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Abstract	

Scanning	Electron	Microscopy	(SEM)	based	assessments	are	the	most	widely	used	and	
trusted	imaging	technique	for	mineral	ore	quantification.	X-ray	micro	tomography	(XMT)	
is	 a	 more	 recent	 to	 the	 mineralogy	 toolbox,	 but	 with	 the	 potential	 to	 extend	 the	
measurement	capabilities	into	the	three	dimensional	(3D)	assessment	of	properties	such	
as	mineral	 liberation,	 grain	 size	 and	 textural	 characteristics.	 In	 addition,	 unlike	 SEM	
based	assessments	which	require	the	samples	to	be	sectioned,	XMT	is	non-invasive	and	
non-destructive	manner.	The	disadvantage	of	XMT,	though	is	that	the	mineralogy	must	
be	 inferred	 from	 the	 X-Ray	 attenuation	 measurements,	 which	 can	 make	 it	 hard	 to	
distinguish	from	one	another,	whereas	SEM	when	coupled	with	Energy-Dispersive	X-ray	
Spectroscopy	(EDX)	provides	elemental	compositions	and	thus	a	more	direct	method	for	
distinguishing	different	minerals.	A	new	methodology	that	combines	both	methods	at	
the	mineral	grain	level	 is	presented.	The	rock	particles	used	to	test	the	method	were	
initially	imaged	in	3D	using	XMT	followed	by	sectioning	and	the	2D	imaging	of	the	slices	
using	SEM-EDX.	An	algorithm	was	developed	that	allowed	the	mineral	grains	in	the	2D	
slice	 to	 be	 matched	 with	 their	 3D	 equivalents	 in	 the	 XMT	 based	 images.	 As	 the	
mineralogy	 of	 the	 grains	 from	 the	 SEM	 images	 can	 be	matched	 to	 a	 range	 of	 X-Ray	
attenuations,	this	allows	minerals	which	have	similar	attenuations	to	one	another	to	be	
distinguished,	with	the	level	of	uncertainty	in	the	classification	quantified.	In	addition,	
the	 methodology	 allowed	 for	 the	 estimation	 of	 the	 level	 of	 uncertainty	 in	 the	
quantification	of	grain	size	by	XMT,	the	assessment	of	stereological	effects	in	SEM	2D	
images	 and	 ultimately	 to	 obtain	 a	 simplified	 3D	mineral	map	 from	 low	 energy	 XMT	
images.	 Copper	 sulphide	 ore	 fragments,	 with	 chalcopyrite	 and	 pyrite	 as	 the	 main	
sulphide	minerals,	were	used	to	demonstrate	the	effectiveness	of	this	procedure.	

	 	



 

1. Introduction	

Quantification	by	 imaging	 techniques	has	 given	 valuable	 insights	 into	 the	 internal	 structure	 and	

textural	characteristics	of	mineral	samples.	Many	of	these	assessments	have	become	indispensable	

for	relating	the	performance	of	a	variety	of	mineral	processes	with	mineralogy	quantification	(Kyle	

&	Ketcham,	2015).	Applications	include	liberation	processes	such	as	milling	(Leißner	et	al.,	2016),	

recovery	processes	such	as	flotation	(Jordens	et	al.,	2016,	Tungpalan	et	al.,	2015)	and	heap	leaching	

(Naderi	et	al.,	2011).	Two	of	the	main	analytical	devices	used	for	imaging	the	internal	structure	of	

mineral	ores	are	X-ray	micro	 tomography	 (XMT)	and	Scanning	Electron	Microscopy	 (SEM)	based	

mineral	analysis	(Sutherland	&	Gottlieb,	1991;	Cnudde	&	Boone,	2013;	Lin	et	al.	2016b).	

XMT	 is	a	non-invasive	and	non-destructive	 tool	 that	has	been	used	 for	assessing	ore	samples	 in	

terms	of,	 for	 instance,	 their	mineral	 liberation,	 fracture	network,	gangue	porosity	and	grain	size	

distributions	(Garcia	et	al.,	2009;	Ghorbani	et	al.,	2011;	Dhawan	et	al.,	2012;	Charikinya	et	al.,	2015).	

For	 example,	 Miller	 et	 al.,	 (2003)	 studied	 the	 relationship	 between	 ultimate	 recovery	 in	 heap	

leaching	and	mineral	exposure,	building	a	predictive	model	based	on	the	exposure	measured	from	

XMT	images.	Despite	being	a	versatile	tool,	XMT	images	do	not	directly	provide	the	mineralogy	of	

the	 sample	 under	 study,	 which	 is	 a	 major	 drawback	 for	 geological	 and	 mineral	 processing	

applications.		

Scanning	Electron	Microscopy	 (SEM)	based	mineral	analysis	can	be	used	 to	obtain	mineralogical	

information	of	 the	ore.	Equipment	based	on	a	 combination	of	 SEM	and	Energy-Dispersive	X-ray	

Spectroscopy	(EDS	or	EDX)	measurements,	implemented	commercially	as	MLA	(Mineral	Liberation	

Analyser)	or	QEMSCAN	(Quantitative	Evaluation	of	Minerals	by	Scanning	Electron	Microscopy)	are	

widely	used	 for	 the	majority	of	mineral	assessments	 (Fandrich	et	al.,	2007)1	 .	Other	commercial	

devices	 include	 Zeiss	 Mineralogic,	 TESCAN	 TIMA	 and	 Oxford	 Inca.	 These	 techniques	 require	

sectioning	of	the	fragments	to	expose	2D	surfaces	to	reveal	the	internal	structure.	In	contrast	to	

XMT	 this	 technique	 is	 thus	 destructive	 and	 invasive,	 but	 presents	 better	 image	 resolution	 and	

classifies	the	different	minerals	present	in	the	sample	by	a	composite	of	electron	microscopy	and	X-

ray	data.	Another	drawback	of	SEM-based	analysis	is	that	only	2D	information	is	accessible,	making	

stereological	corrections	advisable	when	size	and	mineral	liberation	quantification	are	performed.		

