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Abstract 

Prostate cancer (PCa) represents a significant clinical challenge because it is difficult to 

predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 

112 primary and metastatic PCa samples. From joint analysis of these cancers with those 

from previous studies, 930 cancers in total, we identified evidence for 22 novel putative 

coding driver genes, as well as evidence for NEAT1 and FOXA1 acting as drivers through 

non-coding mutations. Through the temporal dissection of aberrations, we identified driver 

mutations specifically associated with steps in the progression of PCa, for example 

establishing loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion 

negative cancers. Computational chemogenomic (CanSAR) analysis of PCa mutations 

identified eleven targets of approved drugs, seven of investigational drugs and sixty-two 

compounds that may be active and should be considered candidates for future clinical trials.   
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INTRODUCTION 

Prostate cancer is the most common solid cancer in men (diagnosed in 12%) and often fatal 

(9% of male cancer deaths). It is difficult to manage clinically due to a poor current 

understanding of what dictates its highly variable natural history, and of what underlies the 

development of castration-resistant disease1. Extensive data on the structure of prostate 

cancer genomes have been published2-6, including work from our own consortium7-10. 

These studies have identified a number of genetically distinct subgroups, including cancers 

with ERG, ETV1, ETV4, FLI1, SPOP, FOXA1 and IDH1 alterations. Overlapping with 

these categories, cancers may have alterations in PI3K and DNA repair pathways, with the 

latter significantly over-represented in advanced disease4. However, we have relatively 

limited understanding of the ordering of genetic events with the exception that ETS gene 

alteration appears to represent an early event, whilst mutations of AR are later, sometimes 

convergent, events, occurring in advanced and metastatic disease. Indeed, we have very 

little understanding of the evolution of mutational processes, the various genetic paths that 

cancers traverse on their way to progression, the levels of heterogeneity at different stages 

of development or the effect of these factors on clinical outcome.   

Gene status has been used in studies designed to improve the poor predictive value of 

conventional clinical markers (PSA, Gleason sum, stage) and to develop disease 

management strategies. For example, genetic alteration of BRCA1/211, PTEN deletion12, 

amplification of AURKA together with the MYCN gene13, and coordinated loss of MAP3K7 

and CHD114 have been reported to have prognostic value. A number of commercial 

prognostic tests based on gene expression profiles are also available15,16,17 and a 

classification framework has been proposed18. Improvements in the treatment of castration-

resistant disease have been made through better targeting of AR regulation using 
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abiraterone19 and enzalutamide20, whilst PARP inhibitors are effective against cancers 

harbouring BRCA1/2 mutations and other defects in DNA repair pathways21. However, 

significant advances have been made recently through the re-tasking of approved drugs22. 

In the present study, we use previously unpublished whole genome DNA sequencing data 

in combination with published data to provide new insights into the mechanism of 

progression of prostate cancer to lethal disease, and to design novel molecular-based 

strategies for drug targeting. 

RESULTS 

We whole genome sequenced cancerous and matched normal samples from 87 primary 

prostate cancers from the UK and 5 from China, together with 10 hormone-naïve prostate 

metastases and 10 castration-resistant metastases from the USA. Analysis (see Online 

Methods) reveals insights into the nature and order of acquisition of driver alterations, 

genomic heterogeneity in primary and metastatic cancers, changes in mutational signatures 

during progression, and potential drug targets. In addition, we identify coding and non-coding 

drivers by combining single nucleotide variants (SNVs) and small insertions/deletions 

(indels) within our dataset with those from TCGA4 (425 samples), the COSMIC database23 

(243 samples) and Stand Up to Cancer24 (SU2C-PCF, 150 samples) to give a combined 

dataset, hereafter referred to as the ‘joint dataset’, comprising 710 primary cancers and 220 

metastases. Supplementary Table 1 summarises the genes affected in both our study and the 

joint dataset. 

For the 112 cancer-normal pairs in our cohort, we identified 392,753 SNVs, 54,952 indels 

and 10,921 chromosomal rearrangements (Fig. 1). The mean genome-wide substitution rate 

was 1.23/Mb, with a significant difference in mutational burden between the primary (0.99) 
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and metastatic (2.30) samples (P=4.4x10-15, Online Methods). Moreover, within the 

metastatic subset, mutation burden was higher in men treated with androgen deprivation 

therapy (ADT or CRPC) than treatment-naïve cases (2.98 vs 1.61, P=0.015). There were also 

significantly more rearrangements in metastatic than in primary samples (P=0.0059), whilst 

the proportion of breakpoints attributed to a chromoplexy-like event25 was indistinguishable 

between the two groups. Within the metastatic group, the ADT samples had more 

rearrangements than did the hormone-naïve (P=0.027), with no difference in the proportion 

of chromoplexy-like events (Fig. 1). 

Genes of interest were identified through a comprehensive set of analyses to identify: excess 

non-synonymous mutations in coding regions; excess missense mutations within a gene, 

indicative of an oncogenic driver; excess mutations in non-coding regions; regions with an 

excess of structural variants in either ETS+ or ETS- cancers; regions with recurrent copy 

number aberrations in either ETS+ or ETS- cancers. Overall, we identified 73 genes with 

evidence for involvement in prostate cancer development (Fig. 2, Table 1, Supplementary 

Table 2). Based on a literature search, each gene was assigned a high, medium or low level of 

previous supporting evidence (Table 1, Supplementary Table 2). In addition to 22 genes with 

little or no previous evidence of involvement in prostate cancer (Table 1, ‘low’ previous 

evidence), we provide corroborating evidence for 8 further genes previously lacking strong 

evidence of driving prostate cancer (Table 1, ‘medium’ previous evidence). 

Coding drivers 

We identified 28 genes with an excess of non-synonymous coding mutations, five of which 

are previously unknown drivers in prostate cancer (Supplementary Table 2). TBL1XR1 was 

enriched in truncating SNVs and indels and is also located in a genomic region enriched for 

rearrangements in ETS+ cancers (chr3: 172-179Mb) (Fig. 3). These rearrangements result in 
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loss of heterozygosity (LOH) or, in one case, homozygous deletion, suggesting a cancer 

suppressor role for this gene. Another significantly mutated gene primarily affected by 

truncating mutations was ZMYM3, which encodes a component of CoREST, a transcriptional 

repressor complex including REST (RE-1 silencing transcription factor) and involved in 

suppression of neuronal differentiation-related genes in non-nervous tissues26. In addition, 

two further CRPC samples from the SU2C-PCF study24 had nonsense mutations and one 

sample within our study had a 70kb exonic deletion in REST.  

Two other genes with recurrent truncating mutations were IL6ST and CASZ1 (Fig. 3). The 

latter is a putative cancer suppressor in neuroblastoma27 while the former encodes 

glycoprotein 130, the signal-transducing subunit of the interleukin 6 (IL6) receptor. The 

pattern of mutations we observe in the joint dataset for IL6ST is dominated by truncating 

events. Moreover, this gene is located in a genomic region recurrently rearranged in ETS+ 

cancers, resulting in either LOH or homozygous deletion (four cases of each), suggesting a 

cancer suppressive role. TBX3, previously reported to harbor mutations in breast cancer28, 

exhibited a mixed pattern of mutations with mostly missense mutations and two cancers 

harbouring truncating events. 

