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Abstract. We present a novel iterative reconstruction method applied to in situ X-
ray synchrotron tomographic data of dendrite formation during the solidification of
magnesium alloy. Frequently, fast dynamic imaging projection data are undersampled,
noisy, of poor contrast, and can contain various acquisition artifacts. Direct
reconstruction methods are not suitable and iterative reconstruction techniques must
be adapted to the existing data features. Normally, an accurate modelling of the
objective function can guarantee a better reconstruction. In this work, we design
a special cost function where the data fidelity term is based on the Group-Huber
functional to minimize ring artifacts and the regularization term is a higher-order
variational penalty. We show that the total variation penalty is unsuitable for
some cases and higher-order regularization functionals can ensure a better fit to the
expected properties of the data. Additionally, we highlight the importance of 3D
regularization over 2D for the problematic data. The proposed method shows a
promising performance dealing with angular undersampled noisy dynamic data with
ring artifacts.

1. Introduction

Synchrotron X-ray microtomography (nCT) is a powerful non-destructive modality
which provides an opportunity to explore the inner structure of various materials in three
dimensions (3D). Nowadays, many pCT experiments can be performed dynamically,
so as to track the evolution of structure or microstructure as a function of time (4D
imaging). Currently, synchrotron pCT imaging can provide fast exposure times and
rotation speeds [I]-[4]. Although the acquisition speed is high, motion (an object’s
structural change during the time of a scan) is frequently present in the acquired data.
Unfortunately, many in situ experiments are rapid and not easily controlled, for instance,
imaging of geological processes [5, [6], semi-solid materials 7], [§], energy materials [9],
biomaterials [10], or solidification experiments [I1]-[16]. Therefore, in order to minimize
motion artifacts, one might consider taking less projections or/and reducing exposure
time. However, the former leads to angular undersampling and associated aliasing
artifacts, while the later may lead to high noise (due to poorer photon statistics) and
loss of contrast in the reconstructed images.

The tomographic acquisition process is based on collecting projections at multiple
angles within [0, 7] angular range due to synchrotron pCT parallel beam geometry. Once
the projections have been acquired, they are stacked into a sinogram from which the
reconstructed image can be derived. When measurements are sampled densely and over
a full angular range, it is possible to recover the attenuation coefficient distribution
using computationally efficient direct reconstruction methods, such as Filtered Back
Projection (FBP) or Fourier methods [I7]. Frequently, direct reconstruction methods
are not suitable for dynamic data since measurements are sparse, of low contrast, and
noisy [6, [18]. Additionally, the pCT data can contain various acquisition inaccuracies
or artifacts. Common artifacts include random errors in detector elements (zingers) as
a result of particles scattering and consistent error-offsets in miscalibrated or defective
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detectors. In the reconstructed images, the former leads to streaks and the later to
rings artifacts [19]-[21]. Both types of artifacts can cause significant difficulties when
segmenting, quantifying, and post-processing the reconstructed data.

Iterative Image Reconstruction (IIR) techniques are better adapted to deal with
noisy, angular undersampled, and erroneous measurements. IIR methods allow for more
accurate modelling of the acquisition process and can incorporate different types of a
priori information (e.g. non-negativity, smoothness, sparsity) about the solution [22].
ITR approaches can be divided into deterministic and statistical or model-based methods
[23]. Deterministic methods are designed to solve a system of linear algebraic equations
and normally rely on the assumption of Gaussian noise in the data. On the other
hand, statistical approaches can incorporate more realistic noise models for low-dose
or fast imaging. Therefore, statistical IIR methods can provide more stable solutions
than deterministic techniques. Furthermore, model-based IIR methods can consider
non-standard data fidelity terms to compensate for the variety of acquisition artifacts
[19]-[21].

