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ABSTRACT: Modelling in the marine environment faces unique challenges that place 
greater emphasis on model accuracy. The spatio-temporal variability of this 
environment presents challenges when trying to develop useful habitat models. We 
tested how different temporal scales influence model predictions for cetaceans with 
different ecological requirements. We used 7 years of (opportunistic) whale watching 
data (>16000 cetacean sightings) collected in the Azores archipelago under the 
MONICET platform. We modelled the distribution of 10 cetacean species with a 
sampling bias correction. Distribution modelling was performed at 2 spatial scales (2 
and 4 km) and 2 temporal resolutions (8 d vs. monthly averages). We used a MAXENT 
analysis with 3 different validation procedures. Generally, the 8 d means produced 
better results. In some cases (e.g. baleen whales), predictions using monthly means were
no better than null models. Finer temporal grains provided essential insights, especially 
for species influenced by dynamic variables (e.g. sea surface temperature). For species 
more influenced by static variables (e.g. bathymetry), differences between temporal 
scales were smaller. The selection of the right temporal scale can be essential when 
modelling the niches of cetaceans. Datasets with high temporal resolution (e.g. whale 
watching data) can provide an excellent basis for these analyses, allowing use of finer 
temporal grains. Our models showed good predictive performance; however, limitations
related to the spatial coverage were found. Merging datasets with different temporal and
spatial resolutions could help to improve niche estimates. Models with better predictive 
capacity and transferability are needed to implement more efficient protection and 
conservation measures.
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INTRODUCTION

Knowledge of species’ geographic distributions is important for conservation 
efforts. In the absence of comprehensive distribution data, habitat models can be useful 
alternatives, e.g. to identify key habitats and areas of concern for vulnerable populations
(Guisan et al. 1999), manage anthropogenic threats (Redfern et al. 2013) and evaluate 
climate change effects (Keith et al. 2014). In recent times, the ecological niche 
modelling field has experienced enormous growth (Peterson et al. 2011), in part driven 
by easy access to biodiversity records through opportunistic datasets and citizen science 
programmes. In general, data obtained through platforms of opportunity can be 
considered as a low-cost option, but they provide only limited information for an 
understanding of factors affecting distribution and abundance (Evans & Hammond 
2004). However, Redfern et al. (2006) claimed that cetacean habitat modelling data 
collected opportunistically can be considered to be almost equivalent to data collected 
using designed surveys if all potential sources of bias are taken into consideration. 
Several studies have demonstrated the utility of opportunistic data in a variety of 
applications, such as distribution studies (van Strien et al. 2013), Red List assessments 
(Maes et al. 2015) and population trends (McPherson & Myers 2009). Modelling in the 
marine environment faces unique challenges that place greater emphasis on model 
accuracy. Difficulties arise from the characteristics of some marine species, such as their
large ranges, low detectability or large-scale migrations. Furthermore, taking into 
consideration the spatio-temporal variability of the marine environment is crucial when 
trying to develop useful habitat models (Redfern et al. 2006).

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58



Despite their widespread use, there are still some concerns regarding the 
accuracy of species distribution models (Peterson et al. 2011). Typically, the temporal 
and spatial resolutions of analyses are determined by the availability of environmental 
data rather than by an assessment of species' characteristics (Barry & Elith 2006, Jetz et 
al. 2012). Different species might have different relationships with their environments; 
while some might prefer more stable conditions, others could be more dependent on 
dynamic habitat features (Roberts et al. 2016, Fernandez et al. 2017, Scales et al. 2017). 
Moreover, different variables used for modelling procedures can show significant 
variation over a range of timescales. Recent studies tested the effects of different 
temporal grain selection of environmental variables when modelling cetacean 
distributions (e.g. Mannocci et al. 2014, Fernandez et al. 2017, Scales et al. 2017). 
While Mannocci et al. (2014) found that climatological time scales (e.g. seasonal or 
annual) might produce better distribution estimates for cetaceans, others found that finer
temporal grain (e.g. weekly data) produce better results (Fernandez et al. 2017, Scales et
al. 2017). Therefore, the selection of an adequate temporal grain for niche modelling 
can be a complex issue. Both Mannocci et al. (2017) and Fernandez et al. (2017) 
suggested that the selection of the temporal scale to be used is dependent on many 
factors, such as the study goal or the nature of the data collected. Other potential 
problems might be related to the logistic difficulties associated with sampling the 
marine environment. Therefore, niche models for mobile marine species need to have 
enough flexibility to accommodate all of the factors described.

Cetaceans are top predators and therefore represent a key element of the oceanic 
ecosystem. However, it can be difficult to obtain accurate data for good abundance or 
distribution estimates, due to certain cetacean characteristics, such as their entirely 
pelagic ecology. To manage the potential hazards to these highly mobile populations 
increasingly requires a detailed understanding of their seasonal distributions and habitat 
(Roberts et al. 2016).

