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Condensation: Deficient remodelling of the uterine arteries and resultant 

malperfusion compromise placental function through infarction, reduced villous 

surface area and vascularisation, and dysregulation of transporter activity.   

 

Abstract  

Placental-related fetal growth restriction arises primarily due to deficient remodelling 

of the uterine spiral arteries supplying the placenta during early pregnancy. The 

resultant malperfusion induces cell stress within the placental tissues, leading to 

selective suppression of protein synthesis and reduced cell proliferation. These 

effects are compounded in more severe cases by increased infarction and fibrin 

deposition. Consequently, there is a reduction in villous volume and surface area for 

maternal-fetal exchange. Extensive dysregulation of imprinted and non-imprinted 

gene expression occurs, affecting placental transporter, endocrine, metabolic and 

immune functions. Secondary changes involving dedifferentiation of smooth muscle 

cells surrounding the  fetal arteries within placental stem villi correlate with absent or 

reversed end-diastolic umbilical artery blood flow, and with a reduction in birthweight. 

Many of the morphological changes, principally the intra-placental vascular lesions, 

can be imaged using ultrasound or MRI scanning, enabling their development and 

progression to be followed in vivo. The changes are more severe in cases of growth 

restriction associated with pre-eclampsia compared to those with growth restriction 

alone, consistent with the greater degree of maternal vasculopathy reported in the 

former. The higher level of stress may activate pro-inflammatory and apoptotic 

pathways within the syncytiotrophoblast, releasing factors that cause the maternal 

endothelial cell activation that distinguishes between the two conditions. Congenital 

anomalies of the umbilical cord and placental shape are the only placental-related 
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conditions that are not associated with maldevelopment of the utero-placental 

circulation, and their impact on fetal growth is limited. 
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Introduction 

The kinetics of placental and fetal growth are closely interrelated, and are important 

features predicting post-natal health and in particular cardiovascular adaptations in 

childhood. 1, 2 Fetal growth is dependent on nutrient availability, which in turn is 

related to the maternal diet, utero-placental blood supply, placental villous 

development and the capacity of the villous trophoblast and feto-placental circulation 

to transport these nutrients. At birth, the feto-placental weight ratio gives a 

retrospective indication of the efficiency of the placenta to support growth of the 

fetus, and estimates the potential risks for chronic diseases in later life through 

developmental programming. 2, 3 

 Fetal growth restriction (FGR) is defined as the failure of the fetus to achieve 

its genetically determined growth potential. 4 FGR can have many causes, but the 

majority of cases that are not associated with fetal congenital malformations, fetal 

genetic anomalies or infectious aetiology are thought to arise from compromise of 

the uterine circulation to the placenta. Sufficient dilatation of the utero-placental 

circulation together with rapid villous angiogenesis are the key factors necessary for 

adequate placental development and function, and subsequent fetal growth.  

The etio-pathology of FGR due to abnormal development of the utero-

placental circulation and its impact on placental development and structure has been 

studied for more than five decades. 5  Ultrasound imaging, and in particular color 

Doppler imaging, has allowed the study of both the umbilico- and utero-placental 

circulations from the first trimester of gestation onwards. 6, 7 These techniques have 

been used extensively in the screening of placental-related complications of 

pregnancy, such as pre-eclampsia, 8, 9 and the management of a fetus presenting 

with primary or secondary FGR. 10 More recently, 3-dimensional (3D) Doppler 
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imaging 11, 12 and magnetic resonance imaging (MRI) 13 have been used to study the 

development of the placental and fetal circulations, but their use in clinical practice 

has remained limited. 

  Placental-related complications of pregnancy that lead to FGR have their 

pathophysiological roots in the early stages of placentation and can manifest 

themselves from the end of the first trimester of pregnancy when the definitive 

placenta is forming. 14, 15 Considerable remodelling of the placenta takes place 

towards the end of the first trimester/start of the second trimester, associated with 

onset of the maternal arterial circulation when the placenta becomes fully 

hemochorial. Events at this time potentially impact the final size of the placenta, and 

hence it functional capacity. This concept is supported by findings in-utero showing 

that pregnancies complicated with FGR, with or without accompanying pre-

eclampsia later in pregnancy, have a smaller placenta volume and higher uterine 

resistance to blood flows compared to healthy controls from the beginning of the 

second trimester. 9  

 The relationships between abnormal placental development and fetal growth 

restriction are complex. Isolating the placental causes of FGR can be difficult as 

many clinical studies are small, retrospective and often multivariate with confounding 

factors such as maternal smoking and ethnicity. Also, many potential stressors 

converge on the same intracellular pathways, and separating the influence of, for 

example, glucose as compared to oxygen deprivation during periods of ischemia is 

impossible. 

 In order to provide a coherent account of how the FGR phenotype may arise 

we first consider the development of the normal placenta before discussing the 

molecular and clinical pathologies. 
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Early development of the placenta 

Initial development of the placenta takes place within the superficial layer of the 

endometrium, and by the end of the third week post-conception villi have formed 

over the entire chorionic sac. This precocious growth is supported and stimulated by 

secretions from the underlying endometrial glands (Figure 1), 16, 17 so-called 

histotrophic nutrition. The carbohydrate and lipid rich secretions are delivered 

through openings in the developing basal plate into the intervillous space, from 

where they are taken up by the syncytiotrophoblast. As well as providing nutrients, 

the secretions contain numerous growth factors that stimulate placental cell 

proliferation in vitro, and most likely play an important role in regulating development 

and differentiation in vivo. 18-20  The absence of significant maternal blood flow at this 

stage means that initial development takes place in a low oxygen concentration, 

which is physiological and should not be considered hypoxic. 21 This environment is 

thought to protect the embryo from damaging reactive oxygen species during the 

period of organogenesis, but may also serve to maintain stem cell potential. 22 Once 

the main organs have differentiated there is a need for a greater supply of oxygen to 

support faster fetal growth, 23 and hence there must be a switch from histotrophic 

nutrition to hemotrophic supply from the maternal circulation. 

 

Development of the utero-placental circulation 

The human hemochorial form of placentation poses major haemodynamic 

challenges. In particular, a high volume of maternal arterial blood flow has to be 

delivered to the placenta at a sufficiently low pressure and velocity to prevent 

mechanical damage to the delicate villous trees. 24 In normal pregnancies, the 
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arcuate and radial arterial components of the uterine vasculature dilate under the 

combined effects of estrogen, progesterone, human chorionic gonadotropin and 

other hormones and factors secreted by the placenta. The dilation accommodates 

the increased uterine flow of pregnancy, and is so marked that by around 20 weeks 

of gestation the diameter of the arcuate arteries is equal to that of the uterine artery. 