Although the use of an accurate data model is highly important for the IIR
algorithm, the choice of a regularizer can be also crucial. Nowadays, the Total Variation
(TV) [24], 25] regularization penalty is widely used to achieve piecewise-constant £;-
type recovery. The gradient-based sparsifying characteristics of the TV penalty are
remarkable; however, there are also some drawbacks associated with the penalty. Firstly,
there is a loss of contrast, which to an extent, can be resolved using a Split-Bregman
method for TV minimization problem [25]. Secondly, it is the cartoon or staircase
appearance of the recovered images, i.e. all ramp-like features are lost. There have been
various attempts to reduce the cartoon appearance by considering higher-order terms
and various (¢, + {)-type combinations [26]-[3T]. Recently, Chan et al. [32] compared
various higher-order regularizers in one tomographic reconstruction framework. The
authors concluded that the averaged combination of the TV penalty and higher-order
(Laplacian) term can deliver better results than some state-of-the-art models, such as
Total Generalized Variation (TGV) [29] or the Chan-Marquina-Mulet model [30]. In
this work, we will use the (¢; + ¢3)-type regularizer, but in a different form than has
been used by Chan et al. [32].

Here we propose a data-tailored model-based IIR method which delivers easily
segmentable reconstructions of high quality. Using in situ tomographic data of time-
evolving dendritic structures, we investigate various properties of the method. Through
the choice of different data terms and regularization penalties we demonstrate the
importance of accurately defining the objective for IIR strategy. Although the method
is novel in this form, it consists of previously thoroughly investigated elements that
have been independently validated [21) 32]. In this work, we do not include synthetic
phantom simulations but instead use real data to highlight important issues of model-
based IIR. We also provide open-source software which reproduces the results presented
and can be used reconstructing similar datasets in future [33].
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2. Problem setting and reconstruction framework

2.1. Forward model formulation

Image formation relies on the attenuation of X-rays and the mathematical model we
adopt in this paper is based on three basic assumptions: beam monochromaticity,
absence of diffraction or refraction, and Beer’s law [17]:

Ri=Tosexp (= [ p)dl), i=1,....m, (1)

where r € R? is the spatial position, yu is the attenuation coefficient of the object under
investigation, I ; is the intensity of the incoming beam, A; is the intensity of the beam at
the detector of the i-th ray integrated along the line path L;, and m is the total number
of rays. Taking the negative log of the relative intensity leads to a linear relationship
between the attenuation coefficient and the observations:

/L‘,u(r)dl:—ln<]/2;>,z'zl,...,m. 2)

7

Representing the attenuation coefficient on a square grid of n pixels: {x;(r)},, i.e.,
plr) = a;x;(r), (3)
j=1

we obtain a discrete, linear, forward model:
b = Ax, (4)

where x € R" is a vector with attenuation coefficients x;, b € R™ is a vector with the

I[;i,), and A € R™*" is the projection matrix

with elements a;; = [, x;(r)dl which capture the contribution of the i-th ray to the

log-corrected measurements, b; = —ln(
J-th pixel.

2.2. Objective function

The measured transmission data normally contain Possion noise due to the photon-
counting process. We model the actual measured intensities A;, as a Poisson random
variable with parameter A; [34]:

A; ~ Poiss{A;} = Poiss{lp;e ™} i=1... m (5)
One can approach the reconstruction problem from the Bayesian perspective by
employing the maximum a posteriori (MAP) estimate [19] 21, [34]:
arg minz [oni[AX]i + Aie_[AX]i:| + Lpior(%), (6)
=1

where Lo is the negative log of the prior density function.
In [34], a quadratic approximation to the likelihood function () was proposed,
leading to:
1
X = arg min 5 (Ax —b)" A (Ax — b) + Lo (%), (7)

X
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where A € R™™ is a diagonal matrix with entries {A;}7",. The data term is
the so-called Penalized Weighted Least Squares (PWLS) model, which is a simple
approximation to the Poisson model and is used for many X-ray tomography cases
[19, 21], 34, B5]. The matrix A effectively gives a higher weight to projections with a
higher photon-count. In the remainder of the paper we absorb these weights in the
system of equations, i.e. redefining A = VAA and b = VAb.

