Reviewers' comments:

Reviewer #1 (Remarks to the Author):

Korn and Bach study human choices and neural signals in a deep, sequential foraging
problem. They find evidence for contributions of both simple heuristics and deeper, more
exact computation; then evidence in reaction times and BOLD that speaks to their
competition and the arbitration between them. I found this to be a terrifically interesting
and promising study. The task and models intersect issues that have been studied in a
number of other domains (typically, learning tasks) but offer a fresh approach in a number
of respects that provide both convergent and new evidence and approaches, and promise
for followups. That said, the substantial ambition of this project is also accompanied by
equally substantial challenges and I think there is a certain overreach as yet. Without
diminishing my enthusiasm for the project, I have two major concerns about the paper, one
philosophical and one technical. I very much hope the authors are able to make some
headway on them so as to deliver on the promise of the study.

1. I do not think enough data are yet presented to make the reader confident in the article’s
basic framing that the results are best understood as the combination of two discrete
strategies — one simple heuristic plus the optimal policy. As the authors are no doubt well
aware, many different decision variables and approximate decision variables will be highly
mutually correlated. Indeed the optimal policy (and its other cousins) is itself a deterministic
(nonlinear but quite possibly monotonic) function of the heuristic variables probability, gain,
and energy. The probability heuristic and the optimal policy might be thought of as two
endpoints spanning the range between sloppy and exact solutions, which might in part
explain their success together. A few thoughts on this point:

* I'm not crazy about the stepwise model-building approach (first greedily locking in p as
the best among a set of possible candidates, then adding other variables only together with
it). It certainly does not demonstrate that the best combination of any two variables is the
pair it finds, nor that two is better than three, etc. Indeed given that all of the candidates
are highly correlated I wouldn't necessariy expect to be able to find a unique combination of
variables that best explained the behavior better than all other combinations. It is probably
just too much to expect BIC etc. to adjudicate among variables in this type of situation.

Further, there are a number of promising heuristic candidates that weren't considered in the
first wave (but are only measured, if at all, with p already in the model). These include the
horizon-1 optimum, or the EV, probability times gain, both of which are related to the
probability but also form more of a continuum with the optimal policy. Low horizon myopic
optimal policies seem particularly nice options, but may not have fit well since they were
only tested with p (the ultimate myopic variable) already in the model. A possible
hypothesis is a variable depth optimization story, ranging between (or combining) horizon-1
and deeper solutions; this is also similar to the recent Keramati and Dayan study.

* This is a very difficult problem and I don’t have great advice for the authors how to
overcome it. It is probably too much to expect that it be overcome completely, and to some



extent it can also be finessed by more judicious, cautious, interpretation and more caveats.
But I think one step that absolutely needs to be taken is to more concretely demonstrate
how the choice behavior would change as a function of some of these different candidates,
and how (and whether) they can be distinguished in choice space. The plots of optimal vs.
actual policies in Supp fig 1 are a start, but it doesn’t make clear how the behavior can
distinguish these from the more myopic heuristics, or all the horizons from each other. How
many of the trials actually distinguish these?

* I of course understand the points about reaction times and fMRI correlates of the different
decision variables, which provide some (quite tantalizing) support for the authors’
interpretation. But again in the context of a large family of highly correlated candidates, and
without more exhaustively comparing the possibilities and more carefully demonstrating
their separability in data space I think it’s hard to make too much of different neural
correlates and RT effects. I would note that the RT issue cuts both ways in the paper - on
the one hand we are told that only parallel computation can explain the RT choice difficulty
effects (I think this is an awfully strong conclusion to draw so categorically, though it is
certainly also a neat piece of evidence and a novel approach) - but on the other hand we
are told that heuristic use is faster, which should not be true in a fully parallel model. I think
it's quite likely that some progressive computation model like Keramati and Dayan’s, where
approximations are refined if some features of the problem suggest that deeper search is
worthwhile, might in principle be able to explain both results.

2. My technical issue is that as far as I can tell, the optimal policies used here are not
computed correctly. More specifically, there are really two versions of the task used here -
one with stochastic termination (i.e. exponentially distributed time in the forest), and the
other a fixed horizon-5 game. Neither of these corresponds to the “optimal” policy
computed here, which isn‘t really optimal for any problem as far as I can tell.

For the fixed, finite horizon-5 game, the key issue is that the optimal action choice will in
general depend on the number of steps remaining, and so it is incorrect to use a fixed
probability p of foraging (and take the transition matrices to the fifth power). For instance,
when there is only one move left, if there is still sufficient energy left, then either forage or
wait will be equally successful in terms of the objective function. But this might not be true
at earlier steps in the forest with the same energy and weather. To find the true optimal
policy, one would normally use dynamic programming, working backward from the last
move and treating the different horizon steps as separate states with separate optimal
policies. (That is, it is still a Markov problem, but only in a state space that distinguishes the
steps toward the horizon.)

Conversely, if the game terminated stochastically (exponentially distributed game length)
with some probability which I will call (1-gamma) then the states are all equivalent
independent of depth — the optimal policy is indeed fixed over periods within the forest, as a
function of energy remaining and weather. However, in this case it is also not correct to
optimize with respect to the fifth power of the transition matrix — one must account for the
distribution of termination times. This is equivalent to an exponentially discounted, (in



principle) infinite horizon problem, where the event of the task terminating with survival is,
effectively, a second absorbing state (with 0 reward), which equivalently introduces a
discount factor of gamma over the infinite horizon version of the problem. This can then
again be computed with value iteration / dynamic programming. This is discussed in
standard texts, e.g. Sutton & Barto, or Puterman’s MDP book. (Note that if the exponential
distribution is truncated, e.g. at maximum 5 steps, then this would violate the Markov
property and a finite horizon model like the one above would actually apply: the policy
would again depend on the step. The paper isn't really clear what was done here.)

I doubt these details will make too much difference, but I do think this is an error that
pervades essentially all the results, which needs to be corrected and the results need to be
revisited.

Two side points arise from these considerations. First, while it is a theorem that all MDPs
have a deterministic optimal policy (thus it is no accident that the optimal policies here are
deterministic), that policy is not in general unique. Here, for instance, I strongly suspect
there are states where foraging and waiting both ensure survival for sure (e.g. in the last
move as discussed above) and here any policy, including stochastic ones, will be
equivalently optimal. The analysis needs to take this into account. Second, the discussion of
value iteration in the supplement seems a bit off. As I hope I have described above, when
properly framed, the original avoid-death problem is nothing other than an MDP which can
be solved by dynamic programming, i.e. value (or policy) iteration over the appropriate
state space and the appropriate finite or infinite horizon. Thus the discussion in the
supplement appears not to really be about the solution method, but about the nature of the
objective (ie, reward) function, i.e. maximizing some new intake function vs avoiding
starvation.

Reviewer #2 (Remarks to the Author):

Korn and Bach build on two emerging lines of research: one focused on planning across
deep decision trees, and the other on using ethologically relevant paradigms to understand
the neural mechanisms of decision making. The authors develop a task that probes foraging
behavior in a simulated environment where optimal performance requires planning through
a deep and probabilistic tree of possible future states. The authors collect fMRI data during
task performance and use the behavioral and imaging data to support the following key
claims:

1) Human foraging behavior deviates from optimal planning and is better explained by a
heuristic (win probability) that is occasionally abandoned in favor of an optimal solution
when the heuristic is difficult to implement.

2) Both optimal and heuristic strategies are computed in the brain in parallel and arbitrated
in medial prefrontal cortex, with the optimal policy scaling with BOLD activity in anterior
MPFC, conflict between optimal and heuristic policies scaling with BOLD signal in dorsal



MPFC, and the difficulty of the heuristic model reflected in the BOLD signal in anterior
VMPFC and mid cingulate.

My feelings about this paper are somewhat mixed; on one hand I feel that the authors have
taken on a difficult question and made strides toward pinning down an answer. However, on
the other hand, in part because of the difficulty of the question and the complexity of the
task, I am unconvinced that the authors’ interpretation of the data is the only, or even the
best, one. In particular I have concerns regarding the interpretation of the behavior as
emerging from two separate strategies implemented in parallel and reflected computed
through different neural systems. This interpretation is at odds with the standard rationale
for why heuristics are adopted, and thus, if true, would constitute a surprising and
important finding. But based on the data presented by the authors, I think it is more likely
that subjects are implementing a serial strategy in which they first pay attention to the
foraging success probability, and then, if not sufficiently swayed by this information, move
on to consider the current “energy state”. This interpretation would be more in line with
standard ideas about multi-attribute decision-making, as far as I can tell in line with the
behavioral analyses, and would require major reinterpretation of the fMRI results. A
complete listing of my concerns is below:

Major Issues:

1) It is not clear that the primary behavioral claims are supported by the data. As far as I
can tell, the authors do not compare a model of the decision variable from the optimal
model (difference in survival across forage/wait) against the heuristic model. This is an
important comparison. The binary optimal policy variable that the authors use for
comparison does not include any information about the magnitude of model preferences,
and thus has no way of accounting for noise in the decision process. It is very clear from the
behavioral figures (Fig 2 & supplementary figure 1) that subjects change behavior according
to the energy state suggesting that the suggested heuristic (foraging success probability)
could not provide a good fit to the data. In general, the authors have tested a large number
of models, but done very little to show the extent to which these models capture the subject
behavior. Posterior predictive checks to show that the authors preferred models can capture
the behaviors shown in Fig 2 and supplementary figure 1 would be helpful in this regard.
The behavioral figures clearly indicate that behavior changes as a function of energy state,
meaning that the heuristic strategy favored by the authors does not capture a key
behavioral feature of the data.

2) I am not fully convinced by the authors’ claim that the optimal and heuristic
computations are done in parallel. I typically think of a heuristic as offering computational
savings afforded by avoiding costly computations associated with more complex solutions.
Here the authors are saying that people spend the computational resources to evaluate both
strategies... but then choose a worse one much of the time. The authors’ state on lines 212-
213:

“To address this issue, we calculated optimal and heuristic policies and analyzed whether a
discrepancy between the two influenced participants’ behavior. This would only occur if both



were computed in parallel, on the same trials.”

The authors find that RT increases (somewhat non-monotonically) with the difference in
choice-probabilities from the optimal and heuristic models. But this could come about in
many ways other than parallel computation. For example, if the models diverge for
particular trials that are systematically slower. My guess is that this is the case. In
particular, I think that participants are likely slowest when they are required to combine two
pieces of information to make a successful decision (eg. energy and probability). This would
occur for low probabilities when energy is low (1) or for high probabilities when energy is
high (5). These are also conditions when model predictions would diverge most, since the
probability assessment gets overridden in the optimal model by the proximity to the energy
boundary. In order to address this, the authors could plot RT as a function of conditions,
which, along with the posterior predictive checks described above, would test this
alternative explanation for the RT relationship (if the relationship is explained by similarity
across task conditions, it is consistent with my interpretation). Clarifying this point seems
critical to interpreting data from the neural GLM, since the authors include both optimal and
heuristic terms as modulators under the assumption that they are separately represented in
the brain.

3) As far as I can tell, the fMRI GLM does not include choice (forage/wait), but the other
variables in the model are highly correlated with it. I can certainly understand why the
authors would be reluctant to include choice along with the other terms, given that the input
correlations in the model are already high (also, as a side point, it would be useful if VIF
were listed instead of max pairwise shared variance). However, an interpretation of the
current model may be that a large swath of the brain responds to the decision to forage...
and that, through noise and thresholding, the authors have identified separate clusters for
optimal policy and probability of foraging success regressors. To this effect, assuming that
correlations with forage/wait decisions are high, I would recommend that the authors first
do a whole brain analysis to identify regions responsive to choice (which is presumably
informed by both measures), and test the encoding of each model based term within the
ROIs responsive to the decision itself. It would also be useful if the authors could test
whether representations of the terms are significantly different from one another through a
normalized subtractive contrast.

4) One important point made by the authors is that the conflict signal that they identify in
ACC/DMPFC is conflict across different policies (optimal/heuristic) rather than a signal
related to overall decision difficulty/uncertainty. However, the authors do not include the
best possible decision difficulty regressor in the model, and given the recent heated debate
on the issue, it seems important that the authors clearly show that they are explaining
variance beyond simple choice difficulty. If the authors want to make claims about
“controller conflict” above and beyond simpler measures of decision difficulty, they should
estimate choice difficulty using the best-logistic regression model and include this term as
regressor in their GLM. Given that the “probability of foraging under optimal policy”
regressor also loads on a similar region, it would be good to know something about the
overall rates of foraging (are foraging decisions or wait decisions more frequent?)



4) As in the behavioral analyses, the authors have portrayed the optimal policy as binary
and the heuristic one to be continuous. I see no reason why this should be the case, and I
wonder to what extent the differences in the variance explained by these two terms could
simply be explained by this analysis decision. If the authors are looking for a representation
of an optimal decision variable, it seems that they should include the difference in projected
starvation for forage versus stay decisions in the neural GLM, rather than a binary variable
that reflects the optimal choice.

5) The authors should include a methods section in the main text that conveys the
information necessary to interpret the results.

Minor comments

The authors describe the process of arbitrating between the heuristic and optimal strategies
as depending on the difficulty of implementing the heuristic strategy. However, it seems
equally valid (and perhaps more intuitive) to say that the heuristic strategy is abandoned
when it provides uncertain information. This interpretation is completely in line with other
theories of how the brain combines information from segregated modules in other domains
(eg. combining RL with working memory, combining model-based with model free
information).

The authors seem to interpret the model fits more in terms of their global meanings
(optimal versus heuristic) and less in terms of what aspects of the data they actually
capture. I think that the paper would be much easier to understand if they focused on the
latter, rather than the former.

Line 21: easy-to-?

Figure 2: This figure would be much improved it if spent less real-estate on which models
were fit and more on how well they fit. For example, showing the heuristic, optimal (using
the correct DV, as described above), and heuristic and optimal models along with posterior
predictive checks to show how they fit the actual choice curves (figure 2&supplementary
figure 1) would provide more insight into the modeling than all of these bar graphs.

Figure 4A, right: I have no idea what the x-axis is here. It is labeled “prescriptions of the
optimal policy” but surely that is the y-axis. As far as I understand the implementation of
“optimal policy” it was binary, and thus the lines seem somewhat superfluous. Though, as I
said above, I think that a continuous decision variable would be more reasonable.

Line 288: It seems that the neural results would be easier to digest if there were some
description of the GLM that was used to interrogate the imaging data at the beginning of
this section.

Line 293: Maybe I missed something, but it is unclear to me why the probab

Given recent work showing slightly elevated family-wise error rates when using the multiple



comparisons techniques described by the authors 1, it would be good if the authors could
validate clusters using a permutation testing procedure 2.

Supplementary Figure 1: this information should be included in the main text.

1. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: Why fMRI inferences for spatial
extent have inflated false-positive rates. Proceedings of the National Academy of Sciences
113, 7900-7905 (2016).

2. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional
neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1-25 (2002).

Reviewer #3 (Remarks to the Author):

This manuscript is concerned with a ‘homeostatic’ sequential decision making task and its
underlying neural correlates. As such there is some novelty in both the decision models and
neural findings. Particularly, the potential of having interdependent but partly distinct
computations of more heuristic and more optimal processes emerge over time during
sequential choice, with more optimal behavioral flexibility being driven by ACC, is exciting.
It also adds to the current debate over the nature of value signals in foraging-like decision
tasks, rejecting a view of one unitary factor driving activity.

However, the framing and interpretation of results are not always straightforward and
should be improved upon. Furthermore, specifically the description of their findings in
regards to the current literature are quite selective and convoluted, neglecting to highlight
some major differences between the current study any the majority of other decision tasks,
while also trying to adopt terminology from many different approaches, presumably in an
attempt to keep many different factions happy. While I also had some methodological
concerns, about half of my comments relate to the framing. Therefore, Points 1-6 and 8
should all mostly be addressable through textual changes i.e. improvement in framing. To
help with this, I tried to point out specific sections in the manuscript that could be
reframed/reworded (These specific recommendations also makes the review appear
unusually long)

Surprisingly the authors appear to argue a heuristic and optimal policy is always computed
in parallel, but not sufficiently address the question of why to even bother with heuristics if
an optimal computation is possible. The alternative explanation that optimal policies are
only computed selectively, particularly when heuristics fail and thus in part ACC being more
engaged when there is a need for optimal computations is wholly compatible with their
results and more likely.

Furthermore, their conflict or “difficulty” representation effects can be described equally well
with a more neurophysiologically grounded explanation, explaining decision making using
concept such as evidence accumulation and mutual inhibition, without having to resort to a
representation of a psychological experience of conflict or explicit signaling of difficulty
itself. More importantly, there are many different aspects of the task that could be labeled



difficulty or conflict including decision horizon, and therefore a description of the results in
terms of absolute value differences or choice uncertainty/value driven choice probability
would be more appropriate.

(More detailed comments below)
Major Comments:

1) The current manuscript is relatively unusual within the decision domain, as value is solely
based on whether participants “survive” a series of five sequential decisions after which they
receive a fixed point independent reward. As such the point of the task is to maximize the
probability of “survival” or homeostasis rather than maximizing the overall number of points
in the experiments, as is normally optimal in other decision experiments. Therefore it is
tricky to compare this studie’s value regressors with the ones from other studies, which
should be sufficiently highlighted. Furthermore, it might deserve a mention in the title and
definitely in the abstract. The task is furthermore lacking some of the sequential elements of
other experiments as participants accumulate points at every step. However, the authors
note that already in the manuscript.

2) As mentioned above, the authors should change the language to follow more of a value
terminology, as this is closer to the data in a value based decision task and allows for the
use of more mechanistic descriptions related to increasingly detailed models of decision
making as an evidence accumulation process. E.g. value, choice probability and uncertainty
make more sense than decision difficulty as the later is a meta process/judgment beyond
the decision process itself. This is important as the circuit is presumably trying to make a
decision, and adapt optimally when a heuristic value estimate is insufficient.

Related to this the concept of comparing heuristic with optimal in parallel every trial is
strange. Why should the agent bother with a heuristic if it eventually compares it the
optimal anyway? At some point in the manuscript this statement is qualified and it is
suggested that the optimal is partly conditional on the heuristic, but it is not nearly clear
enough in many parts of the manuscript (see also point 9).

Related to this, the authors have a quite contorted description P17, L282-4 “This provides
crucial evidence that both heuristic and an optimal policies determined participants
behavior, with the relative contribution of the two depending on the difficulty or reliability of
the heuristic”. However, the heuristic isn’t more difficult, but rather does not guide behavior
in one way or other, i.e. there is no clear value in either response. A better description of
the results would be that lower order decision uncertainty or lack of reliability forces the
heuristic system to engage other systems and compute higher order value instead to
increase choice certainty and also accuracy.

Additionally, the ecological approach overall suggests that the animal is trying to gather
things of value, and ensure survival. Therefore, the terminology should be guided by value,
not split into different forms of difficulty, particularly as the whole concept of conflict and
difficulty is that it is an atomic unit that can’t be split.

Furthermore to prove the psychological phenomenon of difficulty representation, one would



have to show any changes that are commonly associated with difficulty, such as increases
of reaction time through non-value related manipulations, induce equivalent effects (unlikely
given Stoll et al. [2016, Nature Communication]). If that is not done, the resulting neural
findings should more accurately be described as value and certainty related, as that is what
is being explicitly manipulated. Additionally, there is no point in using the term difficulty,
which is meant to be a catch-all for many different factors combined in just how hard it is
and then discuss only one bit of the task. If one talks about difficulty it has to be overall
difficulty of doing the task or nothing.

Looking at the text itself, specifically, P21 L363 “Difficulty was represented in several brain
regions...” is a fallacy of assuming representation from a correlation. More specifically, only
because the signal was larger when no quick clear decision could be made that doesn't
mean there is a representation of difficulty. Any competitive system should be sensitive to
value similarity and uncertainty. Also, it isn‘t the difficulty of the heuristic policy.

3) Furthermore, I think the concepts of competition and accumulation of evidence as well as
decision thresholds are far better suited to describe the data. In other words, if the agent
hasn’t made a decision quickly with a heuristic because there is no clear value or a lack of a
clearly superior option, additional mechanisms such as dACC are engaged. Presumably,
although I couldn‘t find it in the manuscript there is also an effect of reaction time in ACC,
as many studies have found decision length associated activity with other factors riding on
top. This could then mean that ACC is increasingly active when heuristic certainty is low and
therefore decisions aren’t made quickly (therefore also a larger effect of heuristic on
reaction time), eventually coding the relative gain from using a better understanding of the
task structure (task model etc). This is encapsulated both by the neural effects of the
difference in choice probability between heuristic and optimal, and the overlapping increase
by optimal policy value. This in itself is potentially a very interesting finding if described in
those terms.

Related to the idea of overlapping or interrelated accumulation processes, the repeated
statement of Parallel policies is slightly misleading e.g. P20 L336-8 “computed in parallel-
although when they are conflicting, only one of them can be implemented. ™ As outlined
above (and further in point 4) it is very tricky to show parallel processes and I think the
data can be explained without going hard on the idea of always both policies being
computed.

Furthermore, related to both aspects of this point P23 L433-5 "Brain activity associated with
conflict between heuristic and optimal policies points towards a mechanism of parallel
computation”

Could be more mechanistically described as possibly competitive value/decision evidence
accumulation processes, although there is also the possibility of one integrated process that
changes over time as additional types of information get fed in.

P20 L340-2 “The higher the decision difficulty of the heuristic policy the more the optimal
policy was applied...” Could be rephrased as rather saying when neither option is clearly
more valuable on a heuristic level, then a more sophisticated computation is made/ a more



optimal policy is computed.

4) More generally, the authors substantiate their parallel processing claim mostly on one RT
analysis. There is weak evidence for the pure “conflict” of two strategies rather than a
process or interrelated processes, which change over time and between trials. Rather it
could be an increasingly sophisticated computation over time, possibly with an increasing
probability of optimal policy computation being initiated meaning computations aren’t
completely sequential either.

Independently of that concern, showing truly parallel computations rather than an averaged
mixture is chronically difficult to prove and participants might just have been additionally
slowed in parts where the two diverge because that corresponds to the parts of decision
space that is misfit or because, although both processes aren’t parallel the optimal policy is
increasingly more likely to be computed and therefore slow down decisions when the
heuristic policy is likely to fail (e.g. long horizons or large dot ranges making p-forage
success a poor substitute).

Additionally, it looks like the effect in figure 4 B isn't linearly increasing but only to a point
and then decreasing again, suggesting it might be driven by another potentially somewhat
related variable like horizon, energy level or trial number in forest. If the authors want to
prove truly parallel computations, they should resort to a method with higher temporal
resolution or else settle with talking about interrelated, but not necessarily parallel
computations.

5) Optimal policy effect in ACC/MPFC is interesting as it suggests positive value related
effects do exist in ACC, particularly for the more sophisticated computations. This is
important, as the rest of the manuscript reads a little as if there was no positive value
effects in ACC. Furthermore, the lack of a strong heuristic difficulty effects or other
definitions of difficulty such has horizon length should be mentioned.

6) The negative abs. value difference/ choice probability effects based on p-forage success
in perigenual ACC and vmPFC are quite surprising given a wealth of studies showing positive
value effects in vmPFC. This should be at least discussed, as it is quite unusual to have this
bit of medial prefrontal cortex not activate with value. Furthermore, when looking at the
supplementary material, confusingly it says negative p-foraging success, which is not quite
the same as choice difficulty using p-foraging success, which was used in the regression.
This should definitely be clarified, as a negative effect of foraging success is quite different
conceptually than a negative abs. value difference effect/choice p effect.

7) It is a bit strange that p forage success is such a strong driver of the behavioural effects
and very close to optimal. It means that the other aspects of value feeding into overall
survival probability do not have very large range. From the manuscript it wasn't clear
whether there was just little variance in some of the other factors, such as magnitude. It
might be nice to see a bit more of the schedule they ran, such as magnitude spread and
variance etc..

8) Title should be changed to more appropriately reflect the content of the study (see also
comment 1). At the very least, it should become apparent that the study is a sequential



decision task. "Emerging computations of heuristic and optimal decision value in the human
cortex” or “"The neural signature of heuristic and optimal decision value in homeostatic
sequential decisions”, might convey this point a bit more (both are only meant as
illustrations not firm suggestions. I do think however, the title should be less general)

9) There is an interesting analysis relating to heuristic choice certainty modulating the use
of heuristic vs optimal model. However, this suggests rather what I discussed above, a
conditional computation of higher order value if and when necessary, not a purely parallel
computation. This should be elaborated on and maybe an equivalent neural analysis should
be run.