25 The more distal elements of the utero-placental vasculature undergo additional 

extensive remodelling under the influence of extravillous trophoblast cells that 

migrate out from the placenta during early pregnancy. This remodelling involves the 

loss of smooth muscle cells and elastin from the arterial walls, and their replacement 

by fibrinoid material. 26 As a result, these segments of the utero-placental 

vasculature become inert flaccid conduits, incapable of vasoconstriction. The 

extravillous trophoblast cells arise from the anchoring villi that are attached to the 

developing basal plate, and pass down the lumens of the spiral arteries as 

endovascular trophoblast, and through the decidual stroma as interstitial trophoblast. 

The migration of endovascular trophoblast is so extensive during the first trimester 

that the cells effectively ‘plug’ the mouths of the spiral arteries, restricting flow to a 

slow seepage of plasma through a network of intercellular spaces (Figure 2). 27, 28 

The plugs begin to break down towards the end of the first trimester, and it is only 

after approximately 10 weeks of gestation that the maternal arterial circulation to the 

intervillous space is fully established, as confirmed by measurements of the rise in 

intraplacental oxygen concentration. 29, 30 The interstitial trophoblast cells interact 

with the maternal immune system, in particular the uterine natural killer cells. 

Together, the extravillous trophoblast and natural killer cells are thought to release 

proteases and cytokines that stimulate de-differentiation and loss of the smooth 

muscle cells within the arterial walls. 31, 32 Thus, a degree of activation of the natural 
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killer cells is necessary, and genetic studies have revealed that these immune 

interactions may regulate birth weight across the microsomic-macrosomic range. 33  

The arterial remodelling extends as far as the inner third of the myometrium, 

and so encompasses the hypercontractile segment of a spiral artery lying in the 

junctional zone. Consequently, there are two principal effects of the remodelling; 

firstly, dilation of the mouth of the artery reduces the velocity and pulsatility of the 

maternal inflow into the placental intervillous space, and secondly the loss of smooth 

muscle reduces the risk of spontaneous vasoconstriction. 24  

  Remodelling of the spiral arteries extends into the second trimester, and 

possibly even longer. Ultrasound assessment of a cohort of 58 normotensive women 

revealed that blood flow from the mouths of the spiral arteries is pulsatile in all cases 

up to 20 weeks, and that pulsatility decreases thereafter with advancing gestational 

age. 34 By 34 weeks, 37% of women showed no pulsatile inflow into the placenta.  

 

Placental remodelling  

The early or primitive placenta undergoes extensive remodelling towards the end of 

the first trimester. Regression of villi starts over the superficial pole of the gestational 

sac (Figure 3A) and gradually extends until only those villi covering the deep pole in 

contact with the placental bed remain as the definitive discoid placenta. This 

profound remodelling raises questions regarding how and when the size and shape 

of the placental disc are determined, and whether further expansion and recruitment 

of spiral arteries can occur in later pregnancy under adverse conditions. The 

remodelling is associated with onset of the maternal circulation to the placenta, 

which starts most commonly in the peripheral regions and extends to the central 

zone over the next few weeks. 35 This pattern inversely reflects the degree of 
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extravillous trophoblast invasion across the placental bed, which is greatest in the 

central region where it has been established the longest. 36 Hence, ‘plugging’ of the 

arteries by endovascular trophoblast is more extensive in the center than in the 

periphery.  The early onset of blood flow in the periphery causes a locally high level 

of oxidative stress (Figure 3B), which induces activation of the apoptotic cascade. 

Consequently, the villi regress, leaving only avascular, hypocellular ‘ghosts’ that are 

incorporated into the smooth membranes (Figures 3C and D). 35 At the same time, 

expression and activity of the principal antioxidant enzymes within the placenta 

increase, 37 and so villi in the central zone have greater defences when the maternal 

blood flow reaches them. 

The mature placenta is often described as discoid; however, there is 

considerable debate as to whether the majority are actually circular or ellipsoid. This 

may seem a rather academic point, but the risk of chronic disease in adult life has 

been associated with abnormal shape of the placenta through developmental 

programming of the major organ systems. 38 This phenomenon may reflect changes 

in placental function, for increased variability in shape has been linked to reduced 

placental efficiency as estimated by the ratio of fetal to placental weight. 39, 40 

Similarly, eccentricity of the point of insertion of the umbilical cord into the placenta 

has been linked to reduced efficiency, 41 acting possibly through hemodynamic 

effects in the feto-placental circulation. We have speculated that excessive or 

asymmetrical regression of the villi due to aberrant onset of the maternal circulation 

may lead to abnormal placental shapes and cord insertions, and may reflect local 

variations in the extent of extravillous trophoblast invasion. 22 Support for this 

hypothesis comes from the strong correlation between the shape of the placenta at 

the end of the first trimester and that at term. 42  Clearly, events during the first 
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trimester are of critical importance, and there is increasing evidence from ultrasound 

studies that both growth restriction and macrosomia of the placenta are initiated 

during this period. 43  

Given the regression of the peripheral villi that takes place, it is difficult to 

envisage how the placental footprint might extend further over the uterine surface 

during later pregnancy, and in so doing recruit additional spiral arteries. Rather, it 

seems more plausible that from 10-12 weeks onwards the placenta and the uterine 

wall expand together. 2, 44 It is possible that more spiral arteries may be tapped within 

the placental bed during this process, and of course during normal pregnancies 

elaboration and remodelling of the villous trees will increase the functional capacity 

to meet fetal demands. 45 

 

Deficient spiral artery remodelling 

Deficiencies in extravillous trophoblast invasion and maternal arterial remodelling 

have been linked to the pathophysiology of the ‘Great Obstetric Syndromes’, 

including growth restriction, through malperfusion of the placenta. 46 Studies have 

reported a gradient of effects, with absence of remodelling in the junctional zone and 

myometrial segment being associated with more severe growth restriction 

compounded with pre-eclampsia. 46-50 Aberrant remodelling of the more proximal 

radial arteries may also contribute to placental malperfusion in pathological 

pregnancies. 51 However, it must be recognised that remodelling is a continuum, and 

that examples of deficiently modified spiral arteries may be seen in normal 

pregnancies and vice versa. 52 In addition, histopathological reporting is generally 

not performed blinded to the clinical condition, knowledge of which may influence 
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interpretation of the findings. 53, 54 Nonetheless, within the limitations that placental 

bed biopsies provide as an overview of the maternal blood supply to the placenta 

there is general agreement that deficient spiral artery remodelling is causal of the 

placental changes that predispose to FGR of maternal vascular origin. 

