

θ6 ≤ 8 ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{
θ5 ≤ 4 

50 + 5 θ2 ≤ θ3 ≤ 200 {
0 < θ3 ≤ 50 + 5 θ2 

θ5 ≤ 0 . 22518 θ3 

2 . 81475(1+0 . 1 θ2 ) {
θ4 ≥ 1 

θ6 < 6 

θ4 ≤ 4 

0 < θ5 

0 ≤ θ6 

CR 2 := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 ≤ θ1 ≤ 10 

0 ≤ θ2 ≤ 10 

0 ≤ θ3 ≤ 200 
134+3 θ1 

50+5 θ2 
≤ θ4 ≤ 4 

θ5 = 0 

0 ≤ θ6 ≤ 8 

CR 3 := 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 ≤ θ1 ≤ 10 

0 ≤ θ2 ≤ 10 

0 ≤ θ3 ≤ 200 

1 ≤ θ4 ≤ 134+3 θ1 

50+5 θ2 

0 ≤ θ5 ≤ 4 

6 ≤ θ6 ≤ 8 

Fig. 9. Superstructure of case study 2. 
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verlap and the comparison procedure is employed, resulting in

wo final optimal solutions which are given in Table 12 along with

heir corresponding CRs. 

.7. Process scheduling under global uncertainty 

In order to illustrate the generality and applicability of the pro-

osed algorithm the case of process scheduling under global un-

ertainty is examined. Scheduling problems have been studied in

he past using multi-parametric programming techniques ( Li and

erapetritou, 2007b; Ryu et al., 2007; Wittmann-Hohlbein and Pis-
ikopoulos, 2012b ), however the case of simultaneous variations on

he LHS, RHS and OFC has yet to be treated. 

Our point of departure is the multi-stage zero-wait batch

cheduling problem formulation as proposed by Ryu et al. (2007) .

he model employs a time slot based formulation for the sequenc-

ng decisions among different products. At each time slot ( s ) only

ne product ( i ) can be manufactured and the corresponding assign-

ent is modelled using the binary variable y si . The model assumes

nlimited intermediate storage and thus the objective is to min-

mise the makespan of the process ( C N , J ). 

( θ) = min C S,J (22) 
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Table 12 

Explicit results of ( P 7 ). 

i x i 1 x i 2 x i 3 x i 4 x i 5 y i 1 y i 2 y i 2 z i CR i 

1 0 0 1 . 0526 θ2 + 5 . 2631 1 . 0526 θ2 + 5 . 2631 5 + θ2 0 0 1 −12 . 21 θ2 − 41 . 052 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 ≤ θ2 ≤ 5 ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{
0 . 342 ≤ θ1 ≤ 1 . 5 

θ3 ≤ 0 . 691 + 0 . 173 θ1 {
1 . 5 ≤ θ1 ≤ 5 

θ3 ≤ 0 . 95 

0 . 75 ≤ θ3 

2 0 (θ2 +5) 
θ3 

0 (θ2 +5) 
θ3 

5 + θ2 0 1 0 (θ1 +4)(θ2 +5) 
θ3 

− 18 θ2 − 75 0 ≤ θ2 ≤ 5 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

{
0 . 342 ≤ θ1 ≤ 1 . 5 

0 . 691 + 0 . 173 θ1 ≤ θ3 ≤ 0 . 95 {
0 ≤ θ1 ≤ 0 . 342 

0 . 75 ≤ θ3 ≤ 0 . 95 
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Table 13 

Effect of the dimensionality of the uncertain parameters ( n θ ) on the number of 

CRs computed ( n CR ) and the solution time. 

n θ n CR CPU (s) 

2 1 3.83 

3 4 8.46 

4 4 9.24 

5 5 11.56 

6 5 240.38 
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Subject to : (23)

N ∑ 

s 

y si = 1 ∀ i (24)

N ∑ 

i 

y si = 1 ∀ s (25)

 s j ≥ C s, j−1 + 

N ∑ 

i 

y si P i j ∀ j > 1 , i (26)

 s j ≥ C s −| J| , j + 

N ∑ 

i 

y si P i j ∀ i ≥ | J| , j (27)

 s j ≥ 0 (28)

y si ∈ { 0 , 1 } (29)

Eqs. (24) and (25) are used to ensure that only one product can

be processed at a time in each stage while Eqs. (26) and (27) are

employed to compute the completion time of the time slot s in

stage j ( C sj ). The processing time of product i in stage j ( P ij ) is

considered as uncertain while equipment availability can be in-

cluded by adding a new vector of uncertain parameters on the RHS

of Eqs. (26) and (27) . Another type of uncertainty on the LHS of

Eqs. (26) and (27) can be included if a time proportional to the

completion time is considered as a buffer for maintenance or other

reason, i.e. θ sj C sj . 