Also, a bit more basic concern, if true, is that it looks from the supplementary methods that
an individually fit softmax is used in order to derive the difficulty of the heuristics in order to
scale the value of foraging success. If this is true choices are used twice for fitting, making
statistics biased and potentially invalid as the difficulty adjustment upscales the part of p-
foraging success with the largest changes in decision based on p-foraging success. (See P12
L295 in supplements)

This would also explain why the scaling with difficulty is positive. Conceptually, I would have
expected the opposite, i.e. less use of the heuristic information if it is uncertain, relying
instead on the optimal policy, while the opposite appears to be the case from the formula.
However, I am not so sure about the difficulty effect being positive, although this is how the
formula is written as the authors explicitly state the more intuitive correct sign of effect P20
L340-2 “The higher the decision difficulty of the heuristic policy the more the optimal policy
was applied...”

10) I think it would be important to run RT and decision regression with all the
important/potentially relevant effects, plotting all of them on a group Ivl (mean and error
bars). This would be ‘difficulty’ (abs value difference) for heuristic and optimal and
‘difficulty’ of heuristic vs. optimal on RT and all the potential heuristics for the logistic
regression on the decision data. This would give the reader a better sense of the data and
how the difference of policies, not the main effects separately, drive RT and the relative
effect sizes for aspects of the task that could combine to be the thing going beyond the p-
forage heuristic. It might furthermore, be useful to bin the data according both optimal and
heuristic separately (e.g. separate lines for different optimal bins and points on x axis for
heuristic) to show the different effects and potential scaling of effect size (see point 9).

11) The fMRI part of the manuscript is a bit thin. For example, if they believe the ACC in
involved in implementing the optimal policy, shouldn’t they run a PPI with the value of the
optimal policy to test whether it functionally connects more strongly to other value related
areas when it tries to steer the system towards more optimal policies?

Minor Comments:

A) P21 L375 “found neural representation” Isn’t this the scaling of the signal by value or a
transfer of the same into p forage success? It is unusual to talk about a scalar value signal



as a representation, as that might have come from a pattern analysis etc.. Therefore, I
would suggest just describing it as “IPS and frontal pole signals scaled/increased with
heuristic value/p-foraging success”. Also it should be discussed why this positive effect
exists, together with negative effects related to overall survival probability in frontal pole in
the forest phase (called starvation probability).

B) I am not sure whether it is mentioned in the manuscript but I couldn’t find it. Do subjects
need to count the days by themselves or is this cued somehow?

C) P20 L357 ™ conflict-related brain activity” a bit empty phrase. Also, I don't think the
conclusion of parallel rather than interrelated can be proven.

D) How does the pregenual cingulate/vmPFC effect compare to McGuire and Kable’s Nat
Neuro paper, as they had a simple sequential paradigm and argued for positive value effects
in these regions.

E) Both optimal policy positive signals as the other effect are as much in the ACC as other,
yet one is called MPFC and other ACC in figure 5, although this is better in the figure
legends.

F) As a general note, the authors should consider larger delays between events. As it is, it is
impossible to dissociate some of the stages temporally and overall the timing was rather
crowded. For their current analyses it is ultimately not too bad, as the important decision
event has information that isn‘t presented before, but other analyses would have been
possible with a bit more generous spacing.

G) Participants are strangely bad (Figure 2). Even when they should be at 100% in bad
weather for foraging they are essentially random. Is this because the overall p survival is so
low that they don't care? Might be useful to plot the p survival for good and bad weather by
energy state as the temperature might be effected by the value and fMRI behavioural data
might have a higher temperature accentuating that modulation even further..

H) How likely is the heuristic strategy to give higher p-choice estimates than the optimal?
Furthermore, is, after fitting the softmax etc one strategy more likely to be more certain the
majority of trials? If so, then the unsigned difference converges with a signed variant and it
is therefore important to know the degree of correlation between signed and unsigned
within every subject.

I) They claim that macroscopically different brain regions encode the two policy but never
show the respective other policies effect size in the regions they are referring to making it

hard to judge that statement P17 L288-9.

J) The abstract has an incomplete sentence. It says “resort to easy-to-heuristics”



Reviewer #1 (Remarksto the Author):

Korn and Bach study human choices and neural signalsin a deep, sequential foraging problem.
They find evidence for contributions of both simple heuristics and deeper, mor e exact
computation; then evidencein reaction times and BOL D that speaksto their competition and
the arbitration between them. | found thisto be aterrifically interesting and promising study.
Thetask and modelsinter sect issuesthat have been studied in a number of other domains
(typically, lear ning tasks) but offer a fresh approach in a number of respectsthat provide both
conver gent and new evidence and approaches, and promise for followups. That said, the
substantial ambition of this project is also accompanied by equally substantial challenges and |
think thereisa certain overreach asyet. Without diminishing my enthusiasm for the project, |
have two major concerns about the paper, one philosophical and onetechnical. | very much
hopethe authors ar e able to make some headway on them so asto deliver on the promise of the
study.

Thank you very much for the overall positive evaluation of our study. Please see below for details how
we addressed your concerns.

1. | donot think enough data are yet presented to makethereader confident in thearticle's
basic framing that the results are best understood as the combination of two discrete
strategies—one simple heuristic plusthe optimal policy. Asthe authorsare no doubt well
awar e, many different decision variables and approximate decision variables will be highly
mutually correlated. Indeed the optimal policy (and itsother cousins) isitself a deterministic
(nonlinear but quite possibly monotonic) function of the heuristic variables probability, gain,
and energy. The probability heuristic and the optimal policy might be thought of astwo
endpoints spanning the range between sloppy and exact solutions, which might in part
explain their successtogether.

We entirely agree that the heuristic policy and the optimal policy could be regarded as two possible
endpoints of acontinuum and that this is one reason why a mixture between them explains behavior in
our task. We are confident that after adding new analyses, we can now firmly conclude that no linear
combination of two candidate policies and variables explains the data better than the two discrete
strategies highlighted in the previous version. Although it is theoretically possible that the neural
system computes a yet unknown decision strategy that directly reflects this mixture, such strategies do
not follow from the given task variables in an obvious manner. Any such model would thus require
higher complexity than the linear combination of strategies considered here.

First of all, we now explicitly mention this notion in the discussion: Page 21.:

Participants’ choices were thus explained by two metric that can be regarded as points falling
on spectrum between sloppy (but easy) and exact (but difficult) solutions.

The reviewer expected a“nonlinear but quite possibly monotonic” relationship between the optimal
policy and the different heuristics. To directly address this, we now plot the optimal policy (i.e., the
average value differences between the two choice options according to the optimal policy) for each
heuristic across all trials (Fig S1). As expected by the reviewer, monotonic relationships emerge for
several heuristics—notably for the heuristic that explains behavior best (i.e., the probability of
foraging success). Still, the optimal policy isnot at all identical with any of the heuristics, which is
aso mirrored in a quite reasonable range of average shared variances between the optimal policy and
the other candidate variables (with a maximum of 0.37; shown in Fig S1). For some heuristics, no
strictly monotonic relationship emerges (i.e., energy states, days past, changes in states).
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Fig S1. Relation of optimal policy and heuristic variables

Shared variance between all 10 candidate variables and relationships with the optimal policy
(according to the normative horizon of five time steps) with all 9 heuristic variables
considered. Data are binned and arranged in the same way as below in Figs S3 & S4, which
show the empirical relationship between data and fitted model. “Weather type” and “wins-
stay-loose-shift” are binary variables. See Table 1 for a list of all variables.



A few thoughts on this point:

e |’'m not crazy about the stepwise model-building approach (first greedily lockingin p asthe
best among a set of possible candidates, then adding other variables only together with it). It
certainly does not demonstrate that the best combination of any two variablesisthe pair it
finds, nor that two isbetter than three, etc. Indeed given that all of the candidates are highly
correlated | wouldn't necessarily expect to be able to find a unique combination of variables
that best explained the behavior better than all other combinations. It is praobably just too
much to expect BIC etc. to adjudicate among variablesin thistype of situation.

Thank you for giving us an opportunity to expand on this point. Indeed, the stepwise approach,
although motivated by a priori considerations, is not guaranteed to expose the best combination of
policiesin the set considered. To address this point, we now test al possible pairs of the 10 policies
considered, resulting in 45 models. We show that no pair of two policiesis better than the model that
includes the optimal policy and the winning heuristic (i.e., probability of foraging success). The
finding that the original model winsin two independent samples (using both fixed and random effects
model comparison procedures) lends robustness to its explanatory power for behavior in our task
(Tables S1 & S2). Thus, we can now firmly conclude that within the set considered, there exists a
unique linear combination of variables that best explains behavior, and thisis the combination
previously identified in the step-wise approach. We mention this point in the results section (page 12):

The behavioral model that included both the probability of foraging success and the optimal
policy also won in an extensive model comparison across all 45 pairs of candidate variables
(Tables S1 & S2).

We specifically tested for interactions of the most promising heuristics with the winning heuristic
and found that the model including p foraging success and the optimal policy clearly outperformed
these interaction models (Table S3). Page 12:

Additionally, we made sure that models including interactions between the most important
heuristics did not provide a better fit than the model with the optimal policy (Table S3).

We also report analyses testing whether alinear combination of three variables provides a better
explanation of participants choices than the combination of one heuristic (p foraging success) and the
optimal policy. A comparison among models including these two policies and any of the remaining
eight candidate models did not provide decisive evidence for awinning model among these eight
models (especially when considering protected exceedance probabilities and both samples, Table S3).
Also, when testing the most promising “three-variables-model” (p foraging success, optimal policy,
and energy state), we did not find decisive evidence for this model being better than the winning “two-
variable-model” (p foraging success and optimal policy; Table S3). Page 12

In the two samples tested here, there was no decisive evidence that a model with three
variables outperformed the model with the probability of foraging success and the optimal
policy (Table S3). We deem it possible that specific selections of different trial types could
identify the use of more complicated models, such as models including a variable for energy
states.

To mitigate concerns of high correlations between the different variables, we added a matrix plot
with the average shared variance in R? across participants (see Fig S1 above). The highest shared
variance was between the newly included expected value (EV) and the possible gain magnitude (0.84).
The second highest shared variance was between two variables, which anyway did not explain
behavior well and were a priori rather unlikely and do not relate to the optimal policy (changesin
states & win-stay-loose-shift). Shared variance between the probability of foraging success and the
weather type was 0.51. All others were well below 0.5.

We now emphasize in the introduction that we specifically wanted to test whether participants
follow an optimal policy. The prominence of the winning heuristic, probability of foraging success, is
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underscored by the fact that it performs second-best in simulations (after the optimal policy). Pages 3-
4:

Here, we asked to what degree humans rely on optimal versus heuristic decision policies,
and how these are neurally computed, during a sequential decision-making task that
challenges decision-makers to integrate over an extended horizon of multiple probabilistic
states. We hypothesized optimal policy computation in multimodal regions of the medial
prefrontal cortex (MPFC) known to integrate economic decision variables and to evaluate
prospective outcomes '®'". To test the interplay between heuristic and optimal policies, we
developed a novel sequential choice task which embodied a Markov decision process'® (Fig
1A).

Additionally, we now plot data according to the predictions of al 10 relevant variables to provide
further support that the probability of foraging success and the optimal policy best explain behavior.
See below for Fig 2 for the main variables of the fMRI sample and Fig S3 for the other variables. See
Figs S2 & $4 for the same plots with data from the behavioral sample.



Fig 2 for the two main variables:
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Fig 2. Choice data of the fMRI sample

(A) Model comparisons show that the probability of foraging success was the best single
predictor of participants’ behavior. Main plots depict fixed-effects analyses using log-
group Bayes factors based on Bayesian Information Criterion (BIC) relative to model #1.
Insets show random-effects analyses using protected exceedance probabilities (EP) with
the winning model marked. See Table 1 for a list that specifies the task variables and
thus the models tested here.

(B) Crucially, the a priori optimal policy according to a time horizon of five days best
explained the remaining variance in participants’ choices.

(C) Posterior predictive checks show that the winning model, which includes the probability of
foraging success and the optimal policy, captures the empirical relationship between
participants’ average choices and the probability of foraging success. Markers sizes
which scale with the average number of trials contributing to the respective data points.

(D) Posterior predictive checks show that the winning model captures the relationship
between participants’ average choices and the optimal policy according to a horizon of
five days (binned value differences of foraging versus waiting).

Data are binned. Error bars are standard errors of the mean (SEM). In several cases, error

bars are smaller than the marker sizes. See Fig S2 for the same plots with data of the

behavioral sample. See Fig S3 & S4 for posterior predictive checks of the winning model
with choice data split according to the 8 other heuristics and combinations thereof, and for
parameter estimates of a full model including all candidate variables. See Fig S5 for further
posterior predictive checks of the winning model with choices split jointly according to the
energy state and the probability of foraging success or the weather type. See Fig S6 for
comparisons of different time horizons. See Tables S1, S2, & S3 for further model
comparisons.



Fig S3 (and Fig $4) show all other 8 variables:
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Fig S3. fMRI sample: Posterior predictive checks according to all heuristics and
parameter estimates for full models including all candidate variables

(A) Posterior predictive checks show that the winning model, which includes the probability of

foraging success and the optimal policy, captures the empirical relationship between all
other 8 other heuristic variables. “Weather type” and “wins-stay-loose-shift” are binary
variables. See Table 1 for a list of all variables.
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See Fig S4 for the same plots for the behavioral sample.



See Fig S5 for more plots, which show data split according to two heuristics.
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Fig S5. Both samples: Further posterior predictive checks according to two combined
variables for models of choice and RT data.

(A & B) Split according to energy state and probability of foraging success.

(C & D) Split according to weather type and energy state.

See legend of Fig S3 for more information on the logic of these plots. See Fig 2.



Further, there areanumber of promising heuristic candidatesthat weren’'t considered in the
first wave (but are only measured, if at all, with p already in the model). Theseinclude the
horizon-1 optimum, or the EV, probability times gain, both of which arerelated to the
probability but also form more of a continuum with the optimal policy. Low horizon myopic
optimal policies seem particularly nice options, but may not have fit well since they were only
tested with p (the ultimate myopic variable) already in the model. A possible hypothesisisa
variable depth optimization story, ranging between (or combining) horizon-1 and deeper
solutions; thisisalso similar to therecent Keramati and Dayan study.

Thank you for these insightful suggestions. We now added the horizon-1 optimum and the EV in to
the model space and also tested them separately (without the probability of foraging gainin the
model). The horizon-1 optimum performed decisively worse in both samples (see Fig 2 above).

Please note that in accordance with your later comment we corrected the cal cul ation of the
optimal policies (see below). Please also note that in response to one of your later comments and to a
comment by reviewer 2, we now use continuous versions of the correctly calculated optimal policies
according to different time horizons (i.e., the value difference between the two choice options).

This aso addresses in part the “variable depth optimization story:” The time horizon in our
task isfixed and finite. That is, participants have to first consider atime horizon of maximum 5 time
steps and should reduce their horizon with each time step passed. Thisis adjustment of the time
horizonsis exactly what the corrected optimal policy captures mathematically and what explains
participants behavior.

We explicitly compared different time horizons and found that a horizon of 5 steps explained
behavior best. Results section (pages 12-13 and Fig S6).

Participants’ choices took five future states into account

Using the optimal policy implies computing future states. We performed detailed analyses to
determine how many days participants looked ahead in the task. Participants were
incentivized to consider a time horizon of five days: although in the main task they would
often not finish five days (to enhance fMRI design efficiency), they were instructed that their
pay off depended only on a subset of ten forests from the main task which they would then
have to complete outside the scanner. When comparing models with horizons between one
and seven time steps, we found that that participants’ choices were indeed best described by
a time-horizon of five days (Fig S6).
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Fig S6. Both samples: Model comparisons for different time horizons of the optimal
policy

Follow-up Bayesian model comparison suggested that participants used the time horizon of
five days that was normative in our task. Main plots depict fixed-effects analyses using log-
group Bayes factors (based on Bayesian Information Criterion, BIC) relative to model #1.
Insets show random-effects analyses using protected exceedance probabilities with the
winning model marked.
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We now discuss the findingsin our sequential decision-making task in relation to the results of
Keramati et al. in alearning task with three steps. We think the intriguing study by Keramati et al.
highlights at least two important points with respect to our findings: First, the considered time horizon
of the optimal policy islikely to be flexibly adapted under different task constraints. Second, the
balance between optimal and heuristic solutions can likely be shifted. Page 22:

Notably, participants did not simply resort to looking just one time step ahead, which would
have been clearly suboptimal given that they finite time horizon was five steps in our task. A
recent study by Keramati et al.*® demonstrated that humans adaptively adjust the depth of
planning and the reliance on habits to in a three-step learning task—with time pressure
leading to shallower planning. We hold it likely that imposing different time constraints or
varying the number of time steps in our task will alter the time horizon considered and shift
the balance between heuristic and optimal computations.

The EV (probability of foraging gain * gain magnitude) had worse explanatory power than the
probability of foraging success. The two variables were not very much correlated with each other
acrossthetrials used in our study (shared variance below 0.5; see Fig S1). Conversely, EV was quite
highly correlated with the possible gain magnitude (shared variance of 0.84). This somewhat limits the
possihility to separate the influences of EV and gain magnitude. We argue that thisisless critical
given that the probability of foraging gain explained behavior better than these other two variables.

e Thisisavery difficult problem and | don’t have great advice for the authorshow to
overcomeit. It is probably too much to expect that it be overcome completely, and to some
extent it can also be finessed by mor e judicious, cautious, inter pretation and mor e caveats.
But | think one step that absolutely needsto betaken isto more concretely demonstrate how
the choice behavior would change as a function of some of these different candidates, and
how (and whether) they can be distinguished in choice space. The plots of optimal vs. actual
policiesin Supp fig 1 area start, but it doesn’t make clear how the behavior can distinguish
these from the more myopic heuristics, or all the horizons from each other. How many of the
trials actually distinguish these?

We thank the reviewer for encouraging us to provide a better evaluation of all candidate models. We
now provide plots for behavior binned according to all candidate variablesto allow visual evaluation.
The size of the data points in these plots depicts the number of trials within the different bins, which
provides an informal indication of statistical power across the different conditions and may guide
follow-up studies. Importantly, these plots also contain posterior predictive checks for the winning
model (see Figs 2 & S3 above for the fMRI sample and Figs S2 & $4 for the behavioral sample).

To be more judicious and cautious in our interpretation, we mention the caveats raised by all
reviewersin the third paragraph of the discussion section. Page 21.

We did not find evidence that any linear combination of two candidate policies and variables
explained our choice data better than the probability of foraging success and the optimal
policy. Although it is theoretically possible that participants use a yet unknown decision
policy, such policies do not follow from the given task variables in an obvious way. Any such
model would thus likely require higher complexity than the linear combination of the
probability of foraging success and the optimal policy. Our analyses did not provide decisive
evidence for a more complicated model. We deem it an interesting question for follow-up
research whether a different selection of trials or variations of our task design would result in
more (or less) complex models being identified. For example, it could well be that more
challenging tasks would lead participants to abandon the optimal policy in favor of a
combination of two heuristics (such as a combination of the momentary probabilities of
foraging success and the current energy state).

e | of courseunderstand the points about reaction times and fMRI correlates of the different
decision variables, which provide some (quite tantalizing) support for the authors
interpretation. But again in the context of alarge family of highly correlated candidates, and
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without more exhaustively comparing the possibilities and more car efully demonstrating
their separability in data space | think it's hard to make too much of different neural
correlatesand RT effects.

As mentioned above, the correlations between the different candidates are within reasonable ranges
that are common for (neuroimaging) studies on decision-making and learning (e.g., Kolling et a.,
2014, Neuron). We now provide more exhaustive comparisons of both choice and RT datain terms of
statistical analyses and visual depictions (see above). To be rigorous, we only include variablesin the
neural analysesthat are robustly related to choice or RT data.

| would note that the RT issue cutsboth waysin the paper —on the one hand we are told that
only parallel computation can explain the RT choice difficulty effects (I think thisisan awfully
strong conclusion to draw so categorically, though it is certainly also a neat piece of evidence and
a novel approach) —but on the other hand we aretold that heuristic useisfaster, which should
not betruein afully parallel model. | think it’s quite likely that some progressive computation
model like Keramati and Dayan’s, where approximations arerefined if some featur es of the
problem suggest that deeper search isworthwhile, might in principle be able to explain both
results.

The reviewer’ s suggestion to look more closely into RTs has hel ped us to elaborate on this point. After
correcting the computation of optimal policy, we find that RTs are actually quite monotonically
related to conflict (way more so than our previous analyses suggested). Plotting RTs depending on the
heuristic (probability of foraging gain) reinforces thisidea (see Fig 3 below for the fMRI sample and
Fig S8 for the behavioral sample): RTs are highest when the probability of foraging gainis0.5, i.e.,
when uncertainty about the outcome is highest. RTs decrease as the probability of foraging gain
approaches 0.1 or 0.9. This may suggest that the heuristic itself reflects the “feature(...) of the problem
suggest[ing] that deeper search isworthwhile.” Low (or high) probabilities of foraging gain seem to
entail a deeper search strategy, which relates to the progressive computation in the line of the results
by Keramati and Dayan.

We now are considerably more careful in our conclusions and use the more general term
“integrated computation” instead of parallel computation throughout the manuscript. Please note that
following a suggestion by reviewer 3 we now use the terms “choice uncertainties’ and “discrepancy”
instead of “difficulties’” and “conflict.”

Results section (pages 13-16):

Reaction times increased with choice uncertainties of the heuristic and optimal
policies

Models of choice data indicate that participants used both a heuristic policy, i.e., the
probability of foraging success, and the optimal policy. Consequently, we predicted that
reaction times (RTs) should reflect the choice uncertainties associated with these two
variables. Indeed, RTs were slower when choice uncertainties were high (see Fig 3A-D for
the fMRI sample and Fig S8A-D for the behavioral sample, see Table S4 for statistics). For
example, RTs were highest when the probability of foraging success was 0.5 and thus
neither foraging nor waiting was clearly favored by this metric. Choice uncertainties were
quantified on the basis of the mean parameter estimates of the choice models from the
behavioral sample. For the fMRI sample, choice uncertainty calculations thus rely on
independent data.

Choices based on the heuristic were faster than those based on the optimal policy
Given that participants’ choices seem to integrate heuristic and optimal policy computations,
the question arises how these computations relate to each other. A first straightforward
prediction is that choices following the heuristic policy should be faster than those following
the optimal policy, if the heuristic is easier to compute than the optimal policy. In many trials,
both variables made the same prescriptions and thus these trials cannot be used to
disambiguate choices made according to one or the other variable. Therefore, we identified
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the subset of trials in which the two made opposite prescriptions (i.e., trials with opposite
choice probabilities according to the mean parameter estimates of the choice model from the
independent behavioral sample). Within this subset, mean RTs for trials in which participants’
choices followed the probability of foraging success were faster than mean RTs for trials in
which choices followed the optimal policy (mean difference + SD: fMRI sample: 90.7 + 109.2
ms; 1(27)=4.40; p<0.001; behavioral sample: 147.5 + 96.2 ms; 1(20)=7.02; p<0.001; choice
probabilities did not differ between these trials; both p’'s>0.4).

In addition, a linear mixed effects model of RT data provided evidence for a relatively
more pronounced influence of the choice uncertainty of the heuristic compared to the choice
uncertainty of the optimal policy (Table S4). That is, choice uncertainty under the heuristic
policy related more strongly to RTs than choice uncertainty under the optimal policy.

Reaction times increased with discrepancies between the heuristic and optimal
policies

Integrated computation of heuristic and optimal policy makes a second crucial prediction for
RT data: Decisions should take longer when the two variables make discrepant prescriptions.
For example, RTs should be slower when the heuristic prescribes waiting but the optimal
policy prescribes foraging or vice versa. We quantified these discrepancies between the two
variables as the absolute differences in choice probabilities (which were based on the mean
parameter estimates of the choice model from the independent behavioral sample). Indeed,
decisions were slower when discrepancies between the variables were larger. This effect
was present in addition to influences of choice uncertainties (see Fig 3E for the fMRI sample
and Fig S8E for the behavioral sample).