The Azores harbour a high diversity of cetaceans, with 28 species registered to 
date (Silva et al. 2014). Silva et al. (2014) found that some species are highly migratory 
and only occur during specific time periods (e.g. Atlantic spotted dolphins during 
summer–early autumn or blue whales during spring–early summer) while others are 
observed in the area year round (e.g. sperm whales). Silva et al. (2014) also found 
important variations in the encounter rates for some species (e.g. bottlenose dolphins 
and Risso’s dolphins). Silva et al. (2013) found evidence of the importance of the 
Azores for feeding purposes for some baleen whales (blue and fin whales). Two main 
studies focussed on cetacean distribution patterns in the area. Silva et al. (2014) used a 
long-term dataset (1999–2009) obtained from opportunistic (Azores Fisheries Observer 
Programme, POPA) and dedicated boat surveys, together with land-based observations, 
to analyse the spatial and temporal distributions of 24 cetacean species. Recently, 
Tobeña et al. (2016) produced distributional models for 15 cetacean species using data 
obtained from POPA, from May to November, between 2004 and 2009.

Here, we investigated the role of using different temporal scales when modelling
the niches of cetaceans, focussing on dynamic marine environments and using a set of 
10 cetacean species with different ecological characteristics. Four different modelling 
scenarios were tested: (1) spatial coverage of environmental predictors; (2) temporal 
coverage of environmental predictors; (3) spatio-temporal generation of background 
points; and (4) total number of background points generated. Dynamic distributional 
maps for those species in the Azores were created, using the ‘best’ scenarios.
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METHODS

Study area

The study area is located in the Azores archipelago, a group of North Atlantic 
oceanic islands located approximately 1800 km west of Lisbon, Portugal. The region is 
strongly influenced by the Gulf Stream and all branches of this current. Its large-scale 
oceanic circulation is dominated by the Azores Current, which generates considerable 
mesoscale variability (Santos et al. 1995). Data were restricted to 4 of the 9 islands of 
the archipelago where whale watching activities are concentrated: São Miguel, Terceira,
Pico and Faial (Fig. 1).

Occurrence data

Cetacean occurrence data were obtained from the MONICET platform for the 
period from January 2009 to December 2015. MONICET (www.monicet.net) is an 
online platform created in 2008 which collects standardized data of commercial whale 
watching companies and stores the data in a flexible and stable online database. 
Presently 7 Azorean whale watching companies contribute with 2 kinds of data: 
sightings locations and photographs for photo-identification purposes. On each whale 
watching trip, companies collect a minimum set of basic data (including geographical 
coordinates, species identification, sea state, number of individuals and activity state), 
which is checked and validated by qualified personnel for quality control.

We selected 10 cetacean species (short-beaked common dolphin, sperm whale, 
bottlenose dolphin, Atlantic spotted dolphin, fin whale, Risso’s dolphin, short-finned 
pilot whale, sei whale, striped dolphin and blue whale) based on data availability and 
ecological significance (Table 1). The chosen species cover a wide range of ecological 
characteristics, from baleen whales, which feed mainly on small crustaceans, to deep 
divers such as sperm whales that feed on deep-water squid.

Environmental variables

Five terrain variables (depth, slope, distance to the 200 m and 1000 m 
bathymetric lines and distance to canyon-like features) were derived from a digital 
elevation model (DEM) of the EMODnet Bathymetry portal (www.emodnet-
bathymetry.eu/): depth was directly read from the DEM; slope and distances to the 200 
m and 1000 m bathymetric lines were calculated using QGIS 2.14.3. The topographic 
position index (TPI) measures where a point is in the overall landscape/seascape in 
order to identify features such as ridges, canyons, or midslopes (Wright & Heyman 
2008). We calculated the TPI with the SAGA GIS (www.saga-gis.org/) implementation 
(based on Guisan et al. 1999, Weiss 2001), using a small radius of 2000 m and a bigger 
radius of 6000 m. We selected features corresponding to V-shape river valleys and deep 
narrow canyons (Weiss 2001). We applied a filter (<3 km) to eliminate artefacts and 
small features. Distance to the edge of these canyon-like features was calculated (Fig. 
2).

Three oceanographical variables (sea surface temperature, distance to thermal 
fronts and chlorophyll a [chl a]) were used for this study. Two of these were calculated 
using NASA’s multi-scale ultra-high resolution (MUR) sea surface temperature (SST), 
which merges many satellite infrared and passive microwave datasets into global daily 
maps at 1 km resolution. Thermal ocean fronts were detected from each MUR SST daily
map (Miller 2009). We then generated 8 d and monthly ocean front metrics from the 
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composite front maps (Miller et al. 2015). The variable Fdist (front distance) quantifies 
the distance to the closest major front.

Biological productivity was indicated using satellite ocean colour estimates of 
chl a, from the ESA Ocean Colour Climate Change Initiative based on monthly and 8 d 
composites (Version 2.0 dataset, OC4v6 algorithm, 4 km resolution, www.esa-
oceancolour-cci.org). Lagged chl a products for 2 and 4 wk before each study period 
were calculated. All variables were tested for correlation using the variance inflation 
factors (VIF) implemented on the usdm R package, setting a VIF threshold of 10 (Naimi
et al. 2014). No correlation was found between the environmental variables.

Temporal and spatial resolutions

Two spatial (2 and 4 km) and 2 temporal (8 d and 1 mo) resolutions for the eco-
geographical variables were used. Two grids of 2 and 4 km were created using QGIS; 
environmental variables were resampled using a cubic interpolation. Data were divided 
in 8 d and monthly periods (averaged when necessary) and projected on the respective 
spatial grids (Table 1). A complete set of environmental layers was constructed for each 
spatial grid and temporal resolution.