SEM	 and	 XMT	 have	 been	 used	 together	 in	 order	 to	 take	 advantage	 of	 their	 complementary	

assessment.	Gay	&	Morrison	(2006)	developed	a	correction	methodology	to	infer	3D	information	

                                                
1	In	this	paper	‘SEM/EDS’	is	used	to	refer	to	any	machine	with	both	capabilities,	like	MLA	or	QEMSCAN.	Whilst,	‘SEM’	is	
used	to	refer	to	the	analysis	obtained	from	those	machines,	including	the	SEM	and	EDS	information.	



 

from	1D	and	2D	information	given	by	2D	SEM	images.	The	methodology	was	then	corroborated	with	

3D	XMT	images	of	the	same	sectioned	fragments.	However,	only	the	cumulative	liberation	curves	

were	used	for	comparison	between	both	techniques,	with	no	grain-by-grain	analysis	carried	out.	

The	validation	was	thus	indirect,	with	no	measurement	of	the	relationship	between	the	actual	grain	

size	and	the	distribution	of	sizes	seen	in	the	section	and	how	this	stereology	error	varies	with	the	

grain	size.	Sok	et	al.	(2010)	used	high	resolution	SEM	images	to	correlate	local	pore	size	and	micro-

porosity	 with	 the	 X-ray	 attenuation	 obtained	 from	 low	 resolution	 scans.	 Adding	 this	 calibrated	

micro-porosity	 to	 the	macro-porosity	 readily	 measured	 in	 XMT	 allowed	 good	 agreement	 to	 be	

achieved	with	mercury	porosimetry	data.	Van	Geet	et	al.	(2001),	on	the	other	hand,	used	SEM	and	

optical	 imaging	to	 identify	mineralogical	phases	 in	coal	samples.	 In	none	of	the	presented	works	

were	the	levels	of	confidence	and	uncertainty	bounds	assessed.	

In	this	paper	we	propose	a	novel	methodology	for	quantifying	mineral	information	by	combining	

information	 from	 XMT	 and	 SEM-based	 assessments	 using	 a	 grain-by-grain	 approach.	 We	

demonstrate	 how	 SEM-based	 mineral	 information	 can	 be	 used	 to	 calibrate	 XMT	 image	

segmentation	to	provide	quantitative	3D	mineralogical	data.	In	addition,	the	XMT	3D	information	is	

used	to	assess	stereological	effects	in	SEM	images,	providing	a	method	for	easily	generating	ore	and	

mineralogy	specific	stereological	corrections.	The	novelty	of	the	proposed	methodology	is	that	 it	

allows	 the	 confidence	 bounds	 in	 the	 mineral	 segmentation	 and	 classification	 to	 be	 assessed,	

important	 considerations	 if	 these	 methods	 are	 to	 be	 used	 for	 quantitative	 analysis.	 The	

methodology	is	tested	on	copper	sulphide	ore	fragments	containing	mainly	chalcopyrite	and	pyrite	

in	a	quartz	gangue	matrix.	The	reason	for	choosing	this	ore	is	because	chalcopyrite	and	pyrite	are	

commonly	associated	with	one	another	and	yet	are	notoriously	difficult	 to	distinguish	 from	one	

another	in	XMT	images.	

	

2. Materials	and	methods	

2.1 Ore	samples		

For	 this	paper	a	 typical	porphyry	copper	ore	with	a	grade	of	0.8	wt%	copper	was	used.	Table	1	

summarises	 the	mineral	 composition	as	obtained	 from	SEM	assessment.	The	main	non-sulphide	

gangue	mineral	is	quartz,	with	pyrite	being	the	main	sulphide	constituent,	though	it	is	considered	a	

gangue	mineral	 as	 the	 copper	 containing	minerals	 are	 the	 species	 of	 interest.	 The	main	 copper	

mineral	 is	chalcopyrite,	 though	accompanied	by	a	range	of	other	copper	containing	species.	The	

fragments	consisted	of	crushed	ore	in	the	8	to	12.22	mm	size	range.		



 

	

Table	 1.	Main	mineral	 composition	 of	 the	 ore	 sample.	 Primary	 and	 secondary	 sulphides	 along	 with	
predominantly	quartz	gangue	are	the	main	minerals	present	in	the	ore	samples	used.	The	variability	is	the	
fragment	to	fragment	standard	deviation	in	the	measurements.	

