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Clinical decision support systems (CDSSs) hold potential for the differential diagnosis
of neurodegenerative diseases. We developed a novel CDSS, the PredictND tool,
designed for differential diagnosis of different types of dementia. It combines information
obtained from multiple diagnostic tests such as neuropsychological tests, MRI and
cerebrospinal fluid samples. Here we evaluated how the classifier used in it performs
in differentiating between controls with subjective cognitive decline, dementia due
to Alzheimer’s disease, vascular dementia, frontotemporal lobar degeneration and
dementia with Lewy bodies. We used the multiclass Disease State Index classifier,
which is the classifier used by the PredictND tool, to differentiate between controls
and patients with the four different types of dementia. The multiclass Disease State
Index classifier is an extension of a previously developed two-class Disease State
Index classifier. As the two-class Disease State Index classifier, the multiclass Disease
State Index classifier also offers a visualization of its decision making process, which
makes it especially suitable for medical decision support where interpretability of the
results is highly important. A subset of the Amsterdam Dementia cohort, consisting
of 504 patients (age 65 ± 8 years, 44% females) with data from neuropsychological
tests, cerebrospinal fluid samples and both automatic and visual MRI quantifications,
was used for the evaluation. The Disease State Index classifier was highly accurate
in separating the five classes from each other (balanced accuracy 82.3%). Accuracy
was highest for vascular dementia and lowest for dementia with Lewy bodies. For the
50% of patients for which the classifier was most confident on the classification the
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balanced accuracy was 93.6%. Data-driven CDSSs can be of aid in differential
diagnosis in clinical practice. The decision support system tested in this study was highly
accurate in separating the different dementias and controls from each other. In addition
to the predicted class, it also provides a confidence measure for the classification.

Keywords: neurodegenerative diseases, classification, decision support, Alzheimer’s disease, frontotemporal
lobar degeneration, vascular dementia, dementia with Lewy bodies

INTRODUCTION

Worldwide dementia affects over 47 million people and is one
of the major causes of dependency and disability with huge
social and economic impact (World Health Organization, 2016).
Alzheimer’s disease (AD) is the most common cause of dementia
and accounts for 60–70% of the dementia cases. At an older
age, vascular dementia (VaD) and dementia with Lewy bodies
(DLB) also frequently occur. Frontotemporal lobar degeneration
(FTLD) is the second most prevalent type of dementia in patients
with early onset. For therapeutical and research purposes, early
and precise diagnosis is important (Román et al., 1993; Neary
et al., 1998; McKeith et al., 2005; McKhann et al., 2011; Rascovsky
et al., 2011; Snowden et al., 2011).

Cognitive profiles differ between dementia types showing
primarily memory impairment in AD, visuospatial and executive
dysfunction in DLB, delayed cognitive processing in VaD
and mainly language, executive and behavioral dysfunction in
FTD (Burrell and Piguet, 2015; Smits et al., 2015) although
considerable overlap exists. Progress in biomarker development
has provided new disease insights and improved accuracy of
dementia diagnosis. This has led to an increasing role of
biomarkers, such as those obtained from cerebrospinal fluid
(CSF) measures and structural magnetic resonance imaging
(MRI), in diagnostic criteria and guidelines (Román et al., 1993;
McKhann et al., 2011; Rascovsky et al., 2011; McKeith et al.,
2017). CSF biomarkers can provide evidence for the presence
of beta amyloid 1-42 (AB42) accumulation and downstream
neuronal dementia in AD [tau and tau phosphorylated at
threonine 181 (p-tau)], while isolated elevation of tau may
also be seen in FTD and intermediate concentrations of CSF
biomarkers often occur in DLB and VaD (Mattsson et al.,
2012; Schoonenboom et al., 2012; Blennow et al., 2015; Ewers
et al., 2015; Llorens et al., 2016). On structural MRI, typical
abnormalities for different causes of dementia have been
described, such as hippocampal and parietal atrophy in AD,
frontal-temporal atrophy in FTD, and profound white matter
hyperintensities in VaD, whereas DLB present with unspecific
mild generalized atrophy (Scheltens et al., 1997; Burton et al.,
2009; Koedam et al., 2011; Rhodius-Meester et al., 2017). Also
other measurement modalities which are not used in this study,
such as 123I-FP-CIT SPECT imaging (Brigo et al., 2015), can
provide useful information for the differential diagnosis.

Despite these advances, differential diagnosis of dementia in
terms of accurately identifying the underlying etiology remains
challenging. First, biomarkers for other types of dementia are less
developed than those for AD and second, there is often overlap in
underlying pathology and clinical presentation as most patients
do not present in an archetypical fashion (Burton et al., 2009;

Schoonenboom et al., 2012; Rivero-Santana et al., 2016; Simonsen
et al., 2017). In addition, diagnostic guidelines remain relatively
general and addresses one disease only. In reality, a clinician often
faces a complex differential diagnostic task of simultaneously
evaluating a range of potential diagnoses.

