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Abstract

Purpose The accurate and automatic localisation of SEEG electrodes is crucial for determining the location of epileptic
seizure onset. We propose an algorithm for the automatic segmentation of electrode bolts and contacts that accounts for
electrode bending in relation to regional brain anatomy.

Methods Co-registered post-implantation CT, pre-implantation MRI, and brain parcellation images are used to create regions
of interest to automatically segment bolts and contacts. Contact search strategy is based on the direction of the bolt with distance
and angle constraints, in addition to post-processing steps that assign remaining contacts and predict contact position. We
measured the accuracy of contact position, bolt angle, and anatomical region at the tip of the electrode in 23 post-SEEG
cases comprising two different surgical approaches when placing a guiding stylet close to and far from target point. Local
and global bending are computed when modelling electrodes as elastic rods.

Results Our approach executed on average in 36.17 s with a sensitivity of 98.81% and a positive predictive value (PPV) of
95.01%. Compared to manual segmentation, the position of contacts had a mean absolute error of 0.38 mm and the mean bolt
angle difference of 0.59° resulted in a mean displacement error of 0.68 mm at the tip of the electrode. Anatomical regions
at the tip of the electrode were in strong concordance with those selected manually by neurosurgeons, ICC (3, k) = 0.76,
with average distance between regions of 0.82mm when in disagreement. Our approach performed equally in two surgical
approaches regardless of the amount of electrode bending.

Conclusion We present a method robust to electrode bending that can accurately segment contact positions and bolt orien-
tation. The techniques presented in this paper will allow further characterisation of bending within different brain regions.
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with modalities including structural and functional MRI
(e.g. T1/T2-w, FLAIR) and PET [9]. If the EZ is not
identifiable, invasive electroencephalography (EEG) record-
ings are performed in the form of stereo-EEG (SEEG)
or subdural grid insertion. SEEG is a procedure in which
multiple electrodes are stereotactically inserted to identify
the seizure onset zone [21]. Accurate placement of elec-
trode contacts is important for safety, interpretation of the
recorded electrical signals, and subsequent resection plan-
ning [21]. Planning of electrode implantation is crucial for
avoiding blood vessel damage and subsequent intracranial
haemorrhage (which occurs in 1-2% of patients), and auto-
matic computer-assisted multiple trajectory planning tools
have been proposed [17,18]. However, intraoperatively, entry
point (EP) accuracy can be affected by misregistration of the
neuronavigation system, inaccurate alignment, and deflec-
tion during drilling, whereas target point (TP) errors may be
caused by the angle at which the electrode passes through
skull, deflection of the electrode at the dura or within the
brain, the rigidity of the electrode, and the depth to which
a guiding stylet is inserted [3,21]. Robotic systems have
been introduced to improve EP implantation accuracy [3,7].
However, TP displacement is the main source of error and
understanding why and how electrodes bend may help pre-
dict final TP positions during surgical planning and improve
EZ localisation [22].

Furthermore, it is convenient to have a rapid and reliable
scheme for segmenting contacts, assigning their anatomical
location when interpreting SEEG studies and for guid-
ing definitive surgical resections. Automatic segmentation
approaches have been proposed for SEEG [2,14,16] and deep
brain stimulation (DBS) [5,10,11] implantation. Arnulfo
et al. [2] used post- implantation CT (threshold=1600)
co-registered with MRI to segment electrodes based on a
geometrical-constrained search. They randomly generated
different scenarios for 1-15-mm displaced TP in an experi-
mental study and reported accuracy of 10% of false negatives
(FN) and 7% of false positives (FP) for a maximum dis-
placement of 15mm. However, bending may occur at any
point along the electrode’s trajectory. Meesters et al. [14]
co-registered the CT (threshold=500 HU) with MRI and
extracted guiding screws with a multi-scale filter whilst deter-
mining likely tip locations within a wedge-shape region.
However, manual adjustments took between 10s and several
minutes, and reported deviations of the tip and their method
did not account for electrodes bending. Additionally, these
methods relied on pre-operative plans and were tested only
on one electrode type.