 There are many possible causes for deficient spiral artery remodelling, and 

the actual cause will undoubtedly differ from case to case. Inadequate histotrophic 

nutrition during the first few weeks of pregnancy, 15 or excessive apoptosis within the 

placental bed 55 could lead to a reduced number of extravillous trophoblast cells. 

Other studies suggest interstitial trophoblast invasion is normal or even increased in 

cases of FGR, but that the cells fail to penetrate into the walls of the arteries. 50 The 

reason for this is not known, but may possibly reflect abnormal interactions with the 

uterine natural killer cells, leading to excessive inhibition and diminished release of 

proteases. 56 

The consequences of deficient spiral arterial remodelling are multiple. Firstly, 

it will impact adversely on the velocity with which the maternal blood enters the 

placental intervillous space. Mathematical modelling has shown that the normal 

dilation reduces the velocity by an order of magnitude, from approximately 2-3 m.s-1 

to around 10 cm.s-1. 24 This reduction ensures even perfusion of the villous trees and 

adequate transit time for exchange. In pathological pregnancies inflow remains high 

velocity and pulsatile, 34 and causes mechanical damage to the placenta as will be 

discussed later. Secondly, retention of the vascular smooth muscle in the junctional 

zone is likely to cause greater intermittent perfusion of the placenta. Angiographic 

studies performed on the rhesus macaque, which has a similar utero-placental 

circulation to the human, revealed that even in normal pregnancies blood flow from a 

spiral artery is intermittent. 57 This effect is independent of uterine contractions, and 
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thought to be due to spontaneous vasoconstriction of the arteries involved. It might 

be expected, therefore, that the event will be more frequent in arteries where the 

junctional segment has not been remodelled, exposing the placenta to recurrent 

ischemia-reperfusion-type insults. Thirdly, deficient remodelling predisposes the 

spiral arteries to acute atherotic changes, with accumulation of foam cells and 

narrowing of the lumen (Figure 4). These changes are seen distal to the junctional 

segment, and may be induced by the high shear forces experienced or involvement 

in the ischemia-reperfusion insult, possibly compounded by dyslipidemia in the 

mother. Their effect will be to severely limit blood flow to the placenta, and so not 

surprisingly the lesion is associated with poor obstetric outcomes. 46, 58    

 Malperfusion of any organ is a powerful inducer of oxidative stress, and the 

placenta is no exception. Placental oxidative stress has been linked to complications 

of pregnancy, including pre-eclampsia and FGR. 59-61 Oxidative stress is defined as a 

condition in which the generation of highly reactive species of oxygen overwhelms a 

cell’s capacity to detoxify them, leading to indiscriminate damage to any biological 

molecules inn the immediate vicinity, including proteins, lipids and DNA. 

Consequently, cell function is impaired, and in the most severe cases cell death may 

be induced. Reactive oxygen species are generated physiologically as an inevitable 

by-product of aerobic respiration, protein folding, detoxification of drugs and 

xenobiotics by cytochrome P450, the response of nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase to growth factors and cytokines, and various other 

oxido-reductase and cyclooxygenase enzymes (Figure 5). The principal source 

under normal conditions is the mitochondria, for during passage of electrons along 

the complexes of the electron transport chain (ETC) there is leakage on to molecular 

oxygen, particularly from complexes I and III. 62 The acquisition of an unpaired 
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electron generates the superoxide free radical, and 2% of oxygen consumed during 

quiet respiration is converted to superoxide. This acts as a signalling intermediate, 

regulating the activity of redox-sensitive transcription factors to maintain metabolic 

homeostasis in accordance with the prevailing oxygen concentration. However, 

because of its potential harmful actions, excess superoxide is detoxified in the 

mitochondria by the enzyme superoxide dismutase through conversion to hydrogen 

peroxide. Being non-polar, hydrogen peroxide can diffuse out from the mitochondria 

and is then further detoxified by the enzymes catalase and glutathione peroxidase 

within the cytoplasm (Figure 5).  

 Under normal conditions there is thus a homeostatic balance between 

generation and de-toxification of reactive oxygen species (ROS). However, 

generation of ROS is increased during hypoxia and ischemia-reperfusion, when 

build-up of electrons on the ETC leads to a greater rate of leakage. 63 Thus, 

exposure of placental explants to cycles of hypoxia-reoxygenation is a powerful 

generator of oxidative stress, inducing pro-inflammatory cytokines and even 

apoptosis. 64-66 Similar changes are seen in vivo when placentas are subjected to 

labor, for there is intermittent maternal perfusion of the intervillous space during 

uterine contractions. 67 The balance may also be perturbed if activity of the anti-

oxidant enzymes is impaired. Transition metals, such as manganese, selenium, 

copper and zinc, are required at the active site of these enzymes to shuttle electrons, 

and a dietary lack of micronutrients has been linked to complications of pregnancy. 

68 Attempts to redress the balance by administration of antioxidant vitamins have 

yielded disappointing results. 69 One reason for this lack of success may be that 

oxidative stress rarely occurs in isolation, and is closely associated with other forms 

of cell stress, in particular endoplasmic reticulum stress. There are close physical 
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and functional associations between mitochondria and the ER, mediated principally 

through calcium signalling, that integrate the two organelles (Figure 6). 70 

The endoplasmic reticulum (ER) is the organelle responsible for the synthesis, 

folding and post-translational modification of all membrane-bound and secreted 

proteins. Because misfolded proteins are potentially toxic to cells, there is strict 

quality-control within the ER comprising of three evolutionary conserved signalling 

pathways collectively known as the Unfolded Protein Response (UPR). 71, 72. 

Regulation operates at various levels, but one of the most rapid and sensitive 

responses is to block non-essential protein synthesis in order to conserve resources 

and relieve the burden of nascent proteins on the endoplasmic reticulum folding 

machinery. This is achieved through phosphorylation of a key regulatory factor, the 

alpha sub-unit of eukaryotic initiation factor 2 (eIF2α), that limits assembly of 

ribosomal complexes on the mRNA. Longer-term responses involve increasing the 

functional capacity of the endoplasmic reticulum by upregulation of chaperone 

proteins and elaborating more cisternae to meet the synthetic and secretory 

demands of the cell. 

