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Abstract
Introduction Stereotactic brain biopsy represents one of the earliest applications of surgical robotics. The aim of the present
systematic review and bibliometric analysis was to evaluate the literature supporting robot-assisted brain biopsy and the extent to
which the scientific community has accepted the technique.
Methods The Cochrane and PubMed databases were searched over a 30-year period between 1st of January 1988 and 31st of
December 2017. Titles and abstracts were screened to identify publications that met the following criteria: (1) featured patients
with brain pathology, (2) undergoing stereotactic brain biopsy, (3) reporting robot-assisted surgery, and (4) outcome data were
provided. The reference lists of selected studies were also sought, and expert opinion sought to identify further eligible publi-
cations. Selected manuscripts were then reviewed, and data extracted on effectiveness and safety. The status of scientific
community acceptance was determined using a progressive scholarly acceptance analysis.
Results All identified studies were non-randomised, including 1 retrospective cohort study and 14 case series or reports. The
diagnostic biopsy rate varied from 75 to 100%, and the average target accuracy varied from 0.9 to 4.5 mm. Use of the robot was
aborted in two operations owing to geometric inaccessibility and an error in image registration but no associated adverse events
were reported. A compounding progressive scholarly acceptance analysis suggested a trend towards acceptance of the technique
by the scientific community.
Conclusions In conclusion, robot-assisted stereotactic brain biopsy is an increasingly mainstream tool in the neurosurgical
armamentarium. Further evaluation should proceed along the IDEAL framework with research databases and comparative trials.
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Introduction

Surgical robotics is amongst the most important technol-
ogies to emerge over the last decade [1]. Surgical robots
may result in higher accuracy and precision than would
otherwise be possible. The clinical corollary is that such

robots may ultimately improve the safety and effective-
ness of surgical interventions.

Stereotactic brain biopsy represents one of the earliest ap-
plications of surgical robotics. On the 11th of April 1985, a
team at the Memorial Medical Center used a modified PUMA
industrial robot (Advance Research & Robotics, CT, USA) to
perform a robot-assisted stereotactic brain biopsy in a 52-year-
old man [2]. Since this initial report, many surgical robots
have been used to perform stereotactic brain biopsy including
the Neuromate (Renishaw, Gloucestershire, UK), ROSA
(Medtech, Montpellier, France), and Renaissance (Mazor
Robotics, Caesarea, Israel) robots. Anecdotally, robot-
assisted stereotactic brain biopsy has been adopted within
the neurosurgical community.

Over recent years, considerable emphasis has been placed
on the methodology of translation of new devices such as
surgical robots from the laboratory to the operating room,
the central tenet being that innovation and evaluation can,
and should, proceed together in an ordered and logical manner
[3–5]. The aim of the present systematic review and
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bibliometric analysis was to evaluate the literature supporting
robot-assisted brain biopsy and the extent to which the scien-
tific community has accepted the technique.

Methods

The study protocol was registered on the international
prospective register of systematic reviews (PROSPERO
CRD42017082204). The Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
Statement was used in the preparation of this manu-
script [6].

Search methods

Two authors (HJM and VNV) independently searched the
Cochrane Central Register of Controlled Trials (CENTRAL)
and PubMed databases over a 30-year period between 1st of
January 1988 (the year of the first publication) and 31st of
December 2017. Search terms were generated with the
PICO tool (Problem, Intervention, Comparison, and
Outcome) and the Boolean free-text search [(brain OR
brainstem OR cerebral OR cerebellar) AND (biopsy OR bi-
opsies) AND (robot OR robotic)] used. The last date of the
search was undertaken on the 4th of January 2018. The refer-
ence lists of selected studies were also sought, and expert
opinion sought to identify further eligible publications.
Duplicates were then removed and an English language re-
striction applied.

Eligibility criteria

Titles and abstracts were screened to identify publications that
met the following criteria: (1) featured patients with brain
pathology, (2) undergoing stereotactic brain biopsy, (3)
reporting robot-assisted surgery, and (4) outcome data were
provided. Full publications were then obtained and assessed
for eligibility. Any discrepancies were resolved by consensus
and discussion with the senior author.

Data extraction

The following data were extracted from eligible full publica-
tions: (1) study settings including institution and country of
origin, (2) study design, (3) study group characteristics, (3)
surgical robot details, (4) effectiveness outcomes including
biopsy yield and accuracy, and (5) safety outcomes including
haemorrhage, transient or permanent worsening neurological
deficits, and mortality. Corresponding authors were contacted
to provide supplemental data when required.