Hubsch et al. [10,11] proposed an automated algorithm
reconstructing full electrode trajectory whilst accounting for
DBS electrode bending from CT scans. A convex hull brain
mask is extracted using thresholds, and the largest connected
components are skeletonised [10]. Trajectories of 11 elec-
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trodes are modelled fitting a polynomial function and then
aligned to a common coordinate system reporting mean
deviation that varies from 0.92 to 2.0mm. However, they
have mostly focused on fitting trajectories using polynomi-
als rather than computing the amount of electrode bending
and have not considered the reasons of bending within the
brain anatomy. Although Lalys et al. [13] looked at the rea-
sons of bending (mainly due to brain shift) by computing
a local and mean curvature index over the entire length of
DBS electrodes, the index provides no information about the
direction of bending. Unlike SEEG procedures, where 8—14
electrodes are inserted, DBS electrodes are typically inserted
bilaterally and the contacts are very close to the tip. To dis-
criminate between contacts located in white or grey matter,
Arnulfo et al. [1,16] compute the distance from each contact
to grey—white matter interface.

Contribution of this paper

Our main motivation is to automatically segment SEEG con-
tacts and bolts (Ad-Tech Med Instr Corp, USA) relative to
the anatomy whilst accounting for electrode bending along
its trajectory at contact positions rather than as a result of TP
displacement. Our algorithm (Fig. 1) allows estimating not
only the position of contacts but also the direction of the bolts
inserted into the skull since the angle of the bolt with respect
to the scalp surface normal is a measure of post-implantation
accuracy. We quantify local and global bending by means of
electrodes modelled as elastic rods in position-based dynam-
ics! and validate our methods in 23 post-SEEG cases (224
electrodes, 1843 contacts) comprising two different surgical
approaches (placing a guiding stylet close to or far from the
TP).

Methods

Input images

A post-SEEG implantation resampled CT and an MRI T1
images are rigidly co-registered using NiftyReg (v1.5.43)
[15]. From the MRI image, we obtain the parcellation of
brain anatomy via NiftyWeb (GIF v3.0) (Fig. 2) [4].
Identification of anatomical masks

We use the MRI and the parcellation to create regions of
interest that are used to identify contacts, bolt heads, and the

section of the bolt crossing the scalp/skull, which we refer

1 https://github.com/InteractiveComputerGraphics/PositionBasedDyn
amics.
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Fig. 3 a Axial, b sagittal and ¢ coronal planes showing computed masks of the brain (cyan), skull and scalp (yellow) together with the result of
connected components filters of contacts (red), bolt head (green), and the section of the bolt crossing the skull (blue)

as bolt body. First, a BinaryThresholdImageFilter
is applied to the parcellation to create a mask of intracra-
nial space B lyain, i.e. with a threshold fyp,in in the range of
4 < fprain < 208. We apply a method similar to Dogdas et al.
[6], which we describe herein for completeness. We compute
a skull threshold fgy; from the MRI as the mean of the inten-
sities of the nonzero voxels that are not brain as an empirical
measure to split the low- and high-intensity regions, followed
by a scalp threshold fc,1p as the mean of the non-brain vox-
els above the skull threshold (VI gy (x, y, 2) > tMRIg,,) tO
identify the transition between the head and the background.

A BinaryThresholdImageFilterisappliedto the
MRI to create a mask of the scalp Blsap with a lower
threshold equal to fsap. We use morphological operators
to combine Blpmin and Blsap and apply a closing fil-
ter with a ball structuring element (radius=10) to obtain a
mask of the head, i.e. Blheag = (Blscalp U Blprain) © Bio,
and a mask of the skull, i.e. Blsxui = Blhead ® Blprain,
after applying an XOR morphological operator on the result
(Fig. 3).
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Table 1 Geometrical analysis,

Geometrical analysis

Discriminant analysis

(o), and discriminant analysis

of bolt heads and contacts Number of Pixels Elongation Roundness Number of pixels Roundness
Bolt head 329.4 (183.5) 2.51(0.59) 0.63 (0.06) >100 [0.4,1.0]
Contact 9.7 (6.6) 2.52(1.27) 1.10 (0.06) [3, 50]
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Fig.4 Search strategy given the direction of the bolt and constraints (distance and angle)

