Investigating nano-precipitation in a V-containing HSLA steel using small angle neutron scattering

Y. Q. Wanga, b, S. J. Clarkc, V. Janikc, d, R. K. Heenane, D. Alba Veneroe, K. Yana, b, D. G. McCartneyb, f, S. Sridharc, g, P. D. Leea, b

a School of Materials, University of Manchester, Manchester, M13 9PL, UK
b Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, OX11 0FA, Oxfordshire, UK
c WMG, University of Warwick, Coventry, CV4 7AL, UK
d Faculty Research Centre for Manufacturing and Materials Engineering, Coventry University, Coventry, CV1 5FB, UK
e Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK
f, Advanced Materials Group, University of Nottingham, Nottingham, NG7 2RD, UK
g, George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA

Abstract

Interphase precipitation (IPP) of nanoscale carbides in a vanadium-containing high-strength low-alloy steel has been investigated. Small angle neutron scattering (SANS) and transmission electron microscopy (TEM) were employed to characterize the precipitates and their size distributions in Fe-0.047C-0.2V-1.6Mn (in wt.\%) alloy samples which had been austenitized, isothermally transformed at 700 °C for between 3 and 600 min and water quenched. TEM confirms that, following heat treatment, rows of vanadium-containing nanoscale interphase precipitates were present. Model-independent analysis of the nuclear SANS signal and model fitting calculations, using oblate spheroid and disc-shapes, were performed. The major axis diameter increased from 18 nm after 3 min to 35 nm after 600 min. Precipitate volume percent increased from 0.09 to 0.22 vol% over the same period and number density fell from 2×10^{21} to 5×10^{20} m-3. A limited number of measurements of precipitate maximum diameters from TEM images showed the mean value increased from
8 nm after 5 min to 28 nm after 600 min which is in reasonable agreement with the SANS data.

Key Words: Microalloyed steel, Precipitation, Small angle scattering, Transmission electron microscopy

1. Introduction

High-strength, low-alloy (HSLA) steels which contain typically 0.05 to 0.15 wt% C, up to 2 wt%Mn and small (microalloy) additions of elements Mo, Nb, Ti and V (all usually <0.2wt%) have been in use as rolled sheet for automotive products for a number of years [1-6]. These small additions can form carbo-nitride (MX) (M = Mo, Nb, V, Ti and X = C, N) precipitates having the B1 (Fm3m) NaCl-type, FCC structure within the BCC ferrite (α-Fe) matrix [3]. However, there is a significant need to reduce the weight of automobiles in order to improve vehicle efficiency and achieve reduced fuel consumption and emissions. At the same time, passenger safety must not be compromised and so there is a growing demand from the automotive industry for highly formable steels with increased strength [7, 8]. This demand has led to intensive research and a growth in the production of steels that offer improved property combinations. These are termed advanced high strength steels (AHSS). The major difference between HSLA steels and AHSS is that the former have predominantly ferritic microstructures with a small volume fraction of microalloy carbonitride precipitates whereas the latter comprise dual phase (DP) steels (e.g. ferrite plus martensite) and steels that exhibit phenomena such as transformation induced and twinning induced plasticity. Nonetheless, there are some important differences between the mechanical behaviours of DP steels and predominantly single phase steels which are precipitation strengthened [9]. For example, it has been reported that the local elongation of DP steels, such as is required for hole expansion operations in manufacturing, is lacking in DP alloys. In response to this need, Funakawa et al.[10] reported the development of a new type of hot rolled steel that is based on a composition which gives rise to a ferrite matrix with nanometre-sized microalloy
carbides. The latter are formed via the well-known interphase precipitation mechanism in which rows and sheets of nanometre scale MX precipitates form at a moving α/γ interface during either isothermal transformation or continuous cooling and their very fine scale leads to a large precipitation hardening effect [2, 10-19]. The steel composition and processing conditions need to be carefully selected to avoid the formation of pearlite or cementite which would degrade formability [10].

In this context, there has been renewed interest in the topic of interphase precipitation (IPP), first investigated more than 40 years ago, as a means of introducing precipitates that are typically 5-15 nm in diameter, with rows that are ~ 30 to 50 nm apart. Vanadium carbide is often selected as an interphase precipitate because the solubility product of VC in austenite is much larger than that of TiC or NbC [20]. Therefore, it has little tendency to precipitate in the γ phase but instead precipitates during cooling so that a relatively large amount of precipitation occurs in the α-ferrite. However, maintaining a fine precipitate size during steel processing (i.e. prevention of precipitate coarsening by Ostwald ripening) is crucial to achieving a sufficiently large precipitation hardening effect in the final product. Vanadium carbide has a relatively high coarsening rate and consequently, significant attention has also been given to the investigation of Ti and Ti-Mo-containing steels. Both systems exhibit IPP but it has been found that the coarsening of carbide precipitates is significantly retarded in Ti-Mo alloys [14, 21-25].

Previous studies of IPP have included topics such as the effect of transformation temperature [11, 15, 26], time [27], cooling rate [16, 28-30], orientation relationship [15, 31-35], hot deformation [17, 36] as well as the addition of Mo [10, 14, 21-25] on precipitate composition, size, morphology and number density. The majority of these prior studies have used transmission electron microscopy (TEM) to characterise the precipitates [14, 18, 19, 22, 37, 38]. More recently atom probe tomography (APT) [15, 35, 39, 40] has been employed to
directly measure the composition, morphology, and size of individual precipitates. However, obtaining reliable statistical data on particle size distributions, chemical composition, morphology and volume fractions following IPP is a particular challenge as IPP typically occurs inhomogeneously [15, 35, 41]. TEM and APT both have a limited capability to analyse statistically significant numbers of precipitates efficiently which limits our ability to predict mechanical properties via models of precipitate - dislocation interactions. The lack of representative data on precipitates from significant volumes of bulk material, including factors such as size and spacing, also restricts the development of new and improved models of interphase precipitation [18, 42-49]. Improved, statistically significant, data on the size and distribution of interphase precipitates from bulk samples are thus needed.

Small angle scattering techniques based on neutrons or X-rays are potentially suitable for acquiring bulk-scale, statistically sound data on fine scale IP precipitates of the MX type in HSLA steels. Small angle neutron scattering (SANS) is generally preferred and over the past twenty years, there has been a growing interest in its use to measure the size, size distribution and volume fraction of nanoscale precipitates in various types of steel. This has included studies at room temperature on strip cast low carbon steels [37, 50, 51], maraging and martensitic steels [52, 53], Ti and Nb-containing microalloyed steels [54-57], Nb-containing pipeline steels [58] and NbC precipitation in the austenite phase [59]. Although Oba et al. [60] investigated IPP in a vanadium microalloyed steel, this was a medium-carbon grade and quantitative data on IPP in low-carbon, V- microalloyed steels have not apparently been reported.

The overall purpose of the present work was to use SANS to quantitatively analyze the size and volume fraction of IP precipitates and to investigate the changes occurring during isothermal transformation. A steel of composition Fe-0.047C-0.2V-1.6Mn (in wt.%) was selected for the present investigation because V is the most soluble of the microalloying elements in austenite (γ) at high temperature and it does not readily precipitate in the γ-phase
during cooling making it a very suitable addition for the formation of IP precipitates. In the present study, we measured precipitate characteristics from both the magnetic and the nuclear scattering signals and correlated the measurements with electron microscope observations and microhardness data. The results will aid modelling of precipitation strengthening and in the selection of suitable thermomechanical processing schedules for controlled IPP, with a SANS methodology extendable to a wider range of ferromagnetic alloys.

2. Materials and methods

2.1 Materials

A V-containing, microalloyed low-carbon steel provided by Tata Steel Europe was employed. The composition of the alloy, as determined by chemical analysis, is given in Table 1. The alloy was prepared by vacuum induction melting and cast into ingots with dimensions of 350 x 105 x 100 mm. These ingots were forged at approximately 1250 °C to a final thickness of 35 mm (i.e. a reduction of 65 %) and air cooled. To ensure that the thermomechanical processing was relevant to that employed in industrial operations, the additional 2-3 day homogenization stage at high temperature used in some prior studies on other alloys, was not applied. Six samples (with dimensions of 30 x 10 x 6 mm) were machined from the forgings and austenitized in a salt bath at 1150 °C for 5 min. One of the samples was water quenched directly from 1150 °C. The remaining samples were transferred directly to another salt bath and held at 700 °C for periods in the range 3 min to 600 min and water quenched (see Supplementary Data). Approximately 0.5 mm was removed from the surfaces prior to SANS analysis or further sample preparation for microscopy.

