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Abstract. The density of primes p such that the class number h of
Q(
√
−p) is divisible by 2k is conjectured to be 2−k for all positive integers

k. The conjecture has been proved for 1 ≤ k ≤ 3. For k ≥ 4, however, the
conjecture is still open and a similar approach via Čebotarev’s density
theorem doesn’t appear to be possible. For primes p of the form p =
a2 + c4 with c even, we describe the 8-Hilbert class field of Q(

√
−p) in

terms of a and c. We then adapt a theorem of Friedlander and Iwaniec
to show that there are infinitely many primes p for which h is divisible
by 16, and also infinitely many primes p for which h is divisible by 8 but
not by 16.

1. Introduction

Let p be a prime number, and let C and h be the class group and the

class number of Q(
√
−p), respectively. Since the discriminant of this field is

either −p or −4p, Gauss’s genus theory implies that the 2-part of C is cyclic,

and so the structure of the 2-part of the class group is entirely determined

by the highest power of 2 dividing h. More precisely, Gauss’s genus theory

implies that

2|h⇐⇒ p ≡ 1 mod 4.

The criterion

4|h⇐⇒ p ≡ 1 mod 8

can be deduced easily from Rédei’s work on the 4-rank of quadratic number

fields [13]. In [1], Barrucand and Cohn gave an explicit criterion for divisi-

bility by 8 by successively extracting square roots of the class of order two.

It states that

8|h⇐⇒ p = x2 + 32y2 for some integers x and y.

This can be restated as

(1.1) 8|h⇐⇒ p ≡ 1 mod 8 and 1 + i is a square modulo p
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where i is a square root of −1 modulo p (see [1, (10), p.68]). In [15], Steven-

hagen also obtained the criterion (1.1), albeit by a more abstract argument

using class field theory over the field Q(i).

Given a subset S of the prime numbers, and a real number X ≥ 2, de-

fine

R(S,X) :=
#{p ≤ X prime : p ∈ S}

#{p ≤ X prime }
.

If the limit limX→∞R(S,X) exists, we denote it by ρ(S) and call it the

natural density of S. Let

S(n) = {p prime : n|h(−p)} ;

here we write h(−p) for the class number of Q(
√
−p) to emphasize its

dependence on p. From the above, it is clear that ρ(S(2)) = 1/2 and

ρ(S(4)) = 1/4. From (1.1), we see that 8 divides h if and only if p splits

completely in Q(ζ8,
√

1 + i), where ζ8 is a primitive 8th root of unity. Since

this is a degree 8 extension of Q, Čebotarev’s density theorem implies that

ρ(S(8)) = 1/8. For a discussion of these and similar density results, see [16,

p.16-19].

The Cohen-Lenstra heuristics [2] can be adapted to this situation to predict

the density of primes p such that 2k divides h for k ≥ 1. Cohen and Lenstra

stipulate that an abelian group G occurs as the class group of an imaginary

quadratic field with probability proportional to the inverse of the size of the

automorphism group of G. Under this assumption, the cyclic group of order

2k−1 would occur as the 2-part of the class group of an imaginary quadratic

number field twice as often as the cyclic group of order 2k. As we just saw

above, ρ(S(2k)) = 1
2
ρ(S(2k−1)) for k ≤ 3, so we are led to conjecture

Conjecture 1.1. For all k ≥ 1, limX→∞R(S(2k), X) exists and is equal to

2−k.

While Conjecture 1.1 is true for k ≤ 3, it has not been proven for any

k ≥ 4. In fact, proving the conjecture for k ≥ 4 would likely require signifi-

cant new ideas because a proof along the lines of the arguments for k ≤ 3

seems far out of reach (see [16, p. 16]). Although several criteria for divisi-

bility by 16 have been found already (see [9], [17], and [12]), none of them

appear to be sufficient to produce even infinitely many primes p for which

the class number of Q(
√
−p) is divisible by 16. This is precisely our aim in

this paper – we will show that there is an infinite number of primes p for
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which 16|h and also an infinite number of primes p for which 8|h but 16 - h.

We also derive some consequences for the fundamental unit εp of the real

quadratic number field Q(
√
p).

We tackle the question of infinitude not by developing a new criterion for

divisibility by 16 which handles all primes, but by focusing on a very special

subset of primes. These are the primes of the form

(1.2) p = a2 + c4, c even.

We note that in this case 8|h if and only if a ≡ ±1 mod 8 and c ≡ 0 mod 4

or a ≡ ±3 mod 8 and c ≡ 2 mod 4 (see (2.5)). The main theorem that we

prove gives a new and very explicit criterion for divisibility by 16 of class

numbers of Q(
√
−p) for p of the form (1.2).

Theorem 1.2. Suppose p is a prime of the form a2 + c4, where a and c are

integers. Let h−4p denote the class number of Q(
√
−p).

(i) If a ≡ ±1 mod 16 and c ≡ 0 mod 4, then h−4p ≡ 0 mod 16.

(ii) If a ≡ ±3 mod 16 and c ≡ 2 mod 4, then h−4p ≡ 0 mod 16.

(iii) If a ≡ ±7 mod 16 and c ≡ 0 mod 4, then h−4p ≡ 8 mod 16.

(iv) If a ≡ ±5 mod 16 and c ≡ 2 mod 4, then h−4p ≡ 8 mod 16.

Once we prove Theorem 1.2, the infinitude of primes p of the form as in

the statements (i)− (iv) of the theorem follows from the following general-

ization of a powerful theorem of Friedlander and Iwaniec (see [7, Theorem

1]):

Proposition 1.3. Let a0 ∈ {1, 3, 5, 7, 9, 11, 13, 15} and c0 ∈ {0, 2}. Then,

uniformly for X ≥ 3, we have the equality

(1.3)
∑∑
a2+c4≤X

a≡a0 mod 16
c≡c0 mod 4
a2+c4 prime

1 =
κ

2π

X3/4

logX

(
1 +O

(
log logX

logX

))
,

where a and c run over Z and

κ =

∫ 1

0

(1− t4)
1
2dt ≈ 0.874 . . . .

In particular, there exist infinitely many primes of the form a2 + c4 with

a ≡ a0 mod 16 and c ≡ c0 mod 4.
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Theorem 1.2 and Proposition 1.3 immediately imply:

Corollary 1.4. For a prime p, let h−4p denote the class number of Q(
√
−p).

Then, for sufficiently large X, we have

#{p ≤ X : h−4p ≡ 0 mod 16} ≥ X3/4

8 logX

and

#{p ≤ X : h−4p ≡ 8 mod 16} ≥ X3/4

8 logX
.

The proof of Proposition 1.3 will take a significant portion of our paper.

Although the ideas required to generalize [7, Theorem 1] in this way are not

particularly deep, implementing them turns out to be quite complicated

simply because the proof of [7, Theorem 1] itself is very difficult. One can

thus view Sections 4-6 as a summary of the proof of [7, Theorem 1] in a

slightly more general context.

Since primes of the form a2 + c4 with c even have density 0 in the set of all

primes, our methods cannot be used to tackle Conjecture 1.1. Nonetheless,

each of the cases (i) − (iv) in Theorem 1.2 occurs with the same density

among all primes this form, so the conjecture for k = 4 deduced from the

Cohen-Lenstra heuristics above holds within the thin family of imaginary

quadratic number fields Q(
√
−p) where p is a prime of the form a2 +c4 with

c even. This is yet another piece of evidence suggesting that Conjecture 1.1

is true for k = 4. However, we also note that Conjecture 1.1 for k = 4 does

not imply Corollary 1.4, as knowledge of the behavior of the class numbers

of Q(
√
−p) over the set of all primes p does not necessarily give information

about their behavior over a thin subset of all primes.