We now express the corresponding regularized optimization problem in the general
form:

arginin f(Ax —b) + g(x), (8)

where f : R™ — R, is a data misfit term, g : R® — R, is a convex regularization
penalty. In the next sections we introduce the misfit data term f and regularization
term g(x).

2.3. Data misfit

The choice of the data misfit term is driven by the nature of experimental data which
contain multiple ring artifacts. It has been shown in [20] 2I] that a specific form of the
Huber misfit can be used to compensate for consistent offsets in data:

f(r) = min 3lls = BTr[3 + Alls|1, (9)

where B = (I,,, ® 1,,,)/y/m2 with BTB = L, here m;, are the angular and the
detector dimensions respectively. The matrix B sums the residuals in m; groups so that
s is a vector of length ms. The reasoning behind this formulation is that the outliers
are likely to be correlated column-wise.

We now find the following closed-form solution of @D

5i = S\(B'r)y), (10)
where S, is the (element-wise) soft-thresholding operator given by

r+XA i r<-=X\
S\(r) = 0 if |r| <A (11)
r—X if >\

Eq. can be also written in terms of the conventional Huber misfit, one can find
more details in [2I]. Sparse minimization (9)) enables the recognition of outliers in the 1D
vector B'r. The vector of offsets is obtained to compensate for consistent intensity shifts
in the sinogram domain. Notably, this model is valid only for stripes with a constant
detector offset and will introduce bias for incomplete stripes and /or with variable offsets.
As long as the majority of ring artifacts are the result of a constant detector offset, this
approach remains consistent.
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2.4. Higher-order reqularization

The choice of a regularizer in the objective function is highly important in achieving
realistic reconstructions. Taking into account the piecewise-smooth nature of the
dendritic morphology of the case study being considered here (see section , we
propose the following combined regularization term:

9(x) = B191(x) + Baga(x), (12)

where the first-order isotropic TV-term [24] 25] is given as:

91(x) = D'l = V[DIx]? + [Dix)* + Dy (13)
and the second-order Lysaker, Lundervold, and Tai (LLT) term [26], 27]:

go(x) = |[D%]|y = /[D#x]* + [D3x]* + [D3x], (14)

where D,lf are discrete first and second derivatives in direction k, respectively. Note that
the mixed derivative terms are dropped in due to the simplicity of the formulation
[26]. In section [3| we justify why formulation is more appropriate for the presented
data. We present the whole algorithm based on proximal operators in the next section.

2.5. Proximal operators framework and the reconstruction algorithm

A generic way to solve problems of the form is by a proximal-gradient method [36]:
Xg11 = prox|g| (Xk — L7V ATV f(Ax, — b)) ,

where L is the Lipschitz constant of V f and the proximal step prox[g| consists of two
sub-problems using regularization terms :

prox s [g1](y) = arg min gy (x) + 55 |x — yl3, (15)
PR, 2](y) = ang min g2 () + i~ ¥ (16

The obtained solutions of and can be equally averaged to obtain the
approximated piecewise-smooth solution as it is shown in step 4 of Alg. [ The similar
proximal averaging strategies have been validated previously in [38], 39].

In Alg. [1] we present a detailed step-by-step approach for minimizing the objective
. Let us consider all steps in details. Step 1 shows the accelerated PWLS problem
solved for the data misfit in (7). The matrix G has been chosen as a high-pass ‘sinc’
filter in order to damp down the presence of low frequencies and accelerate convergence
[23, 20, B5]. The Lipschitz constant L has been automatically calculated using the
Power method [37]. Step 2 involves of solving the minimization subproblem with
the TV penalty . Here we employ the Split-Bregman (SB) algorithm to solve the TV
minimization problem exactly, without smoothing of the ¢; norm [25]. The SB algorithm
is known to be fast in convergence and also helps reducing the loss of contrast in TV-
iterations. For the data with such low signal-to-noise ratio (SNR) it is important to boost
contrast while keeping the noise level as low as possible. The details of implementation
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Algorithm 1 FISTA-GH-TV-LLT
Input: x40 =0, t4=0 =0, B12, A\, a, K, Krv, Krir, Sg=0 = 0, L;
for k =1to K do
I:yr=%x,— L' ATG(Ax;, — b + a8;);
20 X1 = ProxXry s, (Y&)
proxry g, (Vi) = arg min, [Dx|l + 55[1x — yll3;
3: X2 = proxiy s, (Yr)
Drox, 1.5, (4) = arg mim D7y + 2% — w3
4 X = (Xp1 + Xp2)/2;
5 sy =8, — L > i[Ax, — b+ 85
6: 8y = proxy, , (Sk)
pros, (sx) = argmin, 8]l + 2 1s — &ll3