Appraisal of evidence

The Methodological Index for Non-Randomised Studies
(MINORS) and Jadad scoring systems were undertaken by
two researchers independently (VNV and HJM) and used to
appraise non-randomised and randomised studies respectively
[7, 8]. Correlation between the scores attributed to the studies
was calculated using Cronbach’s α. Studies of higher quality
were given greater weighting in the qualitative review. A
pooled analysis of the diagnostic biopsy rate was undertaken
with weightings determined by the number of patients in each
study. Statistical analysis was performed using SPSS v 24.0
(IBM, IL, USA) and Stata v14 (Statacorp, TX, USA).

Progressive scholarly acceptance

A bibliometric analysis was performed to determine the extent
to which the scientific community has accepted robot-assisted
stereotactic brain biopsy. All studies were coded as either an
initial investigation or refining study according to the criteria
outlined by Schnurman et al. [9, 10]. A compounding model
was then used to determine the progressive scholarly accep-
tance end-point whereby the number of refining studies sur-
passes the number of initial investigations, implying that the
scientific community has accepted the initial questions of ef-
fectiveness and safety; some innovations rapidly achieve this
transition whilst others fail to ever do so.

Results

Summary of search strategy, types of study,
and quality of evidence

The database search returned 249 results of which 242 were
English language. Screening titles and abstracts identified 24
publications for full manuscript review (Fig. 1). A comparison
of the articles identified between the two independent re-
searchers revealed high concordance between included stud-
ies. In all, 15 studies were included in the systematic review,
comprising a total of 322 patients that underwent 328 robot-
assisted brain biopsies (Table 1). As only four studies provid-
ed accuracy data and there was no consistent reporting, we
were unable to perform a meta-analysis.

All included studies were non-randomised in design in-
cluding 1 retrospective cohort study and 14 case series or
reports (level 4 evidence) [11]. The MINORS system was
used to evaluate the quality of these studies, with a high con-
cordance of calculated scores (α = 0.98). Studies were of var-
iable quality but few were prospective and none prospectively
performed a power calculation for sample size (Table 2).

Dellaretti et al. reported a retrospective cohort comparing
transcortical and transcerebellar approaches in 142 patients
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that underwent brain biopsy, of which 33 patients underwent a
robot-assisted brain biopsy [12]. Unfortunately, the clinical
outcomes of this subset of patients were not separately report-
ed and they have therefore not been included in the pooled
analysis of effectiveness and safety.

Surgical robots

Six studies reported use of the ROSA robot [13–18] and two
the Neuromate robot [12, 19]; the other robots used were the
Puma 200 robot [2], Renaissance robot [20], Minerva robot
(Swiss Federal Institute of Technology of Lausanne,
Switzerland) [21], MKM robot (Zeiss, Oberkochen,
Germany) [22], Surgiscope robot (ISIS, Grenoble, France)
[23], iSYS1 robot (iSYS, Kitzbühel, Austria) [24], and
RONNA G3 robot (University of Zagreb, Croatia) [25]. The
size and configuration of the reported devices varied signifi-
cantly with the ROSA and Neuromate robots, occupying a
large footprint and weighing up to 200 kg, and the
Renaissance and iSYS1 robots being small enough to fix

directly to the patient’s head and Mayfield clamp respectively,
and weighing as little as 1.4 kg [20, 24].

All robots had a supervisory-controlled function in which
the surgeon planned a safe surgical trajectory using pre-
operative volumetric imaging, image registration was per-
formed using frame-based or frameless methods, and the robot
then carried out trajectory alignment autonomously under the
supervision of the surgeon [26]. This trajectory was then used
by the surgeon to perform the incision, burr hole craniostomy,
and biopsy.

Effectiveness

The diagnostic biopsy rate varied from 75 to 100% in individ-
ual series. Weighted averages based on the number of patients
in each study revealed a pooled diagnostic biopsy rate of
94.9% (280/295).

Accuracy measures were provided in six studies, and quan-
titative data provided in four studies. Within these studies,
accuracy measures varied and included Euclidean distance

Fig. 1 PRISMA flow diagram
outlining the study selection
process. From: Moher D, Llberati
A, Tetzlatf J, Altman DG, The
PRISMA Group (2009).
Preferred Reporting items for
Systematic Reviews and Meta-
Analyses: The PRISMA
Statement. Plos Med 6(7):
e1000097. https://doi.org/10.
1371/journal.pmed1000097. For
more information, visit http://
www.prisma-statement.org
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and lateral deviation, or were not specified. When reported,
the average target accuracy varied from 0.9 to 4.5 mm.