2.2 Materials characterization

Samples were sectioned and metallographically prepared by the normal methods. Scanning electron microscopy (SEM) was conducted using an FEI Quanta 650 FEG-SEM operated at a
voltage of 20 kV. Specimens were given a final polish with a colloidal silica suspension (OPS) and etched with 2% Nital.

For examination in the transmission electron microscope (TEM), samples were prepared by mechanical grinding/polishing to 50 µm thickness and then twin-jet electro-polished in a solution of 10 vol.% HClO₄ mixed with 90 vol.% CH₃COOH at approximately -15°C. TEM observations were performed using a JEOL 2100 scanning TEM operating at 200 kV equipped with 80 mm² silicon drift EDS detector (SDD) Oxford Instruments X-Max; aperture size 5 nm was used for STEM-EDS acquisition. Additionally, to examine in more detail the sample heat-treated for 600 min, an FEG-TEM FEI Talos F200X operating at 200 kV with four integrated Super-X SDD EDS detectors at a detection angle of 0.9 srads was used for high resolution imaging and elemental mapping of vanadium. In this case, a modified focused ion beam (FIB) lift-out method was used to prepare foils ~120 nm in thickness. The modified FIB preparation procedure involved an initial standard sample lift out preparation with 25 kV Ga-ions followed by a final low energy Ga-ion milling at 500 V and at an angle of 12° on both sides of the TEM foil sample [61]. This was designed to minimise the level of ion-induced damage due to surface re-deposition, amorphisation and implantation and to allow accurate observation of nano-scale features.

The average precipitate diameters in the samples aged for 5 min and for 600 min were measured from bright field TEM images and STEM-EDS maps by exporting them to ImageJ software [62]. Assuming that all precipitates have either oblate spheroid or disc-shaped morphologies an individual particle diameter was calculated as being equal to the calibrated diameter of the major axis (long axis) on the image plane. For each ageing condition, a minimum of 300 precipitates, both random and interphase, were analysed from a total of 20 TEM images.
The microhardness (Hv) of isothermally transformed samples was measured using a Wilson VH3100 microhardness tester with a load of 0.1 kgf. In partially transformed samples, indents were placed only within the ferrite grains. The mean value of 25 measurements is reported and the error is given as one standard deviation.

2.3 SANS experiment method

Small angle neutron scattering (SANS) experiments were performed on the SANS2d beamline at the ISIS Pulsed Neutron Source, UK [63]. A schematic of the experimental setup is shown in Fig. 1. Small angle scattering arises from nanoscale precipitates embedded in the ferritic matrix (as shown in Fig. 1a and 1b) as well as larger scale structural features. A magnetic field of 1.5 T was applied in a horizontal direction parallel to the sample surface (i.e. perpendicular to the neutron beam) sufficient to saturate the α-Fe matrix and suppress multiple scattering. Polychromatic neutrons (λ=1.7 to 16.5 Å) were used but only wavelengths in the range of 4.7 to 16.5 Å were selected for data analysis in order to avoid multi-Bragg diffraction [64-66]. Samples of approximately 10 mm × 10 mm × ~1 mm (thickness) were polished to 1 µm diamond surface finish and exposed for 60 min to a neutron beam of 8 mm diameter. The detector configuration gave a small angle scattering vector (q) range of 0.004 to 0.3 Å⁻¹, where \(q = 4\pi \sin \theta / \lambda \) and the scattering angle is 2θ.

Absolute SANS intensities were obtained using standard procedures [5, 67]. Nuclear and “nuclear plus magnetic” scattering cross-sections were obtained by partial azimuthal averaging in 30° sectors around the transmitted beam as shown in Figure 1(c) leading to one-dimensional plots of scattering intensity, I, versus q (Figure 1(d)). (Further details in Supplementary Data).

3. SANS data reduction and analysis method

If the precipitates are assumed to be non-interacting particles then the SANS scattering intensity, I, of the particle dispersion is given by
\[I(q) = (\Delta \rho)^2 \int_0^\infty N(r)V(r)^2F(q,r)^2 \, dr \]

(1)

where \(\Delta \rho \) is the difference in the scattering length densities of the particle and the matrix, \(N(r) \, dr \) is the number density of particles with size between \(r \) and \(r+dr \), \(V(r) \) is the volume of a particle of size \(r \) and \(F(q,r) \) is the form factor for the particles and \(q \) is the scattering vector [66, 68, 69].

Neutron scattering contrast has both a magnetic, \(\Delta \rho_{mag} \), and a nuclear, \(\Delta \rho_{nuc} \), contributions. In a field that magnetizes the matrix to saturation, \(I(q) \) depends on the angle \(\phi \) between the scattering vector and the magnetic field. Thus \(\Delta \rho \) in eqn. 1 can be written as

\[(\Delta \rho)^2 = (\Delta \rho_{nuc})^2 + (\Delta \rho_{mag})^2 \sin^2 \phi \]

(2)

Fig. 1c shows an example of a two dimensional detector image arising from this effect. The nuclear scattering intensity is measured along \(\phi=0^\circ \) and the sum of nuclear and magnetic scattering along \(\phi = 90^\circ \). To produce one-dimensional scattering profiles (Fig. 1(d)) we employed azimuthal data integration from \(-15^\circ<\phi<+15^\circ\) to determine nuclear scattering and between \(75^\circ<\phi<105^\circ\) to find nuclear plus magnetic scattering.

When the matrix is magnetized to saturation, and the chemical size of the precipitates is the same as their magnetic size, the ratio \(R(q) \) depends on their chemical composition through the dependence of \(\Delta \rho_{nuc} \) on precipitate chemistry.

\[R(q) = \frac{l_{mag}(q)}{l_{nuc}(q)} = \left(\frac{\Delta \rho_{mag}}{\Delta \rho_{nuc}} \right)^2 \]

(3)

If all precipitates have the same composition then \(R(q) \) is constant. However, \(R(q) \) will vary if either there is more than one type of precipitate present of differing size or the precipitate composition is size dependent [54].

Our model independent analysis (assuming disc-shaped IP precipitates) of particles is based on the Guinier, Kratky and Porod representations of the absolute scattering intensity data and follows standard methods [68-70].
A radius of gyration, R_{g1}, is calculated from the Guinier plot (which takes the form of $\ln(I)$ vs q^2) using a self-consistent method with $1 < qR_{g1} < 2$.

For a distribution of monodisperse thin discs of thickness, T, and radius, R, the relationship between T, R and R_{g1} is given by [70]

$$R_{g1}^2 = \frac{T^2}{12} + \frac{R^2}{2}$$ \hspace{2cm} (4)

A second Guinier plot of $\ln[q^2(I)]$ vs q^2 is known to give a radius of gyration, R_{g2}, that is related to the thickness, T, of a disc.

$$R_{g2} = \left(\frac{T^2}{12}\right)^{1/2}$$ \hspace{2cm} (5)

However, for polydisperse distributions there is not a simple relationship between R_{g1}, R_{g2} and mean particle dimensions as discussed in detail by Deschamps and De Geuser [69].

In the Kratky plot, Iq^2 is plotted versus q and a characteristic particle size, R_{max}, (the “pseudo Guinier radius”), can be determined from the maximum, q_{max}, in the plot [69].

$$R_{max} = \frac{\sqrt{3}}{q_{max}}$$ \hspace{2cm} (6)

The volume fraction of precipitate, f_v, in a dilute incompressible two-phase system is also obtained from the Kratky plot. The integrated small angle scattering, Q, (i.e. the Porod invariant) is given by

$$Q = \int_0^{\infty} I(q) q^2 dq = 2\pi^2 (\rho_p - \rho_m)^2 f_v (1 - f_v)$$ \hspace{2cm} (7)

where ρ_p and ρ_m are the scattering length densities (either nuclear or magnetic) of precipitate and matrix respectively. The q-range for integration was extrapolated to 10^{-5} Å$^{-1}$ for low q and 10 Å$^{-1}$ for high q with the Guinier equation and the Porod law respectively as recommended in reference [66]. Thus f_v can be found using the data in Supplementary Note 3.
A model fitting analysis was also carried out based on physical understanding from the model-independent analysis and using the SasView software program [71]. Two kinds of form factor fitting functions were investigated based on precipitates being assumed to be either disc or an oblate ellipsoid of revolution shape (i.e. an oblate spheroid).

In the case of a disc, the form factor is given by

$$F_{\text{disc}}(q,R,T) = \frac{2J_1(qR\sin\alpha)}{qR\sin\alpha} \frac{\sin(qT\cos\alpha)}{qT\cos\alpha}$$

(8)

where α is the angle between the axis of the thin disc, q the scattering vector, T the thickness of the disc and R is the radius. J_1 is a first order Bessel function.