3.7.1. Two-stage scheduling problem under global uncertainty 

Initially we consider only 3 products and 2 stages (instance P 8 )

with the corresponding data given in the supplementary material

in Table S.8. It is assumed that the processing time for product B at

stage j 2 is uncertain and uniformly distributed as 4 ≤ θ1 ≤ 8. There

exist two “buffer” times proportional to the completion time of the

third slot of the first stage ( C s 3 j 1 ) and the first time slot of sec-

ond stage ( C s 1 j 2 ) both uniformly distributed as 0.8 ≤ θ2, 3 ≤ 1.2. Fol-

lowing the proposed algorithm in 2.46 s, four globally optimal ex-

plicit solutions are found and their expressions are given Table S.9.

As shown in Table S.9 two optimal integer configurations of the

schedule are computed throughout the range of parameter vari-

ability: C → A → B and B → A → C ; insights like this are of great im-

portance for responsive and effective process operations as it be-

comes explicitly known that even if there is a significant degree of

variability in the processing time of product B there is no need to

change the task sequencing. 

The use of multi-parametric programming in scheduling prob-

lems is appealing due to the ability to compute offline schedules

that can be readily employed once the uncertainty is realised, thus
eading to more responsive operations. To this end, the effect of

he dimensionality of uncertain parameters on the solution time

f the proposed algorithm was examined and the corresponding

esults are shown in Table 13 . 

Breaking down the computational burden associated with the

imensionality of the uncertain parameters it should be high-

ighted that the CPU time (s) needed by the first computational

tep of the algorithm is not affected (computation of the candidate

olutions). However, the second major computational step (com-

utation of the CRs and the comparison procedure) scales quite

uickly. 

Next, the case of 5 products scheduling of the two stage man-

facturing process was studied in order to test the proposed algo-

ithm for the case of increased dimensionality of the integer vec-

or. This instance ( P 9 ), involves 25 binary variables, 21 constraints

nd 31 continuous variables and in 4,048.3 s a total of 234,600

andidate solutions were computed out of which 25,920 candidate

olutions were linearly independent and thus considered for the

ext steps of the algorithm. The computation of the integer fea-

ible candidate solutions returns 1136 explicit solutions together

ith the related CRs in 1900 s. The final partition of the paramet-

ic space involves 3 overlapping CRs with explicit solutions that re-

ult in the same explicit objective value, C S,J ( θ) = 21 + θ2 and thus

o CR can be proven to be dominant. The sequencing decisions in-

olved in the overlapping CRs are two alternatives, more specif-

cally, the two integer optimal sequences are: D → E → C → A → B

nd D → A → C → E → B . The explicit solutions are given in Table

.10. 

.7.2. Multi-objective three stage scheduling problem under global 

ncertainty 

Finally, the scheduling of a 3 stage process as indicated in

ig. 10 was examined. Related data and a more detailed descrip-

ion of case study can be found in the work of Ryu et al. (2007) . 

The manufacture of four products was considered and the un-

ertainty has as follows : θ1 ∈ [10, 15] as the processing time of

roduct B in stage 2, θ2 ∈ [0.9, 1.1] to model the possibility of a

uffer time that is proportional to the completion time of time

lot 4 in stage 1, θ3 ∈ [0, 4] to model equipment availability of the

ixer and finally we consider a modification of the objective in a

eighted sum multi-objective sense where θ ∈ [0, 1] indicates the
4 
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Fig. 10. 3 stage process for scheduling. 

Table 14 

Multi-parametric expressions of the weighted sum objective function of the three 

stage scheduling problem along with the related sequencing decisions. 