T4/ 14482

Tty = —H5—F
8 Xp11 =Yr+ (M

tk+1) Yk — yr-1);
9: 811 =8k + (?Z:) (Sk - Sk—l);
end for

Output: {x;}¥,

of the SB method are given in [25]. Step 3 involves finding the solution of another
weighted denoising problem which consists of higher-order LLT term [27]. Optimization
employing the LLT penalty requires solving the fourth-order partial differential equation
(PDE). We use an explicit update scheme with a small tolerance parameter e to avoid
singularity [24, 26, 27]. In step 4, two solutions from steps 2 and 3 are averaged.
The averaging operation provides an approximation to piecewise-smooth solution under
appropriate choice of the regularization parameters [3;5. Step 5 involves an update
which corresponds to solving @ for the data fidelity term. This step produces a 1D
vector, which is the result of the sinogram residual summation over all angles. Step
6 involves of solving problem @ for the ¢;-term using the soft-thresholding operator
(11)). Steps (7-9) are the FISTA-related updates [37]. In the next section we present
and comment on parameters of Alg. [1}

3. Results

3.1. Tomographic data acquisition

Solidification processes have been a focus of materials science for a long time [11]-
[16]. The formation of dendritic structures and their evolution during melting is of
particular interest as these dendritic structures significantly affect the properties of
the material. The dendrites usually exhibit a complex morphology in 3D, depending
on various conditions including solute elements and cooling conditions, etc. Dendrite
formation is critically dependent on the cooling, hence growth rate cannot be slowed
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down to meet the requirements of the image acquisition process without changing the
nature of the process. Due to motion and the lack of temporal and spatial resolution
involved at early stages of solidification, blurred and noisy surfaces can be reconstructed.
This makes the detailed quantitative analysis of the dynamic changes in the dendrite
evolution very difficult, or at best less accurate. Additionally, the surface of the dendrite
is relatively smooth and therefore it is important to ensure a smooth recovery of the
shapedi]

The study was designed to perform X-ray imaging of an Mg-25wt.%Zn alloy sample
during solidification. The sample was heated to 30°C above the liquidus temperature of
the alloy and then held at that temperature for 30 min ensuring complete melting of the
sample. The sample was then cooled down at 3°C/min, allowing dendrites to form and
develop. A relatively slow cooling rate was chosen to minimize possible motion-related
blur in the reconstructed images induced by the fast dendritic growth.

Concurrent with the cooling of the sample, tomographic data acquisition was
performed using a pink beam at the Diamond-Manchester Branchline (I13) of the
Diamond Light Source. The apparatus and the set-up employed was very similar to
[12]. Projections were obtained using the high speed CCD camera (PCO Edge) and
binned to 1280 x 1080 pixels. This resulted in a voxel size of 1.6 pm x 1.6pm X
1.6 pm. One large tomographic dataset containing 82080 projections was collected at
angular increments of 0.5°, and an exposure time of 20ms per projection. The sample
was rotated continuously in one direction. Over 180° rotation a total of 360 projections
were collected during 7.2s time interval; thus in total, 228 time-frames (volumes) were
obtained during the acquisition experiment. The short exposure time and small number
of projections per rotation relative to the detector size make reconstruction of this data
a challenging task.