For the ellipsoidal shape, the form factor becomes

$$F_{\text{ellipsoid}}(q,a,b) = 3 \frac{\sin[qr(a,b,\alpha)] - \cos[qr(a,b,\alpha)]}{(qR)^3}$$

(9)

where

$$r(a,b,\alpha) = (asin^2\alpha + bcos^2\alpha)^{0.5}$$

(10)

α is the angle between the axis of the ellipsoid and q, where b and a are the radii along and perpendicular to the rotation axis of the ellipsoid respectively; b is referred to as the polar axis and a is the equatorial axis.

4. Results and Discussion

4.1. Microstructural characterization

The SEM image of Fig. 2a shows the microstructure of the water quenched alloy which is seen to consist of acicular units, irregularly shaped laths and fine scale precipitates. These features indicate the formation of an auto-tempered martensite and lower bainite. Figs. 2(b)-(f) show the microstructure of samples transformed at 700 °C followed by water quenching. Regions of bainite, which formed from untransformed austenite that was present at the time
of quenching, are evident in Figs. 2(b)-(d). However, bainite is not visible in the samples transformed for 300 min and 600 min (Figs. 2(e) and (f)), indicating that transformation from austenite was complete prior to 300 min of isothermal holding. In the SEM image of Fig. 2(f), IP precipitates are visible within the ferrite grains. These precipitates can be resolved in the SEM because they have coarsened as a result of the long holding time at 700 °C.

Bright field TEM images of the samples transformed at 700°C for 5 min and 600 min respectively are shown in Figs. 3(a) and 3(b). For both transformation times, planar rows of carbide precipitates are observed which indicate that they have most probably been formed by interphase precipitation.

The morphology of the precipitates cannot be fully determined from these two images but is consistent with either a rod or disc-shape. Previous work has reported that IP precipitated vanadium carbides are not spherical but mostly elongated along the (001)\textsubscript{VC} plane to give an oblate spheroid (i.e. disc-shaped) morphology. This occurs because the (001)\textsubscript{VC} plane is a habit plane of VC and parallel to (001) plane in the ferrite [19, 72]. Therefore, in this study we assume that the vanadium carbides also exhibit such a morphology. Figs. 3(c) and 3(d) show representative high resolution TEM lattice images of the carbide precipitates in the sample held for 600 min. The long axis diameter of the precipitates are around 21 nm to 28 nm. The EDX map (Fig. 3(e)) confirms the precipitates are V-rich.

Precipitate size measurements, performed as described in section 2.2 on TEM images and EDX maps, give a mean value for the long axis carbide diameter. After 5 min ageing, this was found to be 7.8±3.6 nm and after 600 min ageing it was 27.8±8.0 nm (where the errors correspond to the standard deviation in the data). The long axis measurement is consistent with the HR-TEM lattice image and the change in long axis diameter with ageing time indicates a significant coarsening effect.

4.2 Interpretation of small angle neutron scattering measurements
One-dimensional plots of intensity versus scattering vector extracted from the SANS data for the water quenched and isothermally transformed (3, 60 and 300 min) alloys are shown in Figs. 4(a)-(d) respectively. In the water quenched sample, only the nuclear signal closely follows a q^{-4} variation (i.e. the Porod Law) over the entire q-range until the background level is reached at $q>0.1$ Å$^{-1}$. This shows that the principal contribution to nuclear scattering is from the interface between scattering particles and the matrix where the particles are large scale features typically $>2\pi/q_{\text{min}}$ (approx. 150 nm). These will typically be alloy carbides, nitrides or sulphides formed during steel manufacture. The iron carbides present in the bainitic regions of the quenched alloy (Fig. 2(a)) make negligible contribution to the nuclear scattering pattern because of their small contrast factor (See Supplementary Data). If nanoscale VC precipitates had formed they would contribute strongly to the nuclear signal due to their large contrast factor and so the q^{-4} behaviour of the nuclear signal indicates that there is no detectable nanoscale VC present following austenitization and quenching. However, the magnetic scattering signal deviates significantly from a q^{-4} behaviour over the range $0.004<q<0.05$ Å$^{-1}$ because magnetic scattering is significant from iron carbide precipitates (they are not ferromagnetic and behave as magnetic “holes” in the matrix).

The SANS results obtained from the isothermally transformed samples which were water quenched following transformation times of 3, 60, and 300 min are also shown in Fig. 4. In Fig. 4(b) both magnetic and nuclear scattering intensities deviate from a q^{-4} Porod-type behaviour. In the case of the nuclear signal, the deviation at $q \sim 0.01$ Å$^{-1}$ arises from the formation of nanoscale ($d \leq 50$ nm) VC precipitates, formed during the isothermal hold as seen in the TEM images of Figs. 3. The magnetic signal shows a different behaviour to the nuclear one due to the presence of residual islands of transformed austenite (i.e. bainite) (Figs. 2(b)-2(d)) which contain iron carbides. The magnetic signal thus has contributions from both the nanoscale VC and the somewhat larger iron carbide phases giving rise to a deviation from q^{-4} behaviour at lower values of the scattering vector q (larger values of particle size). Fig. 4(c)
shows similar features to Fig. 4(b) but the difference between nuclear and magnetic signals is diminished due to the reduced fraction of bainite in the microstructure following 60 min transformation followed by quenching, giving a reduced quantity of iron carbide compared to the shorter ageing time. The magnitude of the nuclear signal is evidently increased as a result of a greater phase fraction of VC and the signal covers a larger range of scattering vector, \(q\). Following 60 min transformation, the nuclear and magnetic signals are similar, consistent with the very small volume fraction of bainite seen in Fig. 2(d). In Fig. 4(d), the nuclear and magnetic signals have a similar magnitude over the entire \(q\) range following 300 min transformation. Two factors contribute to this. First, the nuclear and magnetic contrast factors of VC are similar (Supplementary Data). Secondly, isothermal transformation of austenite to ferrite was complete following a 300 min hold and hence there was no additional scattering contribution from iron carbides. Thus the large overall scattering signal above the Porod background is due to the nanoscale VC precipitates as seen in the TEM images of Fig. 3. The 1-D pattern for the sample transformed for 600 min is not shown but it has very similar features to Fig. 4(d) and is given in Supplementary Data.

Figure 5 shows the ratio of magnetic to nuclear scattering (\(R(q)\) versus \(q\), equation 3) for the water quenched and isothermally transformed samples. For the water quenched sample, the plot has a maximum value of 10.5 at \(q \sim 0.04\)Å. This implies the magnetic scattering signal was raised by iron carbide particles ranging in size from 15 to 150 nm. The dependence of \(R(q)\) on \(q\) decreased significantly with increasing transformation time and the maximum value of \(R(q)\) shifted to smaller \(q\) values indicating an increase in the size of the iron carbides in the bainite formed on quenching as well as the formation of a second type of precipitate with a much lower \(R(q)\) value, presumably the vanadium carbide precipitates. The austenite to ferrite transformation was completed in the samples transformed for 300 and 600 min and the corresponding values of \(R(q)\) are almost independent of \(q\) and close to 1. This is consistent with the formation of a single V-containing carbide, the composition of
which is independent of size. However, the mean value decreases slightly with transformation time (Table 2), which could be due to the mean carbide composition changing with time.

4.3 Determination of precipitate characteristics and the effect of transformation time

Further analysis of the changing VC volume fraction, size and size distribution during isothermal transformation is based on the 1-D nuclear data shown in Fig. 4, with the removal of (i) the effect of Porod Law scattering (large particles) and (ii) the incoherent background [66]. Figure 6(a) shows the intensity, I, versus scattering vector, q, the Kratky representation (Iq^2 versus q) is shown in Fig. 6(b), Fig. 6(c) is the first Guinier representation ($ln(I)$ versus q^2) and Fig. 6(d) is the second Guinier representation ($ln(q^2I)$ versus q^2).

Principal features of the $I(q)$ versus q plots

It is clear from Fig. 6(a) that the I versus q^n power law exponents depend on the q range. At low q (region I) and high q (region III) ranges, the exponent is found to have values of 0 and -4 respectively. The exponent zero corresponds to the Guinier regime which probes real space regions of size q^{-1}; i.e., regions >> precipitate sizes [73]. The exponent -4 relates to the Porod regime which probes the interfaces between the precipitate and the matrix. The scattering intensity is related to the precipitate surface area per unit volume. The intermediate q region (II) follows an exponent of approximately -2 as indicated in Fig. 6a. In this regime, the slope is related to the shape of the precipitate and q^2 indicates that the precipitates are thin discs or oblate spheroids [74] and so this slope is consistent with the precipitate morphology observed in the TEM images (Fig. 3).