In the majority of studies, the registration method was not
specified. Willems et al. compared the target accuracy of the
MKM robot using different registration methods and
found that bone-anchored fiducials resulted in signifi-
cantly greater accuracy than adhesive scalp markers
(3.3 ± 1.7 versus 4.5 ± 2 mm) [22].

Only two studies provided accuracy measures for the entry
and target point separately. Minchev et al. reporting on use of
the iSYS1 robot in 25 patients calculated a median entry point
accuracy of 1.3 mm (range 0.2–2.6 mm) and a median target
point accuracy of 0.9 mm (range 0.0–3.1 mm) [24]. Dlaka
et al. reporting on the RONNA G3 robot in a single patient
calculated an entry point error of 2.2 mm and target point error
of 2.3 mm [25].

Safety

Use of the robot was aborted in two operations owing to geo-
metric inaccessibility and an error in image registration but no
associated adverse events were reported.

Safety measures reported included haemorrhage rate, tran-
sient or permanent worsening neurological deficits, and mor-
tality rate. Post-operative haematoma was reported in 7.5%
(22/295) but it is unclear how many patients underwent a
routine post-operative scan and only 0.7% (2/295) developed
a symptomatic haemorrhage that required craniotomy and
evacuation of the haematoma. Neurological deficits occurred
in 5.1% (15/295) and permanent neurological deficits in 0.7%
(2/295). No mortalities were reported in the pooled analysis.

Progressive scholarly acceptance

There was a trend towards an increasing number of publica-
tions per annum and an increasing volume of procedures per
annum (Fig. 2a, b). A compounding progressive scholarly
acceptance analysis suggested an early convergence pattern
(Fig. 2c), indicating a trend towards acceptance of the tech-
nique by the scientific community.

Discussion

Summary of evidence

Since the first published report 30 years ago, over 300 patients
have undergone robot-assisted brain biopsy. In our pooled
analysis, surgery was effective with 95% of procedures
resulting in a diagnosis. Although use of the robot had to be
aborted in two procedures due to technical errors, there were
no associated adverse events as a result of this, and less than
1% of patients had a significant post-operative haematoma or

permanent neurological deficit. These findings are further sup-
ported by our bibliometric analysis using the progressive
scholarly acceptance model, which suggests that the scientific
community has begun to accept robot-assisted brain biopsy.

Early surgical robots were modified industrial robots and
were large, complex, and expensive. A recent trend to-
wards smaller, simpler, and less expensive platforms has
corresponded to their increased adoption within neurosurgery,
and the number of procedures that utilises them has grown
[27]. These include conventional stereotactic procedures that
mandate high accuracy and precision, and have previously
relied on frame-based techniques, such as deep brain stimula-
tion [28], stereoelectroencephalography (SEEG) [20], and in-
tracranial catheter placement [24].

Historically, many surgical device innovations have
been adopted with little or no evidence to support their
effectiveness and safety. In the USA, the majority of
such devices are cleared through the 510(k) pathway,
which does not require clinical studies [29]. The intro-
duction of devices following clearance is unstructured
and variable; more often than not, their use is reported
in non-comparative trials without institutional board re-
view. This process carries an obvious risk to patient
safety, and a number concerns have been raised regard-
ing the lack of centralised adverse event reporting [30].
To address this shortfall, the Balliol Collaboration has
proposed the IDEAL model for safe innovation [3–5].
To this end, our bibliographic analysis suggests that
robot-assisted brain biopsy currently lies in Phase 2b
(Exploration) and that research databases and compara-
tive trials are now warranted (Table 3).

Comparison with other studies

To our knowledge, there have been no previous reviews eval-
uating the accuracy, effectiveness, and safety of robot-assisted
brain biopsy. However, our pooled analyses of outcome data
are comparable with previously reported non-robotic frame-
based and frameless biopsy series [31].

Khatab et al. reviewed 16 studies in which 1628
frameless brain biopsies were performed using optical
guidance, and found an average diagnostic yield of
93.8% [32]. Similarly, Frati et al. reported on 296 cases
over an 8-year period from a single institution that
underwent frameless biopsy with a diagnostic yield of
99.7% [33]. Harrisson et al. reported pinless frameless
biopsy in 149 patients with electromagnetic guidance
and found that 5 cases were non diagnostic, although in
4 of these cases, the specimen was of abnormal tissue
but the pathologist was unable to make a diagnosis [34].
This highlights an important limitation in using diagnos-
tic biopsy rate as an outcome measure as newer genetic
markers may improve the diagnostic rates in the future.
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Few studies have reported the accuracy of brain biopsy. In a
single-centre randomised controlled trial, Bradac et al. com-
pared frame-based and frameless brain biopsy in 53 patients
and calculated a target point accuracy of 2.65 ± 1.12 and 2.90
± 1.26 mm respectively [35].