Overall, log-transformed RT data were well described by a linear mixed effects model
that included the heuristic and the optimal policies themselves, their associated choice
uncertainties, and the discrepancies in the choice probabilities of the two policies (Figs 3 &
S8; see Figs S3B & S4B for the parameter estimates of the full RT model fitted on the basis
of individual participants and for Fig S5 for further posterior predictive checks; see Table S4
for results obtained from a linear mixed effects model of log-transformed RTs, which were
qualitatively the same as results on untransformed RTs). Motivated by this model of RT data,
we also tested whether interactions of choice uncertainties or discrepancy influenced choices
but found no decisive effects (Table S3).
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Fig 3. Reaction time data of the fMRI sample
We tested the relationship between RTs and variables associated with the heuristic and
optimal policies. Since the probability of foraging success emerged as the best predictor of
participants’ choices, we only included this but not any other heuristic in the model of RT
data. RTs relate o (A) the probability of foraging success and also weakly to (B) the optimal
policy. Importantly, RTs become slower with (C & D) increasing choice uncertainties of these
two variables and (E) higher discrepancies in their prescriptions. Posterior predictive checks
show that RT data were well captured by a model that includes the five depicted variables.
Data are binned. Error bars are SEM. In several cases, error bars are smaller than the
size of the markers, which scale with the average number of trials contributing to the
respective data points. See Fig S8 for the behavioral sample and Figs S3 & S4 for the
parameter estimates of the full RT model and Fig S5 for posterior predictive checks of the
RT model with data split differently. See Table S4 for statistical inferences obtained from a
linear mixed effects model.

6.9
thh gt
6.8 4’ #
6.7
6.6
0 0.2 04 0.6 08
discrepancy between
p foraging success &
optimal policy (binned)
mean number of = = RT model fit:

data points: p forage success,
® 25 optimal policy,
@50 choice uncertainties
@75 discrepancy

14



We now also highlight this possibility in the discussion: Page 22:

Our behavioral data suggest interdependent but partly distinct computations of heuristic and
optimal processes during sequential choice. But what is the relationship between the two
policies? Analyses of reaction times (RTs) showed that the choice uncertainty of both
policies—but in particular of the heuristic—slowed RTs. Intriguingly, the discrepancies in
choice probability between the two policies also led to longer RTs, which provides crucial
evidence for an integrated computation of heuristic and optimal policies. We interpret these
findings as pointing toward progressive computational processes such that the
approximations provided by the heuristic are abandoned if the associated choice
uncertainties turn out to be too high. That is, an insufficient choice certainty of the heuristic
metric suggests that it is worthwhile to engage in a deeper search in form of a full-blown
optimal policy computation.

2. My technical issueisthat asfar as| can tell, the optimal policies used here are not computed
correctly. More specifically, there arereally two versions of the task used here —one with
stochastic termination (i.e. exponentially distributed timein the forest), and the other afixed
horizon-5 game. Neither of these correspondsto the®optimal” policy computed here, which
isn’t really optimal for any problem asfar as| can tell. For the fixed, finite horizon-5 game,
thekey issueisthat the optimal action choice will in general depend on the number of steps
remaining, and so it isincorrect to use afixed probability p of foraging (and takethe
transition matricesto the fifth power). For instance, when thereis only one move left, if
thereisstill sufficient energy left, then either forage or wait will be equally successful in
terms of the objective function. But thismight not betrueat earlier stepsin theforest with
the same energy and weather. To find the true optimal policy, one would normally use
dynamic programming, working backward from the last move and treating the different
horizon steps as separ ate states with separate optimal policies. (That is, it isstill a Markov
problem, but only in a state space that distinguishesthe stepstoward the horizon.)
Conversdly, if the game terminated stochastically (exponentially distributed game length)
with some probability which | will call (1-gamma) then the states are all equivalent
independent of depth —the optimal policy isindeed fixed over periodswithin theforest, asa
function of energy remaining and weather. However, in this caseit is also not correct to
optimize with respect to thefifth power of the transition matrix —one must account for the
distribution of termination times. Thisis equivalent to an exponentially discounted, (in
principle) infinite horizon problem, where the event of the task terminating with survival is,
effectively, a second absor bing state (with O reward), which equivalently introduces a
discount factor of gamma over theinfinite horizon version of the problem. Thiscan then
again be computed with value iteration / dynamic programming. Thisisdiscussed in
standard texts, e.g. Sutton & Barto, or Puterman’s MDP book. (Notethat if the exponential
distribution istruncated, e.g. at maximum 5 steps, then thiswould violate the Markov
property and afinite horizon model like the one above would actually apply: the policy
would again depend on the step. The paper isn't really clear what was done here.) | doubt
these details will make too much difference, but | do think thisisan error that pervades
essentially all the results, which needsto be corrected and theresults need to berevisited.

We are very grateful to the reviewer for making this pertinent observation and for directly offering the
solution to thisissue. Indeed, our previous way of computing the optimal policy (by taking the fifth
power of the transition matrix) was incorrect. We now calculated the optimal policy according to a
finite time horizon as described by the reviewer and revised all behavioral and fMRI analyses
accordingly. Importantly, our overall findings held and often became clearer when using the correctly
calculated policy. As expected by the reviewer, the correctly calculated optimal policy only differed
from the previous calculation in a small subset of trials (average of 21% of thetrials). These are
mostly trials in which both choice options have the same optimal value according (i.e., the optimal
policy does not distinguish between the two; see also next point).

Furthermore, our previous manuscript was obviously not clearly enough stating that thereis
just one version of the task: Although in the main part of the task participants were only presented
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with an exponentially distributed number of time steps, they were instructed (and understood) that
they would have to compl ete the maximum of “five days within aforest” afterwards (outside the
scanner) for arandomly chosen subset of forests that would count toward their payoff. They therefore
had to employ a maximum time horizon of five steps (for the “first days within aforest”). Since
monetary reward only depended on “survival” in the final fifth time step, played outside the scanner,
no discount factor was implemented in the finite horizon model and therefore the optimal policy
depends on the number of steps remaining as the reviewer noted. Thisis now aso reflected in the fact
that the optimal policy according to a horizon of five time steps best accounts for participants
behavior in the main task.

The revised explanation of the optimal policy in the introduction: Pages 4-5:

We computed the a priori optimal policy that minimizes starvation probability
according to a finite time horizon of five days for each combination of energy state, weather
type, and day within a forest. Because the two choice options, foraging or waiting, vary in
their relative expected values, the optimal policy allows for some degree of stochasticity. In
line with the general notion that human choices are sensitive to value differences between
choice options, we assumed choice would be determined by the continuous value
differences between foraging and waiting, computed according to the optimal policy. In the
following, we use the term “optimal policy” to refer to these continuous value differences
between the choice options and not to the deterministically better option. Unless otherwise
specified, we refer to the optimal policy according to the normative finite time horizon of five
steps.
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Figl was changed accordingly and now also includes a state transition diagram.

A Schematic task design
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Fig 1. Virtual foraging task testing for sequential decision-making.

(A) -]

(B) Example transition matrices used for determining the value differences between the two
choice options according to the optimal policy (corresponding to the forest in A). The
entries in the matrices are the probabilities to transition from the initial energy state
(rows) to the final energy state (columns) in one day. These entries (and their positions
within the matrix) depend on the weather types of the forests and on the choice patterns.
Many of the entries are 0, which means that transitions between the respective initial and
final states are impossible (e.g., from one day to the next one cannot stay in state 4 and
one cannot starve in states 3 and above). The forest is specified by the probability of
foraging success p (with g=1-p) and the magnitude of gains and losses. These
magnitudes are reflected in the positions of the probabilities within the matrix (e.g.,
gaining an additional point after successfully foraging in state 4 is indicated by the entry
of the probability f;p at the position initial state 4 and final state 5). Choices are reflected
by the probabilities for foraging f and waiting w (with f=1-w). The probabilities f and w
depend on the initial state and are indexed accordingly. Additionally, the optimal policy
depends on the number of remaining days in the forest since there is a finite horizon with
a maximum number of five days. Starvation is absorbing, which is why the probability of
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staying in state zero is 1. There are two corresponding transition matrices for the two
weather types. Backward computation is used to determine the value differences
between the two choice options according to the optimal policies. That is, the values of
the two choice options are first evaluated according to the last day in the forest, then
according to the second-last day, etc.

(C) The state transition diagram corresponding to the example transition matrix in B. Large
empty circles depict (energy) states and small filled circles depict the two actions to
choose from. Arrows indicate transitions between states. For clarity, only one weather
type is shown. In total, each forest type comprises 12 states = 6 (energy states) x 2
(weather types).
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The revised methods section in the S| reads:

Sequential decision-making in a virtual foraging frame

Mathematical framework in the form of a Markov decision process

To probe sequential decision-making, we propose a toy scenario and a corresponding
Markov decision process (MDP) for a hunter-gatherer or any foraging agent that aims at
dynamically maintaining homeostasis over time. See Fig 1 for an example trial, the
corresponding transition matrix, and the associated state transition diagram. See Table 1 for
a list of all variables described in this and the following sections. The decision-making agent
has to keep its internal energy state s above zero, i.e., the agent “dies from starvation” upon
reaching the energy state zero at any time step. Here, the energy state can have discrete
values equaling 1-5 energy points (but our model easily extends to additional numbers of
energy states without loss of generality). At each time step t, or “day,” the agent can chose to
“wait” and incur a sure loss c,, (of one energy point) or it can “forage” in which case the agent
probabilistically gains an amount g (of zero to four energy points) or incurs a cost for foraging
¢t (of two energy points). We denote the probability of foraging success as p (i.e., the
probability of gaining points during foraging). The probability of unsuccessful foraging and
thus of incurring ¢t is g=1-p. The maximum energy is capped; in the highest energy state the
agent cannot gain more but simply stays in the highest state if foraging is successful.

The agent “lives” within a given “forest” in which all relevant variables are specified
(presented to participants during the “forest phase,” see Fig 1A). We included good and bad
environmental conditions denoted as “good and bad weather types” that each occur with a
probability of 0.5 on a given time step. That is, there are total of 12 states in the MDP: 6
(energy states) x 2 (weather types).

A core component of an MDP is the transition matrix between these different states
(see Fig 1B for one example). Starvation, i.e., the state of having zero energy is absorbing
(and thus the entry in the transition matrix leading from energy state zero to energy state
zero is 1). Waiting leads to a sure loss c,, of 1 point, which is formalized by the associated
probabilities w in the off-diagonal below the main diagonal. Foraging can lead to either
success (fp) or not (fq). These probabilities constitute the entries in the associated off-
diagonals (depending on the magnitudes of g and cy).

How should the agent’s optimal policy look like? The agent should minimize the
probability of starvation psane(n,s,t); i.e., it should minimize the probability of reaching zero
energy points within a fixed and finite time horizon of n days when starting with the internal
energy state s. In our case, the finite time horizon n is always 5 days and the starting energy
state s at the first day can be 2, 3, or 4 energy points. Participants were incentivized
accordingly, i.e., they received a monetary payoff (for a random subset of trials), if their
energy was above zero at day 5 and nothing otherwise. This corresponds to a simple
implementation of a reward function within the framework of MDPs: All transitions to zero are
associated with a “reward” of -1 and all other transitions with a reward of 0.

Starvation probability psine(n,s,t) and thus the optimal policy depend on the agent’s
choice at the current time step t and the next n-1 time steps—in addition to the dependence
on n and s. In our finite-horizon scenario, the starvation probability thus depends on the
number of time steps t, i.e., days within a forest.

A rough and basic intuition for a more or less prototypical optimal policy under such
circumstances is that in many types of forests the agent should forage when the weather is
good and wait when the weather is bad; unless waiting leads to sure death on the next time
step. When the energy state is high enough so that starvation is impossible within the
remaining number of days (e.g., energy state is 4 and only 1 day is left of the 5 days within a
forest), the agent is indifferent between the two choice options.

Derivation of the optimal policy within the Markov decision process

We derived the optimal policies analytically for a large number of different forests, i.e., for all
combinations of p (from 0.1 to 0.9 in steps of 0.1) and gains g (from 0 to 4 in steps of 1) for a
finite time horizon of n=5 days. In our MDP, the possible policies consist of the probabilities
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of foraging f in each energy state s, environmental condition (“weather”), and each time step t
(with the probabilities of waiting w=1-f). To derive optimal policies in our finite-horizon
scenario, we used backward induction: That is, we started from the final time step (i.e., day
5) and calculated the values of the two choice options (i.e., foraging or waiting) for each state
for that last and final time step. These values depend on the possible transitions from the
respective states (see the example transition matrix in Fig 1B and the corresponding
example state transition diagram in Fig 1C). If the value of foraging is higher than the value
of waiting, foraging is the deterministically better option in that state and at that time step—or
vice versa. If both choice options have the same value, the optimal choice is indifferent
between the two options. We then used the values of the better choice options to calculate
the values for the second-to-last time step and determined optimal choices. This procedure
was repeated until arriving at the first time step (i.e., day 1).

The optimal policy thus depends on the time horizon considered. Our task was
designed such that participants should use a time horizon of 5 time steps and participants
were instructed and incentivized accordingly. Nevertheless, it is a possibility that participants
use a different time horizon. Therefore, we calculated optimal policies for the following time
horizons: n=7, n=6, ..., n=1. Participants may employ a longer (i.e., 7 or 6 days) or shorter
(i.e., 4, 3, 2, or 1 days) time horizon than instructed. Time horizons are flexible in the sense
that it is assumed that participants start in a new forest with a given time horizon n and then
reduce their horizon on each day by one. If the horizon has reached one (i.e., n=1), it will
remain one.

Since the optimal policies binarize the value differences over the two choice options
(either foraging or waiting is better, or they are exactly the same), they do not allow for
variability in the decision process (i.e., in some cases waiting and foraging entail large value
differences whereas in other cases the two choice options have quite similar values). We
therefore used the continuous value differences between the two choice options as
predictors of participants’ choices, RTs, and fMRI data. For brevity, we often use the term
“optimal policy” to refer to the value differences between the foraging and waiting (according
to a horizon of 5 steps).

All calculations were carried out in MATLAB.

Two side points arise from these considerations. First, whileit isa theorem that all MDPs have a
deterministic optimal policy (thusit isno accident that the optimal policieshereare
deterministic), that policy isnot in general unique. Here, for instance, | strongly suspect there
are states wher e foraging and waiting both ensure survival for sure (e.g. in the last move as
discussed above) and here any policy, including stochastic ones, will be equivalently optimal.
The analysis needsto take thisinto account.

Thank you again for thisimportant remark. Following this comment and a comment by reviewer 2, we
no longer use the binary optimal policies as decision variables in our behavioral and fMRI models but
the differences in value between the two choice options according to the optimal policy (value of
“forage” minus value of “wait"). This value difference has the great advantage of being a continuum
with zero as the natural indifference point. The newly provided plots of empirical choices show that on
average participants are indeed indifferent between the two options when they are equivaently good
(see above for the revised introduction paragraph and Fig 2). Thus, our new analyses capture this
aspect that the optimal policy isin some cases indifferent between the two choice options.

Second, the discussion of valueiteration in the supplement seems a bit off. As| hopel have
described above, when properly framed, the original avoid-death problem is nothing other than
an M DP which can be solved by dynamic programming, i.e. value (or policy) iteration over the
appropriate state space and the appropriate finite or infinite horizon. Thusthe discussion in the
supplement appearsnot to really be about the solution method, but about the nature of the
objective (ie, reward) function, i.e. maximizing some new intake function vs avoiding star vation.
We agree with the reviewer that this discussion is besides the main point of the paper and does not
provide additional support for the other results. We therefore removed this part of the supplementary
information.
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Reviewer #2 (Remarksto the Author):

Korn and Bach build on two emerging lines of resear ch: one focused on planning acr oss deep
decision trees, and the other on using ethologically relevant paradigmsto understand the neural
mechanisms of decision making. The authors develop a task that probesforaging behavior in a
simulated environment where optimal performance requires planning through a deep and
probabilistic tree of possible future states. The authors collect fMRI data during task
performance and use the behavioral and imaging data to support the following key claims:

1) Human foraging behavior deviates from optimal planning and is better explained by a
heuristic (win probability) that is occasionally abandoned in favor of an optimal solution when
the heuristic isdifficult to implement.

2) Both optimal and heuristic strategies are computed in the brain in parallel and arbitrated in
medial prefrontal cortex, with the optimal policy scaling with BOL D activity in anterior MPFC,
conflict between optimal and heuristic policies scaling with BOLD signal in dorsal MPFC, and
the difficulty of the heuristic modé reflected in the BOLD signal in anterior VM PFC and mid
cingulate.

Thank you for this summary of the approach and findings in our original manuscript.

My feelings about this paper are somewhat mixed; on one hand | feel that the authorshave
taken on a difficult question and made strides toward pinning down an answer. However, on the
other hand, in part because of the difficulty of the question and the complexity of thetask, | am
unconvinced that the authors' interpretation of the dataisthe only, or even the best, one. In
particular | have concernsregarding the inter pretation of the behavior as emerging from two
separ ate strategies implemented in parallel and reflected computed through different neural
systems. Thisinterpretation isat oddswith the standard rationale for why heuristicsare
adopted, and thus, if true, would constitute a surprising and important finding. But based on the
data presented by the authors, | think it ismorelikely that subjects areimplementing a serial
strategy in which they first pay attention to the foraging success probability, and then, if not
sufficiently swayed by thisinformation, move on to consider the current “energy state’. This
inter pretation would be morein line with standard ideas about multi-attribute decision-making,
asfar as| can tell in linewith the behavioral analyses, and would require major reinterpretation
of thefMRI results. A completelisting of my concernsisbelow:

We now report considerably more detailed and refined analyses and also a more careful discussion of
how heuristic and optimal policies are computed. Y our comments were very convincing to us and we
now refrain from drawing unduly strong assumptions about truly parallel computation.

Major Issues:

1) Itisnot clear that the primary behavioral claims are supported by the data. Asfar as| can
tell, the author s do not compar e a model of the decision variable from the optimal model
(differencein survival across forage/wait) against the heuristic model. Thisisan important
comparison. The binary optimal policy variable that the authorsuse for comparison does
not include any information about the magnitude of model preferences, and thus has no way
of accounting for noisein the decision process.

Thank you very much for this pertinent comment. We agree that the binary variable does not account
for relative magnitude of the two choice options and thus neglects alegitimate source of choice
variability. We now use the proper decision variable (i.e., the value difference between the two choice
options “forage” minus “wait") for all behavioral and fMRI analyses. We previously used this metric
only for a specific behavioral model. Importantly, our main results held and actually became clearer.
Asthe reviewer noted, this decision variable allows to assess choices on a continuum. Newly included
plots show that of participants behavior scales with this decision variable and corresponds to the
winning model, which includes this continuous variable (see Fig 2 below for the fMRI sample and Fig
S2 for the behavioral sample).

21



We specified thisin Table 1. The revised explanation of the optimal policy in the introduction: Pages
4-5

We computed the a priori optimal policy that minimizes starvation probability
according to a finite time horizon of five days for each combination of energy state, weather
type, and day within a forest. Because the two choice options, foraging or waiting, vary in
their relative expected values, the optimal policy allows for some degree of stochasticity. In
line with the general notion that human choices are sensitive to value differences between
choice options, we assumed choice would be determined by the continuous value
differences between foraging and waiting, computed according to the optimal policy. In the
following, we use the term “optimal policy” to refer to these continuous value differences
between the choice options and not to the deterministically better option. Unless otherwise
specified, we refer to the optimal policy according to the normative finite time horizon of five
steps.
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The revised Fig 2 now shows the relationship between behavior and the continuous optimal policy

variable (see 2D) along with posterior predictive checks.
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Fig 2. Choice data of the fMRI sample
(A) Model comparisons show that the probability of foraging success was the best single
predictor of participants’ behavior. Main plots depict fixed-effects analyses using log-
group Bayes factors based on Bayesian Information Criterion (BIC) relative to model #1.
Insets show random-effects analyses using protected exceedance probabilities (EP) with
the winning model marked. See Table 1 for a list that specifies the task variables and
thus the models tested here.
(B) Crucially, the a priori optimal policy according to a time horizon of five days best
explained the remaining variance in participants’ choices.
(C) Posterior predictive checks show that the winning model, which includes the probability of
foraging success and the optimal policy, captures the empirical relationship between
participants’ average choices and the probability of foraging success. Markers sizes
which scale with the average number of trials contributing to the respective data points.
(D) Posterior predictive checks show that the winning model captures the relationship
between participants’ average choices and the optimal policy according to a horizon of
five days (binned value differences of foraging versus waiting).
Data are binned. Error bars are standard errors of the mean (SEM). In several cases, error
bars are smaller than the marker sizes. See Fig S2 for the same plots with data of the
behavioral sample. See Fig S3 & S4 for posterior predictive checks of the winning model
with choice data split according to the 8 other heuristics and combinations thereof, and for
parameter estimates of a full model including all candidate variables. See Fig S5 for further
posterior predictive checks of the winning model with choices split jointly according to the
energy state and the probability of foraging success or the weather type. See Fig S6 for
comparisons of different time horizons. See Tables S1, S2, & S3 for further model

comparisons.
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It isvery clear from the behavioral figures (Fig 2 & supplementary figure 1) that subjects
change behavior according to the energy state suggesting that the suggested heuristic
(foraging success probability) could not provide a good fit to the data.

Thank you for this pertinent observation. Our new analyses and further considerations offer two points
with respect to this comment. First, the heuristic alone can only give afirst approximation and does
clearly not account fully for of participants’ behavior. Thisis precisely the point why a model that
combines the heuristic and the optimal policy provides a superior fit. The calculation of the optimal
policy accounts for the energy state—and further additional variables (in non-linear ways; anew Fig
S1 depicts these relationships). Notably, energy state alone—or any combination of energy state with
another variable—does not provide a better explanation of the data (as shown by testing all possible
pairs of the 10 policies considered, resulting in 45 models). No pair of two policiesis better than the
model that includes the optimal policy and the winning heuristic (i.e., probability of foraging success;
see Table S1 below for the fMRI sample and Table S2 for the behavioral sample).

Second, we also tested further models. Specifically, we tested models that included an
interaction between the probability of foraging success and other heuristics, including the energy state
(Table S3). These models were outperformed by the model that included the probability of foraging
success and the optimal policy. Results section: Page 12:

Additionally, we made sure that models including interactions between the most important
heuristics did not provide a better fit than the model with the optimal policy (Table S3).

We also report analyses testing whether alinear combination of three variables provides a better
explanation of participants choices than the combination of one heuristic (p foraging success) and the
optimal policy. A comparison among models including these two policies and any of the remaining
eight candidate models did not provide decisive evidence for awinning model among these eight
model s (especially when considering protected exceedance probabilities and both samples, Table S3).
Also, when testing the “three-variables-model” that includes the energy state (p foraging success,
optimal policy, and energy state), we did not find decisive evidence for this model being better than
the winning “two-variable-model” (p foraging success and optimal policy; Table S3). We mention
acknowledge that a different selection of trials might lead to the “ energy state” being a clear-cut
additional predictor. Results section: Page 12:

In the two samples tested here, there was no decisive evidence that a model with three
variables outperformed the model with the probability of foraging success and the optimal
policy (Table S3). We deem it possible that specific selections of different trial types could
identify the use of more complicated models, such as models including a variable for energy
states.

To be more judicious and cautious in our interpretation, we mention the caveats raised by all
reviewersin the third paragraph of the discussion section. Page 21.

We did not find evidence that any linear combination of two candidate policies and variables
explained our choice data better than the probability of foraging success and the optimal
policy. Although it is theoretically possible that participants use a yet unknown decision
policy, such policies do not follow from the given task variables in an obvious way. Any such
model would thus likely require higher complexity than the linear combination of the
probability of foraging success and the optimal policy. Our analyses did not provide decisive
evidence for a more complicated model. We deem it an interesting question for follow-up
research whether a different selection of trials or variations of our task design would result in
more (or less) complex models being identified. For example, it could well be that more
challenging tasks would lead participants to abandon the optimal policy in favor of a
combination of two heuristics (such as a combination of the momentary probabilities of
foraging success and the current energy state).

Please see also below (comment 2) for more details on choice behavior at the energy boundaries.
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(according to the normative horizon of five time steps) with all 9 heuristic variables
considered. Data are binned and arranged in the same way as below in Figs S3 & S4, which

show the empirical relationship between data and fitted model. “Weather type” and “wins-

stay-loose-shift” are binary variables. See Table 1 for a list of all variables.
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In general, the authors have tested a large number of models, but done very littleto show the
extent to which these models capture the subject behavior. Posterior predictive checksto
show that the authors preferred models can capturethe behaviors shown in Fig 2 and
supplementary figure 1 would be helpful in thisregard. The behavioral figuresclearly
indicate that behavior changes as a function of energy state, meaning that the heuristic
strategy favored by the authors does not capture a key behavioral feature of the data.