Precipitate size and precipitate volume fraction calculated from Kratky plot

The Kratky plots of Iq^2 versus q (where I is the nuclear intensity) for samples transformed for different times are shown in Fig. 6(b). These plots provide a visual indication of volume fraction and size of the VC precipitates. The precipitate volume fraction is calculated from
the area under the Kratky plot (equation 7) whilst, \(q_{\text{max}} \) (equation 6) provides an estimate of the particle size which is termed the pseudo-Guinier radius, \(R_{\text{max}} \). Numerical curve fitting was used to find \(q_{\text{max}} \) and \(R_{\text{max}} \) values. The values obtained for volume fraction, \(f_v \), and \(R_{\text{max}} \) are listed in Table 2 and it is evident that both of these increase with transformation time. The different sets of values for \(f_v \) arise from the different assumptions made in applying Eq. (7). In one case, it was assumed that the precipitate had the stoichiometric VC composition giving a constant nuclear contrast factor in the calculation of \(f_v \). In the other case, a mean \(R(q) \) value (taken from Fig. 5) was used to calculate the nuclear contrast factor on the assumption of a constant magnetic contrast factor (see Supplementary Data). It was only possible to perform mean \(R(q) \) estimates for the fully transformed samples i.e. the 300 and 600 min transformation times. The values obtained from the constant nuclear contrast calculation probably represent an upper-bound value for \(f_v \).

Considering now the interpretation of the pseudo-Guinier radius \(R_{\text{max}} \), it is shown in reference [69] that the relationship between \(R_{\text{max}} \) and the mean particle radius depends on both the value of the dispersion parameter and also on the aspect ratio of the precipitate. Despite this limitation, the increase in \(R_{\text{max}} \) with transformation time shown in Table 2 suggests a marked coarsening behaviour of the precipitate population with the transformation time when held at 700 °C.

Precipitate size calculated from Guinier plot

Plots of the Guinier equations used to derive \(R_{g1} \) \((\ln(I) \text{ vs } q^2) \) and \(R_{g2} \) \((\ln(q^2(I) \text{ vs } q^2) \) from the gradients are displayed in Figs. 6(c) and (d) respectively and values of \(R_{g1} \) and \(R_{g2} \) are listed in Table 2. In both cases, self-consistent methods were applied for the boundaries of the linear gradient fitting [69]. Clearly, these parameters increase with transformation time, which correlates with the change in \(R_{\text{max}} \) and indicate a progressive increase in precipitate dimensions.
The limitations of the classical Guinier approach in calculating average particle dimensions for polydisperse systems are well documented [69]. Nonetheless, estimates of disc radius, R, and thickness, T, of the assumed disc shaped VC precipitates based on the Guinier approach can give valuable size data, recognizing that they represent particle ensemble information, and are given in Table 3 as calculated using equations (4) and (5). These show that both radius and thickness increase significantly and the aspect ratio of the particles is seen to be around 3-4 and changes little with transformation time. The Guinier radii after 5 min and 600 min ageing time of 11.6 nm and 21.7 nm respectively are larger than the mean TEM radius values of 3.9 and 13.9 nm respectively. It is evident that both techniques measure significant coarsening at 700 °C.

Precipitate size calculated from shape dependent model fitting

In order to refine the real-space precipitate size estimates obtained from the SANS data, model fitting was undertaken using the SasView software program [71]. This analysis employed two different precipitate shape models namely a disk shape (radius, R_c, and thickness, T_c, as given in equation 8) and an ellipsoid of revolution (polar axis, b, and equatorial axis, a, as given in equation 9). An ellipsoid of revolution is also referred to as an oblate spheroid and this term will be used hereafter. The disk model was considered in order to be consistent with the Guinier analysis presented in the previous section whilst the oblate spheroid shape was chosen as this shape has been one that has been assumed in previous work on the IPP of VC studied by TEM e.g. in reference [19]. In both cases, the precipitates were assumed to have a lognormal size dispersion of the major axis (i.e. R_c for the disk and the equatorial axis, a, for the oblate spheroid). The magnitude of the dispersion was expressed in terms of the dispersion parameter, σ, which is the standard deviation of the lognormal distribution. The disk thickness and spheroid polar radius were assumed to have a zero dispersion parameter.
The calculated 1-D nuclear scattering profiles were then fitted to the experimental 1-D scattering curves using, as fixed parameters, the precipitate volume fractions, obtained from equation 7, and the contrast between precipitates and ferrite matrix calculated from $R(q)$ (Table 2). The starting estimates in the model for the disk mean radius and half-thickness (major and minor axes respectively in the case of the oblate spheroid) were the R and T values found from the Guinier analysis. The goodness of fit between experimental and calculated 1-D scattering profiles was determined using the well known chi-squared quantity for all computations. The effect of altering the dispersion parameter in the range 0 to 0.5 was explored and it was found that consistently better fitting was obtained with values of σ in the range 0.1 to 0.3 than for larger values of σ. The Supplementary Data file provides a summary of the calculations for both shapes and for different dispersion values.

As both the disk and oblate spheroid models give acceptable fitting results with very little difference between them for all ageing times, we proceed by reporting the results (mean equatorial radius of particles, a, and mean polar radius, b) given by the oblate spheroid model for the mid-point polydispersity value, $\sigma=0.2$ (there was little difference in goodness of fit for σ in the range 0.1 to 0.3) and refer the reader to the Supplementary Data file for the extended calculations.

Figure 7 shows representative full model fitting plots using the oblate spheroid model with $\sigma=0.2$. There is clearly good agreement over the full q-range for all the transformation times. The mean values of particle dimensions obtained from the model calculations are listed in Table 3 (where the dispersion parameter has been taken to be 0.2) along with the values of R and T determined from the Guinier measurements of Figs. 6(c) and (d). It is evident that there is generally reasonable agreement between R and a although some larger discrepancies do arise in thickness values at the longest ageing time where the Guinier analysis gives somewhat greater values.
The data listed in Table 3 for the Guinier measurements and the oblate spheroid model fitting are plotted in Fig. 8 and the error bars on the model fitting data points correspond to uncertainties generated from the calculations. Overall, there is seen to be good agreement between particle radius and thickness from the Guinier method calculations and from the model fitting.

Further Discussion

In this section we consider, first, the evidence from the SANS data regarding the composition of the vanadium-containing precipitates and secondly the effect of the particle size and volume fraction on the strengthening contribution of IPP to the ferrite phase.

5.1 Effects of transformation time on composition of MX precipitates

Information on the chemical composition of the precipitates (more generally written as MX where M=V, Fe and X=C,N) can be gained from the ratio $R(q)$ of those samples in which the γ has fully transformed to α and there is no residual martensite or bainite in the microstructure following quenching, i.e. 300 and 600 min transformation times. The mean $R(q)$ decreases from 1.09 to 0.98 (Table 2) suggesting a change in composition of the MX phase. For stoichiometric VC, the value of $R(q)$ from the contrast factors in Supplementary Data is 1.23. The contrast factor for VN is larger than for VC so the substitution of N into the MX phase in place of C cannot provide an explanation for the difference.

Thermodynamically it is feasible for Fe to substitute for V. Using Thermo-Calc and the TCFE 7 database the full equilibrium calculation predicts 0.08 mol%Fe at 700 °C. However, Fe substitution decreases the nuclear contrast factor, increases $R(q)$ and is not a consistent explanation. An alternative to be considered is that the carbide phase is sub-stoichiometric with respect to carbon. This would lead to a higher nuclear contrast factor and hence a reduction in $R(q)$ in line with the experimental measurements.
Assuming a composition $VC_{0.90}$ gives a theoretical $R(q)$ of ~1.1 which is close to the experimental value for the 300 min sample. This value is within the range of possible compositions reported by Baker [2] and several researchers have measured a similar sub-stoichiometry. For example, Oba et al. [60] found that in a medium carbon steel the value of x ($x<1$) in VC_x is dependent on the transformation temperature whilst Zhang et al. [75] used APT to show that x is about 0.81 in Fe-0.1C-0.4V alloy isothermally transformed at 690 °C for 48 hours. Furthermore, Ishiguro and Sato [76] used electron energy loss spectroscopy (EELS) to identify non-stoichiometric MC_x in ultra-low carbon microalloy steels with x in the range 0.82 to 0.91. Overall, a sub-stoichiometric vanadium carbide seems a possible explanation for the present $R(q)$ measurements.