Clinical decision support systems (CDSS) could provide a
systematic and more objective way for helping clinicians in
the complex reasoning related to differential diagnostics. Our
previous work on the PredictAD CDSS tool was based on
this concept, but the tool was developed to distinguish only
between two classes, i.e., patients with AD vs. healthy controls,
or stable vs. progressive MCI patients (Mattila et al., 2011,
2012a; Hall et al., 2015a; Rhodius-Meester et al., 2015). To reflect
daily clinical practice more closely, we extended the tool to
differential diagnosis of dementia. This extended tool is called
the PredictND tool. In the tool data from a patient are compared
with a large database of pre-existing patient measurements and
corresponding diagnoses. This database forms the reference
data for finding the disease patterns from data and measuring
the patient’s similarity to these patterns (Mattila et al., 2011).
The results of this statistical analysis and overview of available
clinical data are then visualized to the users in a form that
is easy to understand and can support their decision making.
The user interface of the tool is shown in Figure 1. The
classifier used by the tool is called the Disease State Index (DSI)
classifier.

First CDSSs for differential diagnosis of dementia were
presented already almost 30 years ago (Plugge et al., 1990,
1991). After this, multiple studies that are similar to our study
presented here (in the sense that they have used automatic
classification methods with similar measurement types for
differential diagnosis of dementia) have been performed. Of
the measurement modalities MRI has been the most common
in these studies (Davatzikos et al., 2008; Klöppel et al., 2008;
Muñoz-Ruiz et al., 2012; Raamana et al., 2014; Möller et al.,
2016; Bron et al., 2017; Canu et al., 2017; Tu et al., 2017).
Also neuropsychological tests (Diehl et al., 2005; Jiménez-Huete
et al., 2014), CSF, MRI and FDG PET (Perani et al., 2016), and
the combination of neuropsychological tests, MRI, CSF, SPECT,
and genetic biomarkers (Muñoz-Ruiz et al., 2016) have been
studied in this manner. As far as we know, besides our two
earlier studies (Koikkalainen et al., 2016; Tong et al., 2017) no
studies have addressed a similar five-class classification problem
covering the most common forms of dementia. The earlier
studies have at most addressed the classification of two dementia
types (usually AD and FTLD) and controls, or three types of
dementia (Jiménez-Huete et al., 2014).

The objective of this study is to evaluate the performance of
the DSI classifier for classifying patients in differential diagnosis
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FIGURE 1 | A screenshot of the PredictND tool, a CDSS for differential diagnosis of dementia. The tool contains for example: structured access to the raw data and
to visualizations of the MRI analysis (A), and a visualization of the hierarchical decision making of process of the DSI classifier (B), visualization of the expected
accuracy of the DSI classifier for this patient (C), distribution of an individual biomarker for different diagnostic groups (D), and visualization of relative influence of
different measurement modalities to the DSI classifiers classification (E).

of dementias. In an earlier study we presented the MRI analysis
methods used in the CDSS and evaluated the classification
accuracy for differentiating between patients with AD, VaD, DLB,
FTLD, and controls using only structural MRI data (Koikkalainen
et al., 2016). In another study we introduced alternative MRI
analysis methods, and tested different machine learning methods
for the classification problem (Tong et al., 2017). Here we extend
the first study (Koikkalainen et al., 2016) by evaluating the DSI
classifier with a more comprehensive set of data, consisting of
neuropsychological tests, CSF samples, and both automatic and
visual MRI ratings.

DATA AND METHODS

Patients and Clinical Assessment
We studied 504 patients from the Amsterdam Dementia Cohort
who had visited the Alzheimer center between years 2004 and
2014 (van der Flier et al., 2014). We included subjects with a
baseline diagnosis of AD, FTLD, DLB, or VaD. In addition, we
included patients with a diagnosis of subjective cognitive decline
(SCD) as controls. Patients were included if a neuropsychological
test battery, MRI of brain, and CSF biomarkers were available.
Subjects with SCD were selected to have a minimal follow up
of 9 months during which they remained stable. The study was
approved by the Medical Ethical Committee (Medisch Ethische
Toetsingscommissie) of VUmc Medical Center. All patients have
given written informed consent for their clinical data to be used
for research purposes.