Modelling techniques and evaluation procedures

MAXENT modelling (Phillips et al. 2006) was used to test the effects of 
different grouping and data filter scenarios. For each species and modelling scenario, 10
runs were performed using the default MAXENT settings. The variables to be used for 
each species modelling were selected using an iterative process. The percentage 
contribution, permutation importance and the jackknife test given by MAXENT were 
used to select the variables used in the final models (Kalle et al. 2013).

Data bias corrections

Bias correction can have an important influence on model performance (Phillips 
et al. 2009, Varela et al. 2014). We used a spatial filtering of the presences together with 
a target background approach to correct for sampling bias.

Whale watching activities in the Azores are characterized by the use of land-
based lookouts (Magalhães et al. 2002) which guide the boats to the animals. Once the 
boats arrive at the animals, the sighting event and recording begins. It is common for 
multiple whale watching companies to record the same sighting event as several boats 
cluster around easily accessible animals. Therefore, a spatial data filtering (or data 
thinning) procedure was applied (Peterson et al. 2011). Sightings were filtered based on 
temporal and spatial proximity. Occurrence registers of the same species completed by 
any whale watching company within 1 h of the first sighting within a 2 and 4 km radius 
were considered duplicate and filtered out.

For each model run, a total of 10000 and 50000 background points were selected
(Phillips & Dudík 2008) using 2 different techniques: (1) a non-targeted and (2) a 
targeted background approach. Points were always selected from the area contained in 
the minimum sampled area (MSA) obtained by drawing a minimum convex polygon 
(MCP) around the sightings of each trip (see Fig. S1.1 in Supplement 1 at 
www.XXXXXXX). A trip is defined as the time between the boat leaving the main 
harbour and its return. The area inside the polygon was defined as the area sampled on 
the trip. For each day with at least 1 whale watching trip, an MSA was established. If 
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several trips were made on a day, then the total sampled area was calculated by merging 
all of the MSAs.

For non-targeted background, points were randomly selected from all daily 
MSAs. For the targeted background, points were selected using detectability as a vector 
of probability weights. For both approaches, no specific temporal or spatial structure 
was used for the background points selection. Ten iterations were performed to 
minimize potential biases derived from randomization. Detectability functions were 
constructed using a modified distance sampling approach. These methods are based on 
line or point transect sampling. The main assumption is one of imperfect detection: 
objects located on the lines or points are always seen, but become harder to detect with 
increasing distance to the line or point (Thomas et al. 2002). This study uses the 
‘detectability index’ of Thompson & George (1994). Lookout stations are ‘sampling 
points’, and detectability decreases with distance from these points. We applied a 
multiple-covariate model, where method detection functions are modelled based on 
distance and additional covariates (Marques et al. 2007). Species were placed into 4 
main groups: small dolphins, large dolphins, sperm whales and baleen whales. Two 
covariables were used: the mean sea state (a proxy for visibility) and the company that 
collected the data (assuming observer skills vary between companies). The mean sea 
state was calculated using all of the registers collected by the companies for each trip 
and categorized in 2 groups (Beaufort 3 and >3). Important differences were found for 
distance of sightings to the main lookout points between the companies collecting the 
data (see Supplement 1). Species detectability was calculated for each grid of the MSA. 
Grids with presences of other species were assumed to be visited by boats, and therefore
set to maximum detectability. On grids sampled more than once per day, only the 
highest detectability value was kept.

Model performance evaluation

Models were evaluated using 3 methodologies: (1) a cross-validation based on a 
space/time evaluation structure, (2) a restricted independent dataset and (3) a null 
model.

(1) A cross-validation based on a geographically structured approach (Araújo & Rahbek
2006, Jiménez-Valverde et al. 2011, Peterson et al. 2011) was applied by segregating
our data into different spatio-temporal bins (Radosavljevic & Anderson 2014). 
Although any environmental biases present in the overall dataset still exist, this 
approach segregates such biases temporally or geographically, allowing for 
evaluations capable of detecting overfitting to any corresponding environmental 
biases. We applied a masked spatio-temporal structured approach, by screening out 
the environmental data for background sampling from the time period (and area in 
some cases) corresponding to the localities used for model evaluation. Each bin 
corresponds to a temporally independent evaluation dataset, including, in some 
cases, unsampled areas. Five folds of equal size were created for each species, 
determined by the extension of the sampling periods.

(2) An independent dataset was used, collected with the 11.9 m sailing boat ‘Anacaona’,
from the Groupe de Recherche sur les Cétacés (GREC). The survey took place 
around São Miguel Island, divided into 22 d of effort in 2013 and 18 d of effort in 
2014, for a total of 280.1 h of effort. Due to data limitations, this test was only 
performed with a reduced set of 6 species. See Supplement 2 for more information.
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(3) Null models using only the geographic coordinates of sighting locations as 
explanatory variables were constructed for evaluation using a MAXENT algorithm. 
Null model predictions were tested with both of the previously described validation 
datasets (temporal cross-validation and independent dataset).