5.2 Effect of transformation time on precipitate size and volume fraction

The SANS data clearly demonstrate that changes in size and volume fraction (f_v) of IP precipitates in a low carbon microalloy steel during isothermal ageing at 700°C can be quantified. There is a steady increase in f_v with transformation time which continues after the γ to α transformation is complete (Table 2 and Fig. 9a) which suggests growth of the carbide from supersaturated ferrite (α). Depending on the assumptions about the scattering length densities, the volume percent after 600 min is in the range 0.22 to 0.28 vol%. This is consistent with the equilibrium volume fraction of 0.30 vol% calculated using Thermo-Calc and the TCFE7 database.

In the present work, it is clear that precipitate dimensions, as represented by Guinier and pseudo-Guinier radii both increase with ageing time at 700 °C. Real space particle dimensions cannot be derived from the above model-independent parameters analytically for polydisperse precipitate distributions [66, 69, 74]. However, from model fitting both an oblate spheroid and disc model are found to give good fits to the data and to be in very
reasonable agreement with disc radius and thickness from the Guinier analysis. In Fig. 8, dimensions from Guinier analysis are compared with the oblate spheroid dimensions from model fitting. When the SANS results are compared with the somewhat limited TEM values, the observations of an increase in radius with ageing time agree, as seen in Fig. 8(a) but the TEM values are seen to be consistently smaller than those obtained from SANS. However, it is not surprising that there is a discrepancy since the SANS measurements include orders of magnitude more measurements than the TEM and the SANS measurements will include random and grain boundary precipitates as well as the characteristic aligned rows and sheets of interphase precipitation. Therefore, SANS will tend to measure a larger precipitate size than the TEM method and the latter may well be biased to the IP precipitates with a row and sheet morphology.

The measured increase in precipitate radius and thickness with ageing time is consistent with the increasing volume fraction that is measured and is attributed to carbide growth from supersaturated ferrite. To examine whether precipitates also undergo Ostwald ripening (coarsening) the number density, \(N_v \), was calculated based on the mean precipitate volume at each transformation time and the variation of \(N_v \) with time is also shown on Fig. 9a. Coarsening (decreasing \(N_v \)) is significant when ageing times exceed 60 min (3600 s) which correlates approximately with the completion of the \(\gamma \) to \(\alpha \) transformation (i.e. the cessation of nucleation of new carbides by interphase precipitation). \(N_v \) is insensitive to whether disc or oblate ellipsoid shapes are considered.

Comparison of the present number density data with values reported by Zhang, Kamikawa and co-workers [15, 38, 75] on V-containing microalloy steels is not straightforward due to differences in alloy composition and transformation temperatures and the fact that either TEM or 3DAP were used to arrive at number density values. Zhang et al. [75] used 3DAP and found mean number densities of the order of \(5 \times 10^{22} \) m\(^{-3} \) for a 0.2wt\%V steel transformed for 1 min at 690 °C. Zhang et al. [75] also shows that the number densities of VC increases...
approximately 14 times when increase the V content from 0.2 wt% to 0.43 wt%. Kamikawa et al. [38] used TEM and measured interparticle spacing in the range of 44 nm to 78 nm in 0.288 wt%V steels which had been transformed at 690 °C for 5 mins to 300 min at 690 °C. This leads to number densities of 1.2×10^{22} m^{-3} to 2.1×10^{21} m^{-3} which (scaled to the present V content of 0.2 wt% according to Zhang et. al.’s study [75]) are from 2.2×10^{21} m^{-3} to 4×10^{20} m^{-3} which agree well with the current SANS studies (Fig. 9a).

5.3 Precipitation strengthening

The strengthening mechanism of IP precipitates and their contribution to the strengthening of ferrite was initially studied by Batte and Honecombe [11]. Subsequent work has shown that the strengthening contribution depends on sheet spacing, particle spacing and particle mean radius [18]. Recently, Kamikawa et al. [14] indicated that the Ashby-Orowan model gave a better fit to IP precipitation strengthening than the Orowan equation [77] and we will apply the former (eqn. 11 below) to the present data

\[
\Delta \sigma_{ppt} = \frac{0.538Gb f_v^{0.5}}{2R} \ln \left(\frac{R}{b} \right)
\]

\(\Delta \sigma_{ppt}\) is the increase in yield strength, \(G\) is the shear modulus, \(b\) is the Burgers vector, \(f_v\) is the carbide volume fraction and \(R\) is the mean carbide radius.

The values of \(\Delta \sigma_{ppt}\) for the various ageing times are plotted alongside the microhardness data in Fig. 9b and are seen to follow the same trend except at very short times. Microhardness measurements reveal little difference in hardness between the samples aged for 3 and 5 min. The sample aged for 60 min has a hardness which is slightly above those aged for 3 and 5 min but there is a clear and significant decrease in hardness for the longer holding times, suggesting a marked reduction in the resistance to dislocation movement. The decreasing yield strength increment beyond 60 min (3600 s) which is calculated from equation (11) demonstrates that the decrease in ferrite hardness after 60 min is directly influenced by the
increasing particle radius which outweighs the increasing volume fraction of carbide precipitate. In a recent study, Chen et al. [18] measured the IP contribution to ferrite strengthening (in an alloy with 50% more V than in the present material) as 170 to 220 MPa for somewhat lower transformation temperatures. This suggests the values from the simple Ashby-Orowan equation used here are on the low side and that an improved model would require direct microstructural data on sheet spacing and particle spacing that is not available from SANS.

5. Conclusions

Small angle neutron scattering (SANS) was employed to quantify interphase precipitation in samples of a V-containing, low-C microalloy steel which were isothermally transformed at 700 °C for various times followed by water quenching. It is shown to be important to extract both nuclear and magnetic scattering signals so that nanoscale microally carbide precipitates in partially transformed samples can be quantified. Results have been correlated with a microstructural investigation using scanning electron and transmission electron microscopy (TEM).

1. TEM observations confirmed the presence of fine-scale carbide precipitates, rich in V, which exhibited the well-known interphase precipitate morphology of aligned rows and sheets. Precipitates appeared to be either disc or oblate ellipsoid shaped with the mean radius of the major axis increasing from ~4 to ~14 nm as the ageing time increased from 5 to 600 min.

2. Analysis of the nuclear SANS data clearly reveals the presence of the nanoscale precipitates in the isothermally transformed and quenched samples. From Kratky plots, it is clear that the precipitate size and volume percent both increase with transformation time. The latter increased from around 0.09 vol% to a value in the range 0.22 to 0.28 vol% with ageing time.
3. Using simple model-independent Guinier analysis of the 1-D nuclear SANS plots, particle radii (R) and thickness values (T) were calculated. The radii increase with transformation time from $\sim 10\text{ to } \sim 22\text{ nm}$. The Guinier analysis was also used to show that the disc shaped precipitates have an aspect ratio of ~ 3. These values agree well with a model fitting analysis based on an oblate spheroid shape which showed an increased in the radius of the major axis from 9 to 18 nm. The precipitate number density decreases from 2×10^{21} to $5 \times 10^{20} \text{ m}^{-3}$ with increasing transformation time when an oblate ellipsoid model is employed for precipitate morphology.

4. The microhardness values of ferrite grains were measured and found to decrease from 215 to 150 Hv as the transformation time increased. They correlate well with the yield strength increments in the range 120 to 90 MPa calculated for different transformation times by using the mean carbide radius in the Ashby-Orowan model.

Acknowledgements

The authors are grateful to Tata steel for providing the experimental materials. This work was made possible via funding from the EPSRC (grants EP/L018705/1, EP/L018632/1, and EP/M009688/1), and the facilities and support provided by the Research Complex at Harwell. The authors gratefully acknowledge the use of the Sans2d beamline, ISIS via RB1520193, RB1620206 and the help provided by colleagues Drs. Chris Simpson and Mark Callaghan. Yiqiang Wang appreciates the useful discussions with Dr Thomas Dorin.
References

[73] F. Cousin, Small angle neutron scattering, EPJ Web of Conferences, EDP Sciences, 2015, p. 01004.

Figure 1. Experimental configuration used in the current SANS measurements. (a) An incident neutron beam transmitted through a specimen containing (b) nano-sized precipitates embedded in a ferritic matrix. (c) The resultant SANS two-dimensional pattern in the presence of a horizontal magnetic field. (d) One-dimensional plot of the ‘nuclear+magnetic’ and nuclear scattering intensities.

Figure 2. SEM images of the samples isothermally transformed at 700°C for various times and water quenched. (a) directly water quenched; (b) – (d) isothermally transformed for 3, 5 and 60 min respectively showing ferrite grains (F) and regions of bainite (B) (transformed γ). (e) and (f) 300 and 600 min isothermal transformation times respectively. Coarsened interphase precipitates visible in (f).