At baseline, all patients received a standardized and
multidisciplinary workup, including medical history, physical,
neurological and neuropsychological examination, MRI,
laboratory test and lumbar puncture to collect CSF. Diagnoses
were made in a multidisciplinary consensus meeting. Patients
were diagnosed as having SCD when the cognitive complaints
could not be confirmed by cognitive testing and criteria for
MCI, dementia or other neurological or psychiatric disorder
known to cause cognitive complaints were not met. Patients were
diagnosed with probable AD using the criteria of the NINCDS-
ADRDA (McKhann et al., 1984); all patients also met the core
clinical criteria of the NIA-AA for probable AD (McKhann
et al., 2011). FTLD was diagnosed using the Neary and Snowden
criteria (Neary et al., 1998). Of the FTLD patients, 60 were
diagnosed with behavioral variant frontotemporal dementia
(bvFTD) additionally fulfilling the core criteria from Rasckovsky
(Rascovsky et al., 2011), and 32 patients were diagnosed with a
language variant (27 semantic dementia (SD) and 5 progressive
non-fluent aphasia (PNFA)) additionally fulfilling the criteria
of Gorno-Tempini (Gorno-Tempini et al., 2011). VaD was
diagnosed using the NINDS-AIREN criteria (Román et al.,
1993), and DLB using the McKeith criteria (McKeith et al., 1996,
2005).

A summary of the patient characteristics is presented in
Table 1.

Neuropsychological Tests
Cognitive functions were assessed with a standardized test
battery consisting of the Mini Mental State Examination
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TABLE 1 | Basic characteristics of the patients in different diagnostic categories.

All CN AD FTLD DLB VaD

N 504 118 223 92 47 24

Age 65 ± 8 61 ± 9b,c,d,e 66 ± 7a,c 63 ± 7a,b,d,e 68 ± 9a,c 69 ± 6a,c

Females 221 (44%) 45 (38%)b,d 120 (54%)a,d 41 (45%)d 6 (13%)a,b,c,e 9 (38%)d

MMSE 23 ± 5 28 ± 1b,c,d,e 21 ± 5a,c,d,e 24 ± 5a,b 23 ± 4a,b 24 ± 5a,b

Statistically significant differences (p < 0.05) between the patient groups were studied using the Mann–Whitney U test for age and MMSE, and using Chi-squared test for
the gender. Differences are marked as follows: astatistically significantly different from control, bstatistically significantly different from AD, cstatistically significantly different
from FTLD, dstatistically significantly different from DLB, estatistically significantly different from VaD. MMSE, Mini Mental State Examination; CN, control.

(MMSE) (Folstein et al., 1975), the Cambridge Examination
for Mental Disorders of the Elderly (CAMCOG) (Derix
et al., 1991) forward and backward conditions of Digit
Span (Lindeboom and Matto, 1994), the Visual Association Test
(VAT), the Rey Auditory Verbal Learning Test (RAVLT) (Saan
and Deelman, 1986; Lindeboom et al., 2002), the Category
Fluency Test (CFT) (animals) (Van der Elst et al., 2006), the
Trail Making Test (TMT) (Reitan, 1958), the Frontal Assessment
Battery (FAB) (Dubois et al., 2000), the Stroop test (Stroop,
1935) and the Rey figure copy test (Osterrieth, 1944). Depressive
symptoms were assessed by the Geriatric Depression Scale (GDS)
(Yesavage et al., 1982), behavioral and psychological symptoms
by the Neuropsychiatric Inventory (NPI) (Cummings et al., 1994)
and activities of daily living using the Disability Assessment for
Dementia (DAD) (Gélinas et al., 1999).

All of the patients had MRI scans and CSF samples taken,
but not all of the neuropsychological tests were performed
in all patients. The proportions of patients for which each
measurement was done are listed for each patient group in
Table 2.

Imaging
Subjects were scanned using either a 1.0 T (85 patients), 1.5 T
(98 patients) or 3.0 T (321 patients) MR system. All scans were
visually rated by a trained rater, and subsequently evaluated in a
consensus meeting with an experienced neuroradiologist (van der

Flier et al., 2014). All scans included a 3-dimensional T1-weighted
gradient echo sequence and a fast fluid-attenuated inversion
recovery (FLAIR) sequence. Visual rating of medial temporal lobe
atrophy (MTA) was performed on coronal T1-weighted images
according to the 5-point (0–4) Scheltens scale from the average
score of the left and right sides (Scheltens et al., 1995). Global
cortical atrophy (GCA) was assessed visually on axial FLAIR
images (possible range of scores 0–3) (Pasquier et al., 1996). The
degree of white matter hyperintensities severity was rated on
axial FLAIR images using Fazekas’ scale (Fazekas et al., 1987).
Lacunes were defined as T1-hypointense and T2-hyperintense
CSF-like lesions surrounded by white matter or subcortical gray
matter.

In addition to the visual quantifications the MRI images were
quantified using six different automatic quantification methods
in the PredictND tool. Multi-atlas segmentation based volumetry
was used to measure the volume of 139 brain regions. Tensor
and voxel based morphometry (TBM and VBM) techniques
were used to quantify local shape-changes of the brain and the
concentration of gray matter, respectively. Manifold learning and
ROI based grading were used to measure the similarity of the MRI
scans with a database of existing scans with known diagnoses.
Vascular changes were quantified by a vascular burden measure
based on segmentation of white matter hyperintensities, and
cortical and lacunar infarcts. All these methods are described in
more detail in Koikkalainen et al. (2016).