Kulkarni et al. investigated the rate of haemorrhages fol-
lowing non-robotic stereotactic biopsy in 102 patients based
on post-operative CT scans [36]. This revealed 59.8% (61/
102) patients developed haemorrhages of which 54.9% (56/

102) were intracerebral. The incidence of clinically significant
symptomatic haemorrhage was 5.8% (6/102) whilst the re-
maining 53.9% (55/102) were clinically silent. This raises
the question of whether clinically silent haemorrhages are a
useful outcome measure as they ultimately have no effect on
the patient. Further, it is likely that had patients undergone
post-biopsy MRI sequences that are more sensitive to blood
products, such as susceptibility-weighted imaging, an even
greater incidence would have been detected.

A

B

C

Fig. 2 Graphs demonstrating a
the number of overall
publications per annum, b the
number of patients reported
undergoing robot-assisted biopsy
per annum, and c the number of
initial and refining publications
per annum
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Limitations

The present review was restricted to relatively few studies, of
variable size and quality, and with inconsistent reporting of
surgical outcomes, which necessarily limits the conclusions
that can be drawn. This finding is consistent with an innova-
tion in the early adoption phase [37].

In practice, the accuracy and precision of surgical robots
depends on a number of factors. Arguably, the most important
of these is the registration of the patient to the pre-operative
reference imaging, upon which the biopsy trajectory has been
planned. Image registration can be in the form of fiducial
markers, with Willems et al.’s finding that bone-anchored fi-
ducials resulted in significantly greater accuracy than adhesive
scalp markers [22]. The use of intra-operative imaging allows
automatic registration methods with greater accuracy than
scalp and bone-anchored fiducials [38].

Other factors that may influence surgical outcome of robot-
assisted brain biopsy include the location of the lesion, the
planned trajectory, and the histological nature of the lesion.
Dellaretti et al. compared transcortical and transcerebellar ap-
proaches in patients undergoing brainstem biopsy and
did not find any significant difference in outcomes
[12]. Nonetheless, given that there is no systematic or
objective means of trajectory planning at present, this
remains a significant confounding factor.

Careful trajectory planning is critical to avoiding compli-
cations in stereotactic procedures. In stereotactic brain biopsy
procedures that utilise a burr hole craniostomy for trajectory
determination, it is not possible to visualise the cortical vas-
culature. The safety of such procedures is therefore dependent
on the ability of pre-operative imaging to visualise cerebral
vasculature so that planned trajectories avoid this along their
entire length. Avoiding sulcal-pial boundaries, reducing intra-
cerebral length, and orthogonal traversing of the skull have all
been suggested to improve safety of stereotactic procedures
[39]. Computer-assisted algorithms for trajectory planning
have been shown to optimise these factors in a systematic
fashion for DBS and SEEG, but there are no studies that have
utilised this for stereotactic biopsy planning [39, 40].

Conclusions

Robot-assisted stereotactic brain biopsy is an increasing-
ly mainstream tool in the neurosurgical armamentarium.
Although limited, the literature suggests the technique is
as effective and safe as the existing frame-based and
frameless biopsy. Moreover, our bibliometric analysis
suggests that the scientific community has begun to ac-
cept robot-assisted brain biopsy. Further evaluation
should proceed along the IDEAL framework with re-
search databases and comparative trials.
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Table 3 Defining characteristics of phases of surgical and interventional innovations (adapted from http://www.ideal-collaboration.net/about-ideal/
ideal-summary-tables/)

1. Idea 2a. Development 2b. Exploration 3. Assessment 4. Long-term
monitoring

Purpose Proof of concept Development Learning Assessment Surveillance

Number and types
of patients

Single digit;
highly selected

Few; selected Many; may expand indications Many; expanded
indications

All eligible

Number and types
of surgeons

Very few Few; innovators and some
early adopters

Many; innovators, early
adopters, early majority

Many; early majority All eligible

Study types Structured case
reports

Prospective development
studies

Research databases; feasibility
RCT

Surgical randomised
controlled studies

Prospective
registries
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