	Mineral	type	 Weight	%	 Specific	gravity	 ID	

Copper	containing	
species	 2.13±0.47	 	 	

Bornite	 0.25	 5.06	 Cu5FeS4	

Chalcopyrite	 1.25	 4.1	 CuFeS2	

Chalcocite	 0.011	 5.5	 Cu2S	

Covellite	 0.136	 4.6	 CuS	

Tennantite	 0.48	 4.65	 Cu6[Cu4(Fe,Zn)2]As4S13	
	 	 	 	
Pyrite	 7.00	±	2.74	 4.95	 FeS2	
	 	 	 	
Gangue	minerals	 90.69	±	2.73	 	 	

Muscovite	 39.81	 2.76	 KAl2(AlSi3O10)(F,OH)2	

Quartz	 41.93	 2.65	 SiO2	

Other	minerals	 8.95	 	 	

	

2.2 XMT	scanner		

A	Nikon	XTH	225	scanner	was	used	to	carry	out	the	XMT	acquisition,	37	fragments	were	analysed	in	

total	with	34	of	them	XMT	scanned	at	high	energy	levels	and	lower	resolution.	The	remaining	three	

were	XMT	scanned	at	higher	resolution	and	lower	energy	levels.	The	detector	consists	of	a	matrix	

of	2000x2000	detectors,	which	gave	a	 linear	resolution	of	approximately	9	to	16	µm	for	the	size	

range	of	fragments	used.	The	parameters	used	for	the	acquisition	are	listed	in	Table	2.	

Table	2.	Scanner	conditions	for	XMT	scans.		

Parameter	
Value	

Low	Energy	 High	Energy	

Voltage	 50	kV	 89	kV	

Current	 137	µA	 117	µA	

Filter	 none	 1mm	Al	

Exposure	 2	s	 0.708	s	

Projections	 2001	 2001	
Resolution	 8.9	µm	 16.1	µm	

	

Using	the	database	created	by	Berger	et	al.	(2010),	the	linear	attenuation	coefficient	can	be	plotted	

for	different	X-ray	energy	levels.	Figure	1	shows	this	coefficient	for	the	main	minerals	encountered	

in	the	samples	studied	in	this	paper.	There	is	a	significant	gap	in	attenuation	between	the	quartz	



 

and	the	sulphide	minerals.	Note	that	although	quartz	was	the	main	gangue	mineral	in	these	samples,	

the	other	non-sulphide	gangue	species	also	have	much	lower	X-ray	attenuations	than	the	sulphide	

species.	 Segmentation	 difficulties	 arise	when	 attempting	 to	 distinguish	 between	 the	 pyrite	 and	

chalcopyrite	as	their	X-ray	attenuation	values	are	very	similar	to	one	another.	It	can	be	observed,	

though,	that	at	lower	energy	levels	the	gap	in	the	attenuation	between	these	minerals	is	larger.		

	
Figure	1	Linear	attenuation	of	X-rays	at	different	energy	levels.	Linear	attenuation	coefficient	dependant	
on	material	density	and	effective	atomic	number	varies	with	the	energy	level	applied,	phenomena	exploit	
by	dual	energy	radiography.	(Berger	et	al.,	2010)	

	

However,	the	fraction	of	photons	that	are	able	to	pass	through	the	sample	decreases	with	energy.	

As	the	signal-to-noise	ratio	depends	on	the	number	of	photons	detected,	lower	energy	scans	need	

longer	 exposure	 times.	 For	 the	 ore	 used,	 good	 contrast	 and	 a	 reasonable	 acquisition	 time	was	

achieved	using	an	energy	level	of	50	kV	at	137	µA	with	a	2	second	exposure	time.		

2.3 SEM/EDS	analysis		

After	XMT	scanning,	all	the	fragments	were	ground	and	polished	to	expose	a	section	of	their	interior	

for	 analysis	 within	 the	 FEI	 Quanta	 600i	 SEM/MLA	 machine.	 The	 sample	 preparation	 involved	

mounting	the	fragments	in	30	mm	blocks	using	epoxy	resin.	The	prepared	sample	blocks	were	then	

polished	using	the	Struers	Tegrapol	polishing	machine	to	a	diamond	finish	of	1	µm.	Carbon	coating	

was	also	performed	using	the	Quorum	Q150R	carbon	coater	to	prevent	electron	charging	of	the	

exposed	surface,	avoiding	image	artefacts	created	by	electrons	being	accumulated	in	sections	of	the	

ore.	Figure	2	shows	a	schematic	of	the	slice	exposed	for	an	example	fragment;	depending	on	the	

surface	of	the	fragments,	a	slice	150	to	250	µm	deep	was	exposed.	



 

 
Figure	2	Example	 schematic	of	 fragment’s	polished	 sectioning.	Fragments	were	polished	 to	different	
depths	as	shown	in	the	figure	by	the	orange	slice.	

A	 combination	 of	 a	 standard	 Back	 Scattered	 Electron	 (BSE)	 and	 a	 Grain-based	 X-ray	 Mapping	

(GXMAP)	measurement	methods	 (Fandrich	 et	 al.,	 2007)	were	 performed	 in	 the	 SEM/MLA,	 at	 a	

resolution	of	2.25	µm	per	pixel.	Figure	3	shows	a	region	of	interest	in	which	the	results	from	the	3	

imaging	modalities	are	compared.	From	left	to	right	these	are	the	low	energy	XMT	image,	the	BSE	

image	 from	 the	 SEM,	 and	 a	 mineral	 map	 based	 on	 a	 combination	 of	 the	 SEM	 and	 EDS	

measurements.	It	should	be	noted	that	the	XMT	image	represents	a	virtual	2D	slice	through	a	3D	

data	set	(2D-XMT),	while	the	other	two	images	are	inherently	2D	data.	It	can	be	seen	that	the	SEM	

BSE	image	has	better	contrast	and	looks	sharper	than	the	XMT	image.	Nevertheless,	the	difference	

between	pyrite	(green	in	the	mineral	map)	and	copper	minerals	(pink	and	red)	is	apparent	in	the	

XMT	image	when	a	low	energy	level	is	used. 

a)

	

b)

	
c)	

	
Figure	 3	 Region	 of	 interest	 of	 one	 example	 fragment.	 Contrast	 between	 gangue,	 pyrite	 and	 copper	
minerals	is	apparent	in	both	modalities.	a)	low	energy	2D-XMT	image,	b)	BSE	image	and	c)	Mineral	map	
showing	classification	given	by	the	SEM	analyser.	