We thank the reviewer for prompting us to provide further plots and posterior predictive checks. We
now plot behavior (and RTs) binned according to all considered decision variables along with the
posterior predictive checks of the winning model. Overall, model predictions appear quite close to
actual data across all conditions.

For the two main variables see Fig 2 pasted above to an earlier comment.
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For splits according to all other 8 variables see Fig S3 below for the fMRI sample (and Fig $4 for the
behavioral sample):
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Fig S3. fMRI sample: Posterior predictive checks according to all heuristics and
parameter estimates for full models including all candidate variables

(B) Posterior predictive checks show that the winning model, which includes the probability of
foraging success and the optimal policy, captures the empirical relationship between all
other 8 other heuristic variables. “Weather type” and “wins-stay-loose-shift” are binary
variables. See Table 1 for a list of all variables.
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See Fig S4 for the same plots for the behavioral sample.
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See Fig S5 for more plots, which show data split according to two heuristics.

A fMRI sample: energy state & p foraging success
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Fig S5. Both samples: Further posterior predictive checks according to two combined
variables for models of choice and RT data.

(A & B) Split according to energy state and probability of foraging success.

(C & D) Split according to weather type and energy state.

See legend of Fig S3 for more information on the logic of these plots. See Fig 2.
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We now also provide posterior predictive checks for the RT model in Fig 3.
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Fig 3. Reaction time data of the fMRI sample
We tested the relationship between RTs and variables associated with the heuristic and
optimal policies. Since the probability of foraging success emerged as the best predictor of
participants’ choices, we only included this but not any other heuristic in the model of RT
data. RTs relate o (A) the probability of foraging success and also weakly to (B) the optimal
policy. Importantly, RTs become slower with (C & D) increasing choice uncertainties of these
two variables and (E) higher discrepancies in their prescriptions. Posterior predictive checks
show that RT data were well captured by a model that includes the five depicted variables.
Data are binned. Error bars are SEM. In several cases, error bars are smaller than the
size of the markers, which scale with the average number of trials contributing to the
respective data points. See Fig S8 for the behavioral sample and Figs S3 & S4 for the
parameter estimates of the full RT model and Fig S5 for posterior predictive checks of the

RT model with data split differently. See Table S4 for statistical inferences obtained from a
linear mixed effects model.
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2) | am not fully convinced by theauthors' claim that the optimal and heuristic computations
aredonein paralldl. | typically think of a heuristic as offering computational savings
afforded by avoiding costly computations associated with more complex solutions. Here the
authors are saying that people spend the computational resourcesto evaluate both
strategies... but then choose a wor se one much of thetime. The authors' state on lines 212-
213:

“To addressthisissue, we calculated optimal and heuristic policies and analyzed whether a
discrepancy between the two influenced participants behavior. Thiswould only occur if
both were computed in parallel, on the sametrials.”

We thank the reviewer for highlighting this crucial point. We now offer amore careful interpretation
in terms of “integrated” processing. We previously intended to imply that participants compute both
policiesin some trials but we did not intend to convey that this computation was done at the same
moment in time within atrial, or in al trials. We have changed the sentence and the relevant sections:
Results (pages 13-16):

Reaction times increased with choice uncertainties of the heuristic and optimal
policies

Models of choice data indicate that participants used both a heuristic policy, i.e., the
probability of foraging success, and the optimal policy. Consequently, we predicted that
reaction times (RTs) should reflect the choice uncertainties associated with these two
variables. Indeed, RTs were slower when choice uncertainties were high (see Fig 3A-D for
the fMRI sample and Fig S8A-D for the behavioral sample, see Table S4 for statistics). For
example, RTs were highest when the probability of foraging success was 0.5 and thus
neither foraging nor waiting was clearly favored by this metric. Choice uncertainties were
quantified on the basis of the mean parameter estimates of the choice models from the
behavioral sample. For the fMRI sample, choice uncertainty calculations thus rely on
independent data.

Choices based on the heuristic were faster than those based on the optimal policy
Given that participants’ choices seem to integrate heuristic and optimal policy computations,
the question arises how these computations relate to each other. A first straightforward
prediction is that choices following the heuristic policy should be faster than those following
the optimal policy, if the heuristic is easier to compute than the optimal policy. In many trials,
both variables made the same prescriptions and thus these trials cannot be used to
disambiguate choices made according to one or the other variable. Therefore, we identified
the subset of trials in which the two made opposite prescriptions (i.e., trials with opposite
choice probabilities according to the mean parameter estimates of the choice model from the
independent behavioral sample). Within this subset, mean RTs for trials in which participants’
choices followed the probability of foraging success were faster than mean RTs for trials in
which choices followed the optimal policy (mean difference + SD: fMRI sample: 90.7 + 109.2
ms; t(27)=4.40; p<0.001; behavioral sample: 147.5 + 96.2 ms; 1(20)=7.02; p<0.001; choice
probabilities did not differ between these trials; both p’'s>0.4).

In addition, a linear mixed effects model of RT data provided evidence for a relatively
more pronounced influence of the choice uncertainty of the heuristic compared to the choice
uncertainty of the optimal policy (Table S4). That is, choice uncertainty under the heuristic
policy related more strongly to RTs than choice uncertainty under the optimal policy.

Reaction times increased with discrepancies between the heuristic and optimal
policies

Integrated computation of heuristic and optimal policy makes a second crucial prediction for
RT data: Decisions should take longer when the two variables make discrepant prescriptions.
For example, RTs should be slower when the heuristic prescribes waiting but the optimal
policy prescribes foraging or vice versa. We quantified these discrepancies between the two
variables as the absolute differences in choice probabilities (which were based on the mean
parameter estimates of the choice model from the independent behavioral sample). Indeed,
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decisions were slower when discrepancies between the variables were larger. This effect
was present in addition to influences of choice uncertainties (see Fig 3E for the fMRI sample
and Fig S8E for the behavioral sample).

Overall, log-transformed RT data were well described by a linear mixed effects model
that included the heuristic and the optimal policies themselves, their associated choice
uncertainties, and the discrepancies in the choice probabilities of the two policies (Figs 3 &
S8; see Figs S3B & S4B for the parameter estimates of the full RT model fitted on the basis
of individual participants and for Fig S5 for further posterior predictive checks; see Table S4
for results obtained from a linear mixed effects model of log-transformed RTs, which were
qualitatively the same as results on untransformed RTs). Motivated by this model of RT data,
we also tested whether interactions of choice uncertainties or discrepancy influenced choices
but found no decisive effects (Table S3).

The authorsfind that RT increases (somewhat non-monotonically) with the differencein
choice-probabilities from the optimal and heuristic models.

The revised analyses with the corrected calculation of the continuous decision variable of the optimal
policy show a considerably more monotonic increase of RTs than our previous analyses (see Fig 3
pasted above).

But this could come about in many ways other than parallel computation. For example, if
the models divergefor particular trialsthat are systematically slower. My guessisthat thisis
the case. In particular, | think that participantsare likely slowest when they arerequired to
combine two pieces of information to make a successful decision (eg. energy and
probability). Thiswould occur for low probabilities when energy islow (1) or for high
probabilitieswhen energy is high (5). These ar e also conditions when model predictions
would diverge most, since the probability assessment gets overridden in the optimal model
by the proximity to the energy boundary. In order to addressthis, the authors could plot RT
as a function of conditions, which, along with the posterior predictive checks described
above, would test this alternative explanation for the RT relationship (if therelationship is
explained by similarity acrosstask conditions, it is consistent with my inter pretation).
Clarifying this point seemscritical to interpreting data from theneural GLM, sincethe
authorsinclude both optimal and heuristic terms as modulators under the assumption that
they are separately represented in the brain.

We thank the reviewer for thisinsight. Indeed from the previoudly provided plots it seems that these
two sub-conditions (low energy of 1 point with probabilities of foraging gain below 0.5 and high
energy of 5 points with probabilities of foraging gain above 0.5) constitute instances that differ from
the other conditions and are relatively less well described by the overall wining models of behavior
and RTs. The new plots of choice and RT data show a similar picture (see above Fig S3 & S5).
Importantly, these plots also show that unfortunately there were alimited number of trials within these
conditions. Thiswas actually intended by our stimulus selection: We aimed at reducing the number of
trials in which participants were starved (because participants could not provide answersin these
trials). Conversely, in energy state 5 the optimal policy is often indifferent with respect to foraging or
waiting. Therefore, we had participants start in the energy states 2, 3, and 4 but neverin 1 or 5.

Nevertheless, as described above, we conducted additiona analyses to address the reviewer’s
point. We did not find evidence that choice data were consistently and decisively better explained by
the energy state (see major comment 1). To offer the reviewer a better evaluation of the influence of
energy state, we provide posterior predictive checks for choice and RT models with and without the
inclusion of energy state.
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Model which additionally includes the
energy state as a regressor.
Not included into manuscript

This comparison shows that even including the energy state does not convincingly account for the
trials the reviewer refers to.

Overall, it thus seems quite likely that there are several separate—but not mutually exclusive—
explanations for RT increasesin our task: First, RTsincrease with higher absolute differences
(“discrepancies’) in choice probabilities from the optimal and heuristic polices as we demonstrated
earlier and show more convincingly in the revised version (with the newly calculated continuous
optimal policy and the help of posterior predictive checks). Second, RTs increase with the choice
uncertainties of the optimal and heuristic polices. RT effects of these two choice uncertainties are
motivated given that behavior relies on optimal and heuristic polices. The fact that they both explain
variance could be taken as an indication of a separate computation of these variables.

Third, RTs may increase when an integration of the energy state boundariesis warranted as
remarked by the reviewer. In line with the reviewer’ s suggestion, we would interpret these as casesin
which the bounded range of the energy bar creates non-linearity, which could best by accounted for by
integrating two pieces of information—in particular an additional reliance on the energy state. We
agree with the reviewer that such “integration” requires extra decision time. As detailed above, our
selection of trials was not optimized to address this third effect. On average there are less than 5 trials
per subject in the relevant bins. We hold it likely that our current task just does not provide the
necessary power. On the other hand, this makes it quite unlikely that the fMRI analyses are affected by
this “integration effect.” To avoid overburdening the manuscript, we refrain from presenting the right-
hand part of the above plot. Instead, we suggest energy state as an interesting variable and discuss the
possibility of an “integration effect” as an important avenue for follow-up studies.

For the reviewer’' s convenience, we again past this section here. Page 21.

We did not find evidence that any linear combination of two candidate policies and variables
explained our choice data better than the probability of foraging success and the optimal
policy. Although it is theoretically possible that participants use a yet unknown decision
policy, such policies do not follow from the given task variables in an obvious way. Any such
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model would thus likely require higher complexity than the linear combination of the
probability of foraging success and the optimal policy. Our analyses did not provide decisive
evidence for a more complicated model. We deem it an interesting question for follow-up
research whether a different selection of trials or variations of our task design would result in
more (or less) complex models being identified. For example, it could well be that more
challenging tasks would lead participants to abandon the optimal policy in favor of a
combination of two heuristics (such as a combination of the momentary probabilities of
foraging success and the current energy state).

We specificaly discuss apossible RT integration effect. Pages 22-23:

RTs likely reflect an additional feature relevant in the decision process: In some cases, the
requirement to integrate two specific types of information may be especially pertinent (for
example at the energy state boundaries integrating information about the probability of
foraging success and about the energy state can be crucial). Identifying the precise temporal
requirements of information integration processes is an interesting and challenging avenue
for future research.

3) Asfar as| cantell, thefMRI GLM does not include choice (forage/wait), but the other
variablesin the model are highly correlated with it. | can certainly understand why the
authorswould bereluctant to include choice along with the other terms, given that the input
correlationsin the model are already high (also, asa side point, it would be useful if VIF
werelisted instead of max pairwise shared variance). However, an inter pretation of the
current model may be that a large swath of the brain respondsto the decision to forage...
and that, through noise and thresholding, the author s have identified separate clustersfor
optimal policy and probability of foraging successregressors. To thiseffect, assuming that
correlations with forage/wait decisions are high, | would recommend that the authorsfir st
do awholebrain analysisto identify regionsresponsive to choice (which is presumably
informed by both measures), and test the encoding of each model based term within the
ROl sresponsiveto the decision itself. It would also be useful if the authors could test
whether representations of thetermsare significantly different from one another through a
normalized subtractive contrast.

We now present the results of two additional and separate GLMSs, in order to alow the reader to
evaluate suggestions by the reviewer.

One additional GLM included only choice as a parametric modulator of the choice phase (see
Fig S9 & Table S7). Just using ROIs on the basis of a contrast between forging and waiting choices
would in our opinion result in an unduly restricted analyses of brain activity. On the other hand, the
overall contrast of choice (i.e., the onset regressor) identifies (as expected) large unspecific areas that
showed activity during this task phase. This overall contrast does therefore not lend itself asthe basis
for identifying ROIs.

Another additional GLM included participants' choice along with al the other variables as
parametric modulators of the choice phase. This GLM revealed mostly the very same regions as the
main GLM without choice as a parametric modulator (see text below and a comparison of Table S5
for the main GLM and Table S6 for the GLM with choice as an additional parametric modulator).

In the revised version of the manuscript, we aso took care not to make unqualified statements
suggesting that one region is only related to a given variable (but not to another). We mention these
findingsin the fMRI results section. Page 9:

Overall, the same regions described above were also identified in another GLM,
which additionally included participants’ choices themselves as parametric modulators during
the choice phase (Table S6). The main qualitative difference between the GLMs with and
without choices as additional parametric modulator was that in the GLM including choices the
DMPFC cluster related to lower choice uncertainty of the optimal policy failed to reach
significance (cf. Fig 4B). A GLM that only included participants’ choices as parametric
modulator did not reveal all the regions described above to be related to the heuristic and
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optimal policies, their choice uncertainties as well as the discrepancies between the two
policies (Fig S9, Table S7). This suggests that the variables identified from choice and RT
models accounted for variance in the fMRI beyond the variance explained by choice per se.
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A GLM with participants’ choice only
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Fig S9. Statistical parametric maps for the choice phase (GLM with participants’
choices as only parametric modulator)

Overlay on group average T1-weighted image in MNI space; clusters are whole-brain FWE
corrected for multiple comparisons at p <0.05 with a cluster-defining threshold of p < 0.001
See Table S7 for a list of all clusters.
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4) Oneimportant point made by the authorsisthat the conflict signal that they identify in
ACC/DMPFC isconflict across different policies (optimal/heuristic) rather than a signal
related to overall decision difficulty/uncertainty. However, the authors do not include the
best possible decision difficulty regressor in the model, and given therecent heated debate
on theissue, it ssemsimportant that the authorsclearly show that they are explaining
variance beyond simple choice difficulty. If the authors want to make claims about
“controller conflict” above and beyond ssimpler measur es of decision difficulty, they should
estimate choice difficulty using the best-logistic regression model and includethisterm as
regressor in their GLM. Given that the“ probability of foraging under optimal policy”
regressor also loadson a similar region, it would be good to know something about the
overall rates of foraging (areforaging decisions or wait decisions more frequent?)

We are grateful to reviewer for raising thisimportant point. We now included the decision
uncertainties associated with the two policiesinto the GLM and present these contrasts as main fMRI
resultsin Fig 5. Please also note that we now refrain from using the term “difficulty” (since this
creates misleading and incorrect connotations as pointed out by reviewer 3). Instead we use the term
“choice uncertainty” as also done here by the reviewer.
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Fig 5. Statistical parametric maps for the respective uncertainties of heuristic and optimal
policies, the discrepancies in their choice probabilities, and log-transformed RTs during the
choice phase (overlay on group average T1-weighted image in MNI space; clusters are
whole-brain FWE corrected for multiple comparisons at p <0.05 with a cluster-defining
threshold of p < 0.001). See Table S5 for a list of all clusters. See Fig S9 for results from a
GLM that only includes participants’ choices as parametric modulators. See Fig S10 for
BOLD signals during the outcome phase.
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5) Asinthe behavioral analyses, the author s have portrayed the optimal policy as binary and
the heuristic one to be continuous. | see no reason why this should be the case, and | wonder
to what extent the differencesin the variance explained by these two terms could ssimply be
explained by thisanalysis decision. If the authors arelooking for arepresentation of an
optimal decision variable, it seemsthat they should include the differencein projected
starvation for forage versus stay decisionsin the neural GLM, rather than a binary variable
that reflectsthe optimal choice.

We are fully convinced by the reviewer’ s arguments to use the continuous decision variable for both
behavioral and fMRI data. We have revised all behavioral and fMRI results accordingly (see Fig 4
below). Importantly, the overall neural results do not change considerably (which reflects the
correlation of the newly used continuous variable and the previously used binary variable).
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Fig 4. Statistical parametric maps for the BOLD signals related to heuristic and the optimal
policies during the choice phase (overlay on group average T1-weighted image in MNI
space; clusters are whole-brain FWE corrected for multiple comparisons at p <0.05 with a
cluster-defining threshold of p < 0.001). See Table S5 for a list of all clusters.
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6) Theauthorsshould include a methods section in the main text that conveystheinformation
necessary to interpret the results.

We have no considerably specified and extended the description of the task, the employed behavioral
analyses, and the fMRI analyses throughout the main text. Due to space restrictions and since the
supplementary methods are published in conjunction with the online version, we were not able to
include a full-fledged methods section. We have rearranged the methods sections and now provide the
necessary information in the main text. We are happy to include further parts of the methods into the
main text if the editor seesfit.

Minor comments

The authors describe the process of arbitrating between the heuristic and optimal strategies as
depending on the difficulty of implementing the heuristic strategy. However, it seems equally
valid (and perhaps moreintuitive) to say that the heuristic strategy isabandoned when it
provides uncertain information. Thisinterpretation iscompletely in line with other theories of
how the brain combinesinformation from segregated modulesin other domains (eg. combining
RL with working memory, combining model-based with model freeinformation). The authors
seem tointer pret the model fits morein terms of their global meanings (optimal versus
heuristic) and lessin terms of what aspects of the data they actually capture. | think that the
paper would be much easier to understand if they focused on the latter, rather than the former.

We now carefully revised the whole manuscript and in particular the discussion section to reflect this
crucia suggestion. Page 22.

Our behavioral data suggest interdependent but partly distinct computations of heuristic and
optimal processes during sequential choice. But what is the relationship between the two
policies? Analyses of reaction times (RTs) showed that the choice uncertainty of both
policies—but in particular of the heuristic—slowed RTs. Intriguingly, the discrepancies in
choice probability between the two policies also led to longer RTs, which provides crucial
evidence for an integrated computation of heuristic and optimal policies. We interpret these
findings as pointing toward progressive computational processes such that the
approximations provided by the heuristic are abandoned if the associated choice
uncertainties turn out to be too high. That is, an insufficient choice certainty of the heuristic
metric suggests that it is worthwhile to engage in a deeper search in form of a full-blown
optimal policy computation.

Line 21: easy-to-?
We correct to “easy-to-compute’

Figure 2: Thisfigure would be much improved it if spent lessreal-estate on which modelswere
fit and more on how well they fit. For example, showing the heuristic, optimal (using the correct
DV, asdescribed above), and heuristic and optimal models along with posterior predictive
checksto show how they fit the actual choice curves (figure 2& supplementary figure 1) would
provide moreinsight into the modeling than all of these bar graphs.

We cut the number of bar plotsin half by putting all datafrom the behavioral pilot group into the
supplementary. Instead, we now provide the suggested plots of binned data along with posterior
predictive checks. See Figs 2, S3, & S5 plotted above in response to earlier comments as well as Figs
$4 & Fig S8.

Figure4A, right: | have no idea what the x-axisishere. It islabeled “ prescriptions of the
optimal policy” but surely that isthey-axis. Asfar as| understand the implementation of
“optimal policy” it was binary, and thusthe lines seem somewhat superfluous. Though, as| said
above, | think that a continuous decision variable would be mor e reasonable.

41



In line with the reviewer’ s first comments, we now use (and plot) the continuous decision variable
(i.e, the differencesin value for the two choice options according to the optimal policy, see Fig 2
plotted above).

Line 288: It seemsthat the neural results would be easier to digest if there were some description
of the GLM that was used to interrogate the imaging data at the beginning of this section.
We included the following brief description of the GLM in the manuscript. Page 17:

Neuroimaging results

We next assessed heuristic and optimal policy computations using our fMRI data. To do so,
we implemented a general linear model (GLM) that included the variables from the winning
choice model and the RT model as parametric modulators during the choice phase: the
probabilities of foraging success, the value differences according to the optimal policy (time
horizon of five days), their associated choice uncertainties, and the discrepancies in choice
probabilities, as well as log-transformed RTs. Given the central role parts of the MPFC in
decision-making, we specifically focused on this region.

Line 293: Maybe | missed something, but it isunclear to me why the probab

We have deleted the sentences in this line because the described analyses have been revised version
after the reviewers comments.

Given recent work showing dightly elevated family-wise error rateswhen using the multiple
comparisonstechniques described by the authors 1, it would be good if the author s could
validate clustersusing a per mutation testing procedure 2.

We thank the reviewer for pointing us to thiswork. A close inspection of the analyses by Eklund and
et a. shows family-wise error (FWE) rates are actually do not seem to be elevated when using a
threshold of p<0.001 at the voxel-level and of p<0.05 FWE at the cluster level in SPM; see Fig 1B in
the article by Eklund et al. We now explicitly mention thisin the methods section (SI).

All reported clusters are familywise error (FWE) corrected for multiple comparisons at p <
0.05 using the SPM random field theory based approach. The cluster-defining threshold was
p < 0.001. At this voxel-inclusion threshold of p < 0.001, FWE-rates in SPM do not seem to
be elevated®.

Reference ° is the suggested paper by Eklund et al.
Supplementary Figure 1: thisinformation should be included in the main text.

As detailed above, we have considerably revised the provided figures and now include overall more
plots of participants behavior binned according to the different considered variablesin particular in
(Fig 2). As suggested by the reviewer, we now use the continuous decision variable of the optimal
policy and not the binary optimal policies. See Figs 2, S3, & S5 plotted above in response to earlier
comments aswell asFigs $4 & Fig S8.

1. Eklund, A., Nichals, T. E. & Knutsson, H. Cluster failure: Why fMRI inferencesfor spatial
extent have inflated false-positive rates. Proceedings of the National Academy of Sciences 113,
7900-7905 (2016).

2. Nichols, T. E. & Holmes, A. P. Nonparametric permutation testsfor functional neuroimaging:
aprimer with examples. Hum. Brain Mapp. 15, 1-25 (2002).
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Reviewer #3 (Remarksto the Author):

This manuscript is concerned with a ‘homeostatic’ sequential decision making task and its
underlying neural correlates. Assuch thereis some novelty in both the decision models and
neural findings. Particularly, the potential of having interdependent but partly distinct
computations of more heuristic and more optimal processes emerge over time during sequential
choice, with more optimal behavioral flexibility being driven by ACC, isexciting. It also addsto
the current debate over the nature of value signalsin foraging-like decision tasks, rgecting a
view of one unitary factor driving activity.

Thank you for this positive evaluation of our manuscript.

However, the framing and inter pretation of results are not always straightforward and should
beimproved upon. Furthermore, specifically the description of their findingsin regardstothe
current literature are quite selective and convoluted, neglecting to highlight some major
differences between the current study any the majority of other decision tasks, while also trying
to adopt terminology from many different approaches, presumably in an attempt to keep many
different factions happy. While | also had some methodological concerns, about half of my
commentsrelateto theframing. Therefore, Points 1-6 and 8 should all mostly be addr essable
through textual changesi.e. improvement in framing. To help with this, | tried to point out
specific sectionsin the manuscript that could be reframed/rewor ded (These specific
recommendations also makes the review appear unusually long)

We are very grateful to the reviewer for taking the time to formulate these specific comments, which
have helped us tremendoudly to improve our manuscript. Please see below for specific answers.

Surprisingly the authors appear to argue a heuristic and optimal policy is always computed in
parallel, but not sufficiently addressthe question of why to even bother with heuristicsif an
optimal computation is possible. The alter native explanation that optimal policiesare only
computed selectively, particularly when heuristicsfail and thusin part ACC being more
engaged when thereisa need for optimal computationsiswholly compatible with their results
and morelikely.