Figure 3. Bright field TEM images of periodic interphase precipitation taken from the samples isothermally transformed at 700°C for (a) 5 min and (b) 600 min. (c-d) High resolution TEM lattice image from the sample held for 600 min, (d) elucidating the disc nature of the precipitates and (e) EDX map for V.

Figure 4. One-dimensional SANS patterns of intensity versus scattering vector obtained from the following samples: (a) water-quenched and (b) to (d) isothermally transformed. Transformation times of: (b) 3 min, (c) 60 min, (d) 300 min. In (a)-(c) there is a clear difference between nuclear and magnetic signals. In (d) they are virtually identical. Line of slope -4 is shown for reference on the log-log plot.

Figure 5. Plot of $R(q)$ versus scattering vector calculated from the scattering curves in Fig. 4 for the water-quenched alloy and for the samples isothermally transformed for the times shown. $R(q)$ is the ratio of magnetic to nuclear scattering intensity (equation 3). The theoretical value for VC is shown by the horizontal line.

Figure 6. SANS nuclear scattering data from the samples isothermally transformed at 700 °C following subtraction of Porod Law behaviour and incoherent scattering background. Transformation times shown by the symbols on the plots. (a) Plots of I versus q; (b) the corresponding Iq^2 versus q Kratky plots; (c) the first Guinier plot of $\ln(I)$ versus q^2; (d) the second Guinier plot of $\ln(q^2I)$ versus q^2.

Figure 7. Experimental SANS nuclear scattering data plotted as I versus q from samples transformed for the times shown (symbols) along with model fitted data (solid lines) using an oblate spheroid model with dispersion parameters of 0 and 0.2 for the polar and equatorial radii respectively.

Figure 8. Graphs to show the effect of isothermal holding time, t on particle dimensions obtained from Guinier analysis and model fitting. Data are shown for R (radius) and T (thickness) calculated from Guinier plots and a and $2b$ from oblate spheroid model fitting. (a) is a plot of R and a (oblate spheroid major axis) versus time; (b) is a plot of T and $2b$ ($b=$ oblate spheroid minor axis) versus time. TEM measurements are radii calculated from major axis diameters.
Figure 9. (a) Effect of isothermal holding time, t, on precipitate number density (left hand axis) and volume fraction (right hand axis) determined from SANS data. (b) Effect of isothermal holding time, t, on measured microhardness, Hv, (left hand axis) and calculated yield strength increment (right hand axis). Error bars in Hv correspond to one standard deviation from the mean.
Table 1. Chemical composition of vanadium microalloyed steel in weight percent (wt%) and atomic percent (at%).

Table 2. Characteristics of the VX precipitates determined from analysis of SANS data for samples isothermally transformed at 700 °C for different times. R_{max}, R_{g}, R_{g1}, R_{g2}, and f_v are defined in section 3. $R(q)$ is the ratio of magnetic to nuclear scattering intensity.

Table 3. Average precipitate dimensions determined from analysis of SANS data for samples isothermally transformed for different times. R and T are the average radius and thickness of precipitate discs determined from the Guinier measurements of R_{g1}, R_{g2}. a and b are average equatorial and polar radii respectively from model fitting with an oblate spheroid. ($2b$ is polar diameter for direct comparison with T). σ_a is the dispersion parameter of a in model fitting.
Table 1.

Chemical composition of vanadium microalloyed steel in weight percent (wt%) and atomic percent (at%).

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>Al</th>
<th>P</th>
<th>S</th>
<th>V</th>
<th>N (ppm)</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt%</td>
<td>0.047</td>
<td>1.60</td>
<td>0.18</td>
<td>0.043</td>
<td>0.013</td>
<td>0.005</td>
<td>0.20</td>
<td>50</td>
<td>Bal.</td>
</tr>
<tr>
<td>at%</td>
<td>0.22</td>
<td>1.62</td>
<td>0.36</td>
<td>0.009</td>
<td>0.023</td>
<td>0.009</td>
<td>0.22</td>
<td>200</td>
<td>Bal.</td>
</tr>
</tbody>
</table>

Table 2

Calculated precipitate characteristics determined from model-independent analysis of SANS data for samples isothermally transformed for different times. R_{g1}, R_{g2}, R_{max}, and f_v are defined in section 3. $R(q)$ is the ratio of magnetic to nuclear scattering intensity.

<table>
<thead>
<tr>
<th>Transformation time (min)</th>
<th>R_{g1} (nm)</th>
<th>R_{g2} (nm)</th>
<th>R_{max} (nm)</th>
<th>Mean R(q)</th>
<th>f_v (%)</th>
<th>f_v (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(mean R(q))</td>
<td>(constant $\Delta \rho_{\text{nuc}}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.9</td>
<td>0.8</td>
<td>4.4</td>
<td>-</td>
<td>-</td>
<td>0.094</td>
</tr>
<tr>
<td>5</td>
<td>8.3</td>
<td>0.9</td>
<td>5.2</td>
<td>-</td>
<td>-</td>
<td>0.13</td>
</tr>
<tr>
<td>60</td>
<td>10.6</td>
<td>1.0</td>
<td>6.8</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
</tr>
<tr>
<td>300</td>
<td>13.0</td>
<td>1.7</td>
<td>9.8</td>
<td>1.09</td>
<td>0.21</td>
<td>0.24</td>
</tr>
<tr>
<td>600</td>
<td>15.5</td>
<td>2.3</td>
<td>12.6</td>
<td>0.98</td>
<td>0.22</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Table 3

Average precipitate dimensions determined from analysis of SANS data for samples isothermally transformed for different times. R and T are the average radius and thickness of precipitate discs determined from the Guinier measurements of R_{g1}, R_{g2}. a and b are average equatorial and polar radii respectively from model fitting with an oblate spheroid. ($2b$ is polar diameter for direct comparison with T). σ_a is the dispersion parameter of a in model fitting.

<table>
<thead>
<tr>
<th>Transformation time (min)</th>
<th>Calculated from Guinier measurements</th>
<th>Oblate spheroid model fitting ($\sigma_a = 0.2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R (nm)</td>
<td>T (nm)</td>
</tr>
<tr>
<td>3</td>
<td>9.8</td>
<td>2.8</td>
</tr>
<tr>
<td>5</td>
<td>11.6</td>
<td>3.0</td>
</tr>
<tr>
<td>60</td>
<td>14.9</td>
<td>3.3</td>
</tr>
<tr>
<td>300</td>
<td>18.2</td>
<td>5.7</td>
</tr>
<tr>
<td>600</td>
<td>21.7</td>
<td>8.0</td>
</tr>
</tbody>
</table>
Figure 1. Experimental configuration used in the current SANS measurements. (a) An incident neutron beam transmitted through a specimen containing (b) nanosized precipitates embedded in ferritic matrix. (c) The resultant SANS two-dimensional pattern in the presence of a horizontal magnetic field. (d) One-dimensional plot of the ‘nuclear+magnetic’ and nuclear scattering intensities.
Figure 2. SEM images of the samples isothermally transformed at 700 °C for various times and water quenched. (a) directly water quenched; (b) – (d) isothermally transformed for 3, 5 and 60 min respectively showing ferrite grains (F) and regions of bainite (B) (transformed γ). (e) and (f) 300 and 600 min isothermal transformation times respectively. Coarsened interphase precipitates visible in (f).
Figure 3. Bright field TEM images of periodic interphase precipitation taken from the samples isothermally transformed at 700°C for (a) 5 min and (b) 600 min. (c-d) High resolution TEM lattice image from the sample held for 600 min, (d) elucidating the disc nature of the precipitates and (e) EDX map for V.
Figure 4. One-dimensional SANS patterns of intensity versus scattering vector obtained from the following samples: (a) water-quenched and (b) to (d) isothermally transformed. Transformation times for (b) 3 min, for (c) 60 min and for (d) 300 min. In (a), (b) and (c) there is a clear difference between nuclear and magnetic signals. In (d) they are virtually identical. Line of slope -4 is shown for reference on the log-log plot.
Figure 5. Plot of $R(q)$ as a function of scattering vector calculated from the scattering curves in Fig. 5 for the water-quenched alloy and for samples isothermally transformed for the times shown. $R(q)$ is the ratio of magnetic to nuclear scattering intensity (equation 3). The theoretical value for VC is shown by the horizontal line.
Figure 6. (a) SANS nuclear scattering data following subtraction of Porod behaviour and incoherent scattering background from the samples isothermally transformed at 700 °C for the times shown by the symbols; (b) the corresponding Iq^2 versus q Kratky plots (c) the first Guinier plot of $\ln(I)$ versus q^2; (d) the second Guinier plot of $\ln(q^2I)$ versus q^2.
Figure 7. Experimental SANS nuclear scattering data plotted as I versus q from samples transformed for the times shown (symbols) along with model fitted data (solid lines) using an oblate spheroid model with dispersion parameters of 0 and 0.2 for the polar and equatorial radii respectively.
Figure 8. Graphs to show the effect of isothermal holding time, \(t \) on particle dimensions obtained from Guinier analysis and model fitting. Data are shown for \(R \) (radius) and \(T \) (thickness) calculated from Guinier plots and \(a \) and \(2b \) from oblate spheroid model fitting. (a) is a plot of \(R \) and \(a \) (oblate spheroid major axis) versus time; (b) is a plot of \(T \) and \(2b \) (\(b \)= oblate spheroid minor axis) versus time. TEM measurements are radii calculated from major axis diameters.
Figure 9. (a) Effect of isothermal holding time, t, on precipitate number density (left hand axis) and volume percent (right hand axis) determined from SANS data. (b) Effect of isothermal holding time, t, on measured microhardness, H_v, (left hand axis) and calculated yield strength increment (right hand axis). Error bars in H_v correspond to one standard deviation from the mean.
Supplementary Note 1 – Selection of austenitization and transformation temperatures
The austenitization temperature and time were selected to dissolve Fe₃C or vanadium carbonitride (VX) precipitates already present in the steel. Calculations performed using Thermo-Calc and the TCFe7 database indicate that in this steel VX becomes unstable above approximately 1050 °C. The isothermal treatment temperature of 700 °C was chosen to obtain a ferritic microstructure with nanoscale interphase VX precipitates and to allow precipitate growth and coarsening to occur at the more extended holding times.