TABLE 2 | Proportions of patients for which the different neuropsychological tests were done.

All (N = 504) % CN (N = 118) % AD (N = 223) % FTLD (N = 92) % DLB (N = 47) % VaD (N = 24) %

MMSE 100 100 100 100 100 100

CAMCOG 78 53 100 57 74 75

VAT 98 100 99 93 100 100

RAVLT 93 100 95 74 96 100

CFT 97 100 100 88 100 92

TMT 96 100 95 95 94 100

FAB 80 76 87 70 79 83

Stroop test 89 98 92 70 91 92

Rey figure copy 41 66 26 41 49 46

GDS 90 93 95 77 87 79

DAD 68 40 93 49 66 46

NPI 86 69 100 74 100 67

MMSE, Mini Mental State Examination; CAMCOG, Cambridge Examination for Mental Disorders of the Elderly; VAT, Visual Association Test; RAVLT, Rey Auditory Verbal
Learning Test; TMT, Trail Making Test; FAB, Frontal Assessment Battery; GDS, Geriatric Depression Scale; DAD, Disability Assessment for Dementia; NPI, Neuropsychiatric
Inventory, CN, control.
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Cerebrospinal Fluid
Cerebrospinal fluid analyses were performed at the
Neurochemistry Laboratory at the department of Clinical
Chemistry of the VU University Medical Center Amsterdam.
CSF was obtained by lumbar puncture between the L3/L4
or L4/L5 intervertebral space by a 25-gauge needle and
collected in polypropylene tubes. Within 2 h, the CSF was
centrifuged at 1800 g for 10 min at 4◦C, transferred to new
polypropylene tubes, and stored at −20◦C until biomarker
analysis (within 2 months). Aβ1-42, total tau (t-tau) and tau
phosphorylated at threonine 181 (p-tau) were measured with
commercially available ELISAs (Innotest, Fujirebio, Ghent,
Belgium).

Classification Using the DSI Classifier
For classifying the patients we used a multiclass DSI classifier. The
DSI classifier was originally designed for two-class classification
problems (Mattila et al., 2011, 2012a). In addition to the class label
it produces an index DSI(i,j) between zero and one describing
the likelihood that the patient belongs to the class i when class
j is the alternative option. A more detailed description of two-
class DSI classifier is given in Appendix A in the Supplementary
Material.

In order to convert the two-class DSI classifier into a multi-
class classifier we computed a total index for each class. The total
index DSI(i) for class i is the mean of two-class indices between
class i and all other classes: DSI(i) = 1

#classes
∑

j 6=i DSI(i, j). Each
patient is then classified to the class with the highest total index.

The total indices can also be used to quantify the classifiers
confidence in the decision. The classification accuracy for
patients with a very high maximum total index can be expected
to be better, than for those patients for whom none of the classes
receives a high total index.

In the training phase, we made two modifications to the
training data. The modifications are based on a priori knowledge
of usefulness of some of the MRI features. First, since there
are no VaD specific structural changes, we have excluded the
structural MRI features from all the pairwise classifications
involving VaD. Second, when training the classifier for pairwise
classification between classes A and B we only use TBM
and VBM features that have been generated to separate the
classes A and B. These modifications are the same as in
our previous study (Koikkalainen et al., 2016). When the
classifier is tested the same set of features is used for all
patients, so that no information of class labels is given to the
classifier.

Classification Using RUSBoost
Because DSI treats each variable independently, it is incapable
of learning classification rules in which the interpretation
of one measurement depends on the value of another. It
is likely that this type of connections exist between the
variables, and a more complex classifier could, at least in
theory, perform better classification by utilizing them. In
order to test if a more complex classifier would outperform
the DSI classifier, we have tested the five-class classification

using also the RUSBoost algorithm (Seiffert et al., 2010).
RUSBoost was in our earlier study the best classification
method for this type of classification problem (Tong et al.,
2017).

Removal of Nuisance Variability
To reduce the effect of covariates such as age and gender to
the classification, we normalized the features. This was done by
fitting a multivariate linear regression model to the feature values
of control group using the nuisance variables as explanatory
variables. This model estimates the expected value of the feature
given the nuisance variables, which is then subtracted from the
actual feature values in order to obtain the normalized values
(Koikkalainen et al., 2012).

The nuisance variables for which the measurement values
were corrected for were: age, gender, education level, and MRI
scanner type. The correction for MRI scanner type was done since
we noticed systematic differences between MRI scans done with
1.0 T MRI device and other scanners; scanner type did not affect
the classification accuracy using MRI (see Koikkalainen et al.,
2016 for details). Education level was assessed using Verhage’s
classification scale (Verhage, 1964).