Segmentation of electrode bolts and contacts

A mask Bl is created from a BinaryThreshold
ImageFilter applied to the post-op CT with lower thresh-
old tcr = (0.52) * max(Icr(x, y,2)). Blpost is used to
identify full bolts (B Iye) With at least a minimum of 200
pixels. Three subsections are identified: the head of the bolt
which is outside the patient’s head (B Ipo;x N — B Ihead), the
body (B Iyl N B Iskun), i.€. section crossing the skull, and the
tip (Blpolt N Blprain)- Lastly, contacts are identified within
the brain whilst excluding bolt tips ((Blpost N Blorain) @
B Iyoytip). We applied a ConnectedComponentImage
Filter to the masks and a LabelImageToShape
LabelMapFilter to the blobs to get their centroids and
geometrical properties before conducting geometrical anal-
ysis to identify discriminants of segmentation (Table 1). We
detected contacts with blobs that were within a range of num-
ber of pixels ([3, 50]) and bolt heads with blobs that had a
minimum number of pixels (> 100) and were within a range
of roundness values ([0.4, 1.0]).

Contact search strategy

Given a bolt head (xy,) and its closest bolt body (xp) posi-
tions, we compute the direction of search (779 = H;Ei:\l)
and iteratively compute a number of points x,, given a maxi-
mum electrode length (90 mm) and a step size (1 mm) in the
direction 7. An available contact x. is assigned to the elec-
trode if and only if it is located below a distance constraint
from x,, (5 mm) and the angle between the previous direction

o and the current direction 7. is below an angle constraint
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(30°) (Fig. 4), constraints which favour assigning contacts in
the direction of the bolt during a first pass.

Automatic segmentation of electrodes

The main steps of our algorithm include:

1. Initialisation All segmented contacts are initially labelled
as ’available’ and stored in a pool. Given a bolt head
position (xp), the closest bolt bodies (8 < [lxp — xp|| <
25mm) and the closest contact (||xp — x¢|| < 50mm)
are identified in order to narrow the search down to only
those relevant.

2. Contact search strategy For each bolt head, the contact
search strategy is executed initially with the closest bolt
body (1st pass search) and subsequently with alternative
bolt bodies if no contacts have been assigned. Although
rare, bolt bodies may not be segmented and a direction of
search cannot be computed. Therefore, the contact search
strategy is called again with the closest contact position
rather than a bolt body position.

3. Project remaining contacts in pool For electrodes con-
taining at least one contact, we compute the minimum
distance between an available contact in the pool and
a line formed by the positions of the bolt head and the
electrode tip. The contact is assigned to the electrode if
and only if its distance to the closest point x;, to the line
(tangent to the line) is below a constraint (5 mm) and x;
remains along the line or in a position of the line 20%
extended from the tip, i.e. within an interpolation range
of [0.0, 1.2] to project contacts that are further from the
currently identified tip of the electrode.
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Fig.5 Modelling of electrodes as elastic rods. Bolt head (green) and body (blue) with contacts (red) modelled as point particles and ghost particles
(cyan) created orthogonally along the electrode with material frames located between contacts

4. Predict contacts in the bolt region For a given electrode,
we compute the most common segment along the elec-
trode based on the distances between subsequent contacts
rounded to the closest integer. Based on electrode spec-
ification, we infer the type of electrode depending on
the order of the segments and specify contact spacing.
We then compute the direction from the last contact x.,
towards the bolt head xy, and create new contacts up to 21
mm before the bolt head position to segment only those
contacts closer to the skull.