For all of the evaluation procedures, the area under the curve (AUC) for the 
receiver operator curve (ROC) of each fold was used to quantify model performance. A 
total of 50 AUC values were obtained for the cross-validation scenario (10 runs × 5 
folds) and 10 AUC values for the independent dataset (10 runs). A Kruskal-Wallis test 
with a Nemenyi post hoc test was used to look for significant differences between the 
different scenarios tested. All modelling and data filtering analysis was produced using 
R 3.2.2 (R Core Team 2015) with the Distance2 (Miller 2015), raster (Hijmans 2016), 
qdap (Rinker 2013), MASS (Venables & Ripley 2002), dismo (Hijmans et al. 2017), 
SDMTools (VanDerWal et al. 2014), pROC (Robin et al. 2011) and PMCMR (Pohlert 
2014) packages.

RESULTS

Model performance

In general, niche models for all species produced high AUC values for the 
spatio-temporal masked cross-validation approach, with consistent differences in 
performance depending on the temporal resolution used (Fig. 3). The number of 
background points selected or the spatial resolution of the environmental data did not 
influence the models. Overall the choice of both finer temporal scale and target 
background selection produced significantly different AUC values: models based on 8 d
environmental means typically outperformed those based on monthly data, whereas 
models using a targeted background approach performed significantly better than those 
using a non-targeted background selection in nearly all cases. Both methods 
outperformed the null models in the case of the 8 d temporal scale. However, for the 
monthly scale, null models outperformed the non-targeted approach, and no significant 
differences were found with the targeted selection.

When looking into a more detailed analysis, the niche of each species was 
influenced by a different set of environmental variables (Tables S3.1, S3.2 & S3.3 in 
Supplement 3), and model performance varied by species and method (Tables 2 & 3). 
Looking at the best results for each species, almost all AUC values for the masked 
cross-validation test varied between 0.75 and 0.94, i.e. in the fair to excellent range 
(Araújo et al. 2005 based on Swets 1998). However, the values obtained for bottlenose 
dolphins and common dolphins were consistently poor (0.53 < AUC < 0.59). For the 
independent dataset, the best results for the AUC values ranged between 0.67 and 0.82. 
Nearly all models using environmental variables as explanatory factors produced better 
results than null models (except for Risso’s dolphin and bottlenose dolphin models in 
the cross-validation tests).

The use of a targeted background approach improved model performance for all 
species (except common dolphin) on the cross-validation test, but results were variable 
in the independent validation. An overlapping of the standard deviations was found for 
some species (e.g. sperm whale).

Model performance differed according to the temporal resolution of 
environmental data and species. The 3 deep-diving species (sperm whale, Risso’s 
dolphin and short-finned pilot whale) showed no difference between 8 d or monthly 
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means. Furthermore, for the first 2 species, no differences were found between null 
models and ‘regular’ models in any temporal scenario. In the case of the sperm whale, 
differences were present for the independent dataset (null models performed poorly). 
However, significant differences were found between the 2 temporal grain sizes for 
baleen whales and small delphinid species. For 5 species highly influenced by dynamic 
variables (striped dolphin, Atlantic spotted dolphin, sei whale, fin whale and blue 
whale) the 8 d scale produced better results. In the case of the striped dolphin, 
differences in AUC were smaller (AUC = 0.02); however, for the other species 
differences on AUC values were important (AUC between 0.1 and 0.15). Likewise for 
those species, significant differences were found between null models and ‘regular’ 
models in the 8 d scenarios (AUC between 0.05 and 0.12), yet these differences were 
not present for the monthly scenario. For some species (such as baleen whales), the null 
model, when using monthly resolution, had better predictive capabilities.

To summarize, no (or relatively small) differences were found for all species 
when modelling their niches using different spatial resolution for the environmental 
variables or number of background points. On the other hand, the temporal grain of the 
environmental variables and the method of selection of the background points had 
different effects depending on the species modelled (Table 4).

Species patterns

Depth was selected as an important variable for almost all species studied (see 
Supplement 3 for tables and figures), but especially for 2 deep-diving species (sperm 
and pilot whales) and a small delphinid (striped dolphin). Together with Risso’s 
dolphins, they showed a preference toward areas closer to canyon-like features (Fig. 
S3.1–4 in Supplement 3). Moreover, they were strongly influenced by the 1000 m depth
contour. Striped dolphins also preferred deep-water environments and moderate SST 
values (16–26°C, peaking at 21°C; Fig. S3.4). Atlantic spotted dolphins showed a 
preference for warm (18–26°C, peaking at 24°C) and relatively deep waters around the 
1000 m bathymetric line (Table S3.2 & Fig. S3.5). Common dolphins showed a 
preference for relatively shallow waters closer to the 200 m bathymetric lines (Fig. 
S3.6). Bottlenose dolphins had similar results, although this species seems to be less 
restricted to those areas (Fig. S3.7).

Chlorophyll was only relevant as an explanatory variable for baleen whales. The
models for blue whales showed better performances when including chl a measured 2 
wk before the sightings; for sei whales, the best results were obtained when using chl a 
at the time of sighting. No model showed improved performance using chl a measured 4
wk prior to sighting. Response curves for blue whales (Fig. S3.8) showed a very 
restricted niche strongly influenced by SST (14–20°C, peaking at 17°C), with a 
preference for deeper and off-shore waters. Sei whale response curves indicated a wide 
range of SST values (14–24°C, peaking at 16°C), but with a strong preference for colder
waters (Fig. S3.10). Both species preferred moderate to high chlorophyll values (blue 
whales from 1 to 4 mg m–3 and sei whales from 2 to 6 mg m–3). Chlorophyll did not 
influence models for fin whales, which showed a wider range of suitable SST values 
(14–25°C, peaking at 18–19°C) relative to other Balaenopteridae (Fig. S3.9).