Supplementary Note 2 – Methodology of small angle neutron scattering experiments
The specimens for SANS were sectioned from the heat treated materials using a precision saw and then mechanically polished using a 4 step standard metallographic preparation approach to 1.0 μm diamond finish prior to the SANS measurements. The specimen dimensions were approximately 10 mm × 10 mm × ~1 mm (thickness). The thicknesses at nine different positions on each specimen were accurately measured using micrometer and a mean value calculated. The neutron beam was 8 mm in diameter giving a scanned volume of approximately 50 mm³ and containing over 10⁵ grains. The data acquisition time was 60 minutes for each specimen. Scattered neutrons were recorded by two arrays of position sensitive area detectors each ~ 1 m², one located 2.38 m behind the sample and the other 4 m behind the sample. This configuration gives small angle scattering vector (q) values between 0.004 and 0.3 Å⁻¹, where \(q = 4\pi \sin \theta / \lambda \) and the scattering angle is 20°. This corresponds very approximately to characteristic particle sizes, \(d \), ranging from ~ 1.5 nm to 80 nm (assuming \(d \sim 2\pi / q \)).
Supplementary Note 3 – Data used in SANS analysis

3.1. Magnetic scattering length densities

The magnetic scattering length density (SLD) of the ferrite matrix, \(\rho_{mag}^m \), is given by the equation

\[
\rho_{mag}^m = \frac{\rho_0 u}{v}
\]

where \(\rho_0 = 2.7 \times 10^{-15} \text{ m} \) is a constant, \(u = 2.1869 \) is the mean atomic magnetic moment of the matrix and \(v = 11.7 \times 10^{-30} \text{ m}^3 \) is the mean volume per atom [71]. The value obtained for \(\rho_{mag}^m \) is \(5.04 \times 10^{14} \text{ m}^{-2} \). In SANS, precipitate phases which are paramagnetic or diamagnetic are generally considered to have a zero magnetic SLD. This applies to common precipitates in steel such as Fe_{3}C and MX carbonitrides (where M = Ti, Mo, Nb, V and X=C, N). Thus the magnetic contrast factor \(\Delta \rho_{mag} \) where \(\Delta \rho_{mag} = \rho_{mag}^p - \rho_{mag}^m \) is taken to be \(-5.04 \times 10^{14} \text{ m}^{-2} \).

3.2. Nuclear scattering length densities

The nuclear scattering length density of a phase, \(i \), is calculated from the equation

\[
\rho_{nuc}^i = \sum x_i b_i \frac{v_i}{v_i}
\]

where \(x_i \) is the atom fraction of \(i \) in the phase, \(v_i \) is the atomic volume and \(b_i \) is the coherent nuclear scattering length density of element \(i \) [72]. The nuclear contrast factor is \(\Delta \rho_{nuc} \) where \(\Delta \rho_{nuc} = \rho_{nuc}^p - \rho_{nuc}^m \). Table A1 lists the nuclear SLD and nuclear contrast factor for \(i = \text{matrix} \) and \(i = \text{precipitates relevant to the present study} \) along with values of \(R(q) \), the ratio of magnetic to nuclear scattering intensity.
Table SN 3-1

Values of nuclear scattering length density, nuclear contrast factor and $R(q)$ phases potentially relevant to this study.

<table>
<thead>
<tr>
<th>Phase</th>
<th>ρ_{nuc} (1014 m$^{-2}$)</th>
<th>ρ_{mag} (1014 m$^{-2}$)</th>
<th>$\Delta\rho_{\text{nuc}}$ (1014 m$^{-2}$)</th>
<th>$\Delta\rho_{\text{mag}}$ (1014 m$^{-2}$)</th>
<th>$R(q) = (\Delta\rho_{\text{mag}}/\Delta\rho_{\text{nuc}})^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>7.93</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Fe$_3$C</td>
<td>6.73</td>
<td>0</td>
<td>1.2</td>
<td>5</td>
<td>17.36</td>
</tr>
<tr>
<td>MnS</td>
<td>-0.249</td>
<td>0</td>
<td>8.179</td>
<td>5</td>
<td>0.37</td>
</tr>
<tr>
<td>VC</td>
<td>3.43</td>
<td>0</td>
<td>4.5</td>
<td>5</td>
<td>1.23</td>
</tr>
<tr>
<td>VN</td>
<td>5.07</td>
<td>0</td>
<td>2.86</td>
<td>5</td>
<td>3.05</td>
</tr>
<tr>
<td>TiN</td>
<td>3.04</td>
<td>0</td>
<td>4.89</td>
<td>5</td>
<td>1.04</td>
</tr>
</tbody>
</table>

It is clear that all potential precipitate phases will contribute strongly to the magnetic contrast but VC and any MnS that might form will dominate the nuclear contrast although the latter is likely to form micron size phase outside the range of detection of the SANS detectors. Fe$_3$C, on the other hand, has a relatively small contrast factor. It is also notable that VC has magnetic and nuclear contrast factors that are close, with a ratio ~ 1.2 whereas the ratio for V(C, N) is larger reaching ~ 3 for VN.
Supplementary Note 4 - One-dimensional SANS patterns from the alloy after isothermal transformation for 600 min.
Supplementary Note 5 – comparison of SasView model fitting for a disc shape and an oblate spheroid shape (also termed oblate ellipsoid of revolution)

The fitting procedure is described in the main text and compared a disc shaped model with an oblate spheroid model. The calculated 1-D nuclear scattering profiles were fitted to the experimental 1-D scattering curves using, as fixed parameters, the precipitate volume fractions, obtained from equation 7, and the contrast between precipitates and ferrite matrix calculated from R(q) (Table 2). Two different particle shapes were investigated namely a disc shape and an oblate spheroid shape. The starting estimates in the model for the disc mean radius (R) and half-thickness (T/2) (major, a, and minor, b, axes in the case of the oblate spheroid) were the radius and thickness values found from the Guinier model-independent analysis.

The goodness of fit between experimental and calculated 1-D scattering profiles was determined using the well known chi-squared quantity for all computations. The effect of altering the dispersion parameter in the range 0 to 0.6 for the major axis was explored; the polydispersity of the minor axis was set to zero as initial trials showed that varying this had a negligible effect on the fitting results. It was found that consistently better fitting was obtained with values of σ in the range 0.1 to 0.3 than for larger values of σ.

Representative graphs of experimental SANS nuclear scattering data plotted as I versus q from samples transformed for the time shown (symbols) along with model fitted data (solid lines) using either an oblate spheroid model or a disc model are shown in Figs. SN 5.1 (a) and (b) (3 min transformation) and SN 5.2 (a) and (b) (300 min transformation). It is clear from these figures that a polydispersity value (PD) of 0.2 fitted better than 0 or 0.5. However, there is very little difference in the fitting of oblate spheroid (frequently termed an oblate ellipsoid of revolution) or disc. Both appear to fit the experimental data well.
Figures SN 5.1 Experimental SANS nuclear scattering data plotted as I versus q from samples transformed for the time shown (symbols) along with model fitted data (solid lines) using an oblate spheroid model.
Figures SN 5.2 Experimental SANS nuclear scattering data plotted as I versus q from samples transformed for the time shown (symbols) along with model fitted data (solid lines) using a disc model.
More detail of the fitting is given in the Tables below for the model calculations at representative ageing times and in these Tables we examine the effect of polydispersity of the major axes on the fitting for both shapes. The normalized chi-square value is computed by setting the value for the oblate spheroid calculation at $\sigma=0.5$ equal to 1. Therefore smaller normalized chi-square values equate to a better fit between model and experimental data.