3.2. Direct reconstruction

Before assessing the reconstructions using Alg. [T} we reconstructed the data using the
FBP algorithm with the ‘Ram-Lak’ filter [I7]. Fig. [l shows an example of 2D slice
from the reconstructed 1k* voxels volume extracted from the 140th time-frame. At this
time-point in the experiment, the dendritic structures are large and the growth speed
is reduced substantially as compared to the initial time-frames. Correspondingly, the
number of motion artifacts is reduced as compared to the initial time-frames. FBP
reconstruction in [1| contains a significant amount of noise, has a poor contrast between
the background and the dendrites, and multiple ring artifacts of different intensity and
thickness. This image quality is typical of FBP-reconstructed images.

I The smooth surfaces of dendrites can be seen in the scanning electron microscope (SEM) image in
Fig. 11 of paper [40]
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(a) FBP reconstruction (b) magnified region

Figure 1: The reconstructed slice (a) using the FBP algorithm [I7]. The scale bar
(bottom right corner) corresponds to 300 um; (b) the zoomed region. The scale bar
corresponds to 100 pm. Note the significant amount of noise, low resolution, poor
contrast, and highly prominent ring artifacts.

3.3. Algorithm parameters and the effect of dimensionality on the reconstruction

Unlike the FBP method, the proposed model-based iterative reconstruction method
is able to create high quality 3D images. In this section we demonstrate how the
dimensionality of the regularizer (2D and 3D) can affect the quality of the reconstructed
image. It is known that by adding supplementary information into a regularizer one can
significantly improve signal-to-noise ratio of reconstructed images [0} [18, 19]. Here we
demonstrate how important this can be for problematic real data cases.

Synchrotron pCT data imaging employs the parallel-beam scanning geometry which
largely simplifies big data handling since each slice can be reconstructed independently
[41]. The whole volume can be reconstructed in a slice-by-slice manner considering
each slice serially on a PC, or in parallel across a cluster. Therefore, slice-by-
slice reconstruction can be efficiently realized with a minimal memory and processor
requirements. It is also suitable for highly efficient GPU-processing, even for big datasets
the 3D reconstruction problem can be decomposed into series of 2D operations. Parallel
beam iterative reconstruction normally consists of multiple applications of 2D forward
and backward projection operators and also regularization operations which can be
performed in 2D or 3D. Therefore the main difference between 2D and 3D IIR method
for parallel beam geometry is the dimensionality of a regularizer. For 2D IIR case, terms
Dix and D32x are absent in and , respectively. For our experiments, we used
on-the-fly forward and backward projection operations of the GPU accelerated modules
from the ASTRA toolbox [42].

Now we present all reconstruction parameters of Alg. The total number of
outer FISTA iterations is set as K = 65; the preconditioner G is selected as the ‘sinc’
function [I7] to damp low frequencies in the sinogram residual [23], 20]. Parameter
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Figure 2: The reconstructions of a slice from the volume using different methods: LS-
2DTV (a), GH-2DTV (b), and GH-3DTV (c). Top row: full-size reconstructed images.
The scale bar corresponds to 300 pm. Middle: the magnified region with the selected
profile for 1D plot. The scale bar corresponds to 100 pm. Bottom: 1D plots. Note
the improved resolution, contrast, and the absence of rings for the GH-3DTV method
compared to GH-2DTV, which is a 2D version of the same method. On the 1D plot
for the GH-3DTV methods, arrows indicate regions which have been better resolved in
terms of the resolution.

a = 20 (step 1) is introduced to accelerate convergence of the algorithm with respect
to the ring removal process. The weighted vector of rings variables §; ensures a faster
suppression of rings in iterations. Regularization parameters 5, = 100, 55 = 250 have
been chosen accurately using the visual assessment of reconstructed images in terms of
resolution versus noise and artifacts. Parameter A = 0.002 has been chosen to sparsify
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1D vector of rings offsets §;. In our computer implementation [33], we visualize the
vector of rings offsets and identify parameter A according to the sparse representation
of it (outliers can be detected visually). The maximum number of iterations for inner
proximal problems have been chosen to Kty = 25 and Kypr = 70. However, inner
iterations can be terminated earlier when the residual becomes small ||x;,1 — xz||3 < €,
where € = 1 x 107, The presented results can be reproduced using open-source codes
in Matlab and C [33].