CR 1 ABCDE CR 13 12(1 − θ4 ) − θ4 (−θ1 −θ3 −16) 
θ2 

ABCED 

CR 2 ABDCE CR 14 ABEDC 

CR 3 ABCDE CR 15 6(1 − θ4 ) − (−θ3 −42) θ4 

θ2 
BADEC 

CR 4 ABCDE CR 16 BAECD 

CR 5 ACBDE CR 17 6(1 − θ4 ) − (−θ3 −38) θ4 

θ2 
CADBE 

CR 6 
41 θ4 

θ2 
+ 14(1 − θ4 ) ACDEB CR 18 CAEBD 

CR 7 ACDBE CR 19 6(1 − θ4 ) − θ4 (−θ1 −θ3 −20) 
θ2 

ACEDB 

CR 8 ABCDE CR 20 ACEDB 

CR 9 ABCDE CR 21 12(1 − θ4 ) − θ4 (−θ1 −θ3 −16) 
θ2 

ABCED 

CR 10 ACBDE CR 22 ABEDC 

CR 11 ACDEB CR 23 ABCED 

CR 12 ACDBE CR 24 ABEDC 

d  
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Table 15 

Computational statistics of the proposed algorithm with respect to the 

dimensionality of the inequality constraints ( n g ), continuous variables 

( n x ), binary variables ( n y ) and uncertain parameters ( n θ ). 

n g n x n y n θ Candidate solutions Total CPU (s) 

P 1 7 2 2 2 17 0.35 

P 2 5 2 2 2 8 0.18 

P 3 7 4 2 3 6 1.24 

P 4 10 2 2 3 30 2.54 

P 5 8 2 2 4 26 1.95 

P 5 5 2 2 6 8 1.46 

P 7 15 5 3 3 97 15.41 

P 8 11 17 9 5 202 8.46 

P 9 21 31 25 3 25,920 5948.3 

P 10 23 35 16 4 36,863 14768.08 
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o  
ifferent preferences of the decision maker with respect to min-

mising the completion time of the fourth time slot of stages 3 and

. The algebraic model with the incorporated uncertainty is given

y Eqs. (S.1)–(S.13) and can be found in the supplementary ma-

erial. Following the proposed algorithm, the KKT system is solved

nd 688,320 candidate solutions are returned in 13781.9 s. Some of

he solutions involve linearly dependent solutions sets, by neglect-

ng these solutions the final full-dimensional candidate solutions

re 36,863 which are explicit only in ( θ, y ). Screening the candi-

ate solutions for dual and primal feasibility and computing their

Rs takes 808.78 s and the output involves 144 CRs. After 177.4 s

he comparison procedure has removed overlapping CRs that can

e proven to be inferior and the final optimal explicit solution in-

olves 24 CRs and the corresponding multi-parametric expressions

f the optimisers. In Table 14 the explicit weighted sum function

s given along with the related scheduling sequence. 

An example of the mathematical expressions that define the re-

ated CRs is given in Eq. (30) , for the case of CR 22 . 

R 22 := 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 . 9 ≤ θ2 ≤ 1 . 1 

θ2 

θ2 +0 . 67 
≤ θ4 ≤ 1 

0 ≤ θ3 ≤ 12 − θ1 

10 ≤ θ1 ≤ 12 

(30) 

. Discussion 

Having demonstrated the main computational steps and appli-

ability of the proposed algorithm in the following section a dis-

ussion on computational issues and the non-convexity of the un-

erlying optimisation problem is presented. 

.1. Computational statistics 

Computing the exact explicit solution for mp-MILPs under

lobal uncertainty is one of the most general and challenging prob-

ems and as a result it is computationally intensive. In the current
ork, the proposed algorithm was tested on a number of numer-

cal examples and two case studies of small scale. In Table 15 , a

ummary of the problems’ statistics is provided along with the

umber of candidate solutions that are found. 