Bending estimation

To quantify electrode bending, electrodes are modelled as
elastic rods using the Cosserat model proposed by [19]
and then implemented by [12] in position-based dynam-
ics. Electrode contact positions are represented as linked
particles with ghost particles located orthogonally half-way
between contact pairs (Fig. 5). A material frame is created
between contacts with a unit vector (d3 = X, ;, — X¢,)
aligned tangentially to its centreline followed by two addi-
tional orthonormal vectors, (d» = cfg x (X¢, , — X¢,)) and
(di = cfz X 0?3) chosen to lie in the principal direction of the
cross section. We compute the rate of change of two consec-
utive frames, namely a Darboux vector €2, to describe local
bending at the contact points [12,20]. Along the electrode, 2
values are then accumulated to quantify global bending. We
then use the parcellation to report the region at which each
contact is located and report all those regions that the elec-
trode passes through. Lastly, contact displacement and depth
are estimated with respect to a rigid electrode with position
of contacts projected along the direction from the bolt head to
the last contact (X, ) at distances subject to electrode speci-
fication.

Validation

We asked two neurosurgeons and one clinical scientist to
(a) manually segment the contacts of a random subset of

electrodes (N = 109 contacts), (b) manually identify the
tip and head of the bolt of a random subset of electrodes
(N = 95 bolts), (c) confirm the correct number and location
of contacts and electrodes (N = 23 cases), and (d) identify
the TP anatomical region (N = 222 electrodes).

Results
Interface

We implemented our algorithms in C++ using MITK? and
ITK? as well as a GUI in Qt to allow clinicians to adjust the
automatic segmentation if needed (Fig. 6). On average, our
method executed in 36.17s (N = 23, 0 = 15.7), faster than
manual segmentation.

Performance

Of a total of 224 electrodes (1843 contacts), 29 contacts were
segmented but not assigned to any electrode due to: (a) three
bolt heads that were not automatically segmented (17), (b)
no segmented contacts close to them (5), and (c) due to one
incorrectly assigned contact to a bolt head (7). On average,
the sensitivity (7555 * 100) and PPV (7=5-5 % 100) of
our approach was u = 98.81%; o = 2.04 (false-negative
rate of u = 0.124; 0 = 0.02) and u = 95.01%; 0 = 6.73
(false- positive rate of © = 0.059; o = 0.09), respectively
(Fig. 7 bottom), finding no statistical significant difference
between data sets of the two surgical approaches, i.e. placing
a stylet far from or close to target point. To illustrate our
results, Fig. 8 shows two cases correctly identified (a, b)
along two worst cases (c, d).

2 http://mitk.org.
3 http://itk.org/.
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Validation

Computed contact positions, bolt angles, and regions of
anatomy are compared with those manually segmented in
a subset of cases (Table 2).

— Contact position Compared to the manual segmentation
done by a clinical scientist (M1) and a neurosurgeon
(M2), we found that the contact location of our auto-
matic segmentation approach had a mean absolute error
(MAE) of 0.38 and 0.40 mm, respectively, and a root-
mean-square deviation (RMSD) of 0.45. The distance
of contact positions between both manual segmentations
was on average 4 = 0.37 mm (¢ = 0.22). We found
no statistical difference when comparing the distances
from automatically computed contact position to those
positions obtained via manual segmentation (paired dif-
ferences: © = 0.036, 0 = 0.21).

— Bolt angle We found that the angle of bolts between
automatic and manual segmentation (Fig. 9) by M1 and
M2 differed on average by 0.59° and 0.22°, respec-
tively, with pair samples strongly and positively corre-
lated (Pearson correlation) and with strong reliability
(Cronbach’s alpha). We study the displacement error
derror = SiN(Berror) * le at the tip of the electrode
caused by this angle difference 6eror and the length
of the electrode [, within the brain and define a maxi-
mum tolerance value 7, = 2.29 mm related to contact
length. On average, derror at the tip of a rigid elec-
trode caused by the angle difference is © = 0.68 mm
for M1 and p© = 0.72mm for M2. We found 3 out-
liers above T, for M1 ([2.46,4.79] mm) and 8 outliers
for M2 ([2.37,5.48] mm). Given T,, a non-inferiority
test indicates that 0.68 mm is an estimate of deor With
95% of CI (0.431-0.926) after accounting for clustering
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Fig. 8 Examples: a segmented bolt head and contacts of electrodes overlaying CT; b contacts predicted at the skull and scalp level; ¢ 22 FP (red
marks along the skull); and d our worst case with 3 contacts not segmented due to crossings and 4 FNs

using a patient-level random effect. Figure 10 shows
an example with electrodes automatically segmented
and their corresponding rigid electrodes (lighter colours)
computed using the direction of bolts automatically
segmented.