 

	

2.4 Grain	level	calibration	of	XMT	scans	using	SEM-based	analysis	

For	the	 low	energy	XMT	scans	the	pixel	 intensity	histogram,	depicted	 in	Figure	4	for	a	particular	

fragment,	shows	clear	peaks	for	some	of	the	phases	of	 interest.	The	two	main	peaks	are	due	to	

gangue	 and	 the	 air	 and	 porous	 media	 in	 the	 particle.	 At	 higher	 intensities	 there	 are	 slight	

undulations	in	the	histogram	due	to	the	presence	of	pyrite	and	the	copper	minerals,	though	these	

are	not	nearly	as	distinct	as	the	other	peaks.	The	methodology	of	using	the	SEM-based	data	to	set	

the	 thresholds	 between	 these	 phases,	 as	 well	 as	 quantifying	 the	 resultant	 uncertainty	 in	 the	

classification,	is	the	main	focus	of	this	paper.	

	
Figure	4	Example	histogram	of	one	XMT	scan.	Peaks	from	the	key	materials	present	in	the	sample	are	
apparent,	including	air,	gangue	and	sulphide	minerals.	

	

The	algorithm	proposed	is	based	on	the	one	developed	by	Lin	et	al.	(2015	&	2016a)	and	extended	

significantly	to	incorporate	the	SEM-based	calibration.	The	methodology	for	combining	XMT	images	

and	SEM	sectioning,	performed	by	a	 combination	of	 routines	 in	both	Avizo®	and	Matlab®,	 is	 as	

follows:	

1. Fragments	are	individually	scanned	in	the	X-ray	Computed	Tomography	scanner	using	the	
settings	reported	in	Table	2.	

2. Gangue	matrix	and	bright	phase	are	together	segmented	from	air,	using	the	Otsu	algorithm	
(Otsu,	1979),	setting	the	image	intensity	for	the	surrounding	air	and	internal	porosity	to	zero.	

3. The	bright	phases	(pyrite	and	copper	minerals	together)	are	segmented	from	the	gangue	
using	the	maximum	entropy	global	thresholding	algorithm	for	each	fragment	(Kapur	et	al.,	
1985).	The	binary	mask	obtained	is	then	labelled	using	a	connectivity	algorithm,	with	an	8-
connected	neighbourhood,	to	identify	individual	grains.	

4. Fragments	are	scanned	in	the	SEM	machine	after	a	grinding	and	polishing	procedure.	



 

5. Porosity	is	segmented	in	the	BSE	image	of	the	sections	in	the	same	manner	as	described	in	
step	2.	

6. Minerals	 of	 interest	 are	 segmented	 from	 the	mineral	map	 image,	 in	 order	 to	 produce	 a	
binary	mask.	This	is	subsequently	labelled	as	in	step	3.	

7. The	XMT	3D	volume	is	then	registered	into	the	segmented	BSE	image	so	that	a	rigid	motion	
transformation	is	obtained.	

8. The	motion	transformation	 is	used	to	align	the	XMT	grain	 labelled	mask	(step	3)	 into	the	
grain	labelled	mask	(step	6),	so	that	individually	identified	grains	in	both	images	have	the	
same	label.	

A	point	to	be	stressed	is	that	only	the	labelled	images	are	transformed	and	matched,	the	original	

images	(3D	XMT,	BSE	and	GXMAP	measurements)	are	kept	intact	to	avoid	introducing	systematic	

errors	due	to	the	registration	process.	This,	however,	is	not	the	case	for	the	virtual	2D	XMT	image,	

where	the	slice	has	to	be	created	from	the	XMT	3D	volume	using	registration	algorithms.	Figure	5	

shows	the	BSE	image	of	an	example	fragment	slice	along	with	the	mineral	map	provided	by	GXMAP	

and	 the	 registered	 XMT	 grain	 labelled	mask	 over	 the	 same	BSE	 image.	 A	 good	 correspondence	

between	all	images	can	be	observed.		

a)

	

b)	

	

c)

	
Figure	5	Registered	slices	from	SEM	and	XMT	analysis.	The	proposed	grain	tracking	algorithm	was	applied	
to	the	SEM	and	XMT	images	to	correlate	information	from	each	device.	a)	shows	the	BSE	image	from	SEM,	
b)	shows	the	mineral	map	from	SEM	and	c)	shows	the	XMT	mineral	label	image	overlapped	to	the	BSE	
image,	colours	indicate	the	unique	label	number	of	each	mineral	grains.	