We now give a consequence of our results and a criterion for divisibility

by 16 due to Williams [17]. Let p ≡ 1 mod 8, and let εp be a fundamental

unit of the real quadratic field Q(
√
p), written in the form εp = T + U

√
p,

where T and U are integers. The criterion states that if 8|h, then

(1.4) h ≡ T + p− 1 mod 16,

so that 16|h if and only if T ≡ 1 − p mod 16. An immediate byproduct of

Theorem 1.2 and criterion (1.4) is the following corollary.

Corollary 1.5. Suppose p is a prime of the form a2 + c4, where a is odd

and c is even. Let εp = T + U
√
p denote a fundamental unit of Q(

√
p).
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(i) If a ≡ ±1 mod 16 and c ≡ 0 mod 4, then T ≡ 0 mod 16 and U ≡
±1 mod 16.

(ii) If a ≡ ±3 mod 16 and c ≡ 2 mod 4, then T ≡ 8 mod 16 and U ≡
±3 mod 16.

(iii) If a ≡ ±7 mod 16 and c ≡ 0 mod 4, then T ≡ 8 mod 16 and U ≡
±7 mod 16.

(iv) If a ≡ ±5 mod 16 and c ≡ 2 mod 4, then T ≡ 0 mod 16 and U ≡
±5 mod 16.

This can be viewed as an extension of [10, Corollary 1.2(i), p.115-116] to

primes of the form p = a2 + c4. Now Proposition 1.3 gives

Corollary 1.6. For a prime p ≡ 1 mod 8, let εp = T + U
√
p denote the

fundamental unit of Q(
√
p). Then, for sufficiently large X, we have

#{p ≤ X : p ≡ 1 mod 8, T ≡ 0 mod 16} ≥ X3/4

8 logX

and

#{p ≤ X : p ≡ 1 mod 8, T ≡ 8 mod 16} ≥ X3/4

8 logX
.

The existence of infinitely many p ≡ 1 mod 8 such that T ≡ T0 mod 16

for a fixed T0 ∈ {0, 8} is not at all trivial. Hence Corollary 1.5 sheds some

new light on the fundamental unit εp of Q(
√
p), one of the most mysterious

quantities in number theory.

2. Hilbert class fields

Suppose p ≡ 1 (mod 4). Then there are two finite primes of Q which

ramify in Q(
√
−p), namely 2 and p. The prime p = (

√
−p) of Q(

√
−p)

lying above p is principal, and so its ideal class in C is the identity. Genus

theory then implies that the class of the prime ideal t = (2, 1 +
√
−p) of

Q(
√
−p) lying above 2 is the unique element of order two in C. Assuming

that h is divisible by 2n for some non-negative integer n, to check that it is

divisible by 2n+1, it would suffice to check that the class of t belongs to C2n .
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2.1. 2n-Hilbert class fields. Recall that the Hilbert class field H of K =

Q(
√
−p) is the maximal unramified abelian extension of Q(

√
−p). The Artin

symbol induces a canonical isomorphism of groups

(2.1)

(
·

H/K

)
: C −→ Gal(H/Q(

√
−p)).

Suppose for the moment that 2n|h for some non-negative integer n. Then

C2n is a subgroup of C of index 2n. We define the 2n-Hilbert class field H2n

to be the subfield of H fixed by the the image of C2n under the isomorphism

(2.1). Since the 2-primary part of C is cyclic, it follows immediately that

H2n is the unique unramified, cyclic, degree-2n extension of K. Moreover,

(2.1) induces a canonical isomorphism of cyclic groups of order 2n

(2.2)

(
·

H2n/K

)
: C/C2n −→ Gal(H2n/K).

Hence the class [t] belongs to C2n if and only if t has trivial Artin symbol

in Gal(H2n/K). By class field theory, this is equivalent to t splitting com-

pletely in H2n .

The main idea of the proof of Theorem 1.2 is to write down explicitly the

8-Hilbert class field H8 of Q(
√
−p), and then to characterize those p such

that t splits completely in H8. We remark here that although Cohn and

Cooke [3] have already written down H8 in terms of the fundamental unit

εp of the real quadratic number field Q(
√
p) and certain integer solutions

u and v to p = 2u2 − v2, not enough is known about either εp or u and

v to deduce anything about the distribution of primes p such that t splits

completely in H8.

2.2. Generating 2n-Hilbert class fields. We first state and prove some

lemmas which will prove to be useful in our quest to explicitly generate H8.

The 2-Hilbert class field, also called the genus field of Q(
√
−p), is known

to be H2 = Q(i,
√
p). Hence, for every n ≥ 1, the 2n-Hilbert class field of

Q(
√
−p) contains Q(i), and so we can study the splitting behavior of t in

H2n by working over the quadratic subfield Q(i) of H2. With this in mind,

we now state some well-known generalities about the completion of Q(i)

with respect to the prime ideal (1 + i) lying over 2.

This completion is Q2(i), and its ring of integers Z2[i] is a discrete valuation

ring with maximal ideal m and uniformizer m = 1 + i. Let U = (Z2[i])×
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denote the group of units of Z2[i] and for each positive integer k, define

U (k) = 1 + mk. Then there is a filtration

U = U (1) ⊃ U (2) ⊃ · · · ⊃ U (k) ⊃ · · · .

For any k ≥ 3, squaring gives an isomorphism U (k) ∼−→ U (k+2). Indeed, let

1+mk+2y ∈ U (k+2). Hensel’s lemma implies that there exists x ∈ mk−2 such

that x2 + x = −mk−2y. Then (1 + 2x)2 = 1 + mk+2y and 1 + 2x ∈ U (k). It

is not hard to see that

U = 〈i〉 × U (3) = 〈i〉 × 〈2 + i〉 × U (4),

so that U2 = 〈−1〉 ×U (5). In other words, u ∈ U is a square in Q2(i) if and

only if u ≡ ±1 (mod m5). Moreover, if ω ≡ ±1 (mod m4), then Q2(i,
√
ω) is

generated over Q2(i) by a root of the polynomial X2−X+(1∓ω)/4, which

reduces to X2 +X or X2 +X + 1 modulo m. We collect these observations

into the following lemma.

Lemma 2.1. Let ω be a unit in Z2[i]. If ω ≡ ±1 (mod m4), then Q2(i,
√
ω)

is unramified over Q2(i). Moreover, Q2(i,
√
ω) = Q2(i), i.e., ω is a square

in Q2(i) if and only if ω ≡ ±1 (mod m5).

Next, we state two lemmas which we will use to check that the extensions

of Q(
√
−p) which we construct are normal and cyclic.

Lemma 2.2. Let K be a field of characteristic different from 2, let d be an

element of K which is not a square in K, and let L = K(
√
d). Let a, b ∈ K

such that a + b
√
d is not a square in L and let M = L(

√
a+ b

√
d). Then

M/K is cyclic of degree 4 if and only if a2 − db2 ∈ d ·K2.

Proof. See [11, Chapter VI, Exercise 4, p.321]. �

Lemma 2.3. Let K be a field. Suppose M/K is a cyclic extension of degree

2m and let σ be a generator of Gal(M/K). Let L be the subfield of M fixed

by σm. Suppose N/K is a Galois extension containing M such that N/L is

cyclic of degree 4. Then N/K is cyclic of degree 4m.