Both the disc and oblate spheroid models give acceptable fitting results with very little difference between them for all ageing times but it is very clear that goodness of fit deteriorated significantly once the PD parameter exceeded 0.3. This provides justification for using a PD value of 0.2 in the representative calculations shown in the main text of the paper.

The error introduced into the estimation of equatorial radius by selecting a PD of 0.2 as opposed to 0.1 or 0.3 is of the order of $\pm 15\%$. The thickness error is less than this, it is $\sim \pm 10\%$.

AGEING TIME 3 MIN.

<table>
<thead>
<tr>
<th>Dispersion parameter (PD)-equatorial radius</th>
<th>2 x polar radius/nm</th>
<th>Equatorial radius/nm</th>
<th>Normalised chi-square</th>
<th>Dispersion parameter (PD)-disc radius</th>
<th>Disc Thickness/nm</th>
<th>Disc Radius/nm</th>
<th>Normalised chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.5</td>
<td>10.2</td>
<td>0.909</td>
<td>0.1</td>
<td>2.1</td>
<td>9.1</td>
<td>0.908</td>
</tr>
<tr>
<td>0.2</td>
<td>2.7</td>
<td>9.1</td>
<td>0.921</td>
<td>0.2</td>
<td>2.3</td>
<td>8.1</td>
<td>0.920</td>
</tr>
<tr>
<td>0.3</td>
<td>3.0</td>
<td>7.5</td>
<td>0.947</td>
<td>0.3</td>
<td>2.5</td>
<td>6.7</td>
<td>0.947</td>
</tr>
<tr>
<td>0.4</td>
<td>3.3</td>
<td>5.9</td>
<td>0.982</td>
<td>0.4</td>
<td>2.8</td>
<td>5.2</td>
<td>0.982</td>
</tr>
<tr>
<td>0.5</td>
<td>3.7</td>
<td>4.4</td>
<td>1.000</td>
<td>0.5</td>
<td>3.2</td>
<td>3.9</td>
<td>1.000</td>
</tr>
</tbody>
</table>
AGEING TIME 5 MIN.

<table>
<thead>
<tr>
<th>Dispersion parameter (PD)-equatorial radius</th>
<th>2 x polar radius/nm</th>
<th>Equatorial radius/nm</th>
<th>Normalised chi-square</th>
<th>Dispersion parameter (PD)-disc radius</th>
<th>Disc Thickness/nm</th>
<th>Disc Radius/nm</th>
<th>Normalised chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>2.7</td>
<td>11.6</td>
<td>0.749</td>
<td>0.1</td>
<td>2.3</td>
<td>10.3</td>
<td>0.741</td>
</tr>
<tr>
<td>0.2</td>
<td>2.8</td>
<td>10.4</td>
<td>0.714</td>
<td>0.2</td>
<td>2.4</td>
<td>9.3</td>
<td>0.698</td>
</tr>
<tr>
<td>0.3</td>
<td>3.0</td>
<td>11.5</td>
<td>0.754</td>
<td>0.3</td>
<td>2.6</td>
<td>7.8</td>
<td>0.739</td>
</tr>
<tr>
<td>0.4</td>
<td>3.3</td>
<td>14.8</td>
<td>0.881</td>
<td>0.4</td>
<td>2.8</td>
<td>6.2</td>
<td>0.874</td>
</tr>
<tr>
<td>0.5</td>
<td>3.6</td>
<td>17.5</td>
<td>1.000</td>
<td>0.5</td>
<td>3.1</td>
<td>4.8</td>
<td>1.000</td>
</tr>
</tbody>
</table>

AGEING TIME 60 MIN.

<table>
<thead>
<tr>
<th>Dispersion parameter (PD)-equatorial radius</th>
<th>2 x polar radius/nm</th>
<th>Equatorial radius/nm</th>
<th>Normalised chi-square</th>
<th>Dispersion parameter (PD)-disc radius</th>
<th>Disc Thickness/nm</th>
<th>Disc Radius/nm</th>
<th>Normalised chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>3.2</td>
<td>12.9</td>
<td>0.799</td>
<td>0.1</td>
<td>2.7</td>
<td>11.5</td>
<td>0.797</td>
</tr>
<tr>
<td>0.2</td>
<td>3.3</td>
<td>11.5</td>
<td>0.829</td>
<td>0.2</td>
<td>2.8</td>
<td>10.2</td>
<td>0.827</td>
</tr>
<tr>
<td>0.3</td>
<td>3.7</td>
<td>9.5</td>
<td>0.887</td>
<td>0.3</td>
<td>3.1</td>
<td>8.5</td>
<td>0.886</td>
</tr>
<tr>
<td>0.4</td>
<td>4.1</td>
<td>7.4</td>
<td>0.960</td>
<td>0.4</td>
<td>3.5</td>
<td>6.5</td>
<td>0.960</td>
</tr>
<tr>
<td>0.5</td>
<td>4.7</td>
<td>5.5</td>
<td>1.000</td>
<td>0.5</td>
<td>4.0</td>
<td>4.9</td>
<td>1.000</td>
</tr>
</tbody>
</table>

AGEING TIME 300 MIN.

<table>
<thead>
<tr>
<th>Dispersion parameter (PD)-equatorial radius</th>
<th>2 x polar radius/nm</th>
<th>Equatorial radius/nm</th>
<th>Normalised chi-square</th>
<th>Dispersion parameter (PD)-disc radius</th>
<th>Disc Thickness/nm</th>
<th>Disc Radius/nm</th>
<th>Normalised chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>4.6</td>
<td>16.4</td>
<td>0.768</td>
<td>0.1</td>
<td>3.9</td>
<td>14.5</td>
<td>0.763</td>
</tr>
<tr>
<td>0.2</td>
<td>4.8</td>
<td>14.8</td>
<td>0.797</td>
<td>0.2</td>
<td>4.1</td>
<td>13.1</td>
<td>0.791</td>
</tr>
<tr>
<td>0.3</td>
<td>5.2</td>
<td>12.6</td>
<td>0.857</td>
<td>0.3</td>
<td>4.4</td>
<td>11.1</td>
<td>0.853</td>
</tr>
<tr>
<td>0.4</td>
<td>5.6</td>
<td>10.0</td>
<td>0.938</td>
<td>0.4</td>
<td>4.8</td>
<td>8.9</td>
<td>0.936</td>
</tr>
<tr>
<td>0.5</td>
<td>6.2</td>
<td>7.6</td>
<td>1.000</td>
<td>0.5</td>
<td>5.3</td>
<td>6.7</td>
<td>1.000</td>
</tr>
</tbody>
</table>
AGEING TIME 600 MIN.

<table>
<thead>
<tr>
<th>Dispersion parameter (PD)-equatorial radius</th>
<th>2 x polar radius/nm</th>
<th>Equatorial radius/nm</th>
<th>Normalised chi-square</th>
<th>Dispersion parameter (PD)-disc radius</th>
<th>Disc Thickness/n,m</th>
<th>Disc Radius/nm</th>
<th>Normalised chi-square</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>5.9</td>
<td>19.4</td>
<td>0.665</td>
<td>0.1</td>
<td>5.0</td>
<td>17.2</td>
<td>0.659</td>
</tr>
<tr>
<td>0.2</td>
<td>6.2</td>
<td>17.5</td>
<td>0.714</td>
<td>0.2</td>
<td>5.3</td>
<td>15.5</td>
<td>0.708</td>
</tr>
<tr>
<td>0.3</td>
<td>6.7</td>
<td>14.8</td>
<td>0.805</td>
<td>0.3</td>
<td>5.7</td>
<td>13.1</td>
<td>0.801</td>
</tr>
<tr>
<td>0.4</td>
<td>7.3</td>
<td>11.8</td>
<td>0.918</td>
<td>0.4</td>
<td>6.2</td>
<td>10.4</td>
<td>0.917</td>
</tr>
<tr>
<td>0.5</td>
<td>8.1</td>
<td>9.0</td>
<td>1.000</td>
<td>0.5</td>
<td>6.9</td>
<td>7.9</td>
<td>1.000</td>
</tr>
</tbody>
</table>