Analysis of missense mutations identified recurrent mutations in seven further genes, of 

which two are newly reported (Supplementary Table 2). CNOT3 exhibited mutation hotspots 

in two amino acid positions, p.E20K (4/932 samples) and p.E70K (5/932 samples), as well as 

a nonsense mutation in a single sample (Fig. 3). CNOT3 has a known cancer suppressive 

function in T-cell acute lymphoblastic leukaemia29. Enrichment for missense mutations was 

identified in RPL11 a ribosomal protein and putative cancer suppressor upstream of the 

MDM2/TP53 pathway30. In contrast to previous studies, the enrichment for missense 

mutations in both CNOT3 and RPL11 suggests oncogenic, rather than tumor suppressor, roles 

in prostate cancer.  
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A comparison between coding mutations in metastatic and primary samples within the joint 

dataset identified enrichment in metastases for mutations in TP53, AR, KMT2C, KMT2D, 

RB1, APC, BRCA2, CDK12, ZFHX3, CTNNB1, PIK3CB (Supplementary Table 2), 

confirming previous studies3,24. 

Non-coding drivers 

Analysis of non-coding components of the genome identified two regions significantly 

enriched for mutations. NEAT1, a lncRNA recently reported to be associated with PCa 

progression31, was mutated in 13/112 ICGC cases with significant over-representation in 

patients with metastatic disease (6/20 metastases vs. 7/91 primaries, Fisher exact test, 

P=0.012, Fig. 3). Interestingly, out of the metastatic cases NEAT1 mutations were found only 

in patients that had undergone ADT, consistent with the link between high NEAT1 expression 

and resistance to AR-targeting therapies31. Notably, two of these six cases had two separate 

NEAT1 mutations. The FOXA1 promoter also had significant evidence of selection. This gene 

modulates AR-regulated transcriptional signalling32 and has previously been found to harbor 

recurrent coding mutations5. In our series, we identified 14 samples with coding and 6 

samples with non-coding mutations, with two samples (PD14721a and PD12813a) bearing 

both a coding and a non-coding mutation. Interestingly, we also identified mutations in the 

FOXP1 promoter, a gene with known cancer-suppressive effect in prostate tumorigenesis33, 

in three samples, but this was insufficient to reach statistical significance.  

Structural variant enrichment in ETS+ and ETS- cancers 

The density of rearrangements varies across the genome as a result of various factors 

including chromatin state, GC content, gene density, replication timing and repetitive 

sequence. In order to remove the effect of these factors, we segmented inter-breakpoint 

distance across the genome separately in ETS+ and ETS- cancers and identified regions with 
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differential enrichment for rearrangements between the two subtypes. The functional 

importance of many of these regions was supported by an excess of truncating mutations or 

CNAs.  

In addition to regions previously identified as enriched for rearrangements in ETS+ cancers 

(FOXP1, RYBP, SHQ1, PTEN, and TP53)34-37, two unreported regions were identified. The 

region chr5:55-59Mb covers the genes PPAP2A, PDE4D, MAP3K1 and IL6ST (Fig. 3). In 

IL6ST we also detected significant enrichment for coding mutations, suggesting this is the 

main target of the aberrations. In chr3:171:178Mb, TBL1XR1 is similarly enriched for both 

rearrangements and truncating mutations. 

In ETS- cancers, we confirmed a previously reported enrichment for rearrangements 

containing CHD1(38,39). A target of enriched rearrangements in the region chr1:149-158Mb is 

likely ETV3. In 5/9 cancers, ETV3 was exclusively affected by these events (4 LOH by 

deletion and 1 by translocation). Additionally, one cancer had a truncating mutation 

(p.R413fs*3) and two had missense mutations (p.A73V and p.L37Q). In total, 12 patients had 

localised alteration, 10 of whom had ETS- cancers. Moreover, within the joint dataset, there 

are four cancer samples with truncating mutations in this gene. In contrast to ETV4, the 

nature of variants in ETV3 is indicative of a tumor suppressive role in PCa.  Manual 

inspection of the recurrently rearranged region chr3:76-84Mb identified ROBO1 and ROBO2 

as possible targets (Fig. 3). In total 16/112 samples had an event affecting one or other of 

these genes, and in four samples both were affected. Previously implicated in pancreatic 

ductal adenocarcinoma40, these two genes have not been previously reported in the context of 

PCa. 

Events enriched at chr6:80-114Mb indicate that ZNF292 is a possible target. 11/112 patients 

(5 ETS+ and 6 ETS-) had loss of at least one chromosome copy and in two patients there was 
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a homozygous loss specifically targeting ZNF292. Moreover, the joint dataset contained 

5/932 samples with a truncating mutation, further suggesting a cancer suppressive function 

for this gene in PCa. Another gene affected by recurrent rearrangements on 6q was SENP6, a 

small ubiquitin-like modifier (SUMO)-specific protease that removes SUMO polypeptides 

from conjugated proteins41, and possibly plays a role in AR function42. Of note, 4/5 

rearrangements in this region affected SENP6 only, leading to a significant reduction in 

expression (Supplementary Fig. 1). Finally, located at chr6:126Mb, the nuclear receptor co-

activator NCOA7 was altered in six samples, one sample having homozygous loss.  

Further regions enriched in ETS- cancers were chr2:133-144Mb (LRP1B), chr8:112-114 

(CSMD3) and chr8:40-41Mb (MYST3). The first two genes are very large and fall within 

reported fragile sites43. Nevertheless, preferential enrichment of breakpoints in ETS- cancers 

may suggest either that underlying structure, such as AR binding sites or nucleosome 

structure, or epistatic interactions between ETS fusion and other rearrangements affect the 

occurrence of rearrangements at these loci. Samples containing structural variants affecting 

MYST3 were found to have significantly reduced RNA expression (Supplementary Fig. 1).  

 

Timing of copy number aberrations 

In order to identify routes to progression in PCa, we developed a novel approach to order the 

occurrence of copy number aberrations by combining information on: the clonality of copy 

number aberrations; timing relative to whole genome duplication; timing of homozygous 

deletions relative to neighboring hemizygous losses. Information from all tumors was 

combined using a Bradley-Terry model, to give the most likely ordering of events. By 

applying a set of logical rules (see Online Methods), we deciphered the temporal ordering of 

subclonal CNAs within each cancer. In general, homozygous deletions appear late in 
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oncogenesis, corroborating previous findings that homozygous deletions are associated with 

advanced disease44-46. Clear differences emerge in the evolution of ETS+ and ETS- PCa’s.  

Where present, the deletion between the TMPRSS2 and ERG genes in ETS+ cancers was an 

early (generally clonal) event, as was gain of chr8q within the locus 112 – 137Mb (Fig. 4a). 