	

After	the	algorithm	has	been	applied	to	the	ore	samples,	a	grain-level	database	is	created	so	that	

information	 about	 their	 pixel	 intensity,	 size	 and	 shape	 in	 XMT	 and	 BSE	 images,	 distance	 to	 the	

surface	 and	 mineralogy	 is	 available.	 This	 database	 is	 used	 to	 study	 variability	 in	 grain	 size	

quantification	by	XMT,	stereological	effects	in	grain	size	distribution	obtained	from	SEM	images	and	



 

to	calibrate	a	global	threshold	to	segment	the	bright	phase	in	XMT	images	so	that	pyrite	and	copper-

mineral	grains	can	be	distinguished	from	one	another.	Figure	6a	shows	the	pixel	intensity	histogram	

as	obtained	from	the	XMT,	showing	no	obvious	value	for	a	threshold.	It	should	be	noted	that	unlike	

Figure	4	this	histogram	is	only	for	the	pixels	in	the	XMT	2D	slices.	An	appropriate	threshold	can	be	

found	 by	 plotting	 all	 mineral	 grains	 according	 to	 their	 mineralogy	 as	 given	 by	 the	 EDS-based	

classification	against	their	image	intensity	in	the	XMT	low	energy	scan.	Figure	6b	shows	this	plot,	

where	a	global	threshold	can	be	set	so	that	the	level	of	misclassification	leads	to	the	grade	indicated	

by	the	SEM/EDS	analysis.	It	should	be	noted	that	this	figure	is	plotted	on	the	basis	of	the	cumulative	

2D	area	of	the	grains	rather	than	the	number	of	grains.	

a)	

	

b)	

	

Figure	6	Tracked	grains	pixel	intensity	by	mineralogy.	a)	Image	intensity	histogram	showing	the	XMT	pixel	
value	along	with	the	respective	histograms	of	pyrite	and	copper	minerals	grains	for	a	particular	fragment.	
b)	Pyrite	and	copper	ores	grains	from	all	scanned	fragments	have	been	sorted	by	their	pixel	intensity	so	a	
global	threshold	can	be	set	 in	order	to	achieve	same	composition	given	by	the	SEM	analyser.	Label	 ‘1’	
shows	 the	 result	 of	 boundary/partial	 volume	 effects,	 which	 lower	 the	 grains’	 pixel	 intensity.	 Beam	
hardening	causes	variability	in	the	grains’	intensity	with	depth	into	the	sample	(label	‘2’)	

	

The	 numbers	 in	 Figure	 6b	 indicate	 situations	 were	 image	 artefacts	 affect	 the	 observed	 pixel	

intensity,	and	thus	potentially	influence	the	accuracy	of	the	segmentation.	Label	‘1’	shows	grains	

that	have	an	average	intensity	that	is	lower,	sometimes	significantly,	than	the	typical	intensity	of	

grains	of	that	type.	This	is	typically	the	result	of	the	partial	volume	effect,	where	pixels	at	the	grain-

gangue	boundary	have	an	 intensity	 lower	 than	those	 in	 the	 interior	of	 the	grain.	This	artefact	 is	

critical	in	smaller	grains	where	the	boundary	pixels	constitute	a	large	proportion	of	the	total.	This	is	

why	even	though	there	are	quite	a	large	number	of	grains	in	this	tails	of	the	distributions,	they	do	

not	contribute	much	to	the	total	area.	Beam	hardening	 is	an	acquisition	artefact	that	makes	the	

measured	 intensity	 dependent	 on	 the	 position	 of	 the	 grain	 within	 the	 sample.	 This	 artefact	 is	



 

responsible	for	some	of	the	subtler	variability	in	the	intensity	of	the	grains	within	the	same	type	

(label	‘2’)	and,	unlike	partial	volume	effects,	its	influence	is	not	restricted	to	small	grains,	though	its	

effect	 can	 be	 reduced	using	 a	 combination	 of	 filters	 and	 appropriate	 reconstruction	 techniques	

(Hsieh	 et	 al.,	 2000).	 For	 the	 copper	 minerals,	 another	 source	 of	 variability	 is	 that	 although	

chalcopyrite	 is	 the	 dominant	mineral	 in	 this	 class,	 it	 is	 not	 the	 only	 one,	 with	 different	 copper	

minerals	having	different	attenuations.	

After	obtaining	the	desired	threshold	from	Figure	6	(an	intensity	of	approximately	175),	this	value	

can	be	applied	to	all	XMT	volume	images	so	that	simplified	3D	mineral	maps	can	be	obtained	in	

which	gangue,	pyrite	and	copper	minerals	are	identified.	This	curve	also	allows	for	the	evaluation	of	

the	level	of	uncertainty	and	error	in	the	classification	of	mineral	phases	as	one	can	calculate	the	

cumulative	area	that	will	be	misclassified	by	a	given	intensity	threshold.	For	the	chosen	value	of	175,	

pyrite	grains	accounting	for	less	than	10%	of	the	total	area	(and	thus	volume	when	extended	into	

3D)	are	wrongly	assign	as	copper	grains	

	

3. Results	and	discussion	

After	polishing	and	imaging	in	the	SEM	scanner	all	37	fragments	were	successfully	registered	to	their	

corresponding	 3D-XMT	 image.	Grain	 size	 quantification	 and	mineralogy	 classification	 results	 are	

presented	in	this	section.	

3.1 Grain	size	distribution	

After	applying	the	tracking	algorithm,	only	grains	that	appear	in	both	modalities	are	considered.	This	

removes	the	bias	created	by	the	higher	resolution	achieved	by	SEM	in	comparison	to	XMT.	For	these	

grains,	 the	 grain	 size	 distribution	by	number	 is	 show	 in	 Figure	 7.	Grain’s	 equivalent	 diameter	 is	

hereafter	considered	as	proxy	for	the	actual	mineral	size	and	all	size	distributions	are	calculated	by	

number.	XMT	information	is	only	obtained	here	from	the	virtual	2D	slice	and	so	no	stereological	

effect	is	being	assessed.	



 

	
Figure	7	Grain	size	distribution	of	SEM	slices	and	registered	XMT	slice	after	grain	tracking.	By	considering	
only	tracked	grains,	the	effect	of	SEM	detecting	finer	grains	is	removed,	as	only	grains	appearing	in	both	
modalities	are	considered.	