In Fig. [2] we show reconstructions using different methods. Note that for this
experiment we do not use the LLT regularization scheme and therefore steps 3-4 have
been excluded from Alg. [ The LS-2DTV method can be derived from Alg. [I] when the
ring variable equal to zero, i.e. a = 0 and steps 5, 6, and 9 are excluded. The GH-2DTV
and GH-3DTV methods are with 2D TV and 3D TV regularization, respectively.

The reconstructed images in Fig. [2] demonstrate that without modelling of the
rings variable, the LS-2DTV method delivers reconstructions with strong ring artifacts.
The GH-2DTV method removes sharp ring artifacts, however the shadows of some
rings remain. Also the resolution of 2D reconstructions is not satisfactory and some
features have been blurred. In the profiles, see the area in the middle (z-axis 150-200),
dendritic arms have merged. The reconstruction using the GH-3DTV method delivers
much better quality in terms of resolution, contrast, and the absence of ring artifacts.
Notably the 1D profile of GH-3DTV confirms that the contrast has been improved
significantly, the arrows indicate features which have been improved by the 3D version
of the method. One can conclude that in some cases 2D regularization is not sufficient
to ensure high-quality reconstruction and 3D regularization should be used instead.

In the next section we will study how the nature of the chosen regularizer can affect
reconstruction and segmentation.

3.4. The effect of a higher-order regularizer on reconstruction

Higher-order regularization can produce more realistic images due to preservation of the
ramp-like features. Although the TV regularization can produce images of high contrast
with very distinct and sharp edges (see Fig. it can be unsuitable when applied to
data with smoother features. The surfaces of dendritic arms in metals are known to be
smooth [I1]-[16],[40], therefore the assumption of piecewise-constant recovery using the
TV term does not hold. In order to achieve a piecewise-smooth solution, we added an
additional higher-order regularization term and the resulting solution is averaged with
the TV term (see details in Section . Previously, in Section , we have shown that
the use of 3D regularization is crucial for some reconstruction tasks, therefore for our
experiments we will use 3D regularization. We will remove the ‘3D’ abbreviation from
the subsequent notations.

In Fig[3, we demonstrate reconstruction using two methods: GH-TV and GH-TV-
LLT. The latter method is exactly Alg. [I] and the former is without the LLT-related
steps, i.e. 3-4.
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Figure 3: The reconstruction using the GH-TV method (a) and the GH-TV-LLT method
(b). Top row: the reconstructed dendritic structure with 1D vertical profile crossing
several branches. The scale bar corresponds to 50 pm. Middle: the magnified region
shows the surfaces of dendritic arms more clearly. Notice the ragged edges of dendritic
branches, blocky background, and some outliers (indicated by arrows) with the GH-TV
reconstruction. The scale bar corresponds to 25 um. Bottom: 1D profiles across the
dendritic branches. The GH-TV-LLT profile shows much smoother shapes of dendrites
and also the individual arms have been resolved better than with the GH-TV method.

In the reconstructed images one can see that the GH-TV reconstruction is very
blocky yet appears to be slightly sharper than the recovery with the GH-TV-LLT
method. With the GH-TV recovery, the dendritic branches have saw-shaped surfaces
and also a few isolated outliers of different intensities (indicated by arrows). These
clusters of outliers can be explained by the nature of the TV penalty to preserve
abrupt intensity variations as step-functions, leading to accentuation of some undesirable
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features (apparently noise in this case). The 1D profile through one of outliers also shows
a distinctive dip of intensity around the value of 50 of the x-axis. The shapes of features
with the GH-TV method are not smooth but rugged due to effects of the TV penalty.
The reconstruction using the GH-TV-LLT method might not look as sharp as with
the GH-TV method, however the surfaces of branches are recovered much smoother.
Additionally in the zoomed image, the absence of clustered outliers is evident. The 1D
profile shows smooth local variations of intensity without significant jumps. Although
the contrast (between the background and dendritic features) might seem visually lower
for the GH-TV-LLT method, the 1D plot proves the opposite. The main features are
well preserved and appear to be not oversmoothed. Furthermore, some features are
resolved even better compared to the GH-TV case (see two peaks between 100 and
150 of the z-axis of 1D plots). Improved contrast of the GH-TV-LLT method is also
confirmed by the segmentation results (see Fig. , top).