The earliest homozygous deletions in ETS+ cancers include chr5: 55Mb-59Mb, corroborating 

the rearrangements targeting PPAP2A, PDE4D, MAP3K1 and IL6ST, and chr10:89Mb-

90Mb, which covers PTEN (Figs. 3 and 4a). 

In ETS- cancers, losses at chr5:60–100Mb (CHD1 and RGMB), chr13:32-91Mb (which 

includes BRCA2, RB1 and FOXO1), and chr6:73-120Mb are followed by losses at chr2:124-

142Mb, then by gains at chr3:100-187Mb, and then whole chromosome gain of chr7 (Fig. 

4b).  Loss of CHD1 has been previously implicated in the initiation of ETS- prostate cancers, 

preventing ERG re-arrangement in the prostate38 and our data confirm the exclusivity 

between ETS positivity and homozygous loss of CHD1 (Fig. 4c).  

In both ETS+ and ETS- cancers, whole genome duplication (WGD) correlated with loss of 

chromosomal segments at: chr1:94Mb, chr2:140Mb, chr12:12Mb, chr16:85Mb and 

chr17:7Mb (Fig. 4c). From timing analysis, these losses appear to occur co-synchronously 

with WGD in most cases. Gains at chr8:101Mb occurred prior to WGD, chr3:131Mb 

occurred synchronously, and gains at chr7:88Mb tended to follow WGD. 

Timing point mutations and indels 

SNVs and indels were clustered according to their cancer cell fraction (CCF) using a 

Bayesian Dirichlet process47. The proportion of SNVs identified as subclonal showed 

considerable variation across cancers, but was significantly higher in primary than metastatic 

samples (Fig. 5a, P=0.022, Wilcoxon rank sum test), as was the proportion of subclonal 

indels (P=0.00033) and the fraction of the genome with subclonal copy number aberrations 
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(P=0.0037, Supplementary Fig. 2). This is apparent evidence for a bottleneck in acquiring 

metastatic potential rather than a response to treatment, since levels of heterogeneity in 

untreated metastases are no lower than in androgen-deprived metastases (Fig. 5a). 

The levels of heterogeneity observed in SNVs and indels were correlated (Fig. 5a, Pearson r 

= 0.57, P=2.3x10-9). Higher levels of heterogeneity were observed amongst indels than SNVs 

(P=2.4x10-8). However, it cannot be ruled out that variant calling of indels may have greater 

sensitivity for low allele frequency variants than calling of SNVs. 

Driver SNVs were identified as clonal or subclonal in each sample according to the cluster to 

which they were assigned, with 84 classified as clonal and 22 (21%) as subclonal. Our power 

to detect subclonal mutations is limited by sequencing depth and the real number of subclonal 

driver mutations is likely much higher. The driver mutations identified as subclonal include 

two mutations in APC in the same sample, PD14713a. Interestingly, this cancer has 

undergone clonal loss of one copy of chr5q, followed by mutations in APC in 2 different 

subclones (Fig. 5b and Supplementary Fig. 3), suggesting convergent evolution. Five other 

samples each have two subclonal drivers: PD12808a has a missense mutation in ZNF292 and 

an essential splice site mutation in SMAD2; PD13401a has a nonsense mutation in PPP1R3A 

and a mutation in the promoter of NEAT1; PD13402a has a nonsense mutation in USP34 and 

an essential splice site mutation in ABI3BP (Fig. 5b); PD12820a has a missense mutation in 

USP48 and an essential splice site mutation in ASXL2; PD13389a has a frameshift mutation 

in PHF12 and an essential splice site mutation in TBX3 (not shown). 

Subclonal mutations are also seen in several common drivers including one in TP53 

(PD13339a) and one in PTEN (PD12840a). On the other hand, SPOP was mutated in 10 

samples, always clonally and always in ETS- tumors (Fig. 2).  

Mutational signatures 
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Analysis of the mutational signatures by non-negative matrix factorisation (NMF) revealed 

that, in addition to the ubiquitous ‘clock-like’ signatures 1 and 5, there was presence of the 

previously described signatures 2, 3, 8, 13 and 1848
. Signature-3-positive samples were 

enriched for germline/somatic mutations in BRCA1/2 genes (4/6 samples) as reported 

previously48 (Fig. 1). However, the presence of high levels of microhomology (MH)-

mediated deletions was even more strongly correlated with the presence of BRCA mutations 

(6/6 samples). Separating the mutations into early clonal, late clonal and subclonal epochs, as 

described in Online Methods, revealed that the proportion of signature 1 mutations decreases 

over time, suggesting an increase of cancer-associated mutagenic processes relative to innate 

processes (P=2.2x10-16, test for trend in proportions). 

Signature 13, previously associated with the activity of the AID/APOBEC family of cytidine 

deaminases, was over-represented in advanced disease, 45% (9/20) in metastases vs. 14% 

(14/92) in primaries (Fisher exact test, P=5.6x10-3). Similarly, signature 18, which has been 

previously associated with failure of base excision repair and to the accumulation of 

mutations from 8-Oxoguanine damage49, was enriched in advanced disease, 40% (8/20) in 

metastases vs. 11% (10/92) in primaries (Fisher exact test, P=3.8x10-3). In a recent report of 

560 breast cancer whole-genomes, signature 8 correlated with DNA damage repair 

deficiency50. Androgen signalling is known to positively regulate multiple genes involved in 

DNA repair51,52, while androgen deprivation impairs DNA double-strand break repair53. In 

support of these previous reports, the proportion of mutations assigned to signature 8 is 

consistently higher amongst later appearing (subclonal) populations of cells (55% ± 24%) 

than earlier (clonal) populations (28% ± 12%) (t-test, P=1.3×10-4, Supplementary Table 3). 

The proportion of metastases with evidence for the action of signature 8 was higher than that 

for primary tumors, although not reaching statistical significance (8/20 metastases, 25/92 

primaries, Fisher exact test P=0.28). Increased prevalence of DNA-damage related genes in 
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metastatic prostate cancer as well as the observations made in this study warrant an extensive 

study of mutational signatures in therapy-naïve disease and CRPC in a larger dataset to 

explore the relevance of check-point inhibition as an alternative therapy for advanced prostate 

cancer. 