Proof. Let σ1 denote a lift of σ to Gal(N/K). The order of σ1 is at least 2m

since the order of σ is 2m. As σm fixes L, σm1 is an element of Gal(N/L)

which is non-trivial on M and hence has order 4. Thus the order of σ1 is

4m. �
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Finally, we arrive at the main lemma we will use to construct 2n-Hilbert

class fields from 2n−1-Hilbert class fields. This result is inspired by a the-

orem of Reichardt [14, 3. Satz, p.82]. His theorem proves the existence of

generators
√
$ for H2n over H2n−1 with $ ∈ H2n−1 of a certain form. We

prove sufficient conditions for an element $ of a similar form to give rise

to a generator, so that we can actually construct H2n . Note that in the

notation which we adopted, we have H1 = Q(
√
−p).

Lemma 2.4. Let h be the class number of Q(
√
−p), let n ≥ 2, and suppose

that 2n divides h. Suppose that we have a sequence of field extensions

Q = A1 ⊂ Q(i) = A2 ⊂ A4 ⊂ · · · ⊂ A2n−1

such that:

• A2k is a degree 2k extension of Q for 0 ≤ k ≤ n− 1,

• A2k ⊂ H2k for 0 ≤ k ≤ n− 1,

• A2k ∩H2k−1 = A2k−1 for 1 ≤ k ≤ n− 1,

• (1 + i) is unramified in A2n−1/Q(i), and

• there is a prime element $ in the ring of integers of A2n−1 such that:

– $ lies above p and its ramification and inertia indices over p

are equal to 1,

– denoting the conjugate of $ over A2n−2 by $′, we have H2n−1 =

H2n−2(
√
$$′) = A2n−1(

√
$$′),

– (U2): (1 + i) remains unramified in A2n = A2n−1(
√
$), and

– (N): H2n−1(
√
$) is normal over Q.

Then H2n = H2n−1(
√
$).

Proof. The ramification index of $ over p is 1, so $ and $′ are coprime in

A2n−1 . First we check that $ is not a square in H2n−1 . Since [A2n : A2n−1 ] =

[H2n−1 : A2n−1 ] = 2 and A2n = A2n−1(
√
$), we deduce that $ is a square

in H2n−1 if and only if A2n = H2n−1 . But this cannot happen because the

ramification index of p in H2n−1 is 2, while $′ has ramification index 1 over

p and, as $ and $′ are coprime, $′ remains unramified in A2n .

By assumption, H2n−1(
√
$) is normal over Q, and hence also over Q(

√
−p)

and H2n−2 . Since $ and $′ are conjugates over A2n−2 , they are also conju-

gates over H2n−2 . As H2n−1 = H2n−2(
√
$$′) and $$′ = $$′ ·12, Lemma 2.2
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implies that H2n−1(
√
$) is a cyclic degree-4 extension of H2n−2 . Moreover,

H2n−1 is a degree 2n−1 cyclic extension of Q(
√
−p), so Lemma 2.3 implies

that H2n−1(
√
$) is a degree 2n cyclic extension of Q(

√
−p).

It remains to show that H2n−1(
√
$)/Q(

√
−p) is unramified. We will es-

tablish this by showing that each of the ramification indices of the primes

2 and p in H2n−1(
√
$) is at most 2.

The prime 2 ramifies in Q(i), but by assumption (1 + i) is unramified in

A2n . As H2n−1(
√
$) = A2n(

√
$$′) and p ≡ 1 mod 4, Lemma 2.1 ensures

that (1 + i) is unramified in H2n−1(
√
$). Hence the ramification index of 2

in H2n−1(
√
$) is 2.

Now note that [H2n−1(
√
$) : A2n ] = 2, the ramification index of the prime

$′ over p is 1, and $′ does not ramify in A2n/A2n−1 . Hence the ramification

index of p in H2n−1(
√
$) is at most 2, and this completes the proof. �

2.3. Explicit constructions of H4 and H8. Recall from the discussion at

the end of Section 2.1 that 4 divides h if and only if the prime ideal t lying

over 2 splits in H2, which happens if and only if (1 + i) splits in H2/Q(i).

As H2 is obtained from Q(i) by adjoining a square root of p, Lemma 2.1

implies that this happens if and only if p ≡ ±1 (mod m5), which, for p ≡ 1

(mod 4), is true if and only if p ≡ 1 (mod 8). Thus we have recovered the

criterion for divisibility by 4.

From now on, assume that 4 divides h, i.e. that p ≡ 1 (mod 8). We will

now use Lemma 2.4 to construct the 4-Hilbert class field of Q(
√
−p).

A prime p ≡ 1 (mod 4) splits in Q(i), so that there exists π in Z[i] such

that p = ππ; here π denotes the conjugate of π over A1 = Q. If we write π

as a + bi with a and b integers, then we see that p = a2 + b2. We choose π

so that b is even. As p ≡ 1 (mod 8), we see that b is in fact divisible by 4.

Hence

(2.3) π = a+ bi, b ≡ 0 mod 4.

Now fix a square root of π and denote it by
√
π. Recall that H2 = Q(i,

√
p)

is the 2-Hilbert class field of Q(
√
−p). We claim that the hypotheses of

Lemma 2.4 for n = 2 are satisfied with A2 = Q(i) and $ = π.



10 D. MILOVIC

All of the hypotheses other than (U2) and (N) are easy to check. Note

that our choice of π ensures that π ≡ ±1 (mod 4), so that (U2) follows

from Lemma 2.1. To see that (N) is satisfied, note that H2(
√
π) is the split-

ting field (over Q) of the polynomial f4(X) := (X2−π)(X2−π). Indeed, ππ

is a square in H2, so both square roots of π are also contained in H2(
√
π).

Hence we conclude by Lemma 2.4 that the 4-Hilbert class field is given by

(2.4) H4 = H2(
√
π) = Q(i,

√
p,
√
π)

with π as in (2.3).

H4 = Q(i,
√
p,
√
π)

H2 = Q(i,
√
p)A4 = Q(i,

√
π)

Q(
√
−p)A2 = Q(i)

Q

Next, we find a criterion for divisibility by 8. Recall that h is divisible by

8 if and only if t splits completely in H4, i.e. if and only if π is a square

in Q2(i). By Lemma 2.1, this happens if and only if π ≡ ±1 (mod m5). In

terms of a and b from (2.3), this means that

(2.5) 8|h⇐⇒ a+ b ≡ ±1 mod 8.

We remark that Fouvry and Klüners developed similar methods in [5], where

they constructed an analogue of the 4-Hilbert class field to deduce a criterion

for the 8-rank of class groups in a family of real quadratic number fields.

From now on, suppose that 8|h. Replacing π by −π if necessary, we assume

that

(2.6) π ≡ 1 (mod m5).

This means that a+ b ≡ 1 (mod 8). Our choice of
√
π above is only unique

up to sign. By Hensel’s lemma, we can now fix this sign by imposing that

(2.7)
√
π ≡ 1 (mod m3).

In order to explicitly generate H8 from H4 using Lemma 2.4, we are led to

the problem of finding a prime element in A4 = Q(i,
√
π) whose norm down

to Q(i) is π, up to units. This is the problem that we cannot solve explicitly

enough in general to answer questions about infinitude or density.
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However, for a very thin subset of primes, we can write down an element of

A4 of norm −π. These are primes p of the form

(2.8) p = a2 + c4, c even,

that is, primes p of the form a2 + b2 with b a perfect square divisible by 4.

Suppose that p is a prime of the form (2.8). Set

(2.9) $0 = c(1 + i) +
√
π.

For 1 ≤ m ≤ 3, set$m = σm($), where σ is a generator for Gal(H4/Q(
√
−p)).

The restriction of σ to H2 generates Gal(H2/Q(
√
−p)), so σ(i) = −i. Also,

looking at the polynomial f4(X) above, we see that σ(
√
π) = −

√
π. Hence

(2.10) $0 ·$2 = (c(1 + i) +
√
π)(c(1 + i)−

√
π) = −π.

and

(2.11) $1 ·$3 = (c(1− i) + σ(
√
π))(c(1− i)− σ(

√
π)) = −π.