Seasonal variability in suitable habitat depended on the species (Supplement 4). 
While some deep-diving species showed fewer differences through time (sperm whales 
and Risso’s dolphins), some small odontocetes seem to be more influenced by 
environmental changes (Atlantic spotted dolphins and striped dolphins). For all baleen 
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whales, differences in habitat suitability were found between seasons. In general, 
species highly influenced by dynamic variables followed this pattern, with high 
variability of suitability values in some months (Fig. 4 and suitability maps in 
Supplement 4).

DISCUSSION

This study elucidates the effects of using different temporal scales for the 
environmental variables when modelling mobile species with different ecological 
characteristics. From the 4 scenarios tested, the use of different spatial scales and the 
number of background points had little or no influence on the results. Similar results of 
the spatial grain effects were found by other studies focussing on cetaceans (Redfern et 
al. 2008, Becker et al. 2010, Scales et al. 2017). Opinions are divided on the number of 
background points to be used in a presence/background model. Phillips & Dudík (2008)
found that 10000 background points is optimal for Maxent, whereas Renner et al. 
(2015) suggested that a greater number of background points is preferred. Therefore in 
the present study we used 2 approaches: 10000 and 50000 background points. No 
differences were found between the 2 methods, in agreement with the findings of 
Phillips & Dudík (2008). Differences in model performance were found for the 2 other 
scenarios tested: targeted sampling of background points and temporal resolution of 
environmental variables. The targeted sampling approach to select the background 
points proved to be effective, as better results were obtained when applying a targeted 
background approach. In general, the use of a finer temporal grain provided better 
results, particularly for species highly influenced by dynamic variables.

Our results also demonstrate the significant value of an opportunistic dataset for 
niche modelling procedures. The availability of observations with a high sampling rate 
allowed the use of a finer grain for environmental variables (8 d), which is relevant 
particularly for species with a distribution that is highly influenced by dynamic 
variables. Occurrence datasets with high temporal resolution are therefore important to 
provide accurate estimates of the temporal dimension of the niche.

Sampling background corrections

The use of a sampling background approach based on a minimum sampled area 
and a detectability index proved to be useful. Sample bias corrections can lead to a 
strong improvement in model performance (Phillips et al. 2009). However, for some 
species, especially when using an independent dataset for evaluation, better results were
obtained with a non-targeted background approach (such as bottlenose dolphins). The 
target background (or background selection) method used in this study has the potential 
to impact model prediction and performance (VanDerWal et al. 2009). Previous studies 
generally preferred a random selection of background points (e.g. Warton & Shepherd 
2010, Barbet-Massin et al. 2012), yet recent studies suggested that targeted background 
points can improve the results in some cases (Stolar & Nielsen 2015, Ranc et al. 2017). 
An excessive reduction or increase of the spatial (or temporal) range of the background 
data can lead to inaccurate results (Thuiller et al. 2004, VanDerWal et al. 2009). Ranc et 
al. (2017) suggested that the usefulness of target-group bias correction is highly 
dependent on the system investigated. The selection of background data can be 
extremely useful, yet it should be undertaken with a good knowledge of the dataset, 
associated biases and species ecology (Fourcade et al. 2014).

Spatial and temporal scale
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Significant differences were found between temporal scales, but not spatial 
scales. Temporal scales have been suggested to be a key element to test when building 
niche models in the marine environment (Scales et al. 2016, Fernandez et al. 2017, 
Mannocci et al. 2017). As expected, the use of different temporal scales of the 
environmental variables strongly affected the results of the models built. Differences 
between monthly means and 8 d means were not important for species mostly 
influenced by topographic variables (sperm whale, pilot whale, Risso’s dolphin and 
striped dolphin). No differences between null models and models using environmental 
variables were found for 2 of these species (Risso’s dolphins and sperm whales) in the 
cross-validation tests. Those species are extremely dependent on bathymetric features 
(e.g. canyon-like features, high-slope areas), and therefore will prefer some specific 
geographic areas where those features are present. Due to the small study area used in 
this study, when species use the same regions regularly, models based solely on spatial 
coordinates might be able to predict those areas (as they remain constant through time). 
Nevertheless, for sperm whales, when validating the models with the independent 
dataset (which includes geographic areas not used for the training), null models 
performed poorly compared to the other approaches. For species specifically influenced 
by variables with higher dynamism (blue whale, fin whale, sei whale and Atlantic 
spotted dolphin), temporal scale differences were important. Incorporating 8 d 
environmental data can produce better models for some species. In general, models for 
migratory, or seasonal species, may benefit from fine-scale temporal resolutions, while 
for resident species, the use of broader temporal grain might be appropriate. 
Nevertheless, we recommend treating each species individually when investigating the 
appropriate scale to obtain accurate distributional estimates.