Clinical correlates 

CDH12 and ANTXR2 alterations were significantly associated with time to biochemical 

recurrence (Benjamin-Hochberg adjusted P = 0.0060 (CDH1) & 0.012 (ANTXR2), HR = 9.3 

& 7.7, Cox regression model, Fig. 6), and were significant predictors of biochemical 

recurrence independent of cofactors Gleason, PSA at prostatectomy, and pathological T-stage 

(P = 0.00061 (CDH1) & 0.0015 (ANTXR2), HR = 7.3 & 6.5, Cox regression model, 

Supplementary Table 4). A Cox regression model containing a combination of CDH12, 

ANTXR2, SPOP, IL6ST, DLC1 & MTUS1 mutations was determined to be an optimal 

predictor of time to biochemical recurrence and was a significant improvement over a 

baseline model of Gleason, PSA at prostatectomy, and pathological T-stage (model χ2 test, P 

= 0.00053). The number of mutational signatures identified in a cancer was negatively 

correlated with time to biochemical recurrence in prostatectomy patients (P = 0.014, HR = 

3.0; Cox proportional hazards model on number of processes greater than 3, Supplementary 

Fig. 4) and is an independent predictor (P = 0.0061, HR = 3.6; Cox proportional hazards 

model). The number of SNVs detected was also an independent prognostic biomarker 

(P=0.031, HR=1.005; Cox proportional hazards model). The numbers of both samples and 

events within this study are modest and further analysis of larger cohorts is required to 

establish firmly these findings. 
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Druggable targets in the prostate cancer disease network 

A key opportunity arising from systematic analyses of cancer genomics is the early 

identification of therapeutic intervention strategies. To this end, we applied established 

chemogenomic technologies using the canSAR knowledgebase54 to map and 

pharmacologically annotate the cellular network of the prostate disease genes identified in 

this study. We derived the network using curated protein-protein and transcriptional 

interaction data. We included the protein products of the genes identified in this study and 

other key proteins that directly interact with these proteins or affect their function (see 

Online Methods and Supplementary Fig. 5 for details). This resulted in a focussed prostate 

network of 156 proteins. Each protein was annotated based on multiple assessments of 

‘druggability’, i.e. the likelihood of the protein being amenable to small molecule drug 

intervention (Table 2 and Supplementary Table 5). We find that PCa driver genes are 

embedded in a highly druggable cellular network that contains eleven targets of approved 

therapies and seven targets of investigational drugs. As well as the Androgen Receptor 

(AR) and the Glucocorticoid Receptor (GR), the network contains targets of drugs 

approved for other indications, several of which (e.g. BRAF, ESR1, RARA, RXRA, 

HDAC3) are under clinical investigation for PCa.  

Seven proteins within the prostate network are targets of drugs currently in clinical trials. 

In particular, the ataxia-telangiectasia mutated (ATM) inhibitor AZD-0156, currently in 

Phase 1 for safety assessment, is a likely candidate for exploration in PCa due to the 

recently described role of DNA damage repair, particularly in advanced PCas21,55. The 

network highlights targets of PI3 Kinase pathway inhibitors (PI3K, AKT1) that are 

undergoing clinical investigation in PCa, as well as IDH1 and MDM2 drug targets.  
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To give an indication of the potential of these drugs, we analysed the most recent drug 

sensitivity data (GDSC56, see URL below). Eighteen drugs acting on our network were tested 

in GDSC on PCa cell lines. Of these, 5 showed significant effect on growth inhibition and the 

remaining13 drugs showed weak activity in at least one cell line (Supplementary Table 6). 

However, to validate fully the potential of these drugs, extensive drug sensitivity testing 

needs to be performed in disease-relevant cancer models that correctly reflect the patient 

population. 

Potential future opportunities for PCa therapy are also highlighted by 13 proteins that are 

under active chemical biology or drug discovery investigation (Table 2). These include 

Menin (MEN1), a component of the MLL/SET1 histone methyltransferase complex. Mice 

with MEN1 mutations develop PCa57 and recent data have shown that menin expression is 

involved in CRPC58. A further 49 proteins are predicted to be druggable and therefore 

potentially amenable to drug discovery. These include the known PCa protein SPOP, the 

transcription activator BRG1 (SMARCA4), CDK12, and the CREB binding protein 

CREBBP.  

In summary, we find that 80 of the 156 proteins central to the prostate disease network are 

either targets of existing drugs or have the potential to be targeted in the future. To maintain 

an up-to-date-view of this analysis, we provide a link to a live-page in canSAR (see link 

below). 

 

DISCUSSION  

The analysis of whole genome sequence data from 112 prostate cancers has revealed many of 

the genetic factors underlying the processes of carcinogenesis, progression, metastasis and 
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the acquisition of drug resistance. Supporting evidence has been provided for thirty candidate 

driver genes with limited or no previous support, including the non-coding drivers NEAT1 

and FOXA1. 

Through the timing of genomic aberrations, we have a picture of the possible routes to 

progression in PCa. Most driver mutations may occur either clonally or subclonally, but 

mutations in SPOP and ETS-fusions occur early in cancer development and are exclusively 

clonal. Whereas the gain of 8q and ETS fusion appear to be sufficient to drive a dominant 

clonal expansion, ETS- cancers typically need a combination of large-scale losses, acquired 

over an extended period of time. Known cancer drivers are frequently observed subclonally 

and two competing drivers are seen in several cancers. Metastases have less genomic 

heterogeneity, likely resulting from a bottleneck in achieving metastatic potential.  

We observe changes in the mutational processes operative upon cancers during progression. 

Signature 8 was enriched in subclonal expansions, and signatures 13 and 18 were enriched in 

metastatic cancers. Cancers with germline or somatic BRCA1/BRCA2 mutations were 

enriched for signature 3, demonstrating the effect of double-strand repair defects throughout 

cancer evolution. 

Losses of CDH12 and ANTXR2 result in poorer recurrence-free survival. We identify 69 PCa 

associated proteins that are either targets for currently available drugs or new potential targets 

for therapeutic development. 

Analysis of the whole-genome sequences of over a hundred prostate cancers has started to 

reveal the complex evolutionary pathways of these cancers. The early acquisition of driver 

aberrations including ETS-fusions and whole genome duplications strongly affects the 

acquisition of subsequent aberrations. Acquisition of individual mutations affects both the 

subsequent likelihood of metastasis and response to treatment. Network analyses identified, 
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in addition to previously known drivers, targets that could be exploited for clinical 

investigation with existing drugs as well as targets for new drug discovery, giving potential 

for the results of genome analysis to be translated rapidly into therapeutic innovation and 

patient benefit. 
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FIGURE LEGENDS 

Figure 1. Mutational landscape of prostate cancers. From top-to-bottom: mutation status 

of DNA repair genes, ETS fusion status and sample type; proportion of mutations assigned to 

each signature48; number of SNVs identified in each sample; proportion of small 

insertions/deletions associated with microhomology or repetitive regions; number of 

insertions, deletions and complex insertions/deletions in each sample; total number of 

structural variants in each sample, separated into inversions, translocations, deletions and 

tandem duplications. Sample ordering is reported in Supplementary Table 7.  

Figure 2. Landscape of driver genes in prostate cancer. Genes were identified using three 

different methods: upper panel shows genes that have undergone genetic aberration in at least 

6 samples (n=112 biologically independent samples); middle panel shows genes with 

aberrations enriched in either ERG+ or ERG- cancers (Fisher exact test for PTEN, TP53, 

SPOP, 3p13, PDE4D, PPAP2A; ROBO1 and ROBO2 are in a region enriched for SVs in 

ETS- tumors; IL6ST is in a region enriched for SVs in ETS+ tumors; n=59 ETS+, n=53 ETS 
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biologically independent samples); lower panel shows genes enriched in metastatic samples 

(Fisher exact test, n=20 metastatic, n=98 primary biologically independent samples). Right-

hand bar graphs show the fraction of samples bearing each type of aberration. DDR = DNA 

damage response, ‘hemi.loss’ = loss of heterozygosity resulting from copy number change, 

‘homo.loss’ = homozygous deletion resulting from copy number aberration, ‘two allele loss + 

sub/indel’ indicates genes in triploid regions bearing aberrations of all 3 gene copies. Sample 

ordering is reported in Supplementary Table 7. 