— Regions of anatomy We also ran a intra-class correlation
two-way mixed effects model with average measures and
found a strong agreement when identifying the anatomi-
cal region of the brain at the tip of the electrode between
our algorithm and that done manually by two neuro-
surgeons, /ICC(3,k) = 0.76, p < 0.001. When in
disagreement, the average distance between regions was
0.82mm (o0 = 0.78), a distance below contact size.
Furthermore, it is estimated that electrode contacts elec-
trically sample regions of grey matter within a 3mm
radius. Any discrepancy in identified anatomical regions
below this is therefore not clinically significant.

Bending estimation

In order to study whether Darboux vectors are a represen-
tative measure of bending, we look into the relationship
(Pearson correlation) between global bending and the fol-
lowing variables: accumulated displacement of contacts (r =
0.532, p < 0.001), length of electrode inside the brain tissue
(r = 0.373, p < 0.001), amount of white matter traversed
by the electrode (r = 0.257, p < 0.001), and bolt angle
(r = 0.189, p = 0.045). Of the two surgical approaches,
placing a stylet far from TP resulted in larger global bending

of electrodes (u = 0.49; 0 = 0.34) compared to the bend-
ing observed in electrodes that had a stylet placed close to TP
(u = 0.31; 0 = 0.18), a difference which was statistically
significant, (222) = 5.36, p < 0.01.

Generalisability and robustness

Three SEEG post-resection cases using SEEG DEPTH elec-
trodes (PMT Corp., USA) were obtained from the Vickie
and Jack Farber Institute for Neuroscience (Thomas Jeffer-
son University) to assess generalisability and robustness of
our algorithm. We observed a reduced average performance
(sensitivity =69.7% and PPV =82.6%) due to the following
factors (Fig. 11a—c): (a) smaller bolt heads (our parameter of
minimum number of pixels of bolt heads could be adjusted),
(b) contacts being very close to each other and merged as sin-
gle blobs (addressed by adopting optimal oblique resampling
used for DBS electrodes [11]), and (c¢) electrodes inserted
deeply (our parameter of maximum electrode length could
be adjusted to account for this). Despite this, our algorithm
was agnostic of electrode types and implantation planning
and was robust in post-resection data sets.

We randomly chose 3 of our data sets to test the method
proposed in [2,16] and implemented in SEEGA (Slicer
v4.6.2). We configured electrode types based on electrode
specification, used the implantation plan (EP and TP) as fidu-
cials and imported the CT image. We modified SEEGA to
use the same threshold that we computed in our algorithm
for consistency and because the default threshold computed

@ Springer
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Table 2 Validation between manual and automatic segmentation

Measure

Manual vs automatic

Statistical test

Result

Contact position
N =109/1843

Bolt angle
M1: N=95/224

M2: N =113/224

Regions of anatomy
N =222/222

MAE (1, o, IQR)

MAE (x,y,z
components)

RMSD

mean angle difference

displacement error at
first contact due to
angle difference (i,
o,IQR)

region of anatomy at
first contact

distance between
regions when in
disagreement

M1: 0.38 mm, 0.24, 0.22
M2: 0.40 mm; 0.22, 0.26

MI: (0.14, 0.15, 0.27) mm
M2: (0.17, 0.15, 0.26) mm

M1:0.45
M2:0.45

MI1: 0.59° (1.27)
M2:0.22° (1.53)