For the neuropsychological tests, age, gender, and education
level were used in the normalization; for the CSF biomarkers age
and gender were used in the normalization; and for the automatic
MRI quantifications age, gender and MRI scanner type were used
in the normalization. The visual MRI ratings were not normalized
for the nuisance variability.

Performance Metrics
The simplest measure of classifier performance is the accuracy
(Acc.), i.e., the proportion of correctly classified patients:

Acc.=
# correctly classified patients

# all patients

This measure is, however, dependent on the number of cases in
each group. If for example most patients in the data set belong to
a single class, a classifier that always predicts this most frequent
class will achieve an accuracy equal to the prevalence of this class,
without using any information from patient measurements.

Therefore, we chose to use a multiclass extension of the
balanced accuracy in addition to the accuracy to evaluate classifier
performance (Brodersen et al., 2010). The balanced accuracy
(Bal. acc.) is the mean of the sensitivities for each class, i.e., the
proportion of patients belonging to each class that have been
correctly classified:

Bal. acc. =
1

# classes

# classes∑
i=1

# correctly classified patients in class i
# patients in class i

It is an estimate of the accuracy the classifier would achieve
on a data set consisting of equal amount of patients in each
class. The balanced accuracy is equal to 1

# classes if one assigns a
class for a patient randomly, i.e., guesses the result. This means
random guessing would yield an accuracy of 20% for the five-class
classification problem in this study.
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All performance measures were computed using 10-fold cross-
validation.

RESULTS

Classification Accuracies With Different
Subsets of the Measurements
Table 3 shows classification accuracies obtained for the five-
class (AD, FTLD, DLB, VaD, and control) classification problem
using all combinations of the four different data sources
(neuropsychological tests, CSF biomarkers, visual MRI ratings
and automatic MRI quantification) used in this study. The best
single data source was the automatic MRI quantification (bal.
acc. 66.1%). When all the data sources are used the balanced
accuracy is 82.3%; and the classifier is most accurate for the
vascular dementia cases (sensitivity 91.7%) and least accurate
for the DLB cases (sensitivity 74.5%). The confusion matrix
when using all the data sources is shown in Table 4. For a
more detailed view of which data sources help in differentiating
which classes from each other, the balanced accuracies for
all possible two-class classification problems are shown in
Table 5.

The neuropsychological test measurement values are not
missing at random (see Table 2). The classifier could potentially
exploit this information in the classification. In order to make
sure the results are not biased, we tested the accuracy of the
classification using a subset of the data without missing values,
and found no major difference in classification accuracy to data
with missing values. The details of this comparison can be found
in Appendix B in the Supplementary Material.

In the comparison to RUSBoost, the DSI classifier outperforms
it in overall accuracy: the balanced accuracy reached by RUSBoost
is 75.5% when using all the measurements. However, RUSBoost
performs better when some subsets of the data sources are used.

TABLE 4 | Confusion matrix when all the measurements are used.

CN AD FTLD DLB VaD

CN 105 1 4 7 1

AD 1 179 21 18 4

FTLD 5 6 70 8 3

DLB 1 7 2 35 2

VaD 0 1 0 1 22

In the confusion matrix each row represents the clinical diagnosis and each column
the diagnosis suggested by the classifier; the cells show the number patients in
each category. CN, control.

Details of the comparison can be found in Appendix C in the
Supplementary Material.

Classification Accuracy vs. Confidence
Table 6 shows how the classification accuracy increases when
the cases for which the classifier is least confident are left out
from the evaluation. The maximum of the total indices is used
as the confidence measure. For example, if 50% of the cases
were left out corresponding to the total index cut-off value 0.79,
the accuracy was 95.2% and the balanced accuracy was 93.6%.
Balanced accuracy is no longer computed when 75% of the cases
are left out, since there are no DLB patients remaining in this
subset.

Classification results and the percentage of patients left in each
diagnostic group are shown in Table 7. The classifier is least
confident on the classification of DLB patients, 76.6% of the DLB
patients are left out from the 50% subset of patients for which the
classifier is most confident on the correct class.

DISCUSSION

In this study, we tested the classification accuracy of the
DSI classifier for the differential diagnosis of dementia using

TABLE 3 | Accuracy, balanced accuracy, and sensitivities [%] for all diagnostic groups, using different subsets of the data sources.