We used the automatic Otsu segmentation method [43] for both reconstructed
volumes. The results of segmentation using GH-TV reconstructions provide partially

(a) GH-TV (b) GH-TV-LLT

Figure 4: Top row: the segmented reconstructed images for the GH-TV (a) and the
GH-TV-LLT (b) methods using the Otsu method. The scale bar corresponds to 50 pm.
Bottom: the rendered volumes using Drishti visualization software [44]. One can notice
much smoother and accurate segmentation of the data reconstructed using the GH-TV-
LLT method (b). The scale bar corresponds to 50 pm.

fragmented, discontinuous, and merged branches which are not accurate (indicated by
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arrows). The segmented GH-TV-LLT data give smoother and more realistic contours
of dendrites. Notably, the merging of dendritic arms can also be avoided by using the
GH-TV-LLT reconstruction method. In Fig. (bottom) we also provide a part of
rendered segmented volume which corresponds to the same dendrite shown in images
above. The rendering performed without smoothing in Drishti visualization software
[44] and the resulted 3D volumes demonstrate rough surfaces with the GH-TV recovery,
while smoother surfaces with the GH-TV-LLT method.

4. Discussion and Conclusions

In this manuscript, we have demonstrated a new iterative reconstruction algorithm
capable of reconstucting 4D synchrotron pCT data of poor quality with minimal noise
and high fidelity. We highlighted the importance of an accurate modelling of the
objective function in iterative algorithm when applied to real data. We choose the
case of time-evolving dendritic structures since it is an important topic researched by
many scientists and encouraged by advances in synchrotron high-speed imaging. Similar
experiments will continue to be challenging in terms of reconstruction from inaccurate
and noisy data; therefore, one needs robust reconstruction algorithms to deal with
various issues.

Although the presented GH-TV-LLT algorithm looks slightly cumbersome (see Alg.
1)) it is easy to implement and the choice of parameters is straightforward (many are
fixed for different applications). The main difficulty is the trade-off between /3 and [,
regularization parameters. We found that the quickest way to establish these parameters
is to find f; first while keeping 5, = 0. Once the [3; parameter is established one can fix it
and initiate the search over (3, values. When selecting parameters, one should establish
a trade-off between the level of smoothing and noise preservation. We observed that
minor oversmoothing removes ring artifacts even better, while compromising the spatial
resolution. When the fine resolution is not an issue, it is recommended to oversmooth
slightly.

Another substantial problem is the time of calculation and memory resources
required for 3D regularization of big data. In order to reconstruct 1k® volume with
Alg. [1] it can take approximately 15-20 hours using the following hardware: GeForce
GTX 980 graphics card to perform 2D projection-backprojection on the GPU, CPU with
24 threads to calculate regularization and approximately 30GB of RAM. A significant
amount of time (~> 85%) goes to the regularization routine running on the CPU.
One option to accelerate the process would be performing regularization on subvolumes
using a GPU or a cluster of GPUs. We are currently looking into the possibility of
implementing this to make the present algorithm more practical to deal with large
4D datasets. Considering faster converging methods may also reduce the number of
iterations substantially.

The proposed model-based iterative reconstruction technique consists of advanced
elements: unconventional data fidelity term and higher-order regularization. By using
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the Group-Huber data functional, one can alleviate the majority of strong ring artifacts.
The remaining artifacts can be further suppressed by using 3D regularization penalty
which also boosts both image resolution and image contrast. It has been shown that
the use of the correct model for regularization is highly important. Higher-order
regularization provides more realistic images and more accurate segmentation when
applied to real data of fast dendritic growth. The method provides an opportunity to
reconstruct severely undersampled and noisy 4D data in high resolution which can be
easily segmented.
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