M1: 0.68 mm, 0.81, 0.83
M2: 0.72 mm, 0.84, 0.81

0.82 (0.78) mm

Paired ¢ test
Pearson correlation

Cronbach’s alpha

Paired ¢ test

Pearson correlation

Cronbach’s alpha

Non-inferiority test

Intra-class correlation

t(106) = —1.756, p = 0.82
r =0.454, p < 0.001
0.615

t(94) = —4.54, p < 0.001
t(112)=1.533, p = 0.128

r =0.991, p < 0.001
r =0.985, p < 0.001
0.995
0.992

CI = (0.431, 0.926)
tolerance = 2.29 mm

0.76, p < 0.001

«w

N

automatic

Fig. 9 Bolt angles. a Bolt from post-CT image and b manual iden-
tification of the direction along bolts by a clinical scientist. ¢, d
(Inconspicuous) comparison of manual (pink) and automatic identi-

by SEEGA resulted in segmentations errors. We observed
an average sensitivity of 82.9% and PPV of 65.3% (97.3%
and 98.2%, respectively, using our algorithm). Whilst we
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fication (rigid electrode shown in blue) of bolt direction of an outlier
case with angle difference of Gerror = 5.73° and displacement error at
the tip of deror = 4.79 mm

noticed that most of the contact positions were not accurate
(Fig. 11d), we only report performance on the number of con-
tacts that were incorrectly or not segmented. Similarly to our
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computed based on bolt direction

approach tested with data from other centres, SEEGA might
perform better after fine-tuning parameters. Both algorithms
have parameters the user must select to guarantee optimal
performance.

Discussion
Automatic segmentation

The automatic segmentation of bolts is typically overlooked
in the literature and could be used to report accuracy errors
caused by differences in angle with respect to planning.
We use bold direction to search for contacts with neither
prior information of electrode type nor implantation plan-
ning. Compared to previous work [2,14], we use a factor
of maximum intensity from CT images rather than a con-
stant. Regions of interests were used to segment position
of contacts and bolts based on geometrical properties with
their centroids equivalent to the signal peaks found in [11]
and more generally in the literature. The choice of intensity
threshold and constraints favour few incorrectly segmented
contacts (FP) over missing contacts (FN), since these can
be easily discarded by surgeons during manual adjustment.

We found that FP were located in the inner surface of the
skull and were caused by pixel size inaccuracies of CSF
regions overlapping with bone structure. The performance
of our algorithm is similar to previous approaches although
[2] only considers displacements at the tip of the electrode
with no details of displacement of other contacts along the
electrode and [14] uses a very small sample size assuming
rigid electrodes.

Compared to the search strategy by Arnulfo et al. [2],
our algorithm uses a higher angle constraint (30° rather than
10°) because we use instead the bolt direction to search for
contacts rather than a direction from previously segmented
contacts. It is also clinically relevant to accurately segment
the position of the contacts closer to the skull to ensure grey
matter at the cortical entry is adequately sampled, but these
might be difficult to segment in the bolt region. Therefore,
contacts are predicted in this region after inferring electrode
type. Further conditions would need to be included in this step
to support more electrodes from different manufacturers. To
cope with electrodes crossing, we initially used geometri-
cal features to identify large blobs that relate to more than
one contact for splitting. However, the resulting position of
contacts was not good enough to make the method fully auto-
matic, so we rely on manual adjustments that can be quickly

@ Springer
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Fig. 11 Generalisability and robustness tests. Our proposed algorithm
using data from a different centre: a with smaller bolt heads, b con-
tacts very close to each other, and ¢ electrodes inserted deeply (pink

performed with our interface. Moreover, the reason for con-
tacts not being assigned to an electrode was because of bolt
heads or contacts not being segmented and because of incor-
rectly assigned contacts to bolt heads. However, electrode
bending did not influence accuracy of contact assignment as
evidenced by our approach performing equivalent between
the two surgical approaches (placing a stylet close to and far
from TP), where global bending is significantly different.