We can now prove the main result of this section.

Proposition 2.5. Let p be a prime of the form (2.8), let π be as in (2.6),

let
√
π be as in (2.7), and let $0 be as in (2.9). Let

√
$0 denote a square

root of $0. Then H4(
√
$0) is the 8-Hilbert class field of Q(

√
−p).

Proof. We again use Lemma 2.4, but this time with n = 3, A4 = Q(i,
√
π)

and $ = $0. All of the hypotheses except for (U2) and (N) immediately

follow from the identity (2.10).

H8 = Q(i,
√
p,
√
π,
√
$0)

A8 = Q(i,
√
π,
√
$0)A8 = Q(i,

√
π,
√
$2) H4 = Q(i,

√
p,
√
π)

H2 = Q(i,
√
p)A4 = Q(i,

√
π)

Q(
√
−4p)A2 = Q(i)

Q
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We now prove hypothesis (N). We claim that H4(
√
$0) is the splitting

field of the polynomial

f8(X) = (X2 −$0)(X2 −$1)(X2 −$2)(X2 −$3).

It is easy to see that $0$2 = −π and $1$3 = −π are squares in H4. To

prove (N), it now suffices to show that $0$1 is a square in H4. Let

d =

√
π + σ(

√
π)

2
and e =

√
π − σ(

√
π)

2i
∈ H4.

Then

$0 ·$1 = (c(1 + i) +
√
π)(c(1− i) + σ(

√
π))

= 2c2 +
√
πσ(
√
π) + c ((1 + i)σ(

√
π) + (1− i)

√
π)

= (c2 + 2de) + (d2 + e2) + c(2d+ 2e) = (c+ d+ e)2,

which completes the proof of hypothesis (N).

It remains to prove hypothesis (U2). The assumption that π ≡ 1 (mod m5)

actually means that π is a square in Q2(i), i.e., that (1 + i) splits in A4.

Hence it remains to show that Q2(i,
√
$0) is unramified over Q2(i), and

Lemma 2.1 implies that it is enough to prove that $0 ≡ ±1 (mod m4).

Recall from (2.7) that
√
π ≡ 1 (mod m3), so that

√
π ≡ 1 or 1 + m3

(mod m4). Squaring, we find that π ≡ 1 or 1 + m5 (mod m6), respectively.

Also recall that a + b ≡ 1 mod 8, i.e., a + c2 ≡ 1 (mod m6). We now split

our argument into two cases, the first when c ≡ 0 mod 4 and the second

when c ≡ 2 mod 4.

If c ≡ 0 (mod m4), then c2 ∈ m6, so a−1 ∈ m6 as well. Then π = a+c2i ≡ 1

(mod m6), which means that
√
π ≡ 1 (mod m4). Then

$0 = c(1 + i) +
√
π ≡ 1 (mod m4).

If c ≡ 2 (mod m4), then c2 ≡ −m4 (mod m6). In this case, we have a− 1 +

m4 ∈ m6, so that π = a + c2i ≡ 1−m4 −m4i ≡ 1 + m4(−1− i) ≡ 1 + m5

(mod m6). This means that
√
π ≡ 1 +m3 (mod m4), and hence

$0 =
√
π + c(1 + i) ≡ 1 +m3 +m3 ≡ ±1 (mod m4).

This finishes the proof that Q2(i,
√
$0) is unramified over Q2(i). �

3. Proof of Theorem 1.2

The proof of Theorem 1.2 will proceed in much the same way as the last

part of the proof of Proposition 2.5. Now, instead of showing that Q2(i,
√
$0)
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is unramified over Q2(i), we must decide when this extension is trivial (i.e.,

when t splits completely in H8) and when it is unramified of degree 2 (i.e.,

when t does not split completely in H8). By Lemma 2.1, this is equivalent

to determining when $0 ≡ ±1 (mod m5).

We will distinguish between two cases as above. The first case is when

c ≡ 0 (mod 4), i.e. c ∈ m4. Recall from above that then a ≡ 1 (mod 8) and
√
π ≡ 1 (mod m4).

We now compute $0 modulo m5. Since c ≡ 0 (mod 4), we deduce that

$0 ≡
√
π modulo m5. Thus, we must determine conditions on a such that

√
π ≡ ±1 (mod m5), and for this, by Hensel’s lemma, it is necessary to

determine π modulo m7. Hence, assuming c ≡ 0 (mod 4),

16|h ⇐⇒
√
π ≡ ±1 (mod m5)

⇐⇒ π ≡ 1 (mod m7)

⇐⇒ a ≡ 1 (mod 16).

This proves parts (i) and (iii) of Theorem 1.2.

We handle the second case similarly. Now c ≡ 2 (mod 4), a ≡ 5 (mod 8)

and
√
π ≡ 1 + m3 (mod m4). Then $0 ≡ 2m +

√
π modulo m5 and so we

must determine conditions on a such that
√
π ≡ ±1−2m (mod m5). Under

the current assumptions,

16|h ⇐⇒
√
π ≡ ±1− 2m (mod m5)

⇐⇒ π ≡ 1 +m5 +m6 (mod m7)

⇐⇒ a ≡ −3 (mod 16).

Note that because of the choice (2.6) we have actually shown the theorem

for a ≡ 1 (mod 4). If p = a2 + c4 with a ≡ 3 (mod 4), then p = (−a)2 + c4

with −a ≡ 1 (mod 4), so that the other cases can be deduced immediately.

This finishes the proof of Theorem 1.2.

4. Overview of the proof of Proposition 1.3

In [7], Friedlander and Iwaniec prove an asymptotic formula for the num-

ber of primes of the form a2 + c4, that is, primes of the form a2 + b2 where

b itself is a square. For a summary of their proof, see the exposition in [8,

Chapter 21]. They use a new sieve that they developed to detect primes in

relatively thin sequences [6]. This sieve has its roots in the work of Fouvry
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and Iwaniec [4], where they used similar sieve hypotheses to give an asymp-

totic formula for the number of primes of the form a2 +b2 where b is a prime.

The purpose of the following three sections is to demonstrate that the

method of Friedlander and Iwaniec is robust enough to incorporate con-

gruence conditions on a and c. While we are convinced that Proposition 1.3

remains true when a and c satisfy reasonable congruence conditions modulo

any positive integers q1 and q2, respectively, the technical obstacles neces-

sary to insert the congruence condition for c are cumbersome. Hence we will

restrict ourselves to the case q2 = 4.

The proof of Proposition 1.3 involves certain alterations in the way that

the sieve [6] is used. For this reason, we first briefly recall the inputs and

the output of the sieve.

4.1. Asymptotic sieve for primes. Suppose (an) (n ∈ N) is a sequence of

non-negative real numbers. Then the asymptotic sieve for primes developed

in [6] yields an asymptotic formula for

S(x) =
∑
p≤x

p prime

ap log p

provided that the sequence (an) satisfies several hypotheses, all but two of

which are not difficult to verify. To state them, we first need to fix some

terminology. For d ≥ 1, let

Ad(x) =
∑
n≤x

n≡0 mod d

an

and let A(x) = A1(x). Moreover, let g be a multiplicative function, and

define the error term rd(x) by the equality

(4.1) Ad(x) := g(d)A(x) + rd(x).