Synthesis and secretion of proteins has to be closely linked to the metabolism 

of a cell, and regulated in relation to the supply of oxygen and nutrients. Hence, the 

eIF2α arm of the UPR controlling translation of mRNA can also be activated in 

response to hypoxia, amino acid deprivation and other stressors. 73-75 In view of this 

wider involvement in cell homeostasis, the UPR is also referred to as the Integrated 

Stress Response pathway.  

 

Placental molecular pathology in FGR  
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1. Growth regulatory pathways 

One of the principal features of the placenta in cases of FGR is the reduction in 

volume, surface area and vascularisation of the intermediate and terminal villi that 

mediate maternal-fetal exchange. 76-78 This reduction appears to be due to excessive 

villous regression during placental remodelling, compounded by a slower rate of 

subsequent growth. 79  

In the case of the placenta, members of the insulin-like growth factor family 

are particularly important regulators of cell proliferation. 80 Their actions are 

integrated with oxygen and nutrient supply through the AKT/mTOR signalling 

pathway, a central regulator of the translation of mRNA into protein. Activity in this 

pathway influences placental growth, 81 and is downregulated in cases of growth 

restriction of maternal vascular origin (Figure 7). 82, 83 Although this is often attributed 

to hypoxia secondary to deficient spiral artery conversion, no measurements have 

been performed in vivo to confirm placental, as opposed to fetal, hypoxia. One 

situation where there is no doubt the placental tissues are exposed to a low maternal 

arterial oxygen concentration is during pregnancy at high altitude. It is notable that a 

similar reduction in mTOR activity is seen in placentas from pregnancies at 3,100m, 

where it is accompanied by a reduction in placental villous volume and birth weight. 

84  The changes can be mimicked by exposing placental cell lines to hypoxia in vitro, 

when there is a reduction in the proliferation rate commensurate with the metabolic 

activity of the cell type. 84  

The AKT/mTOR pathway also regulates expression and activity of placental 

transporters that are responsible for transfer amino acids, fatty acids and glucose. 

Many of these transporters are downregulated in growth restriction, 85-88 which will 

compound the loss of functional capacity of the placenta caused by the reduction in 
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villous surface area. Downregulation precedes the growth restriction in response to 

maternal undernutrition in animal models, 89 suggesting that it is causal of the 

condition and not a response. 

 

2. Stress response pathways 

 Given the high endocrine output of the placenta, the syncytiotrophoblast 

contains large quantities of ER. Activation of the UPR pathways is seen in placentas 

from high-altitude pregnancies, where is can be viewed as a homeostatic response 

to match feto-placental growth to oxygen availability. More severe activation is seen 

in cases of growth restriction caused by maternal vascular compromise, 83, 84 and the 

degree of activation, both in terms of individual pathways and the number of the 

pathways involved, is greatest in cases of growth restriction accompanied by pre-

eclampsia.  This finding is consistent with the placentas being exposed to a more 

severe maternal vascular insult due to the greater deficiency in spiral artery 

remodelling described earlier. 83  

The difference in the degree of activation may have pathophysiological 

significance, for high levels of activation of the UPR are associated with stimulation 

of the release of pro-inflammatory cytokines, cell senescence and even apoptosis 

(Figure 6). 90, 91 The NFκB pathway can be stimulated either through the IRE-

1/TRAF2 pathway, 90, 92 or more simply through suppression of protein synthesis. 

The half-life of the inhibitory IκB subunit is shorter than that of NFκB, and so 

prolonged translational arrest will inevitably lead to an inflammatory response. 93  

Pro-inflammatory cytokines and apoptotic debris have all been implicated in causing 

the maternal endothelial cell activation that characterises pre-eclampsia, and hence, 

the higher level of activation of the UPR may explain the distinction between FGR 
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alone and FGR associated with pre-eclampsia (Figure 7). For example, shedding of 

pro-inflammatory microparticles from the syncytiotrophoblast  is seen in pre-

eclampsia but not in FGR alone. 94 Exactly when the stress begins during pregnancy 

is difficult to determine, but we speculate that it originates around the time of onset of 

the maternal circulation to the placenta towards the end of the first trimester. 15 

Perturbation of endoplasmic reticulum function could also account for the change in 

glycosylation seen in the syncytiotrophoblast of the FGR placenta. 95 

 

3. Transcriptomic changes 

Changes in gene expression have been reported for the growth-restricted placenta 

employing microarray technology, 96, 97 but in general it has yet to be determined 

whether the changes are responsive to, or causal of, the growth disorder. Imprinted 

genes that are expressed in a parent-of-origin fashion play a key role in the 

regulation of placental growth, and so have been the subject of particular attention. It 

is notable that PHLDA2 that inhibits growth, and MEST that promotes growth, are 

upregulated and downregulated respectively in FGR. 98, 99 However, no correlation 

was found between the level of gene expression and loss of imprinting, suggesting 

that disorders of imprinting per se are not causal of the condition. Indeed, these 

studies also found widespread changes in non-imprinted genes involved in 

endocrine signalling, tissue growth, immune modulation, oxidative metabolism, 

vascular function and metabolite transport. 98 A more recent comprehensive 

transcriptome-wide profiling of normal and growth restricted placentas using next-

generation sequencing revealed five network modules enriched for similar 

processes, including cellular respiration, amino acid transport, hormone signaling, 

histone modifications and gene expression, that were associated with birth weight. 
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100 Furthermore, the hub genes for each module were significantly associated with 

growth restriction, and so these networks may play an important role in regulating 

placental function in these pathological cases.  

These changes may reflect differences in gene transcription, but could also 

potentially arise through epigenetic changes involving microRNAs (miRs). Non-

coding RNAs can bind to mRNA, regulating its stability and hence the transcript 

level. They can also influence translation of the mRNA and so the level of the 

encoded protein. It has been reported that 97 miRs are upregulated and 44 

downregulated in SGA as compared to AGA placentas. 101 Functional studies of 

miR-10b, -363 and -149, which were either significantly increased or trended to 

increase in the growth restricted placentas, in a trophoblast-like cell line showed that 

these have a negative impact on their target genes that encode angiogenic factors 

and amino acid transporters. When trophoblast-like cells were exposed to nutrient 

restriction, miRs-10b and -149 increased whereas miR-363 decreased, suggesting 

that they respond to multiple cues or that different cell types within the placenta 

respond in different ways during growth restriction.  