Thank you for highlighting this. We now provide analyses and careful discussions along these lines.
We refrain from an interpretation in terms of parallel processing. We realized that our use of the word
“parallel” was misleading. We did not want to imply that there are “aways’ two computations that are
strictly running “in parallel.” Please see our specific answers and the textual changes below.

Furthermore, their conflict or “difficulty” representation effects can be described equally well
with a mor e neurophysiologically grounded explanation, explaining decision making using
concept such as evidence accumulation and mutual inhibition, without having toresort to a
representation of a psychological experience of conflict or explicit signaling of difficulty itself.
Moreimportantly, there are many different aspects of the task that could be labeled difficulty or
conflict including decision horizon, and therefore a description of theresultsin terms of absolute
value differences or choice uncertainty/value driven choice probability would be more

appropriate.

We agree and have considerably revised the whole text to reflect this. We now refrain from using the
words “conflict” and “difficulty” and instead use terms “ discrepancy” and “ choice uncertainty,”
respectively. We did not want to imply a*“ psychological experience” of conflict or difficulty in our
previous version and appreciate the reviewer’s comment that using the words “ conflict” and
“difficulty” could create an incorrect understanding. We tried to clearly link the terms “ discrepancy”
and “choice uncertainty” to our task; both in the text and in Table 1, which lists all task variables.

We think that our current fMRI study does not provide the necessary neurophysiological data
and the necessary temporal resolution to allow detailed conclusions about evidence accumulation and
mutual inhibition. We address the intriguing notion of evidence accumulation in anew section in the
discussion (see below).
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(More detailed comments below)

Major Comments:

1) Thecurrent manuscript isrelatively unusual within the decision domain, asvalueis
solely based on whether participants“survive’ a series of five sequential decisions after
which they receive a fixed point independent reward. As such the point of thetask isto
maximize the probability of “survival” or homeostasisrather than maximizing the
overall number of pointsin the experiments, asisnormally optimal in other decision
experiments. Thereforeit istricky to compare this study’s value regr essor s with the ones
from other studies, which should be sufficiently highlighted. Furthermore, it might
deserve a mention in thetitle and definitely in the abstract.

We agree. This feature allowed us to compute non-trivial types of a priori optimal policies. We
highlight this more in the abstract and throughout the manuscript.

Abstract:

To probe the potential interplay between heuristic and optimal computations, we
developed a novel sequential decision-making task in which rewards only depend on
final outcomes in mini-blocks of five consecutive trials. Therefore, optimal choices
necessitate evaluating five sequential decisions and probabilistic outcomes.

Introduction: Page 4

In our task, participants were endowed with varying “energy resources,” depicted
graphically as an energy bar. Participants were financially rewarded if they “survived”
over a maximum of five time steps, called “days,” within a given mini-block of trials,
called “forest” (Fig 1A). That is, participants could not simply gain monetary rewards
in all trials but only received a payoff if a series of five consecutive decisions and
probabilistic outcomes resulted in a final energy level above zero.

Previously, we used the binary optimal palicy (i.e., “foraging” or “waiting”). We now use a
continuous variable for the value differences between the two choice options according to the optimal
policy (i.e., the value of “foraging” minus the value of “waiting”). This notion of “value” is actually
concordant with the common understanding of the term “value” in Markov decision-making tasks
(e.g., in multi-step learning tasks). We now provide a more nuanced explanation in the last paragraph
of the introduction. Pages 4-5

We computed the a priori optimal policy that minimizes starvation probability according to a
finite time horizon of five days for each combination of energy state, weather type, and day
within a forest. Because the two choice options, foraging or waiting, vary in their relative
expected values, the optimal policy allows for some degree of stochasticity. In line with the
general notion that human choices are sensitive to value differences between choice options,
we assumed choice would be determined by the continuous value differences between
foraging and waiting, computed according to the optimal policy. In the following, we use the
term “optimal policy” to refer to these continuous value differences between the choice
options and not to the deterministically better option. Unless otherwise specified, we refer to
the optimal policy according to the normative finite time horizon of five steps.

We also mention this point in the first sentences of the discussion. Page 21:
This study addresses the neural computations required to make sequential decisions over
multiple probabilistic time steps. That is, participants did not have to maximize their overall

gains in independent trials but had to make sure to reach a given boundary in a number of
consecutive and probabilistic steps. Such decisions arise in many biological or economic
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contexts for example when decision makers aim at maintaining energetic homeostasis or
retaining liquidity in business transactions.

Thetask isfurthermorelacking some of the sequential elements of other experiments as
participants accumulate points at every step. However, the authors note that already in
the manuscript.

We now also mention this more clearly in the task description in the caption of Fig 1A.

Participants “forage” within 240 different types of mini-blocks, called “forests”. They are
monetarily rewarded for averting “starvation” (keeping “energy bar” above zero) at day five in
the forest (i.e., the last trial within a mini-block).

2) Asmentioned above, the authors should change the language to follow mor e of a value
terminology, asthisiscloser tothe datain a value based decision task and allowsfor the
use of more mechanistic descriptionsrelated toincreasingly detailed models of decision
making as an evidence accumulation process. E.g. value, choice probability and
uncertainty make more sense than decision difficulty asthe later isa meta
process/judgment beyond the decision processitself. Thisisimportant asthecircuit is
presumably trying to make a decision, and adapt optimally when a heuristic value
estimate isinsufficient.

We thank the reviewer for this pertinent comment. We did not intend to refer to meta-judgements of
difficulty or conflict and this comment made us realize that the whole study could be misunderstood
due to the misleading use of the terms “difficulty” and “conflict.” We now follow the reviewer’'s
suggestions and revised the whole text in accordance with a*“value terminology” as thisindeed
describes the intended meaning much better. We now use the terms “ choice uncertainty” (previously
“difficulty”) and “discrepancy” between the choice probabilities of the two decision variables
(previously “conflict”)

Related to thisthe concept of comparing heuristic with optimal in parallel every trial is
strange. Why should the agent bother with a heuristicif it eventually comparesit the
optimal anyway? At some point in the manuscript this statement isqualified and it is
suggested that the optimal is partly conditional on the heuristic, but it isnot nearly clear
enough in many parts of the manuscript (see also point 9).

The reviewers' comment made us realize that our previous description using the term “parallel” was
misleading and conferred an unduly strong interpretation in terms of two computations that would
awaysrun “in parallel” at the sametime within atrial. We now offer amore careful interpretation in
terms of “integrated” processing. We previously intended to imply that participants compute both
policiesin sometrials but we did not intend to convey that this computation was done at the same
moment in time within atrial, or to the same degreein al trials. Please find the changes results
sections on RT effects pasted below: Pages 13-16:

Reaction times increased with choice uncertainties of the heuristic and optimal
policies

Models of choice data indicate that participants used both a heuristic policy, i.e., the
probability of foraging success, and the optimal policy. Consequently, we predicted that
reaction times (RTs) should reflect the choice uncertainties associated with these two
variables. Indeed, RTs were slower when choice uncertainties were high (see Fig 3A-D for
the fMRI sample and Fig S8A-D for the behavioral sample, see Table S4 for statistics). For
example, RTs were highest when the probability of foraging success was 0.5 and thus
neither foraging nor waiting was clearly favored by this metric. Choice uncertainties were
quantified on the basis of the mean parameter estimates of the choice models from the
behavioral sample. For the fMRI sample, choice uncertainty calculations thus rely on
independent data.
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Choices based on the heuristic were faster than those based on the optimal policy
Given that participants’ choices seem to integrate heuristic and optimal policy computations,
the question arises how these computations relate to each other. A first straightforward
prediction is that choices following the heuristic policy should be faster than those following
the optimal policy, if the heuristic is easier to compute than the optimal policy. In many trials,
both variables made the same prescriptions and thus these trials cannot be used to
disambiguate choices made according to one or the other variable. Therefore, we identified
the subset of trials in which the two made opposite prescriptions (i.e., trials with opposite
choice probabilities according to the mean parameter estimates of the choice model from the
independent behavioral sample). Within this subset, mean RTs for trials in which participants’
choices followed the probability of foraging success were faster than mean RTs for trials in
which choices followed the optimal policy (mean difference + SD: fMRI sample: 90.7 + 109.2
ms; t(27)=4.40; p<0.001; behavioral sample: 147.5 + 96.2 ms; 1(20)=7.02; p<0.001; choice
probabilities did not differ between these trials; both p’s>0.4).

In addition, a linear mixed effects model of RT data provided evidence for a relatively
more pronounced influence of the choice uncertainty of the heuristic compared to the choice
uncertainty of the optimal policy (Table S4). That is, choice uncertainty under the heuristic
policy related more strongly to RTs than choice uncertainty under the optimal policy.

Reaction times increased with discrepancies between the heuristic and optimal
policies

Integrated computation of heuristic and optimal policy makes a second crucial prediction for
RT data: Decisions should take longer when the two variables make discrepant prescriptions.
For example, RTs should be slower when the heuristic prescribes waiting but the optimal
policy prescribes foraging or vice versa. We quantified these discrepancies between the two
variables as the absolute differences in choice probabilities (which were based on the mean
parameter estimates of the choice model from the independent behavioral sample). Indeed,
decisions were slower when discrepancies between the variables were larger. This effect
was present in addition to influences of choice uncertainties (see Fig 3E for the fMRI sample
and Fig S8E for the behavioral sample).

Overall, log-transformed RT data were well described by a linear mixed effects model
that included the heuristic and the optimal policies themselves, their associated choice
uncertainties, and the discrepancies in the choice probabilities of the two policies (Figs 3 &
S8; see Figs S3B & S4B for the parameter estimates of the full RT model fitted on the basis
of individual participants and for Fig S5 for further posterior predictive checks; see Table S4
for results obtained from a linear mixed effects model of log-transformed RTs, which were
qualitatively the same as results on untransformed RTs). Motivated by this model of RT data,
we also tested whether interactions of choice uncertainties or discrepancy influenced choices
but found no decisive effects (Table S3).

Related to this, the authors have a quite contorted description P17, L282-4 “ This
providescrucial evidencethat both heuristic and an optimal policies determined
participants behavior, with therelative contribution of the two depending on the
difficulty or reliability of the heuristic”. However, the heuristic isn't more difficult, but
rather does not guide behavior in oneway or other, i.e. thereisno clear valuein either
response. A better description of theresultswould bethat lower order decision
uncertainty or lack of reliability forcesthe heuristic system to engage other systems and
compute higher order valueinstead to increase choice certainty and also accuracy.

We deleted this unclear description in the revised the whole methods accordingly (see answers to same
comment above). We now included a section in the discussion that follows several of the reviewer's
suggestions. Page 22.

Our behavioral data suggest interdependent but partly distinct computations of heuristic and
optimal processes during sequential choice. But what is the relationship between the two
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policies? Analyses of reaction times (RTs) showed that the choice uncertainty of both
policies—but in particular of the heuristic—slowed RTs. Intriguingly, the discrepancies in
choice probability between the two policies also led to longer RTs, which provides crucial
evidence for an integrated computation of heuristic and optimal policies. We interpret these
findings as pointing toward progressive computational processes such that the
approximations provided by the heuristic are abandoned if the associated choice
uncertainties turn out to be too high. That is, an insufficient choice certainty of the heuristic
metric suggests that it is worthwhile to engage in a deeper search in form of a full-blown
optimal policy computation.

In addition, we discuss the intriguing notion of an internal evidence accumulation process during
decision-making in a section that immediately follows the above paragraph in the discussion. Page 22.

Integrated computation of heuristic and optimal policies could be understood in terms of an
evidence accumulation process: In potentially increasingly sophisticated computations
evidence for the values of the choice options is progressively acquired according to different
(possibly competing) policies—probably until the associated choice uncertainties become
sufficiently small. Such an evidence accumulation process would change over time within a
trial and also vary between different trials.

Additionally, the ecological approach overall suggeststhat the animal istrying to gather
things of value, and ensure survival. Therefore, the terminology should be guided by
value, not split into different forms of difficulty, particularly asthe whole concept of
conflict and difficulty isthat it isan atomic unit that can’t be split.

We entirely agree that thisis another important reason to refrain from using the words difficulty and
conflict.

Furthermoreto prove the psychological phenomenon of difficulty representation, one
would have to show any changesthat are commonly associated with difficulty, such as
increases of reaction time through non-value related manipulations, induce equivalent
effects (unlikely given Stoll et al. [2016, Nature Communication]). If that is not done, the
resulting neural findings should more accurately be described as value and certainty
related, asthat iswhat isbeing explicitly manipulated. Additionally, thereisno point in
using the term difficulty, which is meant to be a catch-all for many different factors
combined in just how hard it is and then discuss only one bit of thetask. If onetalks
about difficulty it hasto be overall difficulty of doing thetask or nothing. L ooking at the
text itself, specifically, P21 L 363 “ Difficulty wasrepresented in several brain regions...”
isafallacy of assuming representation from a correlation. More specifically, only
because the signal was larger when no quick clear decision could be made that doesn’t
mean thereisarepresentation of difficulty. Any competitive system should be sensitive
to value similarity and uncertainty. Also, it isn’t the difficulty of the heuristic policy.

Thank you as outlined above we now use the terms suggested by the reviewer and do no longer refer
to the mideading concept of “difficulty.” We did not want to refer to the overall task difficulty but as
the reviewer correctly points out to the choice uncertainty related to the heuristic and optimal policies.
We also did not want to imply an explicit “representation” of (meta-cognitive) “difficulty.” Instead,
we now specifically relate the choice uncertainties of both the heuristic policy and the optimal policy
to RTsand BOLD signals. We did not want to imply that non-value related manipulations would
induce equivalent effects.

Thank you for pointing us to the interesting paper by Stoll et a., which suggests an intriguing
follow-up question for our manuscript: How would an optimal strategy ook like when thereisa
requirement (or opportunity) to seek information about the environment? How would information
seeking alter the interplay between optimal and heuristic strategies? We now mention thisidea and
cite the paper by Stoll et al. (ref 40) in the discussion. Page 24:
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Here, we were interested in how humans make sequential decisions once they have
acquired sufficiently precise estimates of the relevant candidate decision variables. This is
why all variables were explicitly signaled or could be deterministically calculated. There was
no requirement to learn, explore, or infer, unknown, uncertain, or unobservable, states. This
distinguish our task fundamentally from learning tasks aimed at comparing explicitly signaled
versus previously trained values tasks designed to assess model-based versus model-free
reinforcement learning®*°=3*¢=*°_Our approach could be extended to include learning or
information seeking (cf. “°) such that the optimal policy would require reducing uncertainty
about environmental states (as can be implemented in a partially observable Markov
decision processes*').

3) Furthermore, | think the concepts of competition and accumulation of evidence as well
asdecision thresholds are far better suited to describe the data. In other words, if the
agent hasn’t made a decision quickly with a heuristic becausethereisno clear valueor a
lack of a clearly superior option, additional mechanisms such asdACC are engaged.
Presumably, although | couldn’t find it in the manuscript thereisalso an effect of
reaction timein ACC, asmany studies have found decision length associated activity
with other factorsriding on top.

Yes, the reviewer is correct. The effect of (log-transformed) RTswas and isincluded in the GLMs.
We now present this contrast in the main text in Fig 5D pasted below (and in Table S5). Importantly,
the dACC was associated with the discrepanciesin the prescriptions of the two policiesin addition to a
simple effect of RTs (see the prominent effect in Fig 5C).

For the reviewer’ s convenience, we paste most parts of the fMRI results dong with Figs4 & 5
here. These results are also relevant for several of the following comments. Pages 17-19:

MPFC activity correlated with differences in choice values both for heuristic and
optimal policies

The momentary probability of foraging success, i.e., the variable underlying the heuristic
policy, correlated positively with BOLD signals in a posterior part of the dorsal MPFC
(DMPFC, extending into pre-supplementary motor area, pre-SMA), in bilateral intraparietal
sulcus (IPS), and the left frontal pole among other regions (Fig 4A, see Table S5 for all fMRI
results in the choice phase). The same variable correlated negatively with signals in the
perigenual anterior cingulate cortex (ACC), extending into the ventral MPFC (VMPFC; Fig
4B).

The value differences of foraging versus waiting according to the optimal policy
correlated positively with activity in perigenual ACC and mid-cingulate cortex (Fig 4C). That
is, parts of the MPFC were relatively more active when waiting was favored by the heuristic
and when foraging was favored by the optimal policy. This suggests an overall involvement
of the MPFC in computing differences in choice value of the variables that explained
participants’ behavior.

MPFC activity also reflected choice uncertainties and the discrepancy between
heuristic and optimal policy

Lower choice uncertainty of the heuristic was related to increased BOLD signals in an
anterior part of the VMPFC, dorsal MPFC regions as well as to the inferior frontal gyrus (IFG)
and the posterior cingulate cortex, among other regions (Fig 5A, see Table S5 for a list of all
clusters). Lower choice uncertainty of the optimal policy scaled with activity in DMPFC,
extending into ACC, and in the IFG (Fig 5B).

Crucially, as in our RT data, we found evidence for an integrated computation of the
heuristic and the optimal policy: DMPFC activity correlated in a trial-by-trial fashion with the
discrepancies between the two policies (i.e., the absolute differences in their associated
choice probabilities; Fig 5C). This DMPFC region extended into the pre-SMA and the ACC.
The same metric correlated with BOLD signals in the bilateral dorsal striatum and bilateral
IFG.
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All correlations of the relevant model variables emerged over and above correlations
with log-transformed RTs (Fig 5D). Overall, the same regions described above were also
identified in another GLM, which additionally included participants’ choices themselves as
parametric modulators during the choice phase (Table S6). The main qualitative difference
between the GLMs with and without choices as additional parametric modulator was that in
the GLM including choices the DMPFC cluster related to lower choice uncertainty of the
optimal policy failed to reach significance (cf. Fig 4B). A GLM that only included participants’
choices as parametric modulator did not reveal all the regions described above to be related
to the heuristic and optimal policies, their choice uncertainties as well as the discrepancies
between the two policies (Fig S9, Table S7). This suggests that the variables identified from
choice and RT models accounted for variance in the fMRI beyond the variance explained by
choice per se.

Finally, classic reward regions including ventromedial prefrontal cortex, striatum,
and posterior cingulate cortex) tracked the realized outcomes, that is the impact of
participants’ decisions on their internal energy state (Fig S10, Table S8).

13,14
(
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A Probability of foraging success B Probability of foraging success C Optimal policy
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Fig 4. Statistical parametric maps for the BOLD signals related to heuristic and the optimal
policies during the choice phase (overlay on group average T1-weighted image in MNI
space; clusters are whole-brain FWE corrected for multiple comparisons at p <0.05 with a
cluster-defining threshold of p < 0.001). See Table S5 for a list of all clusters.

A Choice uncertainty: Probability of foraging success B Choice uncertainty: Probability of foraging success
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Fig 5. Statistical parametric maps for the respective uncertainties of heuristic and optimal
policies, the discrepancies in their choice probabilities, and log-transformed RTs during the
choice phase (overlay on group average T1-weighted image in MNI space; clusters are
whole-brain FWE corrected for multiple comparisons at p <0.05 with a cluster-defining
threshold of p < 0.001). See Table S5 for a list of all clusters. See Fig S9 for results from a
GLM that only includes participants’ choices as parametric modulators. See Fig S10 for
BOLD signals during the outcome phase.
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This could then mean that ACC isincreasingly active when heuristic certainty islow and
thereforedecisionsaren’t made quickly (therefore also a larger effect of heuristic on
reaction time), eventually coding therelative gain from using a better under standing of
thetask structure (task model etc). Thisisencapsulated both by the neural effects of the
differencein choice probability between heuristic and optimal, and the overlapping
increase by optimal policy value. Thisin itself ispotentially a very interesting finding if
described in those terms. Related to theidea of overlapping or interrelated accumulation
processes, the repeated statement of Parallel policiesis dightly misleading e.g. P20 L 336-
8 “computed in parallel-although when they are conflicting, only one of them can be
implemented. “ Asoutlined above (and further in point 4) it isvery tricky to show
parallel processesand | think the data can be explained without going hard on the idea
of always both palicies being computed.

We are very grateful to the reviewer for making these specific suggestions and include a section in the
discussion. Page 24:

The discrepancies between the two employed policies showed a positive trial-by-trial
relationship with a prominent cluster in the region of the DMPFC, extending into the pre-SMA
and the ACC (in addition to relationships bilateral dorsal striatum and IFG). The DMPFC
cluster overlaps with regions classically associated with multiple types of decision
discrepancies®=*. Thus, our finding relating discrepancies between the heuristic and optimal
policies to a larger part of the DMPFC could potentially indicate that this DMPFC region
becomes increasingly engaged when the computations of the two policies prescribe
divergent choices such that progressive evidence accumulation and competition processes
are required for making a decision.

The reviewer’s comments have convinced us to refrain from interpreting our datain terms of parallel
processing. As mentioned above, we now use the term “integrated processing” and provide discussion
points aong the suggestions of the reviewer.

Furthermore, related to both aspects of this point P23 L433-5 “Brain activity associated
with conflict between heuristic and optimal policies points towar ds a mechanism of
parallel computation” Could be more mechanistically described as possibly competitive
value/decision evidence accumulation processes, although thereisalso the possibility of
oneintegrated processthat changes over time as additional types of information get fed
in.

We thank the reviewer for pointing us toward the concept of evidence accumulation, which we now
discuss. The strong sentence about parallel computation is deleted. See the general section on evidence
accumulation, which we re-paste below for the reviewer’ s convenience: Page 22:

Integrated computation of heuristic and optimal policies could be understood in terms of an
evidence accumulation process: In potentially increasingly sophisticated computations
evidence for the values of the choice options is progressively acquired according to different
(possibly competing) policies—probably until the associated choice uncertainties become
sufficiently small. Such an evidence accumulation process would change over time within a
trial and also vary between different trials.

P20 L 340-2 “The higher the decision difficulty of the heuristic policy the more the
optimal policy was applied...” Could berephrased asrather saying when neither option
isclearly morevaluable on a heuristic level, then a mor e sophisticated computation is
made/ a mor e optimal policy iscomputed.

Thank you for this suggestion, which we included in the following discussion section (re-pasted for
the reviewer’ s convenience): Page 22:
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We interpret these findings as pointing toward progressive computational processes such
that the approximations provided by the heuristic are abandoned if the associated choice
uncertainties turn out to be too high. That is, an insufficient choice certainty of the heuristic
metric suggests that it is worthwhile to engage in a deeper search in form of a full-blown
optimal policy computation.

4) Moregenerally, theauthorssubstantiate their parallel processing claim mostly on one
RT analysis. Thereisweak evidence for the pure“conflict” of two strategiesrather than
aprocessor interrelated processes, which change over time and between trials. Rather it
could be an increasingly sophisticated computation over time, possibly with an
increasing probability of optimal policy computation being initiated meaning
computations aren’'t completely sequential either.

Thank you. We completely agree. As described above, we included this notion into the discussion,
taking many of the formulations of the reviewer as a basis. We specifically mention the variability of
such processing across time and between trials: Page 22:

Such an evidence accumulation process would change over time within a trial and also vary
between different trials.

In the same paragraph, we also highlight the need to investigate the precise tempora unfolding of
these processes. Page 22-23:

Identifying the precise temporal requirements of information integration processes is an
interesting and challenging avenue for future research.

Independently of that concern, showing truly parallel computationsrather than an
averaged mixtureischronically difficult to prove and participants might just have been
additionally dowed in partswherethetwo diver ge because that correspondsto the parts
of decision spacethat is misfit or because, although both processesaren’t parallel the
optimal policy isincreasingly morelikely to be computed and therefore slow down
decisionswhen the heuristic policy islikely to fail (e.g. long horizons or large dot ranges
making p-forage success a poor substitute).

We completely agree that showing truly parallel processing is notorioudly difficult to demonstrate for
the reasons specified by the reviewer. Thisis especially pertinent in our task where computing the
optimal policy requires some kind of processing of the information provided by the heuristic. We
therefore refrain from going hard on the idea of parallel processing.

Additionally, it lookslikethe effect in figure 4 B isn’t linearly increasing but only to a
point and then decreasing again, suggesting it might be driven by another potentially
somewhat related variable like horizon, energy level or trial number in forest.