The hypotheses which are not difficult to verify are listed in equations (2.1)-

(2.8) in [7]. We briefly recall them here. We assume the bounds

(H1) A(x)� A(
√
x)(log x)2

and

(H2) A(x)� x
1
3

(∑
n≤x

a2
n

) 1
2

.
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We assume that the multiplicative function g satisfies

(H3) 0 ≤ g(p2) ≤ g(p) ≤ 1,

(H4) g(p)� p−1,

and

(H5) g(p2)� p−2.

We also assume that for all y ≥ 2,

(H6)
∑
p≤y

g(p) = log log y + c+O((log y)−10),

where c is a constant depending only on g; this is the linear sieve assumption.

Finally, we assume the bound

(H7) Ad(x)� d−1τ(d)8A(x)

uniformly in d ≤ x
1
3 ; here τ is the divisor function.

Now we state the two hypotheses which are more difficult to verify. The

first is a classical sieve hypothesis; it is a condition on the average value of

the error terms rd(x). Let L = (log x)224 .

Hypothesis (R). There exists xr > 0 and D = D(x) in the range

(4.2) x
2
3 < D < x

such that for all x ≥ xr, we have

(R)
∑

d cubefree
d≤DL2

|rd(t)| ≤ A(x)L−2

uniformly in t ≤ x.

In our applications, D will be x3/4−ε for a sufficiently small ε. This con-

dition about remainders will be called condition (R).

The second is a complicated condition on bilinear forms in the elements

of the sequence (an) weighed by truncated sums of the Möbius function

(4.3) β(n,C) = µ(n)
∑

c|n, c≤C

µ(c).

It is designed to make sure that the sequence (an) is orthogonal to the

Möbius function; this is crucial in overcoming the parity problem. We now

state this hypothesis, named (B) for bilinear.
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Hypothesis (B). Suppose (R) is satisfied for xr and D = D(x). Then

there exists xb > xr such that for every x > xb, there exist δ, ∆, and P

satisfying

2 ≤ δ ≤ ∆,

2 ≤ P ≤ ∆1/235 log log x,

and such that for every C with

1 ≤ C ≤ xD−1,

and for every N with

∆−1
√
D < N < δ−1

√
x,

we have

(B)
∑
m

∣∣∣∣∣∣∣∣∣∣
∑

N≤n≤2N
mn≤x

(n,mΠ)=1

β(n,C)amn

∣∣∣∣∣∣∣∣∣∣
≤ A(x)(log x)−226 ,

where

(4.4) Π =
∏
p≤P

p.

Note that establishing condition (R) for a larger D decreases the range

of C and N for which we have to verify condition (B).

The main result of [6] is

Theorem 4.1. Assuming hypotheses (H1)-(H7), (R), and (B), we have

S(x) = HA(x)

(
1 +O

(
log δ

log ∆

))
,

where H is the positive constant given by the convergent product

H =
∏
p

(1− g(p))

(
1− 1

p

)−1

and the constant implied in the O-symbol depends on the function g and the

constants implicit in (H1), (H2), and (H7).
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4.2. Preparing the sieve for Proposition 1.3. For our application, we

will denote by v′ the analogue of a quantity v from the proof of Friedlander

and Iwaniec in [7]. We take (a′n) to be the following sequence. Suppose q1

and q2 are positive integers and let q denote the least common multiple of

q1 and q2. We say that a pair of congruence classes

a0 mod q1 c0 mod q2

is admissible if for every pair of congruence classes

a1 mod q c1 mod q

such that a1 ≡ a0 mod q1 and c1 ≡ c0 mod q2, the congruence class a2
1 +

c4
1 mod q is a unit modulo q.

Example. Suppose that a0 ∈ {1, 3, 5, 7, 9, 11, 13, 15} and c0 ∈ {0, 2}. Then

the pair of congruence classes a0 mod 16 and c0 mod 4 is admissible.

Example. Suppose that a0 = c0 = 1. Then the pair of congruence classes

a0 mod 3 and c0 mod 2 is not admissible. Indeed, 1 ≡ a0 ≡ c0 mod 6 but

2 ≡ 12 + 14 mod 6 is not invertible modulo 6. This does not mean, however,

that there are no primes of the form a2 + c4 with a ≡ 1 mod 3 and c ≡
1 mod 2; one such prime is 42 + 14.

Henceforth, suppose q1 and q2 are positive integers, let q be the least

common multiple of q1 and q2, and suppose a0 mod q1 and c0 mod q2 is an

admissible pair of congruence classes. We define

(4.5) a′n :=
∑∑
a, b ∈ Z
a2+b2=n

a≡a0 mod q1

Z′(b),

where

(4.6) Z′(b) :=
∑
c∈Z
c2=b

c≡c0 mod q2

1.

Let g be the multiplicative function supported on cubefree integers defined

in [7, Equation 3.16, p.961] as follows: let χ4 denote the character of con-

ductor 4; for p ≥ 3 set

g(p)p = 1 + χ4(p)

(
1− 1

p

)
and

g(p2)p2 = 1 + (1 + χ4(p))

(
1− 1

p

)
;
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finally, set g(2) = 1
2

and g(4) = 1
4
. For our extension, we define a multiplica-

tive function g′ by setting

g′(n) =

{
g(n) if (n, q) = 1

0 otherwise.

Then, provided that (H1)-(H7), (R), and (B) are satisfied with δ a large

power of log x and ∆ a small power of x, the asymptotic formula given by

the sieve (see Theorem 4.1) is

(4.7) S ′(x) :=
∑
p≤x

p prime

a′p log p = c(q1, q2)
16κ

π
x3/4

(
1 +O

(
log log x

log x

))

where

c(q1, q2) =
1

q1q2

∏
p|q

(1− g(p))−1

and κ is the integral given in the statement of Proposition 1.3. Note that

the sieve applied to the original sequence (an) from [7], with

(4.8) an =
∑∑
a, b ∈ Z
a2+b2=n

Z(b),

where

(4.9) Z(b) =
∑
c∈Z
c2=b

1,

yields the asymptotic formula

S(x) =
16κ

π
x3/4

(
1 +O

(
log log x

log x

))
(see [7, Theorem 1, p.946]). Thus c(q1, q2) can be interpreted as the density

of primes of the form a2 + c4 such that a ≡ a0 mod q1 and c ≡ c0 mod q2

within the set of all primes of the form a2 + c4.

Remark. Throughout the following two sections, we regard q1 and q2 as

fixed constants, and so the implied constants in every bound we give may

depend on q1 and q2, even if this dependence is not explicitly stated. Thus,

whenever we state “the implied constant is absolute,” the implied constant

may actually depend on q1 and q2. In our application q1 = 16 and q2 = 4,

so we are not concerned with uniformity of the above asymptotic formula

with respect to q1 and q2.

It is obvious that our modified sequence (a′n) satisfies (H1)-(H7) for the

same reasons as the original sequence (an). We will prove that (a′n) above

satisfies condition (R) for general q1 and q2. The congruence condition on
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c is more difficult to insert into the proof of condition (B), so we prove

condition (B) only for the special case where q2 = 4 and c0 ∈ {0, 2}.

5. Proof of condition (R)

Here we closely follow and refer to the arguments laid out in [7, Section

3, p.955-962]. Define

A′d(x) :=
∑
n≤x

n≡0 mod d

a′n

and

A′(x) := A′1(x).

The goal is to check that the error terms r′d(x) defined by

(5.1) r′d(x) := A′d(x)− g′(d)A′(x)

are small on average. To do this, we will prove an analogue of [7, Lemma 3.1,

p.956], with Md(x) (representing the main term and defined in [7, p.955])

replaced by

M ′
d(x) =

1

dq1

∑∑
0<a2+b2≤x

Z′(b)ρ(b; d) if (d, q) = 1

and M ′
d(x) = 0 otherwise; here ρ(b; d) is defined as in [7, p.955], i.e. it is the

number of solutions α mod d to

α2 + b2 ≡ 0 mod d.