Placental-specific mRNAs and microRNAs thought to be derived from the 

syncytiotrophoblast can be detected in the peripheral maternal blood, opening the 

possibility of their use as diagnostic biomarkers of placental dysfunction. 97, 102 

 

4. Placental metabolism 

Data on placental metabolism in cases of growth restriction are conflicting. Placental 

mitochondrial content has been reported to be both increased 103 and decreased 104 

based on assays of mitochondrial DNA content. 105  These findings have been 

correlated with the oxygen content in the umbilical vein, but by contrast we observed 
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no difference in mitochondrial content in the high-altitude placenta as determined by 

the level of citrase synthase. 106 There was, however, a significant reduction in the 

protein, but not mRNA level, of the complexes of the electron transport chain, 

suggesting again a block to protein translation and a reduction in mitochondrial 

activity. It might be expected, therefore, that placental metabolism becomes more 

dependent on glycolysis, but there appears to be no change in glycogen content in 

the growth restricted placenta. 107  

Autophagy-related proteins are regulated by UPR pathways, 108 and have 

been reported to be increased in FGR placentas where they may reflect excessive 

levels of organelle stress and recycling, or severe nutrient depletion. 109 Increased 

autophagy has also been observed in the placental territory of monochorionic twins 

with selective FGR, where it was inversely proportional to the umbilical blood flow. 

110  

 

5. The feto-placental circulation 

Reduced placental surface area and transport are important contributors to placental 

function and hence fetal growth restriction, but another important factor is the 

resistance within the umbilical circulation. The absence or even reversal of end-

diastolic flow in cases of severe growth restriction as assessed by Doppler 

ultrasonography will greatly impair the transport of nutrients to the fetus. These 

findings are not surprisingly associated with fetal hypoxia. Pathological changes 

have been reported in the resistance arteries within the stem villi of growth restricted 

placentas, 111-113 but the molecular mechanisms underlying them has only recently 

been elucidated. The smooth muscle cells surrounding these arteries express the 

enzyme cystathionine-γ-lyase (CSE) that synthesises hydrogen sulfide, a powerful 
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vasodilator of the fetal placental vasculature that maintains vascular smooth muscle 

cells in their differentiated state. 114 This enzyme is reduced at the mRNA and protein 

levels in placentas associated with absent or reversed end-diastolic flow, and is 

associated with de-differentiation of the smooth muscle cells, the adoption of a 

synthetic phenotype, and a reduction in the lumen to wall ratio. 115 These changes 

can be induced by exposing explants of stem villous arteries to hypoxia-

reoxygenation, indicating that the in vivo findings are likely secondary to the 

oxidative stress caused by the placental malperfusion. The severity of the changes 

correlates with the birth weight, indicating that they may act as an important 

component of the placental dysfunction in growth restriction (Figure 7). 

 

Clinical placentology in FGR 

Many, if not all, placental abnormalities have been found in association with FGR but 

the results of most histopathological studies are hampered by a number of 

methodological factors. Most studies are retrospective based on case-series rather 

than case-control data and many have used different clinical definitions of FGR, 

mixing cases of fetuses constitutionally small (small-for gestation age or SGA) and/or 

born prematurely following inaccurate gestational dating or unknown gestational age 

(low-birth weight or LBW). Specific placental lesions have rarely formed the primary 

topic of investigation, more often being considered as a coincidental finding or one of 

several potential causes of FGR. In addition to these selection biases, confounding 

factors such as maternal smoking, and methodologic disparities such as the location 

and number of samples taken for histopathologic examination make it difficult to 

evaluate the data from many studies, in particular from those early histopathologic 
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studies performed before routine ultrasound became available and at a time when 

laboratory investigations were limited. 

Overall, placental lesions associated with FGR have been divided by 

pathologists into different categories: vascular and non-vascular, macroscopic and 

microscopic, congenital and acquired or secondary abnormalities. 116-118 The 

classification below is based on pathologist standardised diagnostic criteria for each 

individual lesion and highlights those lesions that can be diagnosed prenatally with 

ultrasound imaging. 

 

Abnormalities of placentation  

Abnormal placental shapes, in particular those with irregular outlines (extrachorial 

and bilobate placenta) have been associated with poor obstetric outcome, in 

particular poor fetal growth. 119, 120 These anomalies are difficult to diagnose in-utero 

by ultrasound scanning and are not routinely investigated in pregnancies 

complicated by FGR. 

 Placental location, and in particular lateral placentation, are more likely to be 

associated with FGR. A case-control study of precisely-dated singleton pregnancies 

found that those complicated by FGR are nearly 4-fold more likely to have had a 

lateral placentation (odds ratio (OR), 3.8; 95% confidence interval (CI), 1.3-11.2) at 

16-20 weeks, compared with anterior or posterior placentation. 121 A population-

based, retrospective cohort study of 544,734 singleton live births, including 2744 

placenta previa found, after controlling for maternal factors including smoking and 

gestational age, that previa placentation is associated with a 3.7% rate of FGR (OR 

1.24, 95% CI 1.17, 1.32) at birth, independently of the 12% rate of preterm 

delivery.122 By contrast, a retrospective cohort study of 59,149 women with singleton 
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pregnancies undergoing ultrasound between 15 and 22 weeks, found that no 

difference in the incidence of FGR after adjusting for confounding factors (adjusted 

OR, 1.1; 95% CI, 0.9-1.5) in the 724 women presenting with placenta previa. 123 The 

pathophysiology of FGR in cases of abnormal placentation is unknown but one can 

hypothesized the development of the utero-placental circulation and in particular, the 

recruitment of spiral arteries, is influenced by the density of the uterine terminal 

vascular network where the blastocyst implants. 

 

Macroscopic vascular anomalies 

Deficient remodelling of the spiral arteries is associated with greater pulsatility of the 

jets of maternal blood in SGA pregnancies, as expected. 34 More severe 

vasculopathies of the arteries are associated with a combination of secondary 

placental macroscopic lesions including intervillous and parabasal thrombi, 

hematomas, infarcts and extensive fibrin deposition (Figure x). 116, 117 Placental 

thromboses and infarcts are the most commonly found lesions in pregnancies 

complicated by FGR with or without pre-eclampsia and both have been reported on 

ultrasound examinations (Table 1). 124  

 Placental thromboses are the consequence of focal coagulation of maternal 

blood inside the intervillous space, 124, 125 and are found mainly in area lower villous 

density such as under the fetal or chorionic plate, in the placental marginal areas and 

in the centre of cotyledons. 116, 117 Isolated small thromboses are of no clinical 

significance and are commonly found in the placenta of uncomplicated pregnancies. 