Caveats and bias

Data collected by highly opportunistic sources have some obvious limitations. 
Our data, for instance, were confined to coastal areas around the islands where whale 
watching operations are performed. Using data from a fisheries observer programme, 
Silva et al. (2014) found many offshore sightings around the Azores, which might 
represent a different set of environmental relationships. The inshore bias of our data 
leads to an environmental and spatial truncation which affects the predictive capabilities
of our models outside the study area (Peterson et al. 2007, 2011, Owens et al. 2013). 
Nevertheless, for some species (such as the sperm whale), our models proved to have a 
good predictive capability in coastal areas, even for unsampled locations such as the 
north coast of São Miguel Island.

Despite this spatial bias, the models produced accurate estimates able to 
characterize the temporal dimension of the niche. Although touristic operations peak 
during the summer months, there are trips all year around, which allow detection of 
interesting temporal patterns and the use of a finer temporal grain. In this case, the use 
of a high-resolution temporal occurrence dataset allowed us to obtain a clear picture of 
the effects of dynamic oceanographic variables (such as SST, chlorophyll or frontal 
areas).

Of the 10 species evaluated in this study, 2 were consistently difficult to model: 
common and bottlenose dolphins. This could be due to a number of factors. Firstly, both
species are widely distributed and present throughout the year in high numbers (Silva et 
al. 2014). Obtaining accurate models for generalist/common species can be challenging 
(McPherson & Jetz 2007), and the models can be particularly sensitive to the data used 
(Jiménez-Valverde et al. 2008). Silva et al. (2008) hypothesized that bottlenose dolphins
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living in the Azores carry out extensive movements and have large home ranges. These 
characteristics can also be challenging for modelling procedures (Peterson et al. 2011). 
However, even if our models failed to predict the temporal niche of bottlenose dolphins 
(AUC < 0.55), results for the independent dataset were fairly good (AUC = 0.68). 
Furthermore, it is possible that there are other environmental drivers for these species, 
occurring at a finer temporal and/or spatial scale, which we were not able to include in 
the modelling process. Influential variables that might improve the models are those 
related to behavioural events (e.g. foraging, migration, reproduction; Bailey et al. 2009, 
Roever et al. 2014), interspecific relationships (Ehrlén & Morris 2015) or even 
anthropogenic factors (e.g fisheries interactions, whale watching disturbance; Stone et 
al. 1997, Lusseau 2005).

Implications for cetacean species ecology

Sperm whales showed an important relationship with depth, associated with 
canyon-like features and with higher suitability values in summer (warmer SST). Skov 
et al. (2008) found an influence of bottom complexity on the presence of sperm whales, 
which may be similar to the influence we found with canyons. Recent studies have 
shown how sperm whales use submarine canyons in different ways for feeding purposes
(Fais et al. 2015, Guerra et al. 2017). For the Azores area, Tobeña et al. (2016) found an 
influence of chlorophyll for this species, which was not detected in our study. 
Whitehead et al. (2010) also noted that the addition of satellite-derived measures of 
productivity did not improve predictive capacity of explanatory models for deep-water 
cetacean diversity.

The other 2 deep-diving species (short-finned pilot whale and Risso’s dolphin) 
showed a strong relationship with depth, although this factor was more important for the
short-finned pilot whale. This species seems to be restricted to deeper waters, as 
described in previous studies for Globicephala spp. in the Azores (Silva et al. 2014, 
Tobeña et al. 2016). Additionally, we found a strong influence of temperature, such as 
Fullard et al. (2000) found for some populations of long-finned pilot whale. For Risso’s 
dolphins, we found an influence of distance to the 1000 m contour line, which agrees 
with the findings of Baumgartner (1997) and Olavarría et al. (2001) for different areas 
(Gulf of Mexico and Chile). Another important factor for Risso’s dolphins is the 
distance to canyons. Hartman et al. (2014) hypothesized that squid distribution might be
a key element for their social structure and distribution in the Azores, thus the 
relationship with canyon-like features could be related to the presence of squid.

Striped dolphins presented a well-marked seasonal distribution, with suitability 
maps reflecting strong variation between summer and spring, which agrees with Tobeña 
et al. (2016). However, we also found depth and distance to canyon-like features to be 
relatively important predictors, similar to the preference for deeper and warmer waters 
reported for the species in the Mediterranean (Panigada et al. 2008). SST was important 
for Atlantic spotted dolphins, with a preference for warmer and deep waters, in line with
the findings of Hamazaki (2002) for the mid-west North Atlantic and Tobeña et al. 
(2016) for the Azores. While results of common dolphins in the present study should be 
interpreted with caution (especially on the temporal dimension), we found a preference 
for shallower waters, close to the 200 m bathymetric lines. In a deep-water environment 
such as the Azores, these findings might indicate a preference for island-like features or 
seamounts, as noted by Tobeña et al. (2016) and Morato et al. (2008). The slight 
preference for shallow coastal areas of bottlenose dolphins agrees with Tobeña et al. 
(2016).
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All baleen whales were strongly influenced by dynamic variables, with 
significantly better results when using 8 d means. This reinforces the importance of 
high-resolution temporal datasets, which are able to provide enough data to run models 
with finer temporal grain. The most restricted niche found corresponds to the blue whale
with a relatively short window of occurrence strongly dependent on SST, which leads to
a highly seasonal occurrence for this species. In contrast, fin whales were the most 
flexible of the 3 species modelled, with a wider range of temperature and no 
dependence on productivity. Our models predict a higher percentage of suitable habitat 
for fin whales during spring and autumn; however, even if more restricted, there is still a
portion of suitable area during summer months, agreeing with previous observations of 
Silva et al. (2014). Sei whales showed a more restricted habitat than fin whales, but 
were more flexible than blue whales. In contrast, Prieto et al. (2017) found a relatively 
similar niche for blue and fin whales (both influenced by chl a) and a different niche for
sei whales (with no influence of chl a). These differences might be related to the 
temporal grain of the environmental variables. The low number of presences available 
to those authors (a maximum of 35 presences in an area of 278 km around the entire 
archipelago, compared to a minimum of 100 presences in an area of about 37 km around
4 islands used in the present study), limited the use of the temporal scale to monthly 
means. In our study, the results obtained with the 8 d grouping clearly outperformed the 
monthly ones, with differences in AUC values higher than 0.15.