The number of candidate solutions that are parametric in y and

grows rapidly with the number of constraints and continuous

ariables with more dependence on the number of constraints. On

he other hand, as illustrated in the case studies, the number of

ncertain parameters and binary variables does not affect the scal-

bility of the proposed algorithm and the reason is twofold: (i)

ithin the proposed algorithm both of them are treated as sym-

ols until a certain step, leaving the initial computation of the can-

idate solutions unaffected; (ii) for the candidate solutions com-

uted, not all the integer nodes are explored as some of them are

ejected based on the primal or dual feasibility conditions of the

roblem. 

Especially for the first example the proposed algorithm required

ess than 20 comparisons between overlapping solutions while

he same example for half range of uncertainty required in the

est case the solution of 3331 MINLPs and one mp-LP follow-

ng the algorithm proposed in Wittmann-Hohlbein and Pistikopou-

os (2012a) . This leads to significant reduction in computational ef-

ort in comparison to approximation based techniques presented in

he literature 

.2. Non-convexity of the underlying problem 

As introduced in the “Problem statement” section and illus-

rated through the case studies, the underlying optimisation prob-

em can be highly non-convex. The main reason is the presence

f bilinear terms that appear as product between the uncertain

arameters and the continuous/integer variables. As illustrated in

ittmann-Hohlbein and Pistikopoulos (2012b) , in order to over-

ome this issue, global optimisation techniques should be em-

loyed that could lead to computationally intractable problems for

 modest size example. The case of bilinear terms is undoubtedly

ne of the most well studied problem in the global optimisation

iterature and remains still a rather active field of research because

f its frequent occurrence as part of important applications. In our

resent work, we elegantly circumvent the treatment of bilinear

erms through symbolic manipulation of the uncertain parameters.

urthermore, as shown, the problem can be discontinuous at some

nstances which further exacerbates the computational effort re-

uired. 

Although bilinear terms pose a tough difficulty in the solution

f mp-MILPs under global uncertainty, a possibly even more tough

roblem nested within the solution is the definition of overlapping

Rs and the comparison procedure that needs to be employed for

ts treatment. As discussed previously, in the most general case the

ptimisers and thus the optimal explicit value is a fractional poly-
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nomial function of the uncertain parameters. Previous works have

proposed to store overlapping solutions in “parametric envelopes”

where two solutions are stored and the best one is chosen via on-

line function evaluation. Although this could be a possible solution,

it is not the optimal one as it still requires an additional evaluation

procedure for the decision maker. In order to overcome this issue,

we do not consider the conventional polyhedral based definition of

CRs but we generalised the their nature as “semi-algebraic sets”.

Defining the CRs as semi-algebraic sets where a certain number of

conditions hold, in conjunction with the symbolic manipulation we

are able to efficiently compare overlapping solutions, characterising

the overlap and most importantly computing the exact non-convex

CRs. This is due to the fact that a semi-algebraic set can be manip-

ulated in a disjunctive way and thus divide a large complex CR into

more simple one to ease the complexity of the calculations and at

the end reconnect them as a union. 

5. Concluding remarks and future research direction 

In this work we presented a novel algorithm for the solution of

general mp-MILPs that are subject to global uncertainty. We pre-

sented through a number of case studies the applicability and gen-

erality of the proposed framework as well as some instances that

the proposed framework outperforms in accuracy and/or computa-

tional complexity other algorithms in the literature. Using symbolic

manipulation software to analytically solve the system of equations

derived by the first order KKT conditions, the exact solution of the

general mp-MILPs was computed together with the corresponding

non-convex CRs. The algorithm scales reasonably with the dimen-

sionality of the binary variables and the uncertain parameters for

the cases presented. However, the current bottleneck is that the

number of initial candidate solutions grows rapidly with the num-

ber of constraints and variables. Current developments in symbolic

manipulation, solution of polynomial equations as well as parallel

computing are expected to benefit the practical value of this algo-

rithm. The fractional polynomial nature of the exact explicit solu-

tion poses another major challenge as the degree of polynomials

encountered grows with the dimensionality of the parametric vec-

tor. 

Current research in our group is targeted towards the devel-

opment of hybrid schemes for problems under global uncertainty

that could lead to computationally less intensive solution proce-

dures. The findings of present work will be used to study the struc-

ture of the underlying optimisation problem and aid towards fur-

ther improvements, while a more efficient implementation of the

proposed algorithm in a tailored programming environment is an

on-going work. 
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