We separate the case when d is not coprime to q because in this case A′d(x) =

0. This follows because the pair of congruences a0 mod q1 and c0 mod q2 is

admissible and hence a′n is supported on n coprime to q. The lemma we

wish to prove is now identical to [7, Lemma 3.1, p.956].

Lemma 5.1. For any D ≥ 1, any ε > 0, and any x ≥ 2, we have∑
d≤D

|A′d(x)−M ′
d(x)| � D

1
4x

9
16

+ε,

where the implied constant depends only on ε.

This result is useful because it is easy to obtain an asymptotic formula

for M ′
d(x) where the coefficient of the leading term is, up to a constant, a

nice multiplicative function of d. In fact, let h be the multiplicative function

supported on cubefree integers defined in [7, (3.16), p.961] by

(5.2)

{
h(p)p = 1 + 2(1 + χ4(p))

h(p2)p2 = p+ 2(1 + χ4(p)),
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and define a multiplicative function h′ by setting

(5.3) h′(n) =

{
h(n) if (n, q) = 1

0 otherwise.

Then following the same argument as in the proof of [7, Lemma 3.4, p.961],

we get

Lemma 5.2. For d cubefree we have

M ′
d(x) = g′(d)

4κx
3
4

q1q2

+O
(
h′(d)x

1
2

)
,

where κ is the integral given in the statement of Proposition 1.3 and the

implied constant is absolute. �

Combining Lemmas 5.1 and 5.2, we get, as in [7, Proposition 3.5, p.362],

Proposition 5.3. Let

a0 mod q1 c0 mod q2

be an admissible pair of congruence classes, let a′n be defined as in (4.5), and

let r′d(x) be defined as in (5.1). Then for every ε > 0 and every D ≥ 1, there

exists an x0 = x0(ε) > 0 and C = C(ε) > 0 such that for every x ≥ x0, we

have ∑
d cubefree
d≤D

|r′d(t)| ≤ CD
1
4x

9
16

+ε

uniformly for t ≤ x.

Choosing D = x
3
4
−8ε, we obtain hypothesis (R).

It remains to prove Lemma 5.1. We may assume that the sum is over

d ≤ D with (d, q) = 1. For such d, we first approximate the sum A′d(x)

by a smoothed sum

A′d(f) =
∑

n≡0 mod d

a′nf(n),

where f is a smooth function satisfying:

• f is supported on [0, x],

• f(u) = 1 for 0 < u ≤ x− y,

• f (j)(u)� y−j for x− y < u < x,
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where y = D
1
4x

13
16 and the implied constants depend only on j (see [7,

p.958]). Since a′n is supported on integers of the form a2 + c4, we trivially

have ∑
d≤D

(d,q)=1

|A′d(x)− A′d(f)| � yx−
1
4

+ε,

where the implied constant depends only on ε. With the above choice of y,

it remains to prove Lemma 5.1 with A′d(x) replaced by A′d(f). Similarly as

on [7, p.958], we write

(5.4) A′d(f) =
∑
b

Z′(b)
∑

α mod d
α2+b2≡0 mod d

∑
a≡α mod d
a≡a0 mod q1

f(a2 + b2).

Since (d, q) = 1, so also (d, q1) = 1, and the two conditions a ≡ α mod d

and a ≡ a0 mod q1 can be combined into one condition a ≡ α′ mod dq1. In

fact, fixing an integer d that is an inverse of d modulo q1 and an integer q̄1

that is an inverse of q1 modulo d, we can define α′ as

α′ = αq1q̄1 + a0dd̄.

We apply Poisson’s summation formula to the sum over a to obtain∑
a≡α′ mod dq1

f(a2 + b2) =
1

dq1

∑
k

e

(
α′k

dq1

)∫ ∞
−∞

f(t2 + b2)e

(
−tk
dq1

)
dt.

Here and henceforth, we use the standard notation

e(t) := e2πit.

Substituting this into (5.4) we get

A′d(f) =
2

dq1

∑
b

Z′(b)
∑
k

ρ′(k, b; d)I(k, b; dq1)dt,

where

ρ′(k, b; d) =
∑

α mod d
α2+b2≡0 mod d

e

(
α′k

dq1

)
,

and where

I(k, b; dq1) =

∫ ∞
0

f(t2 + b2) cos(2πtk/dq1)dt

is defined exactly the same as on [7, p.959]. We define M ′
d(f) to be the main

term in this expansion, i.e. the term corresponding to k = 0,

M ′
d(f) =

2

dq1

∑
b

Z′(b)ρ(b; d)I(0, b; dq1).
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Since I(0, b; dq1) = I(0, b; q1), the argument on page 959 shows that∑
d≤D

(d,q)=1

|M ′
d(f)−M ′

d(x)| � yx−
1
4 (log x)2 � D

1
4x

9
16

+ε,

where the implied constants depend only on ε. It remains to prove Lemma

5.1 with A′d(f) in place of A′d(x) and M ′
d(f) in place of M ′

d(x), i.e. to show

that M ′
d(f) is indeed (on average) the main term in the above Fourier ex-

pansion of A′d(f).

Following the argument on [7, p.959-960], we see that it suffices to show

an analogue of [7, Lemma 3.3, p.957] for ρ′(k, l; d).

Lemma 5.4. For any D, K, and L ≥ 1, for any complex numbers ξ(k, l),

and for any ε > 0, we have the inequality

∑
d≤D

∣∣∣∣∣∣∣
∑∑
0<k≤K
0<l≤L

ξ(k, l)ρ′(k, l; d)

∣∣∣∣∣∣∣� (D +
√
DKL)(DKL)ε‖ξ‖

where

‖ξ‖2 =
∑∑
0<k≤K
0<l≤L

|ξ(k, l)|2,

and the implied constant depends only on ε.

Recall the following inequality from [7, (3.6), p.957]: for any complex

numbers αn and any D,N ≥ 1, we have

(5.5)
∑
d≤D

∑
ν mod d

ν2+1≡0 mod d

∣∣∣∣∣∑
n≤N

αne
(νn
d

)∣∣∣∣∣� D
1
2 (D +N)

1
2‖α‖,

where

‖α‖ :=

(∑
n

|αn|2
) 1

2

,

and the implied constant is absolute. Lemma 5.4 can be proved in the same

way as [7, Lemma 3.3, p.957] given the following analogue of inequality

(5.5).

Lemma 5.5. Let D,N ≥ 1 and let αn be any complex numbers. For integers

d such that (d, q1) = 1, let ν ′ be an integer in the unique residue class

modulo dq1 that reduces to ν modulo d and a0 modulo q1. Then there exists
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an absolute constant C = C(q1) such that for all D and N sufficiently large,

we have

(5.6)
∑
d≤D

(d,q1)=1

∑
ν mod d

ν2+1≡0 mod d

∣∣∣∣∣∑
n≤N

αne

(
ν ′n

dq1

)∣∣∣∣∣ ≤ CD
1
2 (D +N)

1
2‖α‖.

Inequality (5.5) is a consequence of a large sieve inequality applied to

the rationals ν/d mod 1 with ν ranging over the roots of ν2 + 1 ≡ 0 mod d

for d in a range around D. The large sieve inequality can be applied be-

cause these rationals ν/d are well-spaced modulo 1 for d in a certain range

around D (i.e. pairwise differences are uniformly bounded from below by

about 1/D instead of 1/D2). This is a key ingredient in the work of [4].

In our analogue, however, it is not clear that ν ′/dq1 are also well-spaced

modulo 1 for d in a similar range around D. Nonetheless, we can reduce

Lemma 5.5 to inequality (5.5) as follows.