Feature set Acc. Bal. Acc. Sens. CN Sens. AD Sens. FTLD Sens. DLB Sens. VaD

NP 62.3 57.3 83.1 61.9 48.9 46.8 45.8

CSF 51.2 40.6 40.7 72.2 35.9 12.8 41.7

VMRI 45.8 54.5 68.6 26.9 57.6 36.2 83.3

AMRI 66.3 66.1 78.8 63.7 68.5 31.9 87.5

NP and CSF 67.1 59.7 83.1 69.5 55.4 53.2 37.5

NP and VMRI 72.2 74.0 90.7 64.6 67.4 68.1 79.2

NP and AMRI 78.0 77.1 91.5 76.2 70.7 63.8 83.3

CSF and VMRI 63.9 62.3 63.6 69.5 58.7 40.4 79.2

CSF and AMRI 71.2 72.5 79.7 68.2 71.7 55.3 87.5

VMRI and AMRI 68.3 70.0 77.1 64.6 69.6 51.1 87.5

NP, CSF, and VMRI 75.8 73.7 89.0 73.1 71.7 68.1 66.7

NP, CSF, and AMRI 83.3 82.9 92.4 83.0 75.0 76.6 87.5

NP, VMRI, and AMRI 77.2 77.8 89.0 75.8 66.3 70.2 87.5

CSF, VMRI, and AMRI 71.0 74.5 78.0 67.3 67.4 68.1 91.7

All 81.5 82.3 89.0 80.3 76.1 74.5 91.7

NP, neuropsychological tests; CSF, cerebrospinal fluid based biomarkers; VMRI, visual MRI ratings; AMRI, automatic MRI quantifications; Sens., sensitivity for each
diagnostic group, i.e., the proportion of patients that are correctly classified in that group; CN, control.
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TABLE 5 | Balanced accuracies [%] using different subsets of the data sources for all possible two-class classification problems.

Feature set CN vs.
AD

CN vs.
FTLD

CN vs.
DLB

CN vs.
VaD

AD vs.
FTLD

AD vs.
DLB

AD vs.
VaD

FTLD vs.
DLB

FTLD vs.
VaD

DLB vs.
VaD

NP 96.3 87.8 96.0 94.1 74.4 78.4 77.6 74.7 73.9 65.3

CSF 87.6 62.5 60.5 64.8 79.1 79.4 75.4 58.1 66.5 51.6

VMRI 81.3 83.7 75.4 90.8 61.4 62.0 90.7 72.6 87.2 91.6

AMRI 91.1 89.6 79.2 96.2 80.3 71.9 94.3 80.7 95.2 95.8

NP and CSF 97.2 85.7 95.5 93.7 80.6 85.2 84.0 74.2 74.5 57.9

NP and VMRI 97.2 91.7 94.0 96.6 75.3 81.5 93.1 80.7 89.9 86.3

NP and AMRI 97.4 96.1 92.4 99.6 82.7 75.9 95.9 85.5 95.2 93.7

CSF and VMRI 91.6 86.8 74.1 90.8 80.4 78.8 92.5 75.2 89.3 89.5

CSF and AMRI 92.2 90.9 79.2 96.2 84.4 74.7 94.8 81.2 95.2 95.8

VMRI and AMRI 89.8 88.6 83.0 96.6 81.0 72.1 94.3 80.7 92.6 95.8

NP, CSF, and VMRI 96.5 91.8 93.0 97.5 84.0 85.4 91.5 80.1 89.9 86.3

NP, CSF, and AMRI 97.4 93.0 93.4 97.9 88.0 80.4 98.0 85.5 93.1 93.7

NP, VMRI, and AMRI 95.0 93.1 92.8 97.1 83.4 76.3 95.2 86.5 92.6 95.8

CSF, VMRI, and AMRI 91.5 90.4 82.4 96.6 81.1 78.2 94.3 82.3 92.6 95.8

All 96.8 92.1 92.4 97.1 87.2 79.9 95.5 86.5 93.1 95.8

NP, neuropsychological tests; CSF, cerebrospinal fluid based biomarkers; VMRI, visual MRI ratings; AMRI, automatic MRI quantifications; CN, control.

TABLE 6 | Classification accuracies when patients for which the classifier is least
confident of the true class are left out.

Uncertain patients [%] 0.0 25.0 50.0 75.0

Total index cut-off 0.00 0.72 0.79 0.85

Accuracy [%] 81.5 91.0 95.2 99.2

Balanced accuracy [%] 82.3 89.4 93.6 N/A

The columns show for different percentages of left out patients the DSI threshold
used for rejecting uncertain patients, and the accuracy and balanced accuracy
obtained when the patients are left out of the classification.

TABLE 7 | Confusion matrix (on the left), and percentage of patients left out and
sensitivity for each class (on the right), when 50% of the patients that the classifier
is least confident of are left out.

CN AD FTLD DLB VaD Patients left
out [%]

Sens. [%]

CN 79 0 0 0 0 33.1 100.0

AD 0 98 7 0 0 52.9 98.1

FTLD 0 2 40 0 1 53.3 92.9

DLB 0 1 0 9 1 76.6 81.8

VaD 0 0 0 0 13 45.8 100.0

different types of diagnostic tests: neuropsychological tests, CSF
biomarkers, and automatic quantifications and visual ratings of
MRI. Using all the diagnostic tests the system was highly accurate
in separating the five classes (bal. acc. 82.3%).