Massive subchorial thromboses, also called Breus’ “mole”, have been reported in 

pregnancies complicated by FGR and stillbirth. 116, 125-129 A series of 14 cases found 

that subchorial thrombosis involving 50% or more of the chorionic or fetal plate are 
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associated with a 70% incidence of FGR in those pregnancies that continue after 24 

weeks of gestation. 128 The development of an intervillous thrombosis is often 

associated with fibrin deposition and these lesions are often described as “echogenic 

cystic lesions” or hypoechoic areas on ultrasound. 124, 130, 131 The ultrasound features 

i.e. echogenicity of an intervillous thrombosis will change with advancing gestation 

as more and more fibrin deposition will appear in its periphery and depending on 

when, or if, the maternal blood clots in its centre (Figures 2 A & B). Large 

thromboses have been diagnosed prenatally on MRI.132 

 Placental infarcts are due to the complete obstruction of utero-placental 

arteries leading to interruption of the maternal blood flow and progressive necrosis of 

the villous tissue including its fetal circulation of the corresponding cotyledon(s). 116, 

117, 124 Isolated small infarcts can be found in uncomplicated pregnancies but larger 

infarcts often associated with intervillous thromboses and extensive fibrin deposition 

are found in most pregnancies complicated by pre-eclampsia and FGR. These 

lesions appearing as complex echogenic intra-placental masses close to the basal 

plate on ultrasound imaging 133-138 and have also been identified recently on MRI in 

pregnancies complicated by utero-placental insufficiency and FGR. 139, 140 

Maternal floor infarction (MFI) is an extended lesion combining parabasal 

villous necrosis, fibrin deposition, thrombosis and hematoma that is associated with 

a high risk of severe FGR and stillbirth. 116, 117, 141 The disorder is somewhat 

misnamed, because it is mainly characterized by heavy deposition of fibrin in the 

decidua beneath the placenta rather than by arterial occlusion and ischemic necrosis 

of the villi. 142 The fibrin in floor infarcts often extends into the intervillous space, 

where they envelop villi, causing them to become atrophic. Similarly, massive fibrin 

depositions, in particular if involving more than 50% of the placental mass are 
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associated with severe FGR. 138 On ultrasound, these lesions appear as diffuse 

hyperechogenic lesions increasing in size with advancing gestation. 134, 143, 144 

 Placental vascular lesions associated with FGR have been known to present 

with abnormally high levels of maternal serum (MS) alpha-fetoprotein (AFP) and 

human chorionic gonadotrophin (hCG) at 15-18 weeks of gestation. 125, 145-147 There 

is also an association between the vasculopathies of the spiral arterioles leading to 

pre-eclampsia and FGR, a placental “Jelly-like” ultrasound appearance and high 

MSAFP levels at 18-28 weeks. 146 The “Jelly-like” appearance of the placenta is 

characterized on ultrasound by a narrow implantation basis or basal plate diameter, 

increased thickness and patchy decrease in echogenicity secondary to the fetal plate 

being pushed up by jet-like blood streams from the spiral arteries (Figure 3 and 

videos clips). We found recently an association between placenta protein A (PAPP-

A) levels in MS, basal surface area measurements at 11-14 weeks of gestation and 

birthweight centile. 148 All three parameters were lower in pregnancies complicated 

by pre-eclampsia and FGR. These findings support the concept of an early 

disruption in the normal establishment of the intervillous circulation starting from the 

end of the first trimester with a secondary maldevelopment of the villous tissue 

including intraplacental vascular lesions and presenting clinically with early onset 

pre-eclampsia and FGR. 

 

Microscopic lesions 

Many different microscopic placental lesions have been described in pregnancies 

complicated by FGR. Most are unspecific, have been found in villous tissue from 

uncomplicated pregnancies and the terminology used to describe them has been 

highly variable. The distribution of these lesions depends if the restricted fetal growth 



 25 

is isolated or associated with pre-eclampsia and on gestational age at onset, with 

late onset leading to a more heterogeneous group with less characteristic 

histological changes. 118 Recent histological classifications have been proposed 

separating, these lesions according to their maternal, fetal, or inflammatory origin, 149 

Our understanding of their pathophysiology remains limited by our limited knowledge 

of the mechanisms triggering them in early pregnancy. The microscopic lesions 

below have been the most commonly described in pregnancies complicated by FGR 

with or without pre-eclampsia (Table 2). 

Villous developmental defects included mainly villous hypoplasia, delayed and 

accelerated villous maturation and villous capillary dysplasia. These morphological 

alterations of the villous architecture are thought to be secondary to underperfusion 

or malperfusion of the intervillous space by maternal blood, and in particular to 

fluctuations in the oxygen tension inside the placenta. Villous vascular lesions 

related to maternal underperfusion are more common in early-onset (< 34 weeks) 

than in late-onset (> 34 weeks) FGR, 150 suggesting a timing effect linked to the 

extent of the placental defect at the beginning of pregnancy. Giles et al were the first 

to correlate fetal umbilical artery flow velocity Doppler waveforms with placental villi 

microvascular anatomy. 151 They correlated the blood flow resistance in the umbilical 

circulation obtained with Doppler ultrasound with the numbers of small muscular 

arterioles and tertiary stem villi. They found that the number of small arterial vessels 

was lower in pregnancies with a high resistance to blood flow and was associated 

with a higher incidence of FGR than in normal controls or in pregnancies with 

clinically suspected FGR with normal Doppler features. They found no differences in 

the number of tertiary stem villi between the group with increased resistance to blood 

flow and the controls suggesting that only the villous vasculature and not the overall 
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anatomy of the villous tree was altered in their cases. Other studies have shown 

correlations among the pathology of the stem villus arteries, the umbilical Doppler 

waveform and birthweight. 115. However, more detailed histomorphometric studies 

have also shown that placentae from FGR cases with abnormal umbilical artery 

Doppler features have increased number of villous infarcts, fibrin deposition, villous 

hypoplasia, cytotrophoblast proliferation and thickening of the villous trophoblastic 

basal membrane. 152-154 This highlight the fact that the placental lesions associated 

with increased resistance to flow in the umbilical arterial circulation in FGR are 

complex and involve the entire anatomy of the villous structure, not only its terminal 

vasculature. 