Figure 3. Putative novel driver genes. Putative drivers are shown in red and genomic 

aberrations are displayed as: missense SNVs – circles; nonsense SNVs – open triangles; 

essential splice site mutations – open squares;  indels – closed squares; non-coding mutations 

– closed triangles; simple SV - yellow cross; chromoplexy event – blue cross; region enriched 

for loss of heterozygosity, with height proportional to the number samples containing LOH - 

pink shading; region enriched for homozygous deletions, with height proportional to the 

number of samples containing homozygous deletion – blue shading. 

Figure 4.  Temporal evolution of copy number aberrations in ETS+ and ETS- prostate 

cancer. For (a) ETS+ cancers (n=45 biologically independent primary cancer samples), and 

(b) ETS- cancers (n=47 biologically independent primary cancer samples): Left: The 

landscape of copy number aberrations with genomic loci plotted against fraction of cancers.  

Loss-of-heterozygosity is depicted in blue, homozygous deletions in black, gains in red, 

TMPRSS2-ERG deletion in brown and whole genome duplication in green.  Right: The 

temporal evolution of significantly recurrent (p < 0.05, permutation test with Benjamini-

Hochberg procedure) copy number aberrations by genomic loci over time (mean with 95% 

confidence intervals, log precedence relative to arbitrary reference). Lower values indicate 

earlier events (c) Pairwise associations among copy number aberrations. Recurrently aberrant 

regions with a false discovery rate < 0.1 are shown. Associations are indicated by odds ratio 
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(OR) with brown colors depicting mutually exclusive events and blue-green colors depicting 

correlated events.  Genomic loci annotated by: type of aberration (G=gain, L=loss, 

HD=homozygous deletion); chromosome; median position in Mb. For focal events the 

putative target genes are annotated. 

Figure 5. Heterogeneity and subclonal mutations. (a) Metastatic tumors have less 

heterogeneity than primary tumors, whether assessed from SNVs or indels. Each dot 

represents a different sample, colored by sample type. x-axis = fraction of SNVs that are 

subclonal, y-axis = fraction of indels that are subclonal, contour lines calculated using R 

package kde2d. n= 93 biologically independent samples (10 ADT metastases, 9 hormone 

naïve metastases, 74 primary tumors) (b) Samples with multiple subclonal mutations in driver 

genes. Fraction of cancer cells carrying mutation is shown as grey histogram for all mutations 

and as red ovals for mutations in known driver genes. Mutations are clustered using a 

Dirichlet process as previously described47, with thick plum-colored lines indicating fitted 

distribution and pale blue regions indicating 95% posterior confidence intervals. Peaks with a 

subclonal fraction close to 1 are clonal, whereas peaks at lower subclonal fractions indicate 

subclonal mutations. 

Figure 6. Clinical outcome. Kaplan-Meier plots for biochemical recurrence.  Kaplan-

Meier plots of recurrent mutated genes where there is a significant correlation with time to 

biochemical recurrence after prostatectomy, CDH12 (left, p=0.006) and ANTXR2 (right, 

p=0.012) (Cox regression model; Benjamini-Hochberg multiple testing correction). Clinical 

information was available for 89 prostatectomy samples with WGS data, with a median 

follow up of 1108 days in which biochemical recurrence occurred in 26 patients. The 

mutations in both genes consisted of a frameshift deletion in one sample and structural 

variants in the remaining samples. 
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TABLE 1 

gene Mutation 
type(s) 

Previous 
evidence  

Prior evidence Evidence in our study 

ADAM28 SV, CNA low 59biological evidence SVs and CNA in ETS+ 

ANTXR2 SV, SNV/indel low none clinical correlation 

ASH1L SV, SNV/indel low 25 truncating mutations, SVs in ETS- 

CDH12 SV low none clinical correlation 

FOXO1 CNA low 60biological evidence CNA in ETS- 

IL6ST SV low 61biological evidence dN/dS, SVs and CNA in ETS+, clinical 
correlation 

LCE2B SNV/indel low none dN/dS (missense) 

MAP3K1 SV, CNA low none SVs, CNA in ETS+ 

MYST3 SV low 25 SVs in ETS-, RNA expression 

NCOA7 SV low none SVs in ETS- 

NDST4 SNV/indel low none dN/dS (missense) 

NEAT1 non-coding low 31biological evidence non-coding 

PDE4D SV low 62SNP data SVs and CNA in ETS+ 

PPAP2A SV low 62SNP data SVs and CNA in ETS+ 

PPP2R2A SV low 63biological evidence SVs and CNAs in ETS+ 

ROBO1 SV low 64biological evidence SVs in ETS+ 

ROBO2 SV low 25 SVs in ETS+ 

RPL11 SNV/indel low 25 dN/dS (missense) 

SENP6 SV low 42biological evidence enriched SVs, RNA expression 

TBL1XR1 SNV/indel,SV low 65known AR co-regulator 
biological evidence 

dN/dS 

USP28 SV, CNA, 
SNV/indel 

low none SVs, CNA, SNV/indel 

ZNF292 SV, CNA 
SNV/indel,  

low 25 enriched SVs, homozygous deletions, 
truncating mutations 

ARID1A SNV/indel medium 66 dN/dS 

CASZ1 SNV/indel medium COSMIC, TCGA and SU2C dN/dS 

CNOT3 SNV/indel medium 67Mut. in leukemia dN/dS (missense) 

LRP1B SV, CNA medium 62SNP data SVs and CNA in ETS- 

PIK3R1 SNV/indel medium 24 dN/dS 

RGMB CNA medium 38deletions CNA in ETS- 

TBX3 SNV/indel medium known breast cancer gene dN/dS 

ZMYM3 SNV/indel medium COSMIC SU2C dN/dS 
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Table 1. Putative driver genes. Genes were identified in our study using several methods, 

detailed in the last column: dN/dS; enrichment for SVs or CNAs in ETS+ or ETS- cancers; 

enrichment for truncating mutations or homozygous deletions, clinical correlation. From a 