The revised analyses with the corrected calculation of the continuous decision variable of the optimal

policy show a considerably more monotonic and linear increase of RTsthan in the previous version of
our manuscript (see Fig 3E below for the fMRI sample and Fig S8 for the behavioral sample).
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Fig 3. Reaction time data of the fMRI sample
We tested the relationship between RTs and variables associated with the heuristic and
optimal policies. Since the probability of foraging success emerged as the best predictor of
participants’ choices, we only included this but not any other heuristic in the model of RT
data. RTs relate o (A) the probability of foraging success and also weakly to (B) the optimal
policy. Importantly, RTs become slower with (C & D) increasing choice uncertainties of these
two variables and (E) higher discrepancies in their prescriptions. Posterior predictive checks
show that RT data were well captured by a model that includes the five depicted variables.
Data are binned. Error bars are SEM. In several cases, error bars are smaller than
the size of the markers, which scale with the average number of trials contributing to the
respective data points. See Fig S8 for the behavioral sample and Figs S3 & S4 for the
parameter estimates of the full RT model and Fig S5 for posterior predictive checks of the
RT model with data split differently. See Table S4 for statistical inferences obtained from a
linear mixed effects model.
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If the authorswant to provetruly parallel computations, they should resort to a method
with higher temporal resolution or else settlewith talking about interrelated, but not
necessarily parallel computations.

We agree and settle with talking about interrelated processes in thisfMRI study.

5) Optimal policy effect in ACC/MPFC isinteresting asit suggests positive valuerelated
effectsdo exist in ACC, particularly for the more sophisticated computations. Thisis
important, astherest of the manuscript reads a little asif there was no positive value
effectsin ACC.

Thank you for stressing this point about the positive value effect for the optimal policy. In our revised
version, we used corrected and revised analyses (continuous value differences of foraging versus
waiting according to the optimal policy instead of the deterministic optimal policy per se). We
additionally included the choice uncertainty of the “ continuous optimal policy” as a parametric
regressor in the GLM. We now find that the optimal policy metric policy correlated positively with
activity in perigenual ACC and mid-cingulate cortex. (Fig 4C pasted above for comment 3). The
choice unchoice uncertainty of the optimal policy scaled negatively with activity in DMPFC,
extending into ACC, and in the IFG (Fig 5B pasted above). Therefore, the ACC/MPFC region the
reviewer is referring to scales with choice uncertainty (i.e., higher BOLD signals for higher choice
certainty), which we discuss: Page 24:

Multimodal integration regions such as MPFC and IFG were associated with the optimal
policy and also the choice uncertainty of the optimal policy. These regions have often been
observed in studies testing for brain activity related to model-based learning processes ***'.
Indeed, optimal decisions in our task bears considerably resemblance with model-based
learning > since both involve searching across a tree of probabilistic future states. Here,
we demonstrate brain activity when participants evaluated decision trees with extended time
horizons independent of the uncertainties arising during learning. In particular, we found that
a dorsal region of the MPFC correlates with the choice uncertainty of the optimal policy. This
region seems to be especially well positioned to integrated different types of decision signals
related to reward values and actions '"'®. An intriguing possibility is that this region may
generally be related to the uncertainties in recursive evaluations of a tree of probabilistic
future states, which is a key feature for inferring optimal solutions in many realistic tasks.

Furthermore, thelack of a strong heuristic difficulty effectsor other definitions of
difficulty such has horizon length should be mentioned.

Maybe, we misunderstand the reviewer here. There are actually neura effects of “heuristic
difficulty”—or according to the revised terminol ogy—of “ choice uncertainty of the heuristic.” This
metric was negatively related to several brain regions, notably parts of the MPFC (see Fig 5A and
fMRI results section pasted above).

6) Thenegative abs. value difference/ choice probability effects based on p-forage successin
perigenual ACC and vmPFC are quite surprising given a wealth of studies showing
positive value effectsin vmPFC. This should be at least discussed, asit is quite unusual
to have this bit of medial prefrontal cortex not activate with value.

Thank you very much for highlighting this finding. We now explicitly present this effect in Fig 4B
(see pasted above in response to comment 3). We would argue that thisis not necessarily a“pure
negative value effect.” Indeed, we hold it likely that this region isrelated to the “positive” value of the
aternative choice option, i.e., the action of “waiting.” Although we cannot unambiguously dissect this
interpretation from other possibilities, it is actually in line with the interpretation for this region given
in a previous study on virtual foraging (Kolling et a., 2012 = ref 2). We now carefully discuss this:

Page 23:

54



The probabilities of foraging success were negatively related to signals in the perigenual
ACC and the VMPFC. When probabilities of foraging success were small, the choice values
of the “waiting” action (which always entailed a sure loss of the one point) were higher than
the choice values of the “foraging” action (which resulted in a loss of two points or varying
gains according to the probabilities of foraging success). Consequently, participants were
more likely to choose waiting rather than foraging when the probabilities of foraging success
were small. It is therefore a possibility that this region of the perigenual ACC and VMPFC
scaled positively with the value of the waiting action which entailed a sure outcome. This
notion is consistent with a general role of this region in flexible value encoding and previous
findings that this region negatively relates to the values of unchosen options?.

Furthermor e, when looking at the supplementary material, confusingly it says negative
p-foraging success, which is not quite the same as choice difficulty using p-foraging
success, which was used in the regression. This should definitely be clarified, asa
negative effect of foraging successis quite different conceptually than a negative abs.
value difference effect/choice p effect.

We apologize for the confusing presentation, which we have now clarified (by dedicating considerable
more space to the presentation of the fMRI results). The effect in the perigenual ACC / VMPFC (peak:
Xyz: 6, 33, 6) to which we think the reviewer refers here (Fig 4B pasted above) is negatively related to
the probabilities of foraging success themselves—and not to the associated “ choice difficulty /
uncertainty”. That is, the lower the probability of gaining the associated gain magnitude, the higher
the BOLD signalsin this perigenual ACC/ VMPFC region. The negative relation of BOLD signasto
the choice uncertainty of the probabilitiesis presented in Fig 5A. Indeed, this metric also shows a
negative relation to aregion in the perigenual ACC/ VMPFC (peak: xyz: 9, 59, -2). Thisregion
extends more anteriorly. Here, the lower the choice uncertainty (i.e., the higher the choice certainty),
the higher the BOLD signals.

7) Itisabit strangethat p forage successissuch a strong driver of the behavioural effects
and very closeto optimal. It meansthat the other aspects of value feeding into overall
survival probability do not have very large range. From the manuscript it wasn't clear
whether therewasjust little variance in some of the other factors, such as magnitude. It
might be nice to see a bit more of the schedule they ran, such as magnitude spread and
variance etc.

We now provide plots with the value difference according to the optimal policy (Fig S1) and with
behaviora data (Fig S3 & $4) binned according to all candidate variables, which shows the magnitude
spread and variance of all these considered variables. This plots show that per se limited variance was
for most of the other heuristics an unlikely reason why these other heuristics performed worse that the
probahility of foraging success. Additionally, we added the grand mean of the parameters along with
the mean within-subject SD in addition to the theoretical possible range into Table 1.
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Value differences according to optimal policy in relation to the heuristic candidate variables:
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Fig S1. Relation of optimal policy and heuristic variables

Shared variance between all 10 candidate variables and relationships with the optimal policy
(according to the normative horizon of five time steps) with all 9 heuristic variables
considered. Data are binned and arranged in the same way as below in Figs S3 & S4, which
show the empirical relationship between data and fitted model. “Weather type” and “wins-
stay-loose-shift” are binary variables. See Table 1 for a list of all variables.
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Choice behavior split according those heuristic candidate variables that did not explain behavior:
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Fig S3. fMRI sample: Posterior predictive checks according to all heuristics and

parameter estimates for full models including all candidate variables

(C) Posterior predictive checks show that the winning model, which includes the probability of
foraging success and the optimal policy, captures the empirical relationship between all
other 8 other heuristic variables. “Weather type” and “wins-stay-loose-shift” are binary
variables. See Table 1 for a list of all variables.

[..]

See Fig S4 for the same plots for the behavioral sample.
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Fist part of Table 1:

Table 1. Task variables overview

Variable name Explanation Theoreticall Example Grand
y possible value of  mean of
values of this variable
this variable variable  across
in the task (asin fMRI
Fig 1A participants
choice (mean
phase) within
participant
SD)
Heuristic variables
Probability of Momentary probability that 0.1t00.9in 0.6 0.55(0.24)
foraging the participant can gain a steps of 0.1
success (p with  certain magnitude of energy
g=1-p) points (versus losing two
energy points). The
participant can infer this
probability by counting the
number of subfields with
gains (i.e., blue dots in Fig
1A) in the grid that contains
10 subfields.
Magnitude of Momentary magnitude of the 0to 4 in 1 1.97 (1.41)
foraging gain g possible gain if foraging is steps of 1
successful. This is depicted
by the number of (blue) “gain
dots” per subfield of the grid.
Expected value = Momentary probability of -1.81t0 3.8 -0.2 -0.14 (1.13)
(EV) of the foraging success multiplied
foraging option by the corresponding
magnitude of foraging gain g
plus (1- probability of foraging
success) multiplied by the
loss incurred for unsuccessful
foraging, which is always -2.
The EV of the waiting option
is always -1.
Energy state s Current state of the energy Oto5in 2 297 (1.09)
bar. An energy state of zero steps of 1
is synonymous with
starvation.
Weather type Each forest type specifies Categorical 2 “good” 1.50 (0.5)
two weather types that can variable: 1
be roughly classified as “bad” or 2
“good” or “bad” depending on  “good”

whether they imply a lower or
higher probability of
starvation. Weather types are
relative to each other (i.e., a
given combination of p and g
can be the good weather type
if paired with a relatively
worse weather type with
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Days pastin a
forest (i.e.,
number of time
steps t)

Change
between past
and current
energy states

“Win-stay-loose-
shift” (WSLS)
strategy

lower p and g, or the bad
weather type if paired with a
relatively better weather type,
higher p and g).

Participants remain within a
given forest (i.e., mini-block)
for up to 5 days (i.e., trials).
The number of days is not
explicitly depicted on the
screen but participants can
easily infer it by counting the
number of choice phases
after the last occurrence of
the forest phase.
Participants might track the
difference between their
energy states in the past trial
and the current trial (within
and across forests).

Participants might use a
strategy, which prescribes
foraging if the energy state
increased with respect to the
past trial and waiting if the
energy state decreased.
WSLS is a binarized version
of the change between past
and current energy states

1to5in
steps of 1

-2to +4in
steps of 1
(maximum
loss was 2
energy
points &
maximum
gain was 4
energy
points)

1 “energy
state
increased”
or 0 “energy
state
decreased”

Not
available
in the
figure
because
the
change
depends
on the
previous
trial that
is not
depicted.
In the
next
choice
phase,
the
change
in energy
states is
+1.

Not
available
in the
figure
because
previous
trial not
depicted.
In next
choice
phase
WSLS is
1
“‘energy
state
increase
d”

1.57 (0.91)

-0.90 (1.55)

0.38 (0.48)
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8) Titleshould be changed to more appropriately reflect the content of the study (see also
comment 1). At thevery least, it should become appar ent that the study is a sequential
decision task. “ Emerging computations of heuristic and optimal decision valuein the
human cortex” or “The neural signature of heuristic and optimal decision valuein
homeostatic sequential decisions’, might convey this point a bit more (both are only
meant asillustrations not firm suggestions. | do think however, the title should be less
general)

Thank you for this very helpful suggestion. We changed the title to
Heuristic and optimal policy computations in the human brain during sequential decision-
making

9) Thereisan interesting analysisrelating to heuristic choice certainty modulating the use
of heuristic vs optimal model. However, this suggestsrather what | discussed above, a
conditional computation of higher order valueif and when necessary, not a purely
parallel computation. This should be elaborated on and maybe an equivalent neural
analysis should berun.

In the revised version, we use the continuous val ue differences between the two choice options
according to the optimal policy and not the binary optimal policy. Additionally, we corrected the
calculations of the optimal policy and now use independent data for deriving choice uncertainties (and
discrepancies). See our answer below to the same comment. With these changes, we do no longer find
adecisive effect of the choice model with choice uncertainty being better than the model without
(Table S3). Still, we find strong and clear-cut effects of choice uncertainty of the heuristic being
related to RTs (Fig 3 pasted above in response to comment 4) and to neural data (Fig 5 pasted above
in response to comment 4).

Also, a bit more basic concern, if true, isthat it looks from the supplementary methods
that an individually fit softmax isused in order to derive the difficulty of the heuristicsin
order to scalethe value of foraging success. I f thisistrue choices are used twice for
fitting, making statistics biased and potentially invalid as the difficulty adjustment
upscalesthe part of p-foraging successwith the largest changesin decision based on p-
foraging success. (See P12 L 295 in supplements)

Thank you very much for this pertinent comment. Previously, we indeed used individual participants
data twice in the way the reviewer describes. We now changed this so that for the fMRI sample the
described metrics are based on independent data from the behavioral sample. Thisisacrucia change
in analyses of the revised manuscript.

We describe thisin the main text in the results: Page 13:

Choice uncertainties were quantified on the basis of the mean parameter estimates of the
choice models from the behavioral sample. For the fMRI sample, choice uncertainty
calculations thus rely on independent data.

See al'so page 15:

Decisions should take longer when the two variables make discrepant prescriptions. For
example, RTs should be slower when the heuristic prescribes waiting but the optimal policy
prescribes foraging or vice versa. We quantified these discrepancies between the two
variables as the absolute differences in choice probabilities (which were based on the mean
parameter estimates of the choice model from the independent behavioral sample).

Methods section in the SI: Page 9 of SI:
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To base the quantification of choice uncertainties for the fMRI sample on independent data,
we used the mean parameter estimates of the choice models from the behavioral sample to
derive the logistic functions.

Thiswould also explain why the scaling with difficulty is paositive. Conceptually, | would
have expected the opposite, i.e. less use of the heuristic information if it isuncertain,
relying instead on the optimal policy, while the opposite appearsto be the case from the
formula. However, | am not so sure about the difficulty effect being positive, although
thisishow the formulaiswritten asthe authors explicitly state the more intuitive correct
sign of effect P20 L340-2 “ The higher the decision difficulty of the heuristic policy the
mor e the optimal policy was applied...”

Thank you. We apologize that the presentation of the formula was misleading. The effect was indeed
in the way the reviewer expected and as stated by usin the text. We now present these formulas more
clearly and also test two additional models with discrepancy scaling the use of the two policies. As
mentioned above, in the revised version, these models do not decisively outperform the choice model
that only contains the probability of foraging success (“p”) and the value difference according to the
optimal policy (“optimal policy”). Page 10 of Sl:

DV = decision variable

DV = B¢ + B+ * p * (1-choice uncertainty of p) + B, * optimal policy.

DV =8¢ + B1 * p + B2 * optimal policy * (1-choice uncertainty of optimal policy).

DV = B0 + B1 * p * (1-choice uncertainty of p) + B, * optimal policy * (1-choice uncertainty of
optimal policy).

DV =3 + B+ * p * discrepancy + 3, * optimal policy.

DV =3¢ + B4 * p + B2 * optimal policy * discrepancy.

10) | think it would be important to run RT and decision regression with all the
important/potentially relevant effects, plotting all of them on a group Ivl (mean and
error bars). Thiswould be ‘difficulty’ (abs value difference) for heuristic and optimal
and ‘difficulty’ of heuristic vs. optimal on RT and all the potential heuristicsfor the
logistic regression on the decision data. Thiswould givethereader a better sense of the
data and how the difference of palicies, not the main effects separately, drive RT and the
relative effect sizesfor aspects of the task that could combine to be the thing going
beyond the p-forage heuristic.

We have conducted the requested analyses for both choice and RT and provide the relevant plots (Figs
S3B & $4B). The plots clearly show that the probability of foraging successis the strongest driver of
choice data. The choice uncertainty associated with the probability of foraging successis the strongest
driver of RTs.
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Fig S3. FMRI sample: Posterior predictive checks according to all heuristics and
parameter estimates for full models including all candidate variables
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candidate decision variables (which were z-scored). For better visualization the intercept
for the RT model is not depicted. Parameter estimates were derived by averaging across

parameter estimates of models fit to individual participants. Error bars are SEM.

See Fig S4 for the same plots for the behavioral sample.
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It might furthermore, be useful to bin the data accor ding both optimal and heuristic
separately (e.g. separatelinesfor different optimal binsand points on x axis for
heuristic) to show the different effects and potential scaling of effect size (see point 9).

We now provide plots that bin data according to the heuristic (probability of foraging success and
according to the optimal policy along with posterior predictive checks (Fig 2 for the fMRI sample and
Fig S2 for the behavioral sample). We also provide plots that split choice data according to all other
heuristic variables (see Fig S3 pasted above for comment 7). Furthermore, we plot both choice and RT
data according to two combinations of heuristics (Fig S5).
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Fig 2 for the two main variables:
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Fig 2. Choice data of the fMRI sample

(E) Model comparisons show that the probability of foraging success was the best single
predictor of participants’ behavior. Main plots depict fixed-effects analyses using log-
group Bayes factors based on Bayesian Information Criterion (BIC) relative to model #1.
Insets show random-effects analyses using protected exceedance probabilities (EP) with
the winning model marked. See Table 1 for a list that specifies the task variables and
thus the models tested here.

(F) Crucially, the a priori optimal policy according to a time horizon of five days best
explained the remaining variance in participants’ choices.

(G) Posterior predictive checks show that the winning model, which includes the probability of
foraging success and the optimal policy, captures the empirical relationship between
participants’ average choices and the probability of foraging success. Markers sizes
which scale with the average number of trials contributing to the respective data points.

(H) Posterior predictive checks show that the winning model captures the relationship
between participants’ average choices and the optimal policy according to a horizon of
five days (binned value differences of foraging versus waiting).

Data are binned. Error bars are standard errors of the mean (SEM). In several cases, error

bars are smaller than the marker sizes. See Fig S2 for the same plots with data of the

behavioral sample. See Fig S3 & S4 for posterior predictive checks of the winning model
with choice data split according to the 8 other heuristics and combinations thereof, and for
parameter estimates of a full model including all candidate variables. See Fig S5 for further
posterior predictive checks of the winning model with choices split jointly according to the
energy state and the probability of foraging success or the weather type. See Fig S6 for
comparisons of different time horizons. See Tables S1, S2, & S3 for further model
comparisons.

64



See Fig S5 for more plots, which show data split according to two heuristics.
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Fig S5. Both samples: Further posterior predictive checks according to two combined
variables for models of choice and RT data.

(A & B) Split according to energy state and probability of foraging success.

(C & D) Split according to weather type and energy state.

See legend of Fig S3 for more information on the logic of these plots. See Fig 2.
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11) ThefMRI part of the manuscript isa bit thin. For example, if they believethe ACC in
involved in implementing the optimal policy, shouldn’t they run a PPI with the value of
the optimal policy to test whether it functionally connects more strongly to other value
related areaswhen it triesto steer the system towar ds mor e optimal policies?

We thank the reviewer for this suggestion, which we think an excellent for afollow-up study that is
optimized for this question by selecting appropriate numbers of trials for this PPI. We have extended
the fMRI part by also showing effects of the choice uncertainty of the optimal policy (and aso effects
of RTs). We have a so included analyses according to two separate GLMs that address 1) how
participants choices alone relate BOLD signals and 2) show that including choice as an additional
parametric modulator along with all other variables from the main models gives very similar results.

Minor Comments:

A) P21 L375“found neural representation” Isn't thisthe scaling of the signal by value or a
transfer of the sameinto p forage success? It isunusual to talk about a scalar value
signal as a representation, asthat might have come from a pattern analysis etc.
Therefore, | would suggest just describing it as“1PS and frontal pole signals
scaled/increased with heuristic value/p-foraging success’. Also it should be discussed
why this positive effect exists, together with negative effectsrelated to overall survival
probability in frontal polein the forest phase (called starvation probability).

We apologize for our incorrect use of the term “representation.” We did not want to imply that this
result was obtained in some kind of pattern analyses. We improved the discussion of thisissue and
refrain from using the term “representation” throughout the manuscript. In the revised analyses we
corrected the calculation of the optimal policy and thus the starvation probabilities under the optimal
policy. With these revised calculations, the effect of overall survival probability during the “forest
phase’ in the frontal polejust failed to reach significance (thisisthe only major qualitative changein
the fMRI results).

B) | am not surewhether it is mentioned in the manuscript but | couldn’t find it. Do
subjects need to count the days by themselves or isthis cued somehow?

There were no explicit cues and they had to count this by themselves. We included thisinformation in
the caption of Fig 1.

The number of days past in a forest was not shown to participants.
The same information is also mentioned in Table 1.

The number of days is not explicitly depicted on the screen but participants can easily infer it
by counting the number of choice phases after the last occurrence of the forest phase.

In the end participants provided ratings on how strongly they explicitly counted. Thisinformationis
included in the supplementary behavioral results (IQ and questionnaire):

We also asked participants (on a scale from 1 = never to 4 = always) whether they (f) actively
counted the number of past days (2.3 £ 1.0) and whether they (g) were aware whether the
current weather type was good or bad (3.0 £ 0.7).

C) P20 L357 “conflict-related brain activity” abit empty phrase. Also, | don’t think the
conclusion of parallel rather than interrelated can be proven.

In overall agreement with the reviewer, we do not use the word “conflict” and also refrain from
drawing the strong conclusion of parallel computation.
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D) How doesthe pregenual cingulate/lvmPFC effect compareto McGuire and Kable' s Nat
Neuro paper, asthey had a smple sequential paradigm and argued for positive value
effectsin theseregions.

Thank you very much for pointing us to thisinteresting paper. We think that there is potentialy an
interesting relation between the perigenual ACC/VMPFC effectsin the two studies, which we now
discuss. Page 23:

Intriguingly, a positive relationship between the value of the waiting action with BOLD signals
in the perigenual ACC and the VMPFC may also accord with the role of a similar region in a
conceptually different sequential decision-making task: In the task used by McGuire and
Kable® participants had to adaptively decide how long to keep waiting for future rewards with
different, uncertain timings. The temporal unfolding of the subjective value during different
waiting periods was related to the VMPFC. In both tasks, “waiting” (either as a discrete action
as in our task or as temporal persistence as in the task by McGuire and Kable) trades off
current (opportunity) costs against potential gains in the future. The choice uncertainty of the
heuristic variable was also related to BOLD signals in an anterior part of the VMPFC, as well
as dorsal MPFC and IFG.

E) Both optimal policy positive signals asthe other effect are asmuch in the ACC as other,
yet oneiscalled MPFC and other ACC in figure5, although thisis better in thefigure
legends.

Our revised analyses show a more refined pattern of fMRI results. We now additionally included the
choice uncertainty of the optimal policy as a parametric modulator in the GLM. This choice
uncertainty scales (negatively) with almost the same region that we previously identified for the
optimal policy itself. Thisregion is slightly more dorsal than the region that we previously identified
but till extends into the ACC. Please see our response above to comment 3, where we pasted parts of
the fMRI results section below aswell asFigs4 & 5.

F) Asageneral note, the authors should consider larger delays between events. Asit is, it is
impossibleto dissociate some of the stages temporally and overall the timing was rather
crowded. For their current analysesit is ultimately not too bad, astheimportant
decision event hasinformation that isn’t presented before, but other analyses would have
been possible with a bit more generous spacing.

We thank the reviewer for this comment and will take this into consideration in our next study. Here,
we specifically aimed at looking into the choice phase.

G) Participantsare strangely bad (Figure 2). Even when they should be at 100% in bad
weather for foraging they are essentially random. I sthisbecause the overall p survival is
so low that they don’t care? Might be useful to plot the p survival for good and bad
weather by energy state asthe temperature might be effected by the value and fMRI
behavioural data might have a higher temperature accentuating that modulation even
further.

We now provide plots that show participants' choices split up according to energy state and the
probability of foraging success as well as according to energy state and weather type (see Fig S5
pasted above in response to comment 10). We a so provide a plot below that shows the mean value
difference (foraging minus waiting) of the optimal policy acrossal trias of the fMRI sample. (This
value difference corresponds to starvation probability.) The plot shows that the average valuein the
bad weather in energy state 1 is above 1, i.e., prescribing foraging.
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We deem it likely that the “ strangely bad” behavior shows participants' overreliance on the
heuristic. In the cases the reviewer refersto, participants are above chance but clearly not close to the
normative choice, which would be to choose foraging with 100%. The same plots aso show that
unfortunately there were a limited number of trials within the relevant condition (bad weather &
energy state 1). Thiswas actually intended by our stimulus selection: We aimed at reducing the
number of trials in which participants were starved (because participants could not provide answersin
these trials). Nevertheless, we conducted additional analyses to test whether energy state additionally
explained participants behavior. Overall, we did not find evidence that choice data were consistently
and decisively better explained by the energy state. We now suggest energy state as an interesting
variable for follow-up studies. Page 21.