 Atherosis of the spiral arteries is characterized by fibrinoid necrosis of the 

arterial wall, subendothelial lipid-filled foam cells and perivascular lymphocytic 

infiltration (Figure 4). It is histologically similar to early-stage atherosclerosis and is a 

common microscopic feature of pre-eclampsia, FGR, fetal death, and spontaneous 

preterm labour with intact or ruptured membranes. 46, 58 Failure of spiral artery 

remodelling in the placental basal plate is associated with increased frequency of 

decidual artery atherosis, interstitial extravillous trophoblast and arterial endothelial 

activation. 46 Decidual atherosis is the main cause of maternal underperfusion of the 

intervillous space leading to fibrin deposition, thrombosis and villous infarcts. Small 

lesions appear to occur at points of localised stasis at the basal plate and are 

probably pathological markers of more generalised disturbances in placental 

circulation or of hypercoagulability in the intervillous space, 155 leading progressively 

to the macroscopic vascular lesions described previously. Obstructive lesions in the 

myometrial segment of spiral bed arteries have been found in 70% of the cases FGR 

associated with pre-eclampsia. 46 
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 Non-infectious villitis, also called villitis of unknown etiology (VUE), has been 

described as a pattern of placental injury occurring predominantly in term placentas 

156. High-grade lesions, affecting more than 10 villi per focus, have been found in 

fetuses presenting with FGR. 156, 157 Their histologic characteristics are distinct from 

infectious villitis and thought to be caused by maternal T lymphocytes, predominantly 

CD8-positive, that inappropriately gain access to the villous stroma. 156 VUE is found 

in 5-15% of placenta in uncomplicated pregnancies, 156, 157 15-100% of placenta from 

pregnancies complicated by FGR 158-160 and 20% of placenta in pregnancies 

presenting with FGR and pre-eclampsia. 161 A systematic review including 12 studies 

focussing on placental pathologies associated with IUGR found significant 

heterogeneity in study design which can explain the wide range in incidence of VUE 

in FGR placentas. 157 It is not known if these lesions are the primary cause of FGR or 

secondary to mechanical damage to the villous surface caused by the aberrant 

hemodynamics (ischemia-reperfusion) of the maternal circulation in the intervillous 

space ,24 or oxidative stress and the corresponding metabolic and morphological 

alteration of the villous trophoblastic layer.  

 

Umbilical cord anomalies  

FGR has been associated with abnormalities of the umbilical cord insertion ie, 

eccentric, marginal, or velamentous. 119, 162 These anomalies are rare and often 

associated with abnormalities of the placental shape and thus there are no data 

supporting a direct link between the location of the umbilical cord insertion and poor 

fetal growth.  

 The absence of one of the two normal umbilical arteries or single umbilical 

artery (SUA) cord is one of the most common congenital fetal malformations with an 
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incidence of approximately one per cent of all deliveries. 163, 164 SUA occurs three to 

four times more frequently in twins, and almost invariably accompanies the acardia 

malformation and sirenomelia or caudal regression syndrome. 163-165 Most SUA are 

part of fetal syndromes with major anatomical defects which are largely responsible 

for the poor perinatal outcomes. The incidence of FGR is significantly elevated 

among fetuses with a SUA and may develop without any other congenital anomalies 

in around 15 of the cases. 163, 164, 166-169 A population-based, retrospective cohort 

study of 37,500 singleton pregnancies including 223 SUA diagnosed at birth has 

found a higher incidence of birth weight <10th percentile (OR 2.1; CI 1.44-2.93) in 

isolated SUA 166. A retrospective case-control series of 136 SUA diagnosed at 

second-trimester ultrasound has reported isolated SUA to be independent risk factor 

for FGR (adjusted OR = 11.3, 95% CI 4.8-25.6) compared normal three-vessel cord 

167. Two recent systematic reviews have reported OR ranging between 1.6 (95% CI, 

0.97-2.6) 170 and 2.75 (95% CI, 1.97 to 3.83) 171 for SGA in isolated SUA compared 

to normal cord. The use of colour Doppler imaging (CDI) has made the diagnosis of 

SUA accurate in early pregnancy 172 but its detection at the first trimester (Figure 4) 

or routine mid-pregnancy ultrasound has been mainly as part of the fetal aneuploidy 

screening. There is a need for prospective case-control study on the impact on fetal 

growth of isolated SUA diagnosed in the first half of pregnancy. 

 

Conclusion 

The placental changes seen in cases of FGR of non-infective and non-genetic origin 

form part of a spectrum of pathology associated with different degrees of deficient 

remodelling of the uterine spiral arteries. 46, 173 Deficient remodelling results in 

maternal blood entering the placental intervillous space in jet-like streams that carve 
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large channels and lakes within the villous trees. The high velocity, uneven and, 

most likely, intermittent perfusion of the placenta causes oxidative stress and 

activation of the Unfolded Protein Response pathways, supressing placental growth 

and compromising its endocrine and transport functions. We speculate that the 

pathophysiology starts towards the end of the first trimester, at the time of onset of 

the maternal circulation.  Remodelling of the arteries and onset are linked through 

the endovascular trophoblast that initially plug the vessels; a deficiency in one is 

likely to be associated with abnormalities in the other. 15 When endovascular 

trophoblast is particularly poorly developed, onset of the maternal circulation is 

premature and disorganised spatially, not following the periphery to centre 

progression seen in normal pregnancies. 35, 174 There is overwhelming oxidative 

stress throughout the placental tissues, leading to widespread degeneration of the 

trophoblast and to miscarriage (Figure 11). 175 We speculate that less severe 

deficiencies in arterial remodelling result in ongoing pregnancies with differing 

degrees of compromise as discussed earlier.  At one extreme will be early-onset 

FGR with pre-eclampsia where there is excessive villous regression and extensive 

infarction due to secondary atherotic changes, through FGR alone to late-onset pre-

eclampsia at the opposite extreme where there appears to be minimal placental 

involvement. 173, 176  

 Considering these complications of pregnancy, and others such as pre-term 

delivery and premature rupture of the membranes, 15, 46 as a spectrum caused by 

poor placentation highlights two main conclusions. Firstly, there is an urgent need for 

more research into maternal-fetal interactions during the earliest phases of 

pregnancy, not just to understand the pathophysiology of FGR but this array of 

disorders.  Secondly, clinical care should be focussed just as much on the pre- and 
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peri-conceptional periods as in later pregnancy in order to ensure that when the 

conceptus implants it does so into an endometrium that is in the healthiest state 

possible.    
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Figure legends 
Figure1. Photomicrographs of an archival placenta-in-situ specimen (H710) at 6 

weeks gestational age demonstrating histotrophic nutrition.  A) The gestational sac 

with the developing placenta (P) is implanted in the superficial endometrium, and 

had been opened during processing to remove the embryo. The glands in the 

endometrium (E) beneath the sac are highly active, although haemorrhage has 

occurred in some (asterisk). M; myometrium. Scale bar = 2 mm, B) Higher power 

view of the interface between the placenta and endometrium showing the opening of 

an endometrial gland (EG) into the intervillous space (IVS) through the 

cutotrophoblastic shell (CS) and developing basal plate. Scale bar = 250 µm. 