Final remarks

This study demonstrates how the use of finer temporal scales provides essential 
insights, especially for cetacean species highly dependent on dynamic environmental 
conditions. Opportunistic, high temporal resolution occurrence data (such as the ones 
collected by whale watching operations) can be a useful source for modelling mobile 
species distributions in dynamic environments, provided the effects of the associated 
biases are corrected. Dynamic distributional models, such as the ones presented here, 
can be extremely valuable for dynamic ocean management (DOM) applications. DOM 
approaches are emerging in several places globally, replacing static management, and 
are proving to be an effective tool to respond to potential conflicts around ocean 
resources (Lewison et al. 2015). Tools such as WhaleWatch (Hazen et al. 2017) use 
these products to provide near real-time probability of occurrence, including temporal 
variability, to reduce human impacts (e.g. ship strikes or loud underwater sounds).

However, we do acknowledge the limitations of the data used in this study due 
to its low spatial coverage. Generally, there is a trade-off between high temporal 
resolution and good spatial coverage. Therefore, we want to highlight the advantages of 
data complementarity between different sampling methodologies to produce better 
distribution estimates. Redfern et al. (2006) suggested that accurate and flexible 
cetacean distribution estimates should be based on different spatial and temporal 
resolutions. While sampling programmes covering an extended area can provide a clear 
image of the spatial patterns, other sampling methods with high periodicity in relatively 
small areas can help to clarify temporal patterns (as supported in this study). Models 
with better predictive capacity and transferability are needed to implement more 
efficient protection and conservation measures.
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Table 1. Number of total cetacean sightings for the different combinations of spatial 
resolutions (2 and 4 km). The last column represents the number of presence grids 
available after filtering for no-data pixels when using chlorophyll as the covariate. NA:

Common name Scientific name Total 2 km 4 km 4 km/chl

Short-beaked 
common dolphin

Delphinus delphis 5648 2909 2824 NA

Sperm whale
Physeter 
macrocephalus

5278 2085 1944 NA

Bottlenose dolphin Tursiops truncatus 1843 1467 1422 NA

Atlantic spotted 
dolphin

Stenella frontalis 1777 1322 1281 NA

Fin whale Balaenoptera physalus 801 575 549 234

Risso’s dolphin Grampus griseus 731 576 552 NA

Short-finned pilot 
whale

Globicephala 
macrorynchus

559 260 193 NA

Sei whale Balaenoptera borealis 381 237 231 159

Striped dolphin Stenella coeruleoalba 341 287 286 NA

Blue whale Balaenoptera musculus 281 194 189 104

781
782
783



Table 2. Test values for the area under the curve (AUC) obtained when testing 
predictive capacity of models (targeted background, non-targeted background and null) 
at 2 km spatial resolution with no chlorophyll variables. AUC was obtained using a 
spatio-temporal masked cross-validation approach and an independent dataset. Results 
show the means (±SD) of all AUC runs. For the cross-validation scenario, SD was 
calculated from 10 runs and 5 folds (50 AUC values). For the independent dataset, it 
was calculated from the AUC values obtained from 10 runs of the model (10 AUC 
values). Values in bold

8 d Month

Target
Non-
target

Null Target
Non-
target

Null

Cross-validation

Sperm whale
0.84

(±0.01)
0.81

(±0.02)
0.83

(±0.02)
0.84

(±0.01)
0.81

(±0.02)
0.83

(±0.02)

Pilot whale
0.91

(±0.02)
0.86

(±0.02)
0.87

(±0.06)
0.9

(±0.02)
0.85

(±0.02)
0.86

(±0.06)

Risso’s dolphin
0.73

(±0.04)
0.69

(±0.04)
0.75

(±0.02)
0.73

(±0.04)
0.69

(±0.03)
0.76

(±0.03)

Striped dolphin
0.86

(±0.01)
0.79

(±0.01)
0.81

(±0.02)
0.84

(±0.01)
0.76

(±0.01)
0.81

(±0.02)
Atlantic spotted 
dolphin

0.85
(±0.04)

0.81
(±0.01)

0.75
(±0.07)

0.72
(±0.08)

0.64
(±0.07)

0.75
(±0.07)

Sei whale
0.81

(±0.04)
0.80

(±0.04)
0.73

(±0.08)
0.72

(±0.04)
0.69

(±0.04)
0.73

(±0.08)