PubMed literature search, prior evidence for each gene being a driver of prostate cancer was 

classified as ‘low’ if the gene has not been previously reported as playing a role in prostate 

cancer tumorigenesis or progression. Isolated alterations may have been observed or 

biological evidence for importance may have been presented as indicated in the prior 

evidence column. Prior evidence was classified as ‘medium’ for genes reported previously as 

playing a role in prostate carcinogenesis or progression but currently lacking statistical 

support based on genetic alterations. Evidence considered included presence of multiple 

genetic alterations, SNP associations, and known cancer genes in other tissues. The high 

confidence genes are those that are widely accepted to represent cancer genes and to be 

altered in prostate cancer: this would include genes such as HRAS, SPOP, IDH1 etc. In each 

case there are two or more of the following: statistical verification of higher incidence, 

biological experiments, clinical correlations, confirmation in multiple studies, recognition as 

cancer genes in other cancer types. dN/dS = non-synonymous: synonymous ratio, calculated 

for all SNVs and indels; dN/dS (missense) = non-synonymous: synonymous ratio, calculated 

for missense SNVs only; SV = structural variant; CNA = copy number aberration; SNV = 

single nucleotide variant; indel = small insertion/deletion; ETS = E26 transformation-

specific. 
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Table 2 

Target of approved drug 
AR, BRAF, ESR1, HDAC3, KCNH2, MAP2K1, NR3C1, RARA, RARB, RARG, RXRA 
 
Target of investigational drug 
AKT1, ATM, MDM2, PDE4D, PIK3CA, PIK3CB, TP53 
 
Target being investigated chemically 
AHR, BRCA1, CTNNB1, HRAS, IDH1, JUN, MAP3K1, MEN1, NCOR1, NCOR2, 
NR4A1, PIK3R1, PPP2R2A 
 
Predicted target by structure-based method 
ANTXR2, APC, ARNT, ASH1L, BRCA2, CBFA2T2, CDH12, CDK12, CHD1, CREBBP, 
DLC1, DOCK10, ERG, ETV3, FOXA1, FOXG1, FOXO1, FOXO4, FOXP1, GATA1, 
GATA2, HDGF, HNF4A, IL6ST, KAT6A, KDM4A, KDM6A, KMT2C, KMT2D, NKX3-1, 
PIAS1, PIAS2, PTEN, RB1, RGMB, RNF43, SKI, SMAD2, SMAD3, SMAD4, SMARCA4, 
SPDEF, SPOP, TBL1X, TBL1XR1, TBX3, TP73, ZBTB16, ZHX2 
 

 

Table 2. Drug targets identified from CanSAR analysis. Proteins in bold typeface are 

derived from genes identified as prostate drivers in this study or proteins that have a 

significant known interaction with these proteins. 
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ONLINE METHODS 

Patient Cohorts, Samples and Ethics 

We have complied with all relevant ethical regulations. 92 cancer samples from 

prostatectomy patients treated at The Royal Marsden NHS Foundation Trust, London, at the 

Addenbrooke’s Hospital, Cambridge, at Oxford University Hospitals NHS Trust, and at 

Changhai Hospital, Shanghai, China were collected as described previously68,69. Clinical 

details for the patients are shown in Supplementary Table 7. Ethical approval was obtained 

from the respective local ethics committees and from The Trent Multicentre Research Ethics 

Committee. All patients were consented to ICGC standards. (see link below).   20 men from 

PELICAN (Project to ELIminate lethal CANcer)70, an  integrated clinical-molecular autopsy 

study of metastatic prostate cancer,  were the subjects of the current study. Subjects 

consented to participate in the Johns Hopkins Medicine IRB-approved study between 1995 

and 2005. (Supplementary Table 7). A17 had a germline BRCA1 mutation, as previously 

reported71. 

DNA preparation and DNA sequencing 

DNA from whole blood samples and frozen tissue was extracted and quantified using a ds-

DNA assay (UK-Quant-iT™ PicoGreen® dsDNA Assay Kit for DNA) following the 

manufacturer’s instructions with a Fluorescence Microplate Reader (Biotek SynergyHT, 

Biotek). Acceptable DNA had a concentration of at least 50ng/μl in TE (10mM Tris/1mM 

EDTA), was between 1.8-2.0 with an OD 260/280. WGS was performed at Illumina, Inc. 

(Illumina Sequencing Facility, San Diego, CA USA) or the BGI (Beijing Genome Institute, 

Hong Kong), as described previously, to a target depth of 50X for the cancer samples and 

30X for matched controls68.  
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 The Burrows-Wheeler Aligner (BWA) was used to align the sequencing data to the GRCh37 

reference human genome72. Sequencing data have been deposited at the European Genome-

phenome Archive (EGAS00001000262). 

Variant Calling Pipeline 

SNVs, insertions and deletions were detected using the Cancer Genome Project Wellcome 

Trust Sanger Institute pipeline as described previously68. In brief, SNVs were detected using 

CaVEMan with a cut-off ‘somatic’ probability of 95%. Post-processing filters were applied. 

Insertions and deletions were called using a modified version of Pindel73. Variant allele 

frequencies of all indels were corrected by local realignment of unmapped reads against the 

mutant sequence. Structural variants were detected using Brass68. A positive ETS status was 

assigned if a breakpoint between ERG, ETV1 or ETV4 and previously reported partner DNA 

sequences was detected. 

Data availability 

Sequencing data that support the findings of this study have been deposited in the European 

Genome-phenome Archive with the accession code EGAS00001000262.(see link below).  

See Supplementary Table 7 for sample specific EGA accession codes. 

Code availability 

Alignment and variant calling was performed using analysis pipelines in the Cancer Genome 

Project (CGP) at the Wellcome Trust Sanger Institute. Software versions applied to each 

sample are listed in Supplementary Table 9. The CGP pipelines may be downloaded (see link 

below). 

Chromoplexy was called using Chainfinder version 1.0.1. Chainfinder may be downloaded 

(see link below) 
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The Battenberg algorithm was used to call clonal and subclonal copy number aberrations in 

all samples. The Battenberg pipeline may be downloaded (see link below). 

Putative drug targets were identified using CanSAR version 3.0. 

Data analysis was carried out using R, version 3.0.0. 

Mutation burdens 

Mutation burdens were compared between primary and metastatic samples and between ADT 

and hormone-naïve samples using a negative binomial generalised linear model (GLM), 

implemented with the R package MASS. Sample type was found to be an independent 

predictor of number of SNVs, as was age at time of sampling. 

Timing of copy number events 

We developed a novel approach to order the occurrence of copy number aberrations by 

combining three sources of information: 

 Clonality of copy number aberrations 

 Timing relative to whole genome duplication 

 Timing of homozygous deletions relative to neighboring hemizygous losses. 

Information from all tumors was combined using a Bradley-Terry model, to give the most 

likely ordering of events during progression of PCa. 

The Battenberg algorithm was used to detect clonal and subclonal somatic copy-number 

alterations (CNAs) and to estimate ploidy and cancer content from the next-generation 

sequencing data as previously described74. Briefly, germline heterozygous SNPs were 

phased using Impute2, and a- and b- alleles were assigned. Data were segmented using 

piecewise constant fitting75 and subclonal copy-number segments were identified via a t-

test as those with b-allele frequencies that differed significantly from the values expected 
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of a clonal copy number state. Ploidy and cancer purity were estimated with the same 

method used by ASCAT76. 

In this cohort, we defined WGD samples as those that had an average ploidy greater than 3. 