Modified from 16 and 177. 

 

Figure 2. Photomicrograph of a placenta-in-situ specimen (H673) at 8 weeks 

gestational age showing endovascular trophoblast ‘plugging’ of a spiral artery. A) 

The endovascular trophoblast arise from anchoring villi (AV) that attach to the basal 

plate and can be seen virtually occluding the lumen in three cross-sectional profiles 

of the artery (arrowed). Note the deposition of fibrinoid material surrounding the 

artery, a characteristic feature of remodelling. EG, endometrial gland. Scale bar = 

0.5 mm. B) Higher power view of the mouth of the spiral artery showing the 

endovascular trophoblast cells (ET) streaming into the lumen from the anchoring villi 

(AV). Flow into the intervillous space will be restricted to seepage through the 

network of intercellular channels. Scale bar = 0.1 mm.   

 

Figure 3. Placenta-in situ specimen (H916) at 8.5 weeks gestational age showing 

formation of the chorion laeve. A) Regression of the villi can be seen beginning over 

the superficial pole of the gestational sac (asterisk). Scale bar = 1 cm. B) 

Diagrammatic representation of how onset of the maternal arterial circulation in the 

periphery of the placenta (arrows), where plugging of the spiral arteries by 

extravillous trophoblast is least extensive, causes localised oxidative stress 

(asterisk).  The stress induces apoptosis and regression of the villi, giving rise to the 

chorion laeve.  C) Higher power view of the area marked by the box (solid lines) over 
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the superficial pole of the sac illustrating avascular villi with hypocellular stromal 

cores. DC, decidua capsularis. D) Higher power view of the area marked by the box 

(dashed lines) over the central region display blood vessels, a denser stromal core 

and thick layer of trophoblast.  Scale bars C) and D) = 0.5 mm. A) reproduced from 
35 and B)  modified from 178. 

 

Figure 4. Photomicrograph of a spiral artery within the decidua from a case of pre-

eclampsia displaying acute atherosis. Foam cells (FC) accumulate in the wall of the 

arteries, severely restricting the calibre of the lumen. Scale bar = 50 µm. 

 

Figure 5. Schematic representation of the cellular detoxification of reactive oxygen 

species. The superoxide anion (O2•–) is generated as a by-product of aerobic 

respiration and various oxido-reductase enzymes, and acts at physiological levels as 

a signalling intermediate to regulate gene expression. It can be scavenged by 

naturally occurring antioxidants, such as vitamins C and E, but also converted to 

hydrogen peroxide by the superoxide dismutase (SOD) enzymes. Hydrogen 

peroxide is then detoxified by the enzymes glutathione peroxidase and catalase. 

Excess levels of ROS can cause widespread damage to biomolecules, impairing cell 

function and leading to cell death.  

 

Figure 6. Interactions between mitochondria and the endoplasmic reticulum. The 

mitochondrial and ER membranes are closely approximated at punctate sites rich in 

calcium transporters and ion channels. Calcium signalling integrates the functional 

activity of these two organelles, so that both contribute to increased production of 

ROS during malperfusion. Elevated ROS and a high level of activation of UPR 

pathways lead to an increase in pro-inflammatory pathways, which may distinguish 

FGR alone from FGR compounded by pre-eclampsia. Reproduced from 179.  

  

Figure 7.  Schematic representation of the possible pathways leading to placental-

related FGR alone or FGR complicated by pre-eclampsia. See text for details. 
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Figure 8. Transabdominal colour Doppler mapping of a placental (P) in a pregnancy 

at 36 weeks complicated by FGR and presenting with multiple cystic lesions (*) 

corresponding to intervillous thrombosis on histopathology. A) Note the increased 

echogenicity in the periphery of the lesions due to degenerative villous tissue 

embedded in fibrin deposits. B) The utero-placental blood arterial supply to the lesion 

from the basal plate (BP). Video clips of the same lesions (C & D) showing the 

pulsatile flow from a utero-placental artery. E) and F) further examples of pulsatile 

flow. 

 

Figure 9: Transabdominal ultrasound longitudinal view of a “Jelly like” placenta (P) 

at 18 (A) and 19 (B) weeks in a pregnancy complicated by very early-onset FGR. 

The placental base is very narrow and most of the placental mass contains areas of 

patchy decrease in echogenicity (*). Video clip of the same placenta at 23 weeks 

showing increased thickness and patchy decrease in echogenicity secondary to the 

fetal plate being pushed up by jet-like blood streams from the spiral arteries. A 

massive subchorial thrombosis involving more than 70% of the chorionic plate, 

extended fibrin deposition, intervillous thrombosis and villous infarcts were found at 

birth at 34 weeks. 

 

Figure 10. Color flow mapping of a fetal abdomen and its placenta (P) at 12 weeks 

of gestation showing a two-vessel umbilical cord. 

 

Figure 11. Diagrammatic representation of the proposed relationship between the 

degree of oxidative stress and placental development in normal pregnancies, late-

onset preeclampsia, early-onset preeclampsia and miscarriage.  In normal 
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pregnancies onset of the maternal circulation in the periphery causes local oxidative 

stress, villous regression and formation of the chorion laeve.  In miscarriage 

endovascular trophoblast is severely deficient, leading to incomplete plugging of the 

spiral arteries, premature and disorganised onset of blood flow, and overwhelming 

oxidative stress.  The situation is intermediate in pre-eclampsia, being more severe 

in the early-onset form of the syndrome associated with FGR (IUGR). Reproduced 

from 173. 
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