We first split the sum over n into congruence classes modulo q1 to get∑
n0 mod q1

∑
n≤N

n≡n0 mod q1

αne

(
ν ′n

dq1

)
=

∑
n0 mod q1

∑
m≤(N−n0)/q1

αm,n0e

(
ν ′m

d

)
e

(
ν ′n0

dq1

)
,

where

αm,n0 = αmq1+n0 .

Since e (ν ′n0/dq1) does not depends on m, the sum on the left-hand-side of

(5.6) is

≤
∑

n0 mod q1

∑
d≤D

(d,q1)=1

∑
ν mod d

ν2+1≡0 mod d

∣∣∣∣∣∣
∑

m≤(N−n0)/q1

αm,n0e

(
ν ′m

d

)∣∣∣∣∣∣ .
Now e

(
ν′m
d

)
= e

(
νm
d

)
and∑

m

|αm,n0|2 ≤
∑
n

|αn|2,

so that by (5.5) we get

∑
d≤D

(d,q1)=1

∑
ν mod d

ν2+1≡0 mod d

∣∣∣∣∣∑
n≤N

αne

(
ν ′n

dq1

)∣∣∣∣∣� q1D
1/2(D +N/q1)1/2‖α‖.

This finishes the proof of (5.5) and thus also the proof of condition (R).
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6. Proof of condition (B)

Many of the upper bound estimates carried out in sections 4 and 5 of [7]

require no changes since 0 ≤ a′n ≤ an (compare (4.5) and (4.8)). In most

cases, we now sum over fewer non-negative terms.

Recall that we established condition (R) with D = x
3
4
−8ε. All of the refine-

ments from [7, Section 4, p.962-966] remain valid for our modified sequence

(a′n). We briefly recall these refinements. First note that it is enough to

prove the analogue of [7, Proposition 4.1, p.963]:

Proposition 6.1. Let c0 ∈ {0, 2}, let q2 = 4, and let

a0 mod q1 c0 mod q2

be an admissible pair of congruence classes. Define β(n,C) as in (4.3), Π

as in (4.4), and a′n as in (4.5). Let x ≥ 3, η > 0, and A > 0. Let P be in

the range

(6.1) (log log x)2 ≤ logP ≤ (log x)(log log x)−2.

Let

(6.2) B = 4A+ 220.

Then there exists x0 = x0(η, A) such that for all x ≥ x0, for all N with

(6.3) x
1
4

+η < N < x
1
2 (log x)−B,

and for all C with

(6.4) 1 ≤ C ≤ N1−η,

we have

(6.5)
∑
m

∣∣∣∣∣∣∣∣∣∣
∑

N≤n≤2N
mn≤x

(n,mΠ)=1

β(n,C)amn

∣∣∣∣∣∣∣∣∣∣
≤ A′(x)(log x)5−A.

6.1. From Propositions 5.3 and 6.1 to Proposition 1.3. Before prov-

ing Proposition 6.1, we deduce Proposition 1.3 from Propositions 5.3 and

6.1. Let a0 ∈ {1, 3, 5, 7, 9, 11, 13, 15}, q1 = 16, c0 ∈ {0, 2}, and q2 = 4. Then

a0 mod q1 c0 mod q2

is an admissible pair of congruences. We apply the asymptotic sieve for

primes described in Section 4.1 to the sequence (a′n) defined in (4.5). Hy-

potheses (H1)-(H7) for (a′n) are verified in the same way as hypotheses
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(H1)-(H7) for the sequence (an) defined in (4.8) (see comment at the end

of Section 4.2).

Proposition 5.3 implies that (a′n) satisfies hypothesis (R) for ε = 1/8000,

(6.6) D = x
3
4
− 1

1000 ,

which is indeed in the range (4.2), and xr = xr(ε) large enough.

Applying Proposition 6.1 with the same D as in (6.6), with P any num-

ber in the range (6.1), with A = 5 + 226, and with η = 1
100

establishes

hypothesis (B) for the sequence (a′n) with δ = (log x)B, ∆ = xη, and

xb = max{xr, x0(η, A)}.

We then obtain the asymptotic formula (4.7) with

c(q1, q2) =
1

32
,

which proves (1.3).

6.2. Proof of Proposition 6.1. Suppose that we are in the setting of

Proposition 6.1. Now take A′ = 2A+ 220 (see [7, p.1018]) and define

ϑ := (log x)−A

and

(6.7) θ := (log x)−A
′

as on [7, p.965]. We split the sum (6.5) by using a smooth partition of unity.

Let p be a smooth function supported on an interval

N ′ < n ≤ (1 + θ)N ′

with N < N ′ < 2N , and suppose that p is twice differentiable with

p(j) � (θN)−j

for j = 0, 1, 2 (see [7, (4.14), p.965]). It then suffices to show Proposition

6.1 with β(n,C) replaced by a smoothed version

(6.8) β(n) = β(n,C) = p(n)µ(n)
∑

c|n, c≤C

µ(c)

and the bound ≤ A′(x)(log x)5−A replaced by ≤ CϑθA′(x)(log x)5 (see [7,

(4.17), p.965]). Moreover, one can split the sum over m in (6.5) into dyadic

segments M ≤ m ≤ 2M with M satisfying

(6.9) ϑx ≤MN ≤ x.
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We remark that (6.3) now implies that N ≤ ϑθ(MN)
1
2 . Sums over the re-

maining dyadic segments are bounded trivially at an acceptable cost. Again,

for an acceptable cost, one can suppose that β(n,C) is supported on n with

(6.10) τ(n) ≤ τ := (log x)A+220 .

(see [7, p.963-966, 1018]). For convenience of notation, we also restrict the

support of β(n,C) to n satisfying

(6.11) (n,Π) = 1,

where Π is defined in (4.4). Finally, let α(m) be any complex numbers

supported on M < m ≤ 2M with |α(m)| ≤ 1, and define

(6.12) B′∗(M,N) :=
∑∑
(m,n)=1

α(m)β(n)a′mn,

where β(n) = β(n,C) is defined as in (6.8) (see [7, (4.20), p.966]). To

establish condition (B) it then suffices to prove

Lemma 6.2. Let η > 0 and A > 0 and take B as in (6.2). Then there exists

x0 = x0(η, A) > 0 such that for all x ≥ x0, for all M and N satisfying (6.3)

and (6.9), and for all C satisfying (6.4) we have

(B’) |B′∗(M,N)| ≤ ϑθ(MN)
3
4 (logMN)5.

6.3. Proof of Lemma 6.2. In [7, Section 5], one begins to exploit the

arithmetic in Z[i] and the inequality (B’) is reduced to another inequality

involving sums over Gaussian integers. In our context, where a′n are defined

in (4.5), equation [7, (5.2), p.967] now becomes (for (m,n) = 1)

a′mn =
∑
|w|2=m

∑
|z|2=n

Imwz≡a0 mod q1

Z′(Rewz),

where the sum over z is restricted to primary Gaussian integers, i.e. z sat-

isfying

z ≡ 1 mod 2(1 + i).

Recall from (4.6) that the congruence condition c ≡ c0 mod q2 is incorpo-

rated into the definition of Z′. We now define αw := α(|w|2) and βz := β(|z|2)

as on [7, p.967], so that (6.12) becomes

(6.13) B′∗(M,N) =
∑∑
(ww,zz)=1

Imwz≡a0 mod q1

αwβzZ
′(Rewz).