	

It	can	be	seen	that	in	comparison	to	the	2D-XMT	registered	slice,	SEM	shows	a	grain	size	distribution	

with	more	fines.	As	the	 linear	XMT	resolution	 is	almost	8	times	(2.25	µm	compared	to	16.1	µm)	

lower	than	in	the	SEM	images,	different	effects	start	to	have	relevance.	Following	what	Lin	et	al.	

(2015)	proposed	for	quantifying	error	in	grain	size	and	considering	SEM	as	the	true	value	for	each	

grain	size,	we	can	study	the	error	in	XMT	volume	quantification.	Figure	8a	shows	for	each	grain	their	

size	(equivalent	circular	diameter)	given	by	the	2D	registered	slice	in	XMT	and	their	size	given	by	

SEM.	As	expected,	the	error	decreases	with	grain	size.	A	linear	fit	to	the	data	shows	an	intercept	of	

2	µm	and	a	slope	of	0.79	(R2	=	0.92),	indicating	the	goodness	of	the	fit.	The	intercept	can	be	explained	

by	the	SEM	resolution	and	a	slope	less	than	1	indicates	that	XMT	introduces	a	bias	that	makes	grains	

appear	to	be	bigger	than	they	actually	are.	This	mismatch	can	be	adjusted	by	changing	the	threshold	

used	 to	 segment	 the	 sulphide	 grains	 from	 the	 non-sulphide	 gangue,	 though	 this	would	 require	

adjustments	away	from	that	obtained	using	the	Otsu	algorithm.	A	similar	algorithm	could	be	applied	

to	that	proposed	in	the	paper	of	Lin	et	al.	(2015),	but	with	the	SEM	based	grains	as	the	reference	

size.	

Confidence	limits	of	95%	can	be	used	to	estimate	the	precision	of	XMT	when	quantifying	grain	size.	

Figure	8b	plots	the	standard	deviation	of	the	relative	error	as	function	of	grain	size,	showing	that,	

for	this	particular	case,	grains	larger	than	0.5	mm	in	diameter	present	a	random	error	(uncertainty)	

of	less	than	10%	in	their	quantified	size	at	the	given	XMT	resolution.		

a)	 b)	



 

	 	

Figure	8	Assessing	XMT	error	in	grain	size.	After	grain	tracking,	SEM	grain	segmentation	can	be	used	as	a	
standard	to	assess	XMT	precision	on	measuring	grain	size.	a)	linear	model	fits	the	data	with	an	R2	of	0.918,	
a	slope	of	0.79	and	an	intercept	of	2	[µm].	b)	standard	deviation	of	the	relative	error	between	SEM	and	
XMT	

	

3D	information	of	the	tracked	grains	is	also	available	and	can	be	quantified	as	well.	Table	3	shows	

the	P20	and	P80	obtained	from	the	SEM	assessment,	the	2D	registered	XMT	slice	and	the	3D	XMT	

volume.	Here	the	effect	dominating	the	difference	between	the	2D	and	3D	data	is	the	stereological	

effect.	This	effect	makes	the	2D	grain	size	distribution,	obtained	from	the	slices,	appear	finer	than	

the	actual	3D	size	distribution	as	the	slices	will	occur	through	random	locations	on	the	grains	and	

not	just	at	their	full	diameters.	

Table	3.	Grain	size	information	obtained	from	the	tracked	grains.	After	tracking	the	higher	resolution	
from	SEM	is	corrected	by	only	considering	grains	detected	by	both	devices.	The	observed	difference	is	
mainly	due	to	stereological	effects.	

	 SEM	 2D-XMT	 3D-XMT	

P20	[µm]	 36.8	 44.0	 66.4	

P80	[µm]	 129.0	 158.2	 234.3	

Res	[µm]	 2.25	 16.1	 16.1	

	

This	 effect	 has	 been	 studied	 before	 by	 performing	 the	 XMT	 imaging	 after	 the	 polishing	 of	 the	

fragments	 and	without	 a	 grain	 tracking	 correction	 (Gay	 et	 al.,	 2006).	 This	meant	 that	 only	 the	

average	behaviour	of	the	grains	in	the	rest	of	the	fragment	and	polished	section	were	compared,	

rather	than	involving	a	comparison	of	exactly	the	same	grains.	In	this	study,	XMT	contains	all	the	

grain	size	information	as	polishing	was	done	after	scanning.	Figure	9	shows	the	grain	size	distribution	

for	the	2D-XMT	and	3D-XMT	versions	of	the	tracked	grains	(left)	and	the	cumulative	distribution	

function	of	the	stereological	effect	over	the	mineral	grains.	In	addition,	the	stereological	effect	for	



 

a	 number	 of	 other	 shapes	 are	 included	 for	 comparison	 (right;	 more	 shapes	 in	 Sahagian	 &	

Proussevitch,	1998).	It	can	be	seen	that	for	the	mineral	grains,	90%	appear	smaller	than	they	actually	

are	and	that	their	distribution	differs	significantly	from	that	of	the	other	shapes	commonly	used	for	

these	corrections.	Also,	size	overestimation	has	a	long	tail,	with	grains	appearing	up	to	3	times	their	

actual	size.	 It	 is	worth	noting	 that,	by	using	only	XMT	data	 (the	3D	data	and	the	virtual	2D	slice	

through	the	data),	the	effect	of	higher	resolution	in	SEM	images,	as	well	as	the	uncertainty	in	the	

grain	size	(Figure	8),	is	avoided	and	only	the	stereological	effect	remains	as	the	source	of	difference.	