We deem it an interesting question for follow-up research whether a different selection of
trials or variations of our task design would result in more (or less) complex models being
identified. For example, it could well be that more challenging tasks would lead participants
to abandon the optimal policy in favor of a combination of two heuristics (such as a
combination of the momentary probabilities of foraging success and the current energy
state).

H) How likely isthe heuristic strategy to give higher p-choice estimatesthan the optimal ?
Furthermore, is, after fitting the softmax etc one strategy more likely to be more certain
the majority of trials? If so, then the unsigned differ ence conver ges with a signed variant
and it isthereforeimportant to know the degree of correlation between signed and
unsigned within every subject.

Across participants, the mean proportion of trials in which the choice probability according to the
probability of foraging success was higher than the choice probability according to the optimal policy
was 0.476 (SD 0.018). The mean correlation of signed and unsigned differences was 0.057 (SD 0.085,
minimum: -0.091; maximum: 0.321). Thus, there is no evidence that one of the two strategiesis
overall more certain and the signed and unsigned versions do not converge.

I) They claim that macroscopically different brain regions encode the two policy but never
show the respective other policies effect sizein theregionsthey arereferring to making it
hard to judgethat statement P17 L 288-9.

We agree that we do not directly compare effect sizes between regions. Thisis actually not aim to
show that one region but clearly NOT another oneisinvolved in computing a given variable. We
therefore drop the unqualified and mid eading sentence.

J) Theabstract hasan incomplete sentence. It says*“resort to easy-to-heuristics’
We corrected the sentence to

To avoid such complex computations, decision-makers may resort to easy-to-compute
heuristics that approximate optimal solutions.
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Reviewers' comments:

Reviewer #1 (Remarks to the Author):

Korn and Bach have completed an extensive revision of their already impressive study,
which features a detailed analysis of choice, RT and prefrontal BOLD behavior in a very
complicated sequential decision task. I think this is a very thought provoking article well
worth publishing even as is; though I do also continue to have some reservations about the
analyses in their current form and so I offer some suggestions that I hope might improve
the manuscript further should additional revision be required.

1) The main thing I still find ultimately unsatisfying about the article is that while there are
extensive and convincing model fitting and comparison exercises, the “posterior predictive
checks” don't really serve the role of helping the reader understand what about the task and
the choices actually allows the models to be distinguished. I would particularly call the
authors attention to the recent Palmenteri TICS paper ("The importance of falsification”) for
a better sense what I feel is missing here. Figure S2 shows choice behavior is monotonic in
the model predictors (and S4 that it is not monotonic in some of the other candidates); and
S5 shows a lot of behavior, but still I couldn’t point to what about the choices tells me that
these are the right models and, in particular, the other models are falsified.

Specifically, the authors argue that part of behavior is determined by a myopic heuristic that
considers only choice features of the current trial. What is unique about this heuristic
relative to other obvious myopic ones like EV is that the subjects pay attention to the
probability of success but ignore the amount. (By the way, see Venkatraman’s 2008 Neuron
and 2014 Organizational Behavior papers for a seemingly similar heuristic.) So: Can we see
examples of particular situations where subjects tend to make a choice that is predicted by
the heuristic but for which the opposite choice is predicted by EV?

Conversely, the model fits seem to indicate that other parts of the behavior are best
explained by optimal sequential choice to the exact horizon of 5, rather than some other
horizon. I find it pretty surprising that different horizons can be distinguished from one
another, to be honest. What is it about the choices that reveals this consideration of future
trials (let alone exactly the remaining set of them)? The intuition on p.5 of the supplement
doesn’t shed light on this. (It describes a myopic policy with the caveat that in some cases
you should be indifferent -- is selective indifference ultimately all that's driving the effect?)
Again, I'd ideally like to see some feature of choices in particular situations that shows
subjects paying attention to the rest of the days in the forest. Maybe this is hidden in Figure
S5 but it would really make the paper more convincing and more informative if this could be
exposed better.

2) One thing I find somewhat confusing about the fMRI results is that the key value-like
regressors appear to be expressed in terms of value of foraging, whereas much has
considered mPFC value in terms of the value of chosen (or unchosen) options. Indeed, at
one point the discussion appears to suggest reinterpreting activity in these terms. I wonder
if it might clarify some of the results to directly examine the data in this frame. (ie try



regressors for the heuristic or optimal value of the chosen or chosen minus unchosen action
rather than the forage action - I think this is not the same as including choice itself as an
additional nuisance variable.) It has been argued (e.g. by Rushworth) that a default vs non-
default frame actually does better explain activity in some areas and in tasks like this, so
the current analysis may well be best, but chosen value might be worth a look.

Reviewer #2 (Remarks to the Author):

Korn and Bach have revised their manuscript substantially and gone to great lengths to
allay my concerns regarding their previous draft. There is no doubt in my mind that this
work provides useful insights into an interesting and important problem, namely, how do
people make complex decisions?

Despite the improvements, I still one concern with the manuscript. The concern is that I
think the hybrid model is still missing a key aspect of the subject behavior. For lack of
better terminology, subjects seem less willing than the best-fitting model to select actions
that lead to imminent and immediate death. This is quite clear from figure S5 panels A-D; in
all cases the model fits all data-points except those where the energy state is equal to 1.
The energy state=1 data include substantially more foraging than would be predicted by the
hybrid model, particularly when the p(foraging success) is low. My understanding of this is
that subjects do not want to “wait” under these circumstances, as this action would lead
with absolute certainty to 0 energy. No doubt, such a heuristic would be a useful one in this
task, and I understand the authors’ insinuation that such a heuristic might only be in play
for a very small number of trials, but it certainly suggests that the behavioral model used by
the authors is incomplete. While in some cases, incomplete behavioral modeling can have
dire consequences (CF. Nassar & Gold 2013) this does strike me as a case where an
additional mixture component is unlikely to interfere with the primary claims in the paper.
Nonetheless, the computational interpretations of the behavior and imaging data would be a
bit more convincing if the authors could verify the robustness of their basic modeling
assertions to the inclusion of this sort of simple binary and short-term “death avoidance”
heuristic.

Minor points:

Figure 2C:

It would be useful if the authors could provide more description of exactly what they are
plotting. I am assuming that the light points are simulated model data though I don't see
them labeled anywhere.

Figure 5B:

These should be for optimal policy, right?



Nassar, M.R. & Gold, ].I., 2013. A healthy fear of the unknown: perspectives on the
interpretation of parameter fits from computational models in neuroscience. PLoS
Computational Biology, 9(4), p.e1003015.

Reviewer #3 (Remarks to the Author):

1) I did not mean to imply that the authors use of the word value is improper nor that
probability of surviving isn't an appropriate value, just that it represents not a signal that
scales with the magnitude of a desired outcome but rather an increase in certainty of
getting a reward at an end of a chain, which is somewhat different from most other tasks. I
simply felt the reader might be interested in knowing this distinction and am happy with the
authors changes.

2) Fine. Interesting RT analyses showing heuristics are faster.

3) Figure 5 the figure labels are a little bit confusing and could maybe be made somewhat
simpler. The figure legend doesn't split up into ABCD, which might also clarify what is shown
exactly. Furthermore, I think that B in Figure 5 is wrongly labeled. Isn't it supposed to be
optimal policy uncertainty (negative)?

4) Fine.

5) I apologize for the confusion. The important point here is the direction of the effect! If I
understand the authors correctly, both heuristic and optimal choice uncertainty (Figure 5
A+B) where they appear to exert an in MPFC effect, the do so negatively, i.e. increased
activity with increased certainty (often closely related to increased subjective value).
However, previous uncertainty findings in other tasks normally have an increased signal
with lower certainty, i.e. higher uncertainty. Sometimes it reads in the manuscript as if the
paper found what everybody else has as there are uncertainty effects but If I am not
mistaken the sign is the other way around, at least for broader ACC. This is exciting as it
suggests increased signals here with certainty, inconsistent with simple conflict accounts, as
those would always predict positive effects of uncertainty, not certainty. To put it simply,
the signal isn’t heuristic or optimal difficulty, but easiness according to interpretations of
previous papers in the field regarding signal signs.

6) Fine.

7) Even from the plots it looks like the p foraging success is the strongest regressor other
than optimal policy (h-1). I didn’t expect all factors to have the same effect size, but it
should be mentioned somewhere in the text that p foraging success was the strongest
single predictor, not just behaviourally but also by design in terms of driving the optimal



value.
8) Fine
9) Fine. It's a little bit of the pity that the interactive model doesn’t any longer work, but

maybe in a future study with a design more optimized to answer this interaction question,
the authors might be able to show such an effect.

10) Fine

11) Fine

A) Fine

B) Fine. I would also mention it somewhere in the main text, e.g. methods.

C) Fine

D) Fine.

E) Interesting. However, doesn’t this positive value signal contradict McGuire and Kable’s
conclusion of no value or decision signals in ACC? Maybe highlight this distinction when
discussing McGuire and Kable. They argued all value signals are exclusively in vmPFC.

F) Fine

G) I highlighted the feature in the data precisely as it should be relatively obvious to the
participants what to do. At energy state one in bad weather participants should always
forage because otherwise they definitely starve. Despite that participants only forage half
the time, which I was surprised by. I however understand the explanation of the authors
that precisely that bin is under-sampled and just a little bit of randomness can depress
percentages. I am however not so sure about the heuristics explanation, precisely because
it should be so obviously the correct choice. Either way, as long as the authors mention the
sampling, I am happy.

H) Fine.

I) Fine

J) Fine

Additional Comment:

Figure SO I am not sure whether I am just misunderstanding but foraging < waiting is the

same thing mathematically as waiting > foraging, unless I missunderstand. I imagine it is
only a typo and one is foraging more than waiting and the other one waiting more than



foraging? Would be interesting to know what way around it is. Does on average foraging
create higher activity in dACC or waiting?



Reviewer #1 (Remarksto the Author):

Korn and Bach have completed an extensive revision of their already impressive study, which
features a detailed analysis of choice, RT and prefrontal BOL D behavior in a very complicated
sequential decision task. | think thisisa very thought provoking article well worth publishing
even asis; though | do also continue to have somereservations about the analysesin their
current form and so | offer some suggestionsthat | hope might improve the manuscript further
should additional revision berequired.

Thank you very much for your favorable evaluation of our manuscript and for your helpful
suggestions. We have taken care to implement your recommendations, which we believe hasimproved
the manuscript considerably.

1) The main thing | still find ultimately unsatisfying about the articleisthat whilethereare
extensive and convincing model fitting and comparison exercises, the “ posterior predictive
checks’ don't really servetherole of helping the reader understand what about the task and the
choices actually allows the modelsto be distinguished. | would particularly call theauthors
attention to therecent Palmenteri TICS paper (“ Theimportance of falsification”) for a better
sensewhat | feel ismissing here. Figure S2 shows choice behavior is monotonic in the model
predictors (and $4 that it isnot monotonic in some of the other candidates); and S5 showsa lot
of behavior, but till I couldn’t point to what about the choicestells methat these aretheright
modelsand, in particular, the other models arefalsified.

Thank you for prompting us to clarify the “ posterior predictive checks’ and for pointing us to the
recent article by Palminteri et al (which we now cite). We realized that in our previous submission we
only provided plots showing that the winning model does capture behavior when data are binned
according to all of the different candidate variables (these are presented in the figures mentioned by
the reviewer). We now added plots showing that alternative models do not capture behavior. In our
opinion, these plots nicely illustrate the lack of fit of these models, thereby falsifying them for our
setup and data. The differences are particularly striking when comparing all models with asingle
predictor (see panel A below). Many of the models do not make sensible predictions at all. The new
illustrations also demonstrate clearly that the inclusion of the optimal policy (horizon-5) considerably
improves the fit to the empirical choice data (see panels B & C below).



A fMRI sample: Models with a single predictor
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Fig $4. fMRI sample: Posterior predictive checks: Comparison of choice dateto different model
predictions

(A) Posterior predictive checks show that—among the models with a single predictor—the model
comprising the probability of foraging success captures choice data better than any of the other
models.

Posterior predictive checks show that—among the models with a two predictors—the model
comprising the probability of foraging success and the optimal policy (at a horizon of 5 time
steps) captures choice data better than any of the other models. Overall most models make quite
similar predictions since they all include the probability of foraging success.

Posterior predictive checks show that the model comprising both the probability of foraging
success and the optimal policy (horizon-5) provides a better fit to the data than the model that
only comprises the probability of foraging success

Error bars are SEM. Per data bin, circles depict mean empirical data points and colored lines and
crosses depict mean model predictions (averaged for simulated data according to each participant’s
model fit). In several cases, error bars are smaller than the marker sizes, which scale with the average
number of trials contributing to the respective data points. See Fig S5 for the same plots with data of
the behavioral sample. See Table 1 for a list of all variables. h-5: horizon of 5 days; h-1: horizon of 1
day; cont.: continuous; bin.: binary
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The same was true for the behavioral sample:

A Behavioral sample: Models with a single predictor B Behavioral sample: Models with two predictors
1 1
Model fits Model fits
o #1 optimal policy (h-5) p foraging PLUS ...
=) —#2 p foraging success —i#1 optimal policy (h-5)
e #3 foraging gain #2 foraging gain
2 #4 EV #3EV
2 05 #5 cont. energy state 05 #4 cont. energy state
B #6 bin. energy state #5 bin. energy state
] —#7 weather type —#6 weather type
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e —#39 change in states —#8 change in states
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0 —#11 optimal palicy (h-1) 0 —#10 optimal policy (h-1)
0 02 04 06 08 1 -1 -0.5 0 0.5 1
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C Behavioral sample: Model with a single predictor versus
model with two predictors
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Fig S5. Behavioral sample: Posterior predictive checks: Comparison of choice data to different
model predictions

The plots follow the same logic as those in Fig S4, which show data and models of the fMRI sample.
Error bars are SEM. Per data bin, circles depict mean empirical data points and colored lines depict
mean model predictions (averaged for simulated data according to each participant’s model fit). In
several cases, error bars are smaller than the marker sizes, which scale with the average number of
trials contributing to the respective data points. See Table 1 for a list of all variables. h-5: horizon of 5
days; h-1: horizon of 1 day; cont.: continuous; bin.: binary



Of course, we refer to these illustrations in the results sections:
Page 9:

Posterior predictive checks demonstrate that, also qualitatively, no other model with a single
predictor captured choice data as well as the model with the probability of foraging success (Figs S4A
& Fig S5A), including models relying on the optimal policy or on a heuristic based on expected value
(see Supplementary results).

Page 12:

Posterior predictive checks confirm that the winning model qualitatively captured participants’
behavior (see Figs 3C & 3D for the winning model, and Figs S4, S6, & $8-S10 for extended posterior
predictive checks of all models and for parameter estimates of a full model including all candidate
variables).

We have also revised the organization and the captions of the figures mentioned by the reviewer
(which are now Fig $4-34) to provide a better description of what is depicted.

Specifically, the author s argue that part of behavior isdetermined by a myopic heuristic that
considers only choice features of the current trial. What is unique about this heuristic relative to
other obvious myopic oneslike EV isthat the subjects pay attention to the probability of success
but ignore the amount. (By the way, see Venkatraman's 2008 Neuron and 2014 Or ganizational
Behavior papersfor a seemingly similar heuristic.) So: Can we see examples of particular
situations wher e subjectstend to make a choice that is predicted by the heuristic but for which
the opposite choiceis predicted by EV?

Thank you for this specific suggestion. We now selected trials in which the probability of foraging
success model and the EV model made opposing predictions and then tested empirical choicein these
conditions. These analyses corroborated that the probability of foraging successis by far the better
predictor.

These results are now described in detail (Sl results: page Sl 15)

Comparison of choice data according to prescriptions of the models comprising probability of
foraging success or expected values

We specifically tested behavior in situations in which probability of foraging success and EV made
opposing prescriptions. We chose these two metrics in particular since they are mathematically
related and since previous studies have investigated how probability and EV account for choices in
another type of sequential decision-making task "%. We selected two types of trials: First, trials in
which the heuristic of using the probability of foraging success prescribed foraging (i.e., model
prescription > 0.5) and at the same time the heuristic of using EV prescribed waiting (i.e., model
prescription < 0.5; based on logistic functions derived from mean parameter estimates from the
behavioral sample). Second, trials in which the probability of foraging success prescribed waiting and
the EV prescribed foraging. In both cases participants’ actual choices were aligned with the
prescriptions of the model including the probability of foraging success: In the first type of trials,
participants were more likely to choose foraging (proportion of trials foraging chosen: mean * SD:
0.73 % 0.15, t-test against 0.5: t(27) = 8.1, p < 10”; percentage of these trials in the overall number of
trials: 0.12 £ 0.01). In the second type of trials, participants chose waiting more often (proportion of
trials foraging chosen: 0.11 + 0.07, t-test against 0.5: t(27) = -25.0, p < 10™°; percentage of these trials
in the overall number of trials: 0.27 + 0.02; see Table S5 for analogous analyses comparing different
horizons of the optimal policy).



Sl methods (pages SI 10-11)

For additional analyses, we used the relevant logistic functions derived from mean parameter
estimates (from the behavioral sample) to select trials in which the heuristic policies of using the
probability of foraging success and of using the EV made opposite prescriptions for choice. That is,
we binarized the prescriptions of the two policies by splitting them into those above and below the
midpoint of 0.5. Logistic functions were derived from the mean parameter estimates of the
behavioral sample. See Supplementary behavioral results and discussion: Comparison of choice
data according to prescriptions of the models comprising probability of foraging success or
expected values).

Werefer to this section in the main results (page 9):

Posterior predictive checks demonstrate that, also qualitatively, no other model with a single
predictor captured choice data as well as the model with the probability of foraging success (Figs S4A
& Fig S5A), including models relying on the optimal policy or on a heuristic based on expected value
(see Supplementary results).

We highlight this result and the relation to the two studies by Venkatraman et a. in the discussion
(page 21):

Specifically, we demonstrate that participants took advantage of a model-free heuristic available at
the time point of decision-making. This heuristic of relying on the probability of foraging success
approximates the optimal policy, which is hard to compute, and performed overall best in explaining
choices among a large set of alternatives (including the foraging options’ expected values). This
finding is in line with studies showing that participants base their choices to a large degree on the
overall probability of winning in another type of sequential decision-making task*®*.

Conversely, the model fits seem to indicate that other parts of the behavior are best explained by
optimal sequential choiceto the exact horizon of 5, rather than some other horizon. | find it
pretty surprising that different horizons can be distinguished from one another, to be honest.
What isit about the choicesthat revealsthis consideration of futuretrials (let alone exactly the
remaining set of them)? Theintuition on p.5 of the supplement doesn’t shed light on this. (It
describes a myopic policy with the caveat that in some cases you should be indifferent -- is
selectiveindifference ultimately all that'sdriving the effect?) Again, I'd ideally like to see some
feature of choicesin particular situationsthat shows subjects paying attention to therest of the
daysin theforest. Maybethisishidden in Figure S5 but it would really makethe paper more
convincing and moreinformativeif this could be exposed better.

To address thisinsightful point by the reviewer, we followed a similar approach as described above
for the comparison of p foraging success and EV. We selected trials in which the winning optimal
horizon-5 policy made opposing prescriptions with respect to the optimal policies with the other
considered horizons (i.e., one horizon prescribed foraging and another prescribed waiting or vice
versa). Again, in al of these conditions choices were in line with the horizon-5 policy. Empirical data
were never better predicted by a horizon other than horizon 5. This also shows that selective
indifferenceis not all that is driving the effect, since these trials were not considered in the selected
subsets.



We summarized these resultsin Table Sb:

Table S5. Both samples: Analyses of choice data in subsets of trials with opposing prescriptions

according to different time horizons of the optimal policy

Participants’ choices follow the optimal policy with a horizon of 5 time steps, which is normative in

our task. That is, in all subsets of trials, in which different shorter horizons of the optimal policy made

opposing prescriptions, choices were in line with the prescriptions of the optimal policy with a

horizon of 5 steps.

Condition Mean (SD) t-values (test p-values Mean (SD)
proportion against proportion of
of midpoint of trials in
participants’ choice respective
choices to proportion, condition versus
forage in i.e., 0.5) total number of
respective
conditions
fMRI sample
Foraging prescribed by horizon-5 optimal policy & waiting prescribed by ...
horizon-1 policy 0.94 (0.06) 3845 <10 0.14 (0.012)
horizon-2 policy 0.79 (0.07) 2157 <10V 0.24 (0.014)
horizon-3 policy 0.82 (0.11) 15.79 <10 0.11 (0.010)
horizon-4 policy 0.71(0.21) 5.23 <10* 0.03 (0.007)
Waiting prescribed by horizon-5 optimal policy & foraging prescribed by ...
horizon-3 policy 0.20(0.22) -7.26 <10~ 0.02 (0.007)
horizon-4 policy 0.26 (0.22) -5.96 <10° 0.02 (0.006)
Behavioral sample
Foraging prescribed by horizon-5 optimal policy & waiting prescribed by ...
horizon-1 policy 0.92 (0.17) 11.58 <10° 0.14 (0.019)
horizon-2 policy 0.77 (0.15) 8.13 <10~ 0.24 (0.015)
horizon-3 policy 0.79 (0.20) 6.52 <10° 0.12 (0.012)
horizon-4 policy 0.75 (0.24) 4.83 <10? 0.03 (0.010)
Waiting prescribed by horizon-5 optimal policy & foraging prescribed by ...
horizon-3 policy 0.19 (0.25) -5.60 <10” 0.02 (0.005)
horizon-4 policy 0.39 (0.25) -1.98 =0.062 0.02 (0.005)

See Fig S11 for an illustration of the differential prescriptions of the optimal policy according to
different time horizons and Fig S12 for formal model comparisons of choice data.



Additionally, we now provide a graphical illustration of how often the optimal policies according to
the different horizons prescribe foraging or waiting, or are indifferent between these two options for
the trials used in our setup (Fig S11). Asthe reviewer notes, indifference decreases with longer time
horizons but also the percentage of prescribed waiting changes (especially for horizons 2 & 3).

-
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horizon employed in optimal policy

e
3]

proportions of action prescrbed
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Fig S11. Prescriptions of optimal policy according to different time horizons

This plot illustrates that the optimal policy makes differential prescriptions according to the time
horizon employed. In the trials used in our task, the optimal policy at shorter time horizons is often
indifferent between the two choice options of waiting versus foraging (e.g., when starvation is not
possible on the next time step under any of the two options, a myopic optimal policy with a horizon
of only 1 time step is indifferent).

Sl Methods (page S| 10):

To analyze subsets of trials, in which different horizons of the optimal policy made opposing
prescriptions, we simply selected trials in which the (a priori computable) optimal policy for a horizon
of 5 time steps prescribed foraging and the optimal policy for another time horizon prescribed
waiting; or vice versa (see Table S5 & Fig S11).

We refer to these analyses in the results section of the main text (pages 12-13):

When comparing models with different horizons, we found that participants’ choices were indeed
best described by a time-horizon of five days (see Fig S11 for an illustration of the different
prescriptions made by optimal policies with different time horizons and Fig S12 for model
comparisons). This finding was corroborated when analyzing subsets of trials in which policies with
different horizons made opposing prescriptions (Table S5).

2) Onething | find somewhat confusing about the fMRI resultsisthat the key value-like
regressor s appear to be expressed in terms of value of foraging, whereas much has considered
mPFC valuein terms of the value of chosen (or unchosen) options. Indeed, at one point the
discussion appear sto suggest reinter preting activity in these terms. | wonder if it might clarify
some of theresultsto directly examinethe datain thisframe. (ietry regressorsfor the heuristic
or optimal value of the chosen or chosen minus unchosen action rather than the forage action — 1
think thisisnot the same asincluding choice itself as an additional nuisance variable.) It has
been argued (e.g. by Rushworth) that a default vs non-default frame actually does better explain
activity in some areas and in taskslike this, so the current analysis may well be best, but chosen
value might beworth alook.

We have now run an additional GLM along the suggestions of the reviewer and find indeed expected
regions for the regressors related to the chosen action. Specifically, these analysis show that the
chosen value according to the optimal policy was positively related to aregion in the VMPFC

7



(extending into perigenual ACC), similar to the value differences according to the optimal policy. For
the heuristic, analogous results were obtained for the left frontal pole. We now describe these findings
in the main text and add the relevant figures to the SI. These results corroborate that BOLD signalsin
these regions were related to variables, on which participants based their choice.