When the role of different data sources is studied in detail
(Table 3), automatic MRI quantification produced the best
results. This implies patterns of atrophy are closely related to
clinical presentation of the different types of dementia and that
automatic image quantification is able to characterize images in
a richer way than what can be done with current visual rating
scales alone. Leaving automatic MRI quantification out had the
largest impact on the classification accuracy; balanced accuracy
dropped from 82.3% to 73.7%. The CSF based features perform

the worst (bal. acc. 40.6%), which is seemingly in contrast with
earlier studies on differential diagnoses and studies using a
CDSS (Mattila et al., 2012b; Muñoz-Ruiz et al., 2013; Rhodius-
Meester et al., 2015). However, all these former studies applied
a two-class CDSS, comparing controls with AD, stable MCI
with progressive MCI or AD with FTLD. In this study, CSF
based biomarkers were highly useful when separating AD from
other groups, but less so for separating between two non-AD
groups. For example, classification accuracy for separating DLB
cases from VaD cases using CSF biomarkers was close to
50%, i.e., equal to guessing the diagnosis (see Table 5). In
the future, biomarkers specific for discriminating two types of
non-AD dementias may help to further improve the diagnostic
accuracy.

The results show also that all data sources (neuropsychology,
MRI and CSF) are important: clearly the highest accuracy was
obtained when all data sources were included. The best two data
sources were neuropsychological tests combined with automatic
MRI quantification, producing balanced accuracy of 77.1%. The
balanced accuracy increased to 82.9% after adding the third data
source.

In a comparison to a more complex classifier (RUSBoost)
the DSI classifier performs favorably reaching a higher accuracy
when all data sources are used (balanced accuracy 82.3% vs.
75.5%), but RUSBoost outperforms DSI using some subsets of
the data sources such neuropsychological tests and CSF. As the
DSI classifier also has other advantages such as interpretability
of the results, we feel that it is more suitable classifier for decision
support for this particular case. It is possible that a combination of
a complex machine learning method and a transparent classifier
such as DSI could offer the optimal tradeoff between accuracy and
interpretability of results.

Both the DSI classifier and RUSBoost obtained a slightly
higher classification accuracy when the visual MRI ratings are
left out, when compared to classification using all measurements.
The balanced accuracy increases from 82.3 to 82.9% for DSI
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classifier, and from 75.5 to 77.0% for RUSBoost. The difference
is so small for both classifiers, that it is not possible to
say whether the visual MRI ratings actually decrease the
classification performance. It is also possible that the difference
is coincidental, or based on a peculiarity in this specific
data set. Therefore, we report the classification accuracies
using all measurements as the overall accuracy for both
classifiers.

Comparison of the classification results obtained in this
study to other studies is not straightforward as the study
populations and measurements used in the classification vary
across studies, and most studies report results only for pairwise
comparison of two patient groups. Only studies in which the five-
class classification has been done are our two previous studies
(Koikkalainen et al., 2016; Tong et al., 2017). The classification
accuracy for the five-class problem is higher in this study than
in either of those studies [82.3% vs. 69.3% in Tong et al. (2017)
and 70.6% in Koikkalainen et al. (2016)], but here a wider
set of measurements is used. We also tested the RUSBoost
algorithm which provided best results in Tong et al. (2017),
and showed that DSI classifier produced comparable results.
The classification results obtained for the pairwise classifications
in this study are similar to results previously reported in the
literature. For the pairwise classification problem of separating
dementia patients from controls, even accuracies of 100% have
been reported (Davatzikos et al., 2008; Raamana et al., 2014),
the balanced accuracies in this study varied from 92.4 to 96.8%
depending on the dementia type. For the pairwise classification of
different dementia groups the classification accuracies in earlier
studies are much lower than for dementia patients vs. control
classification. For AD vs. FTLD (Klöppel et al., 2008) reached
a balanced accuracy of 89% (87.2% in this study). For AD vs.
DLB (Jiménez-Huete et al., 2014) reached a balanced accuracy of
86% (79.9% in this study), and 62% for DLB vs. FTLD (86.5%
in this study). These results are, however, highly dependent
on the patient populations and measurement modalities used.
A thorough comparison of the different pairwise classification
results, which takes into account these issues, is beyond the scope
of this study.

An essential question is what a balanced accuracy of over
80% for the five-class classification means clinically. Multiple
issues must be taken into account when considering the answer.
(1) The ground truth diagnosis used in this study was the
clinical diagnosis. The agreement between clinical diagnosis and
post-mortem neuropathological diagnosis has been reported to
be 70–90% in dementias (Kazee et al., 1993; Lim et al., 1999;
Jellinger, 2002), being comparable with the accuracy obtained in
this study. Although neuropathological analyses are commonly
considered as a ground truth, they are also imperfect and not
without challenges (Scheltens and Rockwood, 2011). (2) Even
if the accuracy were known exactly, one still needs to decide
what level of accuracy is acceptable in clinical practice. Cost-
efficiency analysis should be used to help answer this question
in future studies. (3) One constraint of the study was that the
ground truth diagnosis was a single disease although we know
that 20–40% dementia patients have mixed dementia (Zekry et al.,
2002), i.e., more than one underlying pathology. It is possible

that our database contained cases for which the classifier found
the best fit for another underlying disease which was not defined
as the ground truth diagnosis in the database. Future studies
should analyze whether a good match to two diseases could be an
indication of mixed dementia, not just of the classifier’s difficulty
to define the correct disease.