Fin whale
0.89

(±0.02)
0.87

(±0.02)
0.75

(±0.07)
0.73

(±0.08)
0.67

(±0.09)
0.75

(±0.07)

Blue whale
0.92

(±0.08)
0.93

(±0.03)
0.81

(±0.07)
0.8

(±0.05)
0.75

(±0.05)
0.81

(±0.07)
Short-beaked 
common dolphin

0.58
(±0.04)

0.59
(±0.02)

0.57
(±0.02)

0.59
(±0.04)

0.59
(±0.02)

0.57
(±0.02)

Bottlenose 
dolphin

0.55
(±0.04)

0.53
(±0.03)

0.58
(±0.04)

0.55
(±0.03)

0.52
(±0.03)

0.58
(±0.04)

Independent 
dataset

Sperm whale
0.81

(±0.01)
0.82

(±0.01)
0.66

(±0.01)
0.79

(±0.01)
0.82

(±0.02)
0.61

(±0.02)

Risso’s dolphin
0.71

(±0.01)
0.63

(±0.01)
0.7

(±0.01)
0.65

(±0.02)
0.63

(±0.01)
0.67

(±0.02)

Striped dolphin
0.56

(±0.01)
0.63

(±0.01)
0.58

(±0.08)
0.59

(±0.01)
0.67

(±0.01)
0.6

(±0.10)
Atlantic spotted 
dolphin

0.64
(±0.01)

0.66
(±0.01)

0.51
(±0.01)

0.58
(±0.01)

0.6
(±0.01)

0.54
(±0.01)

Short-beaked 
common dolphin

0.51
(±0.01)

0.64
(±0.01)

0.52
(±0.02)

0.45
(±0.01)

0.63
(±0.01)

0.52
(±0.02)

Bottlenose 
dolphin

0.37
(±0.01)

0.68
(±0.01)

0.29
(±0.01)

0.39
(±0.01)

0.66
(±0.02)

0.31
(±0.01)

784
785
786
787
788
789
790
791



Table 3. Test values for the area under the curve (AUC) obtained when testing 
predictive capacity of models (targeted background, non-targeted background and null) 
at 4 km spatial resolution with chlorophyll variables included. AUC was obtained using 
a spatio-temporal masked cross-validation approach. Results show mean (±SD) AUC. 
Values in bold

8 d Month

Target
Non-
target

Null Target
Non-
target

Null

Sei whale
0.82

(±0.05)
0.81

(±0.05)
0.72

(±0.05)
0.67

(±0.09)
0.64

(±0.09)
0.70

(±0.08)

Fin whale
0.88

(±0.05)
0.87

(±0.06)
0.77

(±0.06)
0.7

(±0.06)
0.64

(±0.07)
0.75

(±0.08)

Blue whale
0.94

(±0.02)
0.93

(±0.06)
0.82

(±0.05)
0.77

(±0.08)
0.72

(±0.09)
0.81

(±0.07)

792
793
794
795
796



Table 4. Effects of the 4 scenarios tested on the modelling processes using all results: 
(1) spatial coverage of environmental predictors (2 vs. 4 km); (2) temporal coverage of 
environmental predictors (8 d vs. monthly); (3) spatio-temporal generation of 
background points (targeted vs. random selection) and (4) total number of background 
points generated (10000 vs. 50000). Results are presented for each species and as a 
general overview. Arrows and mathematical symbols indicate the performance of each 

method when compared to the alternative ( : equal, : almost equal, : better, : worse).

Spatial scale
Temporal

scale

Selection
background

points

No.
background

points

2 km 4 km
8 d

Mont
h

Targete
d

Rando
m 10000 50000

Sperm whale

Pilot whale

Risso’s dolphin

Striped dolphin

Atlantic spotted
dolphin

Sei whale

Fin whale

Blue whale

Short-beaked 
common 
dolphin

Bottlenose 
dolphin

General

797
798
799
800
801
802

803



Fig. 1. Study area, showing 2 km grids sampled from 2009 to 2015 by the whale 
watching companies in the eastern and central groups of the Azores Islands. Lines 
represent the 1000 m bathymetric lines
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Fig. 2. Canyon-like features (represented in black) from the central and eastern groups 
of the Azores area derived from the EMODnet Bathymetry using the topographic 
position index
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Fig. 3. Comparison of the general area under the curve (AUC) test when using the 
spatio-temporal cross-validation approach and pooling together results for all species, 
folds and iterations for: (1) targeted background (target, T), non-targeted background 
(non-target, NT) and null models; (2) environmental variables at temporal scales (8 d 
versus 1 mo) and environmental variables at spatial scales (2 versus 4 km). Significant 
differences calculated using a Kruskal-Wallis with a Nemenyi post hoc test are noted 
with letters
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Fig. 4. Example of suitability maps (together with SD) for Atlantic spotted dolphins on 
a 20 km radius around São Miguel island (Azores) for 4 months (February, May, July, 
November), representing 4 seasons (winter, spring, summer, autumn). Left column 
refers to the monthly averaged suitability; right column refers to suitability SD for all 
weeks corresponding to that month. Maps are presented in 2 × 2 km grid. Maps for all 
species and months are presented in Supplement 4
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