For tumors that had not undergone WGD, gains were defined as those regions that had at 

least one allele with copy number greater than 1, while losses were defined as those segments 

that undergone LOH. For tumors that had undergone WGD, losses were called in those 

segments with at least one allele with copy number of less than 2, whereas gains were called 

for those with an allelic copy number greater than 2. An extension of this logic was used for 

subclonal copy number segments – the evolving cellular fraction was always defined as that 

which deviated away from overall ploidy (defined as 2 for non-WGD samples and 4 for 

WGD samples). For example, if 75% of cells within a non-WGD tumor have a copy number 

of 3 + 1 at a given genomic loci, with the remaining 25% of cells having a copy number of 2 

+ 1, then we assume there has been clonal gain to 2 + 1, and then a subclone containing 75% 

of cells has undergone a further gain. 

Three independent approaches were used to extract evolutionary data from each cancer 

sample. The first involved ordering clustered sub-clonal cancer fractions, the second used 

implicit ordering of clonal HDs in relation to losses, and the third estimated the relative 

timing of whole genome duplication. The logical arguments used within each approach were 

considered in turn: 

1. Battenberg algorithm-derived estimates for the cellular fraction and standard 

deviation of each subclonal aberration were input to a Markov Chain Monte Carlo 

hierarchical Bayesian Dirichlet process to group linked events together in an unsupervised 

manner. This defined clusters of different cell populations, each present at a calculated cancer 

cell fraction. The pigeonhole principle was then used to determine the hierarchical 
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relationship between these clusters. Using this process, gains, losses and HDs were ordered 

with the following caveat to ensure that only independent events are ordered: if there was a 

clonal and subclonal gain (or loss) at the same locus, then only the clonal or initial gain (or 

loss) was ordered. 

2. Homozygous deletions have implicitly occurred after loss of heterozygosity at the 

same locus. 

3. The parsimony principle was used to define the allele counts that correspond to early 

and late changes in relation to WGD. For losses, if the minor allele copy number equals 0, 

then the loss occurred prior to WGD. Otherwise the loss occurred after WGD.  Regarding 

gains, if the major allele copy number is twice or greater than ploidy, then the gain occurred 

prior to WGD. Otherwise, the gain occurred after WGD. 

The above arguments allow us to gain insights into the order of copy number events within 

each individual tumor sample. To establish a consensus order across a cohort of tumor 

samples requires the ordering data to be integrated across all samples.  As specific copy 

number events (location of breakpoints and the individual copy number states) tend to be 

unique to individual samples, we defined reference copy number segments that occurred 

recurrently.  These were then used to build an overall contingency table. 

The reference genomic segments were defined as regions that were recurrently aberrant. 

Regions of significant recurrence (false detection rate (FDR), P < 0.05) were determined by 

performing 100,000 simulations, placing the copy number aberrations detected from each 

sample in random locations within the genome. The process was repeated for gains, LOH and 

HDs and the randomly generated copy number landscape compared to that arising from this 

cohort provided significance levels.  Each significantly aberrant region was initially 

segmented using all breakpoints from all the events that contributed to that region. For 
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instance, the significantly enriched region for LOH: chr8: 0-44Mb contains over 300 

breakpoints drawn from from all the samples which contain LOH at chromosome 8p. We 

computed significantly recurrent regions and reference segments for both ETS+ and ETS- 

sample subgroups. 

Performing pair-wise comparisons between all segmented results using the Bradley-Terry 

method described below proved computationally expensive and therefore the total number of 

segments used in the pairwise comparison was rationalised by grouping reference segments 

to make combined segments of minimum length 1 MB. 

We then considered each tumor sample in turn.  If any copy number event overlapped the 

reference genomic segments and was ordered in relation to any other event (that also 

overlapped regions of significance), those overlapped reference segments were ordered in 

comparison to other overlapped reference segments. In addition to these reference segments, 

the TMRPSS2-ERG deletion was ordered more stringently by considering only those 

segments that could result in the gene fusion, and not merely overlap the locus. In this 

manner, a contingency table of contests was constructed, using reference genomic segments 

as the variables. We built contingency tables for both ETS+ and ETS- tumor samples to 

determine whether their evolutionary trajectory differed significantly. .   

An implementation of the Bradley-Terry model of pairwise comparison in R77 with bias 

reduced maximum likelihood estimated the ability or overall order of each individual 

reference segment. 

Subclonal Analysis 

The fraction of each cancer genome with subclonal copy number aberrations was calculated 

as the total amount of the genome with subclonal CNA, as identified by the Battenberg 
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algorithm, divided by the total amount of the genome that had copy number aberrations. One 

sample (PD13397a, Supplementary Table 8) was identified as having very low cellularity, as 

it had a completely flat copy number profile and only 411 identified SNVs. Since CNAs 

could not called in this sample, it was not possible to adjust allele frequencies to CCFs and 

this sample was excluded from subclonality analysis. SNVs and indels were separately 

clustered using a Bayesian Dirichlet process, as previously described47. Clonal variants are 

expected to cluster at a CCF close to 1.0. However, in 18 tumors (Supplementary Table 8), 

there was no cluster in the range [0.95,1.05]. The likely cause of a shift in CCF is inaccuracy 

in copy number calling and these samples therefore failed quality control and were excluded 

from subclonality analysis. From Markov Chain Monte Carlo sampling carried out within the 

Dirichlet process model, the posterior probability of each variant having a CCF below 0.95 

was estimated. Variants with a probability above 80% were designated as ‘subclonal’, those 

with probability below 20% were designated ‘clonal’ and those with intermediate 

probabilities were designated as ‘uncertain’. The fraction of subclonal variants used in Fig. 5 

and Supplementary Fig. 2 was then calculated after excluding uncertain variants. 

Mutational Spectra 

The mutational spectra, defined by the triplets of nucleotides around each mutation  of each 

sample were deconvoluted into mutational processes as previously described48,78. Clonal and 

subclonal variants were separated, as defined above.  Further separation of clonal mutations 

was performed for mutations in genomic regions that had undergone copy number gains. 

These mutations were classified as ‘early’ or ‘late’ depending whether their observed allele 

frequencies were more likely to indicate their presence on 2 or 1 chromosome copies, 

respectively, as assessed by binomial probability. Assignment of mutations to mutational 

signatures was carried out on each subset of mutations (early, late, clonal, subclonal), as well 

as on all mutations from each sample (Supplementary Table 3). 
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Clinical survival analyses 

A Cox regression model was fitted to 71 features: every gene with mutations (breakpoints, 

subs or indels) with a potential functional impact (missense, nonsense, start-lost, inframe, 

frameshift, or occurred in a non-coding transcript) or a CNA highlighted by the copy number 

aberration analysis that occurred in three of more prostatectomy patients. The endpoint was 

biochemical recurrence. P-values were adjusted for multiple testing using the Benjamini-

Hochberg method. Multivariate analyses were performed on all genes found to be significant 

using discretised Gleason (6, 7, 8 or 9), pathological T-stage (T2, T3) and PSA at 

prostatectomy as cofactors. Gene selection for the optimal predictor of time to biochemical 

recurrence was determined using Lasso79, a shrinkage and selection method for linear 

regression, starting with all genes that had a significant association with time to biochemical 

recurrence. Standard algorithms were used for survival analyses and statistical associations. 