	 	



 

a)	

	

b)	
	

	
Figure	9	Stereological	effect.	Using	the	XMT	3D	information	of	grain	sizes,	one	can	obtain	the	stereological	
effect	of	the	2D	information	given	by	the	SEM	slices.	a)	shows	the	grains	size	distribution	of	the	2D	and	
3D	images,	b)	shows	the	cumulative	probability	distribution	function	of	the	error	in	size	for	the	mineral	
grains	and	some	convex	shapes.	

	

This	information	gives	useful	insight	into	the	effect	created	by	studying	grain	sizes	based	only	on	2D	

images,	 and	 provides	 the	 necessary	 data	 for	 an	 ore-specific	 stereological	 correction	 for	 further	

studies	with	the	same	ore.	Moreover,	while	a	physical	slice	is	required	to	perform	the	SEM-based	

calibration,	virtual	2D	slices	can	be	traced	over	the	3D	data	from	XMT	to	provide	a	statistically	robust	

stereological	correction.	

3.2 Simplified	3D	mineralogical	map	

As	only	a	simplified	mineral	map	will	be	obtained,	copper	minerals,	pyrite,	gangue	and	porosity	are	

the	phases	to	be	identify.	Porosity	and	gangue	are	easily	segmented	from	the	bright	phase,	but	in	

the	latter,	no	obvious	threshold	can	be	found	directly	from	the	intensity	histogram	(see	Figure	6a).	

Using	 the	 procedure	 described	 in	 Section	 2.2,	 a	 global	 threshold	 that	 creates	 the	 same	 grade	

specified	 by	 the	 SEM	 modal	 mineralogy	 information	 was	 found.	 This	 threshold	 produces	 a	

misclassification,	 due	 to	 X-ray	 artefacts	 discussed	 in	 Section	 2.4.	 This	 error	 can	 be	 quantified	

according	to	the	grain	size,	as	shown	in	Table	5,	by	grouping	grains	in	size	categories	and	evaluating	

the	percentage	of	false	positives	(pyrite	classified	as	copper)	and	false	negatives	(copper	classified	

as	 pyrite).	 As	 expected,	 the	miss-classification	 decreases	with	 grain	 size,	 especially	 for	 the	 false	

negatives.	 This	 is	 because	 false	 negatives	 are	 due	 to	 partial	 volume	 effects,	 which	 are	 strongly	

correlated	with	grain	size.	Conversely,	beam	hardening	effects	grains	of	all	sizes	and	is	the	dominant	

reason	for	the	false	positives.	



 

Table	4.	Mineral	misclassification	by	size.		

Size	range	[µm]	
False	

positives		
(%	of	grains)	

False	
negatives	

(%	of	grains)	

					<	25.3		 7.62	 7.85	

25.3	–	53.1	 10.32	 7.94	

53.1	–	82.5	 6.90	 0.91	

82.5	–	124	 9.33	 2.3	

				>	124	 10.42	 0.0	

	

Figure	10	and	11	show	two	typical	fragments	as	examples;	grey	represents	gangue,	brown	pyrite	

and	yellow	the	copper	mineral	grains.	Porosity	is	rendered	transparent.		

a)		
	

	

b)		

	

c)	

	
Figure	10	Resulting	calibrated	3D	mineral	map.	Applying	the	threshold	found	by	Figure	6,	a	3D	mineral	
map	 distinguishing	 between	 gangue,	 porosity,	 pyrite	 and	 copper	 minerals	 is	 obtained.	 a)	 EDS	 based	
classification,	b)	same	slice	using	the	threshold	found	and	c)	the	resulting	3D	mineral	map	

	 	

copper	minerals	

gangue	

pyrite	



 

a)	
	

	

b)	

	

Figure	 11	 Resulting	 calibrated	 3D	 mineral	 map	 and	 slice.	 Another	 example	 of	 the	 3D	 mineral	 map	
obtained	from	SEM/EDS	calibrated	low	energy	XMT	scans.	a)	rendered	volume	and	b)	virtual	slice	

	

The	information	provided	by	this	3D	mineral	map	adds	a	new	dimension	to	all	previous	analyses	

done	using	XMT	images	alone.	Now	mineralogy	can	be	associated	with	mineral	liberation,	grain	size,	

grain	 shape,	 fracture,	 crack	 network	 creation,	 etc.,	 all	 in	 3D.	 Limitations	 of	 the	 methodology,	

however,	are	the	result	of	 limitations	of	both	analytical	devices.	Critical	ones	are,	having	a	 large	

enough	sample	size	in	order	to	achieve	statistically	significant	results,	the	resolution	achieved	by	

the	XMT	scan	(heavily	dependent	on	the	particles	size)	and	more	minor	consideration	being	possible	

mineral	misclassification	by	the	SEM/MLA	scanner	(Lee	et	al.,	2011).	Also,	since	only	single	energy	

level	radiography	is	used,	materials	with	similar	attenuation	coefficients	will	not	be	distinguishable	

from	one	another.	For	those	materials,	multiple	energy	radiography	will	be	needed	(Lin	et	al.,	2013;	

Long	 et	 al.,	 2009).	 Also,	 the	methodology	 is	 bounded	 to	 the	mineralogy	 presented	 by	 the	 SEM	

analysis	so	it	can’t	distinguish	minerals	that	have	not	been	identified	in	the	SEM	analysis.	