Main results section (page 19):

In a fourth GLM, we specifically analyzed how the values of the chosen options related to BOLD
signals (Fig S16 &Table S10). The probabilities of foraging success according to the options chosen by
participants scaled positively with the left frontal pole, in a similar region as described above for the
probabilities of foraging success according to the presented foraging options. The values of optimal
policy according to the chosen options’ values were positively related to the VMPFC, in a similar
region as described above for the value differences according to the optimal policy. These findings
corroborate that BOLD signals in the left frontal pole and in the VMPFC were associated with
variables on which participants based their choices.

Sl Methods section (page Sl 13):

A fourth GLM included parametric modulators in terms of chosen (and unchosen) options (and not in
terms of the presented options as in the first three GLMs). Specifically, this fourth GLM contained the
a parametric modulator for the chosen values of the employed heuristic (i.e., the current probability
of foraging success for trials in which the foraging option was chosen and a probability of zero when
the waiting option was chosen) and a parametric modulator for the chosen values according to the
optimal policy (i.e., the current values of the foraging or the waiting options) as well as parametric
modulators for the corresponding unchosen values along with parametric modulators for
participants’ choices and RTs.

Table S10 (page Sl 62) provides detailson al clusters.



Fig S16
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Fig S16. Statistical parametric maps for the choice phase (GLM with values of chosen options as
parametric modulator)

Depicted are results from a separate GLM, in which parametric modulators were framed in terms of
the values of the chosen options (rather than in terms of the options presented). (A) The
probabilities of foraging success according to the chosen options (i.e., foraging or waiting) were
positively related to the left frontal pole (in a similar region as the probabilities of foraging framed in
terms of the presented foraging option in the main GLM). (B) The values of the optimal policy
according to the chosen options showed a positive relation with the VMPFC (in a similar region as the
differences between the presented choice options’ values according to the optimal policy in the main
GLM).

Overlay on group average T1-weighted image in MNI space; clusters are whole-brain FWE
corrected for multiple comparisons at p <0.05 with a cluster-defining threshold of p < 0.001. See
Table S10 for a list of all clusters.



Reviewer #2 (Remarksto the Author):

Korn and Bach haverevised their manuscript substantially and goneto great lengthsto allay my
concernsregarding their previousdraft. Thereisno doubt in my mind that thiswork provides
useful insightsinto an interesting and important problem, namely, how do people make complex
decisions?

Thank you very much for your evaluation.

Despite theimprovements, | still one concern with the manuscript. The concernisthat | think
the hybrid model is still missing a key aspect of the subject behavior. For lack of better
terminology, subjects seem lesswilling than the best-fitting model to select actionsthat lead to
imminent and immediate death. Thisis quite clear from figure S5 panels A-D; in all casesthe
model fitsall data-points except those where the energy stateisequal to 1. The energy state=1
data include substantially mor e foraging than would be predicted by the hybrid model,
particularly when the p(foraging success) islow. My under standing of thisisthat subjects do not
want to “wait” under these circumstances, asthis action would lead with absolute certainty to 0
energy. No doubt, such a heuristic would be a useful onein thistask, and | understand the
authors' insinuation that such a heuristic might only bein play for a very small number of trials,
but it certainly suggeststhat the behavioral model used by the authorsisincomplete. Whilein
some cases, incomplete behavioral modeling can have dire consequences (CF. Nassar & Gold
2013) this does strike me as a case where an additional mixture component isunlikely to
interferewith the primary claimsin the paper. Nonetheless, the computational inter pretations of
the behavior and imaging data would be a bit more convincing if the authors could verify the
robustness of their basic modeling assertionsto theinclusion of thissort of simple binary and
short-term “death avoidance” heuristic.

We thank the reviewer for thisinsightful suggestion to further look into how the current energy state
affects participants’ behavior. We deem the reviewer’ s suggestion of a“simple binary and short-term
death avoidance heuristic” very valuable and have therefore extended all relevant model comparisons
toinclude this variable (i.e., we now compare a total of 11 candidate decision variables). This “binary
energy state heuristic” is set to 1 when the “ continuous energy state” isone and is set to O for energy
states of two or higher. Asthe reviewer notes this heuristic captures the fact that waiting leads to sure
death in energy state one. We would like to stress that this “binary energy state heuristic” isthus
alwaysin line with the optimal policy (since the optimal policy always prescribes foraging when only
one energy point isleft). But in contrast to the optimal policy, the binary energy state heuristic can by
design not make specific prescriptionsin other energy states (which is also reflected in the fact that it
performs poorly in minimizing overall starvation probabilitiesin our simulations, see updated Fig
S13).

In the fMRI sample (n=28), results remain unchanged and robust to the addition of the binary
energy state heuristic. In acomparison of models comprising three decision variables (i.e., p foraging
success, optimal policy at a horizon of 5 days, and one of the remaining 9 variables), the model
including the binary energy state heuristic only performs fourth-best according to relative log-Bayes
factors and third-best according to protected exceedance probabilities (Fig 3 & TablesS1 & S3). As
the reviewer mentions, the small number of trialsin which participants were in energy state one
(percentage: mean + SD: 0.07 + 0.01) probably limits the power to detect a strong influence of this
binary energy state heuristic. Additionally, it might be that—since the situation of energy state one
occurs so rarely—participants still apply in many cases the “p foraging success heuristic” and are
swayed to wait by small probabilities of foraging success (although thisis clearly suboptimal). This
might explain why participants only chose foraging in well below 80% of these cases and not in 100%
as they should.

In the smaller behavioral sample (n=21), results asindicated by log-group Bayes factors till
decisively favored the model comprising p foraging success and the optimal policy at a horizon of 5
days but protected exceedance probabilities were indecisive between this model and the model
comprising p foraging success and binary energy state (Fig S3 & Tables S2 & $4). Binary energy
state also emerged as the best third predictor according to log-group Bayes factors.
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Taken together, the combined evidence from both samples shows that our results are robust to
theinclusion of a“binary energy state heuristic” but the fact that it performed second-best to the

optimal policy in the smaller behavioral sample suggests that this heuristic is an important addition to
the model space.

In line with the reviewer’ s comment, we provide a graphical visualization of the model including the
binary energy state variable. Qualitatively predictions improved for energy state one.
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Fig S10. Both samples: Comparison of choice data to model predictions when splitting conditions
for probability of foraging success and continuous energy.

These plots separate data and model predictions according to two task variables: Probability of
foraging success (abscissa) and continuous energy state (color-coded). The plots illustrate the quality
of fit for the choice model, which includes the probability of foraging success and the optimal policy
at a horizon of 5 time steps (left panels A & C). This choice model captures the data well. Notable
deviations of data and model fit are only observed for conditions with an energy state of one (and a
rather low probability of foraging success). In our current study design, the data bin with energy state
one only comprised a small fraction of trials (percentage: mean + SD: fMRI sample: 0.07 + 0.01;
behavioral sample: 0.08 + 0.02). For additional inspection, we provide plots for a choice model that
includes the “binary energy state variable” (right panels B & D). The more complicated model
provides a better qualitative fit to the data bins with an energy state of one. However, the simpler
model provides a decisively better model fit in the fMRI sample (Tables S1 & S3). In the behavioral
sample, the model including binary energy state is decisively better according to log-group Bayes
factors but not according to protected exceedance probabilities (Tables S2 & 4). Per data bin, mean
empirical data points are depicted as circles (size according to number of data points) and mean
model predictions are depicted as dashed lines.
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To reflect these additions, we have expanded the results section (page 11):

The optimal policy explained additional variance in participants’ choices

After accounting for the best heuristic, a decisive proportion of remaining variance in the (larger)
fMRI sample was explained by the a priori optimal policy with a horizon of five time steps (Fig 3B,
Table S1). This model with two predictors also won in an extensive model comparison against all 55
pairs of candidate variables (Table S2). Posterior predictive checks confirm that the winning model
qualitatively captured participants’ behavior (see Figs 3C & 3D for the winning model, and Figs S4,
S6, & $8-510 for extended posterior predictive checks of all models and for parameter estimates of a
full model including all candidate variables). Additionally, models including interactions between the
most important heuristics did not provide a better fit than the model with the optimal policy (Table
S1). There was no decisive evidence (according to protected exceedance probabilities) that a model
with three variables explained choices better than the best model with two variables (Table S1).

In the (smaller) behavioral sample, we found that protected exceedance probabilities did not
decisively distinguish between two-variable models including the optimal policy, or the binary energy
state heuristic, respectively. However, log-group Bayes factors provided decisive evidence for the
same model as in the fMRI sample, including the best heuristic and the optimal policy (Tables S2 &
S4, Figs S3, S5, & S7). Thus, overall our model comparisons across the two groups decisively favor the
optimal policy as a predictor of participants’ choice in our task. Nevertheless, it is possible that on
specific subsets of trial types (e.g. with energy state one), different variables predict behavior better
(see Figs 9-10).

Taken together, model comparisons suggested that participants’ choices were often
predicted by a heuristic policy, but additionally choices followed the normatively optimal policy.

We extended a cautionary note on model selection in the discussion (page 21):

We did not find decisive evidence that any linear combination of two candidate policies and variables
explained our choice data better than the probability of foraging success and the optimal policy.
Although it is theoretically possible that participants use a yet unknown decision policy (for
discussion see**°), such policies do not follow from the given task variables in an obvious way. Any
such model would thus likely require higher complexity than the linear combination of the
probability of foraging success and the optimal policy (or it would only apply to a less complex setting
than the one investigated here). It is an interesting question for follow-up research whether on
specific trial types (possibly under-sampled here) participants may have used a more (or less)
complex model. Also, it appears possible that in a more (or less) challenging task, participants may
abandon the optimal policy in favor of a combination of two or more heuristics.

We added an explanation of the binary energy state variable to the methods (page S 8):

As policy, we first considered the following potential optimal or heuristic policies (see also Table 1 for
an annotated list): [...] (6) binary energy state (indicating whether waiting would lead to sure death or
not). Since waiting leads to sure death when the continuous energy state is one, the optimal policy
never prescribes waiting in these situations (i.e., even when the probability of foraging success is
small, the optimal policy always favors a non-zero starvation probability). Therefore, the
prescriptions of the binary energy state variable are always in line with the optimal policy at a
continuous energy state of one.
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We updated Table 1, which lists all variables.

Explanation Theoretically Example Grand mean
possible value of of variable
values of this this across fMRI
variable in variable participants
the task (asin Figs (mean

1 choice within
phase) participant
SD)
[...] [...] [...] [...] [...]
Binary energy When the continuous energy Binary 0 “waiting 0.07 (0.26)
state state is one, waiting leads to variable: 1 or does not
sure death. In higher energy 0 lead to
states, waiting will never lead to starvation

”

starvation. The variable “binary
energy state” distinguishes
between these situations
(1=energy state is one;
O=energy state is two or higher).

[.] [.] [..] [.] [.]

We extended the statistical tables of all choice model comparisonsin Tables S1 & S3 for the fMRI
sampleand in Tables S2 & $4 for the behavioral sample. For easier reference, we summarize these
results in the headers of the respective tables (and we a so kept this verbal description similar for the
two samples).

Table S1. fMRI sample: Comparison of choice models

Among 11 candidate variables, probability of foraging success emerged as the single best predictor of
participants’ choices. The model that included both the probabilities of foraging success and the
optimal policy outperformed 1) all other combinations of probability of foraging success and the
remaining 10 candidate variables, 2) the model with the probabilities of foraging success as sole
predictor, and 3) models including the probabilities of foraging success, along with five different
heuristics, and the respective interactions. No decisive evidence emerged for 1) models with a third
candidate variable consistently explaining more variance (according to protected exceedance
probabilities), and 2) a clear-cut influence of choice uncertainties or discrepancy between the two
policies included in the main model (according to relative log-group Bayes factors and protected
exceedance probabilities).

Table S2. Behavioral sample: Comparison of choice models

Among 11 candidate variables, probability of foraging success emerged as the single best predictor of
participants’ choices. The model that included both the probabilities of foraging success and the
optimal policy outperformed 1) all other combinations of probability of foraging success and the
remaining 10 candidate variables (according to relative log-group Bayes factors; the model including
the binary energy state variable performed second-best), 2) the model with the probabilities of
foraging success as sole predictor, and 3) models including the probabilities of foraging success, along
with five different heuristics, and the respective interactions (according to relative log-group Bayes
factors; the model including the binary energy state and the respective interaction performed
second-best). No decisive evidence emerged for 1) models with a third candidate variable
consistently explaining more variance (according to protected exceedance probabilities), and 2) a
clear-cut influence of choice uncertainties or discrepancy between the two policies included in the
main model (according to relative log-group Bayes factors and protected exceedance probabilities).
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Table S3. fMRI sample: Comparison of choice models with all possible combinations of two
candidate variables

Model comparison of a total of 55 models with all binary combinations of the 11 candidate decision
variables. Log-group Bayes factors and indicate that winning model comprises the probability of
foraging success and the optimal policy with a horizon of 5 time steps (protected exceedance
probabilities also favor the same model).

Table S4. Behavioral sample: Comparison of choice models with all possible combinations of two
candidate variables

Model comparison of a total of 55 models with all binary combinations of the 11 candidate decision
variables. Log-group Bayes factors and indicate that winning model comprises the probability of
foraging success and the optimal policy with a horizon of 5 time steps (protected exceedance
probabilities do not decisively distinguish between this model and the model comprising the
probability of foraging success and the binary energy state variable).

Minor points:

Figure 2C:

It would be useful if the author s could provide mor e description of exactly what they are
plotting. | am assuming that the light points are smulated model data though | don’t see them
labeled anywhere.

Thank you. We have added the following statement in the legend of Fig 3 (page 11, previously Fig 2)
and anal ogous statements to all other relevant figures.

In the right-hand panels error bars are SEM. Per data bin, circles depict mean empirical data points
and lines and crosses depict mean model predictions (averaged for simulated data according to each
participant’s model fit). In several cases, error bars are smaller than the circles, which scale with the
average number of trials contributing to the respective data points.

Figure 5B:
These should be for optimal policy, right?

Thank you. Y es, we correct this (thisis now Fig 6B). We carefully checked all other figures and figure
legends.

Nassar, M.R. & Gold, J.I., 2013. A healthy fear of the unknown: perspectiveson the
inter pretation of parameter fitsfrom computational modelsin neuroscience. PL 0S
Computational Biology, 9(4), p.e1003015

Thank you for suggesting this paper, which we now cite:
Discussion (page 21)

Although it is theoretically possible that participants use a yet unknown decision policy (for
discussion see**°), such policies do not follow from the given task variables in an obvious way. Any
such model would thus likely require higher complexity than the linear combination of the
probability of foraging success and the optimal policy (or it would only apply to a less complex setting
than the one investigated here).
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Reviewer #3 (Remarksto the Author):

1) | did not mean to imply that the author s use of the word value isimproper nor that
probability of survivingisn't an appropriate value, just that it represents not a signal that scales
with the magnitude of a desired outcome but rather an increasein certainty of getting areward
at an end of a chain, which issomewhat different from most other tasks. | simply felt thereader
might beinterested in knowing this distinction and am happy with the authors changes.

Thank you for this clarification.

2) Fine. Interesting RT analyses showing heuristics are faster.

3) Figure5thefigurelabelsarealittle bit confusing and could maybe be made somewhat
simpler. Thefigurelegend doesn’t split up into ABCD, which might also clarify what is shown
exactly. Furthermore, | think that B in Figure5iswrongly labeled. Isn’t it supposed to be
optimal policy uncertainty (negative)?

We apologize for the incorrect labeling of Fig 5B in our earlier version (now Fig 6B). Thereviewer is
correct that “ optimal policy uncertainty (negative)” is depicted. Thisis now corrected and we also
carefully checked all other figures and figure legends. Following the reviewer’s comment, we now
split up the legends of the two fMRI figures in the main text according to al subpanels.

Fig 5 (page 17; previously Fig 4).

Fig 5. Statistical parametric maps for the BOLD signals related to heuristic and the optimal policies
during the choice phase. (A) The probability of foraging success, the employed heuristic policy,
showed a positive relation with BOLD signals in DMPFC, extending into pre-SMA), in bilateral IPS, and
the left frontal pole among other regions. (B) The probability of foraging success showed a negative
relation in the perigenual ACC extending into VMPFC. (C) The optimal policy showed a positive
relation in perigenual ACC and mid-cingulate. Overlay on group average T1-weighted image in MNI
space; clusters are whole-brain family-wise error (FEW) corrected for multiple comparisons at p
<0.05 with a cluster-defining threshold of p < 0.001. See Table S7 for a list of all clusters.

Fig 6 (page 20; previoudy Fig 5).

Fig 6. Statistical parametric maps for the respective uncertainties of heuristic and optimal policies,
the discrepancies in their choice probabilities, and log-transformed RTs during the choice phase. (A)
Choice uncertainty of the heuristic (i.e., probability of foraging success) showed a negative relation
with BOLD signals in VMPFC, DMPFC, IFG, and the posterior cingulate cortex, among other regions.
(B) Choice uncertainty of the optimal policy exhibited a negative correlation with DMPFC/ACC and
IFG. (C) Discrepancies between the two policies showed a positive relation with DMPFC (extending
into pre-SMA and ACC), bilateral dorsal striatum, and bilateral IFG. (D) For completeness, correlations
with log-transformed RTs are depicted. Overlay on group average T1-weighted image in MNI space;
clusters are whole-brain FWE corrected for multiple comparisons at p <0.05 with a cluster-defining
threshold of p < 0.001. See Table S7 for a list of all clusters (as well as Tables S8-10 & Figs S15-S16 for
further analyses of the choice phase). See Fig S17 & Table S11 for BOLD signals during the outcome
phase.

4) Fine.

5) | apologizefor the confusion. Theimportant point hereisthedirection of the effect! If |
under stand the authors correctly, both heuristic and optimal choice uncertainty (Figure5 A+B)
wherethey appear to exert an in MPFC effect, the do so negatively, i.e. increased activity with
increased certainty (often closely related to increased subjective value). However, previous
uncertainty findingsin other tasks normally have an increased signal with lower certainty, i.e.
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higher uncertainty. Sometimesit readsin the manuscript asif the paper found what everybody
else hasasthere are uncertainty effects but If | am not mistaken the sign isthe other way
around, at least for broader ACC. Thisisexciting asit suggestsincreased signals here with
certainty, inconsistent with simple conflict accounts, asthose would always predict positive
effects of uncertainty, not certainty. To put it smply, thesignal isn’t heuristic or optimal
difficulty, but easiness according to inter pretations of previous papersin thefield regarding
signal signs.

We thank the reviewer for clarifying this point. We now highlight the direction of the effect (and relate
it to some of our previous findings showing a similar relationship in the posterior cingulate cortex with
second-order uncertainty; Bach et al., 2011, Journal of Neuroscience).

In the results section (page 18):

That is, we found increased BOLD signals with increasing choice certainty of both heuristic and
optimal policy in regions of the MPFC.

In the discussion section (page 23):

Interestingly, the uncertainty of the heuristic variable was negatively (and not positively) related to
BOLD signals in several regions, in particular in the posterior cingulate cortex, an anterior part of the
VMPFC, dorsal MPFC, and IFG. Put differently, these regions showed a positive association with the
“easiness” of making a decision according to the heuristic policy. Negative relations of an uncertainty
metric have previously been identified a region of the posterior cingulate cortex, which was slightly
more posterior than the cluster identified here >

[...]

In particular, we found that a dorsal region of the MPFC correlates negatively with the choice
uncertainty of the optimal policy (i.e., positively with the “easiness” of making a decision according
to the optimal policy).

6) Fine.

7) Even from the plotsit lookslike the p foraging successisthe strongest regressor other than
optimal policy (h-1). I didn’t expect all factorsto have the same effect size, but it should be
mentioned somewherein thetext that p foraging success wasthe strongest single predictor, not
just behaviourally but also by design in termsof driving the optimal value.

Thank you. This piece of information fits nicely into the beginning of results section that describes the
all considered candidate variables (page 9). For clarity, we now provide shared variances and the
relationships of the optimal policy to the heuristic policiesin two separate figures (Figs S1-S2).

By design, the optimal policy shares some predictions with several of the considered heuristics most
notably the probability of foraging success (Figs S1-S2). However, average shared variance, derived
on a trial-by-trial basis across participants, was sufficiently low to dissociate which variables
accounted for participants’ decisions (Figs $1-S2).

8) Fine

9) Fine. It’salittle bit of the pity that the interactive model doesn’t any longer work, but maybe
in a future study with a design mor e optimized to answer thisinteraction question, the authors
might be ableto show such an effect.

Thank you. We agree and we are indeed considering to run afollow-up study to address this.

10) Fine
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11) Fine
A) Fine
B) Fine. | would also mention it somewherein the main text, e.g. methods.

We now mention in the methods that participants did not explicitly see the remaining number of days
within aforest (SI methods: page Sl 7).

After a variable fixation interval (between 0.5 and 3.8 sec), a new day or a new forest was depicted.
Participants were not explicitly cued about the current day within a forest; but they knew that they
always remained a maximum of five days within a forest (so they could count down the number of

days when entering a new forest).

C) Fine
D) Fine.

E) Interesting. However, doesn’t this positive value signal contradict McGuire and Kable's
conclusion of no value or decision signalsin ACC? Maybe highlight thisdistinction when
discussing McGuire and Kable. They argued all value signals are exclusively in vmPFC.

Thank you. We now mention this difference in the discussion (page 23):

Still, the fact that our analyses also identify regions outside the VMPFC that scale with the value of
foraging (notably in the DMPFC) constitutes a difference between our findings and those by McGuire
and Kable.

F) Fine

G) | highlighted the featurein the data precisely asit should berelatively obviousto the
participants what to do. At energy state onein bad weather participants should always forage
because otherwise they definitely starve. Despite that participants only forage half the time,
which | was surprised by. | however understand the explanation of the authorsthat precisely
that bin isunder-sampled and just alittle bit of randomness can depr ess per centages. | am
however not so sure about the heuristics explanation, precisely because it should be so obvioudy
the correct choice. Either way, aslong asthe authors mention the sampling, | am happy.

In response to your comment and (a comment by Reviewer 2), we additionally included a new “binary
energy state heuristic” in al model comparisons. Thisvariableis set to 1 when the “ continuous energy
state” isoneand is set to O for energy states of two or higher. As the reviewer notes this heuristic
captures the fact that waiting leads to sure death in energy state one. This “binary energy state
heuristic” isthus alwaysin line with the optimal policy (since the optimal policy always prescribes
foraging when only one energy point isleft). But in contrast to the optimal policy, the binary energy
state heuristic can by design not make specific prescriptionsin other energy states.

In the fMRI sample (n=28), results remain unchanged and robust to the addition of the binary
energy state heuristic. In the smaller behavioral sample (n=21), results as indicated by log-group
Bayes factors till decisively favored the model comprising p foraging success and the optimal policy
at ahorizon of 5 days but protected exceedance probabilities were indecisive between this model and
the model comprising p foraging success and binary energy state.

Taken together, the combined evidence from both samples shows that our results do not
support the inclusion of a*“binary energy state heuristic,” which islikely due to the under-sampling of
trials with an energy state of one. We have updated all relevant results and provide a graphical
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visualization of amodel including the “binary energy state heuristic.” In the legend of thisfigure (Fig
S10; page Sl 28) we highlight the under-sampling as suggested by the reviewer.

In our current study design, the data bin with energy state one only comprised a small fraction of
trials (percentage: mean + SD: fMRI sample: 0.07 £ 0.01; behavioral sample: 0.08 + 0.02).

H) Fine.

I) Fine

J) Fine

Additional Comment:

Figure S9 1 am not sure whether | am just misunder standing but foraging < waiting is the same
thing mathematically as waiting > foraging, unless | missunderstand. | imagineit isonly atypo
and oneisforaging morethan waiting and the other one waiting mor e than foraging? Would be
interesting to know what way around it is. Does on aver age foraging create higher activity in
dACC or waiting?

We apologize for thistypo! The upper pand in A is“foraging > waiting” and the lower panel inB is

“waiting > foraging.” Thus, on average foraging creates higher activity in dACC (than waiting). The
figure, which isnow Fig S15, is corrected (page Sl 34).
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REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

Thanks for another very responsive and informative revision. The new analyses help to
make what was already an extremely intriguing paper all the more illuminating.
Reviewer #2 (Remarks to the Author):

The authors have completely addressed my concerns, and I find the current draft an

impressive piece of work on an interesting and timely problem in computational
neuroscience.



	Reviewers 0
	rebuttal A
	Reviewers A
	rebuttal B
	REVIEWERS B