Validation

The MAE of the centroids validated from the manual iden-
tification of contacts in our study is slightly lower than the
localisation error of 0.5 mm reported in [2,16], although with
a greater standard deviation. The RMSD reported in our study
of axial and sagittal planes is similar to the RMS reported in
[11]. However, we see a higher error in the coronal plane due
to greater CT slice thickness (u = 0.87 vs. u = 1.14 mm)
and thus a greater RMSD than that reported in their work
with deep brain electrodes. We also confirmed the accuracy
of the computed contact positions with respect to those from
two manual segmentations which varied less that 0.8 mm
(CI of 95%). We defined equivalence of bolt angles between
manual and automatic segmentation as an interval of —2.29—
2.29mm based on the sample size calculation (14 manual
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electrode with insertion depth of 110 mm); Our data in SEEGA: d seg-
mented contact positions (green fiducials) and implantation plan (pink
fiducials)

and 14 automatic; power=90%, p < 0.05, 0 = 1 mm) for
the angle error displacement. The sample size has also been
increased to account for the possible effect of clustering of
electrodes within patients, with an assumed /CC = 0.25 and
average number of 8 electrodes per patient. The mean angle
difference observed (paired ¢ test) is small and has a strong
and positive correlation and good reliability. Related to the
non-inferiority test of the displacement error caused by this
angle difference, there is no suggestion that, at the tolerance
level of contact length, either method is worse that the other.
We were also able to confirm that the anatomy regions at
the tip of the electrodes are concordant with those manually
identified by two neurosurgeons. Our sample size is above
the sample size computed (159) that is sufficient for a 95%
confidence interval with width & 0.1 assuming an estimate of
0.6 ICC. This is important for post-surgical analysis of SEEG
electrodes as knowing the anatomical region each contact is
located in can aid in identifying the seizure onset zone.

Bending

Compared to previous approaches for DBS that fit trajecto-
ries along electrodes using polynomials [10,11], we quantify
the amount of bending as well as the displacement at contact
positions, permitting to study the reasons of bending within
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the anatomy. The parcellation is used to accurately report the
anatomical regions the electrodes have traversed. We were
able to estimate local bending by modelling electrodes as
elastic rods and using Darboux vectors to quantify the 3-
degrees-of-freedom rate of change of the material frames
orthogonally aligned to the electrode. The large and positive
correlation observed between global bending and the accu-
mulated displacement of contacts in addition to the medium
positive correlation with length of electrode indicate that Dar-
boux vectors are a representative measure of bending. The
projection of a rigid rod is based on the bolt direction rather
than on planned trajectories as in previous studies. This facil-
itates evaluating the displacement of each contact, rather than
adisplacement due to EP location errors and angle of drilling.
We confirmed the displacement at the tip of the electrode due
to angle difference between bolts automatically and manu-
ally segmented is below a tolerance displacement error, and
therefore, we were able to report contact displacement due
to bending with respect to a rigid electrode.

Conclusions and future work

We present a method for automatic segmentation of elec-
trodes, including their contacts and bolts, that takes bending
into account by quantitatively estimating local and global
bending. We show the importance of accurately detecting
the angle of the bolt, since it is one of the main reasons for
TP errors, as well as the importance of accurately and auto-
matically reporting the region of anatomy the contacts are
located in, since it aids identifying the seizure onset zone. Our
approach was validated in 23 data sets comprising two surgi-
cal techniques and demonstrated in these cases our method
is robust to bending along the electrode.

Future work is required to guarantee generalisability of
automatic segmentation of SEEG electrodes by enabling
automatic parameter selection to support data from multi-
ple centres. We hypothesise that white matter tracks may be
one of the factors of electrodes bending, and therefore, we
envisage using diffusion MRI tractography in combination
with our proposed methods in future studies to understand
the reasons to bending. Understanding the mechanical prop-
erties of electrodes along with the biomechanical properties
of the brain tissue as well as simulating instrument—tissue
interaction will permit greater fidelity to the implantation
plan resulting in more accurately targeting specific regions
and potentially improve clinical outputs including the ability
to reduce the number of implanted electrodes and targeting
riskier areas. We envisage to incorporate our work to an EEG
analysis pipeline and validate the activity read from SEEG
contacts with their anatomical location. Parallel clinical work
will look into different types of techniques and their effect on
electrodes bending, i.e. understanding the reasons why push-

ing a stylet closer to the target point result in lower bending
of electrodes.
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