The classification method used in this study offers also a
confidence estimate for the classification, which can be used to
estimate how likely it is that the classification suggested by the
classifier is correct. The classifier is considerably more accurate
for those cases for which it is more confident of the correct
class, i.e., DSI is high, (balanced accuracy of 93.6% for the most
confident 50% vs. 82.3% for all patients). However, many of the
patients for which the tool was not confident of correct class, are
likely to be those patients for which a decision support tool would
be most critically needed. The value of the tool among the cases
which are most challenging to the clinician could be evaluated in
a future study. In this study the classification was least accurate
in FTLD (sensitivity 76.1%) and DLB (sensitivity 74.5%), both
being disorders that can be hard to recognize. In these cases,
a clinician could use the tool to narrow down the differential
diagnosis. The tool could also aid the clinician by presenting the
available data in a manner, which allows an easy overview of
all the available measurements, and how they contribute to the
classification (see Figure 1). The sensitivity of the tool might be
increased by adding more disease-specific features, such as the
presence of parkinsonism or hallucinations for DLB, or presence
of changes in personality in bvFTD. Another challenge is the
broad spectrum of FTLD; in this study we included patients
with bvFTD, SD and PNFA. The language variants are likely to
be easier to classify due to highly specific pattern of atrophy,
while the differentiation between bvFTD and AD is far more
challenging.

In a real-world decision-making scenario all of the options
are usually not equally likely a priori, e.g., in the general
population AD is more prevalent than other dementia types.
In addition, prevalence of the different types of dementia may
differ according to setting, with other types of dementia being
very rare in a GP’s office, still quite rare in a local memory
clinic, but relatively common in a tertiary referral setting. Positive
predictive value and negative predictive value depend on the
prevalence of disease; therefore, it is very important to take
into account the a priori information on relative prevalence
of diseases in the setting where the tool would be used. As
there is no objectively right choice for the prior probabilities,
we assumed in this study all diagnoses to be equally likely
a priori. This assumption makes interpretation of the results
easier, as the classifier uses only the measurement values to
make the decisions and is not relying on assumptions about
the prevalence of different conditions. Different prevalences
of the diseases can be taken into account when developing
the tool, e.g., by giving higher weight to more prevalent
classes when computing the class indices from the pairwise
comparisons.

In this study, not all neuropsychological tests were performed
for every patient (Table 2). On one hand, this represents a realistic
clinical scenario, all tests are not performed to every patient in
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real-life either. On the other hand this can affect for example the
analysis of the importance of different data sources. Excluding
patients with any missing values is a solution to this problem,
but in this study, it would have meant leaving out a significant
amount of patients. Therefore, we chose to perform the analysis
using also patients with missing data. As our comparison
(Appendix B in the Supplementary Material) shows, this does
not have a large impact on the classification accuracy obtained
by neuropsychological test data.

To support the clinician in daily practice the PredictND tool
should be applicable in other clinical settings as well. Here the
tool uses a large dataset from one tertiary memory clinic. The
DSI classifier is a data-driven method that can use all available
information from a specific population to fit the classification
model. It is preferably trained on center-specific data, but we have
shown that it can also be successfully trained using other available
datasets assuming they are sufficiently similar (Hall et al., 2015b).
This means the tool can also be implemented in daily practice in
smaller clinics, possibly using a less extensive evaluation, and is
not limited to be used in specialized centers.

CONCLUSION

In conclusion, we evaluated the accuracy of the classification
method used in the PredictND tool, which integrates information
from multiple data sources, in differential diagnosis of dementia.
The study was conducted using a large standardized data set from
a tertiary memory clinic.

The results show that CDSSs can be of use in the differential
diagnosis of dementias. The DSI classifier is highly accurate in
classifying the patients to the five diagnostic groups achieving a
balanced accuracy of 82.3%. It also offers a confidence measure
for the classification, which can be used to select patients for
which the classification accuracy is even higher.

To evaluate the contribution of the tool to daily clinical
practice, the PredictND tool is currently tested in a prospective

study in several European memory clinics. In this prospective
study we collect a data set containing a complete set of data
(neuropsychological tests, CSF sample, genetic biomarkers and
MRI) for all patients. The data collection methods have also
been harmonized across the different memory clinics as much as
possible without interfering with the clinical work.
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