The	 combination	 of	 the	 XMT	 and	 SEM	 images	 does	 alleviate	 some	 of	 the	 sample	 size	 issues	

associated	with	using	the	latter	method	alone,	especially	with	respect	to	grain	scale	information.	

This	is	because	a	slice	through	a	fragment	will	only	intersect	a	small	fraction	of	the	grains	present,	

especially	in	systems	such	as	the	one	examined	in	this	paper	where	the	grains	are	much	smaller	than	

the	ore	particles.	By	calibrating	the	XMT	images,	a	far	larger	sample	size	of	grains	is	available	and	

thus	less	slicing	of	fragments	is	required.	For	instance,	Table	5	shows	the	fractions	of	gangue,	pyrite	

copper	minerals	

gangue	

pyrite	



 

and	copper	minerals	for	the	particles	as	obtained	from	the	SEM	analysis	and	compares	them	to	the	

results	obtained	from	the	full	volume	using	the	calibrated	XMT	results.		

Table	5.	Mineralogy	obtained	from	SEM	and	XMT.	Proportion,	by	area	or	volume,	of	gangue,	pyrite	and	
copper	minerals	in	the	fragments	scanned	with	low	energy	XMT.	Differences	show	the	statistical	biased	
of	SEM	for	a	small	sample	size	can	be	compensated	with	the	3D	information	given	by	XMT	

	 SEM	%	 2D-XMT	%	 3D-XMT	%	

Gangue	 95.47	 95.69	 96.74	

Pyrite	 3.07	 3.17	 2.49	
Copper	
minerals	 1.46	 1.14	 0.77	

	

This	shows	that	while	the	limited	sample	size	exposed	for	the	SEM	analysis	is	useful	for	calibration	

and	can	provide	an	analysis	for	a	far	wider	range	of	minerals,	it	can	be	misleading	in	terms	of	the	

actual	particle	scale	variability,	showing	in	this	example	an	overrepresentation	of	the	presence	of	

sulphide	minerals	(pyrite	and	copper	minerals).	This	does	not	mean	that	XMT	inherently	provides	a	

better	analysis	than	MLA/SEM,	but	rather	that	by	combining	the	two	methods,	the	fragment	scale	

compositional	uncertainty	associated	with	taking	only	a	single	slice	through	the	fragment	can	be	

eliminated,	which	means	 that	 the	combined	methodology	will	 inherently	 require	 the	analysis	of	

fewer	fragments	to	achieve	a	statistically	valid	result	than	either	of	the	methods	on	their	own,	due	

to	the	minimisation	of	the	uncertainties	associated	with	mineral	misclassification	in	the	XMT	images	

and	 the	 limited	 number	 of	 grains	 intersected	 in	 a	 2D	 section	 for	 the	 MLA/SEM.	 The	 authors	

acknowledge	 that	 for	 a	 representative	 mineralogical	 study	 more	 than	 34	 sample	 need	 to	 be	

assessed	to	fully	represent	the	variability	of	the	ore	under	study,	though	the	purpose	of	this	paper	

was	 to	 present	 a	 methodology	 and	 to	 study	 mineral	 grain	 scale	 effects,	 for	 which	 there	 is	 a	

statistically	valid	sample	size.	

	

4. Conclusions	

A	methodology	for	combining	XMT	and	SEM	images	so	that	more	detailed	mineral	information	can	

be	obtained	from	the	3D	XMT	images	has	been	presented.	The	methodology	makes	use	of	a	tracking	

algorithm	that	matches	both	imaging	modalities	at	the	grain	level.	Tested	in	copper	sulphide	ores,	

the	methodology	allows	the	acquisition	of	a	3D	segmented	images	of	ore	fragments	where	copper	

minerals,	pyrite,	gangue	and	porosity	are	differentiated.	Segmentation	 thresholds	are	calibrated	

using	the	SEM	automatic	mineral	classification,	whilst	the	XMT	grain	size	quantification	error	is	also	

evaluated.	 SEM	 2D	 image-based	 grain	 size	 distributions	 can	 also	 be	 corrected	 for	 stereological	



 

effects	 using	 the	 3D	 information	 on	 the	 grains	 in	 the	 XMT	 volume.	 The	 proposed	methodology	

differs	 from	 previous	 work	 with	 XMT	 and	 SEM	 in	 the	 way	 in	 which	 data	 from	 both	 devices	 is	

combined	so	that	information	from	one	can	be	transferred	to	the	other	at	the	level	of	the	individual	

grains	 rather	 than	at	an	averaged	macroscopic	 level.	This	novel	approach	allows	 the	confidence	

limits	and	uncertainty	in	both	the	mineral	classification	and	grain	scale	quantification	to	be	assessed.	

Possible	limitations	of	the	methodology	are	the	presence	of	minerals	with	similar	X-ray	attenuation	

coefficients,	making	them	harder	to	be	segmented	only	using	a	low	energy	scan.	In	this	case	study	

it	was	possible	to	distinguish	the	pyrite	from	the	copper	sulphide	species,	but	it	was	impossible	to	

distinguish	the	different	copper	minerals	from	one	another	due	to	a	combination	of	similar	X-ray	

attenuations	and	 the	 small	number	of	grains	of	 the	minor	copper	 species	 intercepted	 in	 the	2D	

sections.	For	cases	like	these,	a	dual	energy,	or	even	multi-energy,	radiography	technique	together	

with	a	larger	number	of	sections	might	be	necessary.	The	use	of	a	combination	of	multiple	energy	

XMT	scans	and	SEM	information	is	thus	the	logical	progression	of	this	work.	
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