Identifying novel oncogenes 

The joint dataset was compiled from the aggregation of variants called within our samples 

with 3 other datasets, yielding a total of 930 samples, comprised of 710 primary and 220 

metastatic samples: 

 TCGA4, 425 primary cancer samples, whole exome sequencing with SureSelect 

Exome v3 baits on Illumina HiSeq 2000, average coverage ~100X 

 COSMIC database22, 243 samples, curated set of mutations from several sources, 

http://cancer.sanger.ac.uk/cosmic 

 Stand Up to Cancer23 (SU2C-PCF), 150 metastatic castrate resistant samples, paired-

end, whole exome sequencing with SureSelect Exome v4 baits on Illumina 

HiSeq2000, average coverage ~160X 
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To identify coding and non-coding drivers from SNVs and indels, we used two previously 

described methods50. Coding drivers on the joint dataset (930 cancers) were identified using 

dNdScv, a dN/dS method designed to quantify positive selection in cancer genomes. dNdScv 

models somatic mutations in a given gene as a Poisson process. Inferences on selection are 

carried out separately for missense substitutions, truncating substitutions (nonsense and 

essential splice site mutations) and indels, and then combined into a global P-value per gene. 

Non-coding recurrence was studied using NBR. Both dNdScv and NBR model the variation 

of the mutation rate across the genome using a negative binomial regression with covariates. 

First, Poisson regression is used to obtain maximum-likelihood estimates for the 192 rate 

parameters (rj) describing each of the possible trinucleotide substitutions in a strand-specific 

manner. rj = nj/Lj , where nj is the total number of mutations observed across samples of a 

given trinucleotide class (j) and Lj is the number of available sites for each trinucleotide. 

These rates are used to estimate the total number of mutations across samples expected under 

neutrality in each element considering the mutational signatures active in the cohort and the 

sequence of the elements (Eh = j rjLj,h). This estimate assumes no variation of the mutation 

rate across elements in the genome. Second, a negative binomial regression is used to refine 

this estimate of the background mutation rate of an element, using covariates and Eh as an 

offset. Both methods identify genes or non-coding regions with higher than expected 

mutation recurrence, correcting for gene length, sequence composition, mutation signatures 

acting across patients and for the variation of the mutation rate along the genome. A QQ-plot 

confirmed that P-values obtained from this method in this cohort were not subject to inflation 

and consequent over-calling of driver genes (Supplementary Fig. 6). 

Chromoplexy, characterized by highly clustered genomic breakpoints that occur in chains and 

are sometimes joined by deletion bridges, has been shown to be prevalent in PCa25. To 

identify rearrangement drivers, we first used ChainFinder25 to account for any bias towards 
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regions with chromoplexy and identified ‘unique’ rearranged regions per sample taking the 

mid-point between all the breakpoints ChainFinder assigns to the same chromoplexy event. 

Next, separately aggregating the ICGC samples with and without ERG fusions, we calculated 

inter-breakpoint distance and performed piecewise constant fitting (PCF)75 to identify 

genomic regions which were recurrently rearranged in multiple samples. Rearranged regions 

with potential functional impact were identified using two criteria: a minimum 3-fold 

difference in the number of SVs per MB of ERG+ and ERG- samples; region contains at least 

one gene with multiple samples with truncating events, i.e. homozygous deletion, stop codon, 

frameshift indel or essential splice site mutation. In addition, several identified regions were 

significantly enriched for LOH in either ETS+ or ETS- samples, from copy number analysis 

(see above). The variants identified in key regions are depicted in Fig. 3. 

Chemogenomics annotation of the prostate cancer network 

To construct the network, we used the 71 protein products of the 73 genes identified in this 

study (hereon referred to as Prostate Proteins) to seed a search for all possible interacting 

proteins in the canSAR interactome54. This interactome contains merged and curated data 

from the IMeX consortium80, Phosphosite, (see link below) and other databases. It includes: 

 1) interactions where there were more than two publications reporting experiments 

demonstrating the binary interaction between the two proteins 

2) interactions where there is 3D protein structural evidence of a direct complex 

3) interactions where there are at least two publications reporting that one protein is a 

substrate of the other 

4) interactions where there are at least two papers reporting that one protein is the product of 

a gene under the direct regulatory control of the other 



Page 41 of 43 
 

It excludes the following: 

A) interactions that were inferred from a large immunoprecipitation experiment without 

follow-up to demonstrate the specific binary interaction 

B) interactions inferred from text mining 

C) interactions inferred from co-occurrence in publications or from gene expression 

correlation. 

The initial prostate cancer seeded network resulted in a large collection of 3290 proteins that 

have some experimental evidence of interacting with at least one Prostate Protein. When we 

added extra proteins into the network, we wanted to ensure that we only add proteins that are 

more likely to function primarily through interaction with the proteins in the network rather 

than just be generic major hubs. To this end, we carried out the following steps: Starting with 

the input (prostate protein) list, we obtained all possible first neighbours. We then computed, 

for each new protein, the proportion of its first neighbours that are in the original input list. 

To define the proteins that are most likely to function through our network, we calculated the 

chances of these proportions occurring in a random network. We did this by randomising our 

interactome 10,000 times and computing how often the observed proportions can be achieved 

by chance (empirical p-value). We corrected the p-values for multiple testing and retained 

only proteins that have corrected FDR p-values less than 0.05. (Supplementary Fig. 5). We 

performed network minimisation to maintain only proteins that are strongly connected to 

more than one Prostate Protein or whose only connection is to one of the Prostate Proteins. 

We identified a Prostate Cancer network of 156 proteins. Using canSAR’s Cancer Protein 

Annotation Tool (CPAT)81, we annotated the 156 proteins with pharmacological and 

druggability data. We labelled proteins that are: 1) targets of approved drugs; 2) targets of 

drugs under clinical investigation, 3) targets of preclinical or discovery stage compounds that 
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are active at concentrations equal to or less than 100 nM against the protein of interest 4) 

proteins that we predict to be druggable using our structural druggability prediction 

protocols81-84 but that have few or no published active inhibitors – these are potential targets 

for future drug discovery. 

URLs   

http://www.cancerrxgene.org (GDSC)  

http://cansar.icr.ac.uk/cansar/publications/sequencing_prostate_cancers_identifies_new_canc

er_genes_routes_progression_and_drug_targets/ (link via google chrome)  

https://icgc.org/  

https://www.ebi.ac.uk/ega/studies/EGAS00001000262 

https://github.com/cancerit/dockstore-cgpwgs 

https://github.com/Wedge-Oxford/battenberg 

http://www.phosphosite.org/ 

http://archive.broadinstitute.org/cancer/cga/chainfinder 
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