Similarly as in [7, (5.7), p.967], we split the sum B′∗(M,N) into O(q4
1) sums

by restricting the support of αw to w in a fixed residue class modulo q1 and

βz to z in a fixed residue class z0 modulo 64q1, such that z0 ≡ 1 mod 2(1 + i).
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Now the residue class of Imwz modulo q1 is fixed, and so we can eliminate

the condition Imwz ≡ a0 mod q1.

We further modify the support of βz as in equation [7, (5.13), p.969]. Let

r(α) be a smooth periodic function of period 2π supported on ϕ < α ≤
ϕ + 2πθ (where θ is as defined in (6.7)) for some −π < ϕ < π such that

r(j) � θ−j for j = 0, 1, 2, and let

(6.14) βz = r(α)p(n)µ(n)
∑

c|n, c≤C

µ(c),

where α = arg z and n = |z|2. Recall that by (6.10) and (6.11), βz = 0 if

either τ(|z|2) > τ or if |z|2 is not coprime with Π. We remove the condition

(ww, zz) = 1 from (6.13) at an acceptable cost as in [7, (5.10), p.968] to get

B′(M,N) = B′∗(M,N) +O
((
M

1
4N

5
4 + P−1M

3
4N

3
4

)
(logN)3

)
where

(6.15) B′(M,N) :=
∑∑

Imwz≡a0 mod q1

αwβzZ
′(Rewz).

We then apply Cauchy-Schwarz as in [7, (5.17), p.970] and introduce a

smooth radial majorant f supported on the annulus 1
2

√
M ≤ |w| ≤ 2

√
M

(see [7, p.970]) to get

B′(M,N)�M
1
2D′(M,N)

1
2 ,

where

D′(M,N) :=
∑
w

f(w)

∣∣∣∣∣∑
z

βzZ
′(Rewz)

∣∣∣∣∣
2

.

This eliminates the dependence on αw, so that the sum over w above is free.

After inserting a coprimality condition, we arrive at the sum

(6.16) D′∗(M,N) :=
∑∑
(z1,z2)=1

βz1βz2C
′(z1, z2)

where

C ′(z1, z2) :=
∑
w

f(w)Z′(Rewz1)Z′(Rewz2)

(see [7, (5.26), p.972] and [7, (5.27), p.972]). The coprimality condition was

inserted at the cost

D′∗(M,N) = D′(M,N) +O
(
τ 2(M

3
4N

3
4 + P−1M

1
2N

3
2 )(logMN)516

)
(see [7, (5.22), p.972]). Recall that the congruence condition c ≡ c0 mod q2 is

hidden in the definition of Z′, while the congruence condition a ≡ a0 mod q1
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has been removed by restricting the support of βz. To prove Lemma 6.2, we

now have left to prove

Lemma 6.3. Let η > 0 and A > 0, and take B as in (6.2). Then there

exists x0 = x0(η, A) such that for all x ≥ x0, for all M and N satisfying

(6.3) and (6.9), and for all C satisfying (6.4), we have

(B”) |D′∗(M,N)| ≤ Cϑ2θ4M
1
2N

3
2 (logMN)10.

Note the extra factor of θ coming from the restriction of support of β to

a sector of angle θ.

6.4. Proof of Lemma 6.3. In order to obtain this upper bound, Friedlan-

der and Iwaniec introduce a quantity they call the “modulus”

∆ = ∆(z1, z2) = Im(z1z2),

which is non-zero whenever (z1, z2) = 1 and z1 and z2 are odd and primitive.

The sum defining D′∗(M,N) is split into several different sums depending

on the size of the modulus ∆. Different techniques are used to treat each of

these sums, but we will manage to avoid going into the details by reducing

our sums to those already studied in [7].

The Fourier analysis carried out on [7, p.974] depends on the greatest com-

mon divisor of ∆ and q2. Using the Poisson summation formula similarly as

on [7, p.974], equation (6.16) can now be written as

D′∗(M,N) =
∑
δ|q2

∑∑
(z1,z2)=1
(q2,|∆|)=δ

βz1βz2C
′(z1, z2),

where

(6.17)

C ′(z1, z2) = (q2/δ)
−2|z1z2|−1/2

∑
h1

∑
h2

F

(
h1

|∆z2|1/2q2/δ
,

h2

|∆z1|1/2q2/δ

)
G′(h1, h2);

the Fourier integral

F (u1, u2) =

∫ ∫
f

(
z2

|z2|
t21 −

z1

|z1|
t22

)
e(u1t1 + u2t2)dt1dt2

is the same as the one defined in [7, (6.8), p.974] and

G′(h1, h2) =
1

|∆|
∑∑

γ1,γ2 mod |∆|
γ21z2≡γ22z1 mod |∆|
γ1≡γ2≡c0 mod δ

e

(
γ′1h1 + γ′2h2

|∆|q2/δ

)
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is an arithmetic sum similar to G(h1, h2) defined in [7, (6.10), p.974], but

now incorporating the congruence condition c ≡ c0 mod q2; here γ′i is the

solution (modulo |∆|q2
δ

) to the system of congruences{
γ′i ≡ γi mod |∆|
γ′i ≡ c0 mod q2.

Such a solution is guaranteed to exist because γ1 ≡ γ2 ≡ c0 mod δ. Note

that similarly as in [7], we omit in the notation the dependence of F and

G′ on z1 and z2.

The main term in the above expansion for C ′(z1, z2) comes, as usual, from

the terms with h1 = h2 = 0 in equation (6.17). Similarly as in the proof of

condition (R) above, we don’t need to make any changes in the treatment

of the Fourier integral; [7, Lemma 7.1, p.976] and [7, Lemma 7.2, p.977]

are still valid, with the implied constants now depending on q2 as well. We

recall that [7, Lemma 7.2, p.977] states that for z1 and z2 in the support of

βz we have

(6.18) F0(z1, z2) := F (0, 0) = 2f̂(0) log 2|z1z2/∆|+O(∆2M
1
2N−2 logN).

We now have to give an upper bound for G′(h1, h2) similar to the bound

given in [7, Lemma 8.1, p.978], as well as give an exact formula for

G′0(z1, z2) := G′(0, 0)

similar to the one in [7, Lemma 8.4, p.980]. This is where we now specialize

to the case

q2 = 4 and c0 ∈ {0, 2}.

Recall that we restricted the support of βz to z in a fixed congruence class

modulo 64q1. Hence z1 ≡ z2 mod 64, so that ∆ = Im(z1z2) ≡ 0 mod 64.

This significantly simplifies our arguments since now δ = (4, |∆|) = 4.

The arithmetic sum G′(h1, h2) now simplifies to

G′(h1, h2) =
1

|∆|
∑∑

γ1,γ2 mod |∆|
γ21z2≡γ22z1 mod |∆|
γ1≡γ2≡c0 mod 4

e

(
γ1h1 + γ2h2

|∆|

)
.

We first prove a lemma analogous to [7, Lemma 8.1, p.978].
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Lemma 6.4. Fix θ ∈ {2, 4} and let

G′′(h1, h2; θ) =
1

|∆|
∑∑

γ1,γ2 mod |∆|
γ21z2≡γ22z1 mod |∆|
γ1≡γ2≡0 mod θ

e

(
γ1h1 + γ2h2

|∆|

)
.

Then

(6.19) |G′′(h1, h2; θ)| ≤ 16τ3(∆)|∆|−1(z1h
2
1 − z2h

2
2,∆).

Introducing a change of variables γ1 = θω1 and γ2 = θω2, we get

G′′(h1, h2; θ) =
1

|∆|
∑∑

ω1,ω2 mod |∆|/θ
ω2
1z2≡ω2

2z1 mod |∆|/θ2

e

(
ω1h1 + ω2h2

|∆|/θ

)
.

Proceeding in a similar fashion as on [7, p.977-978], we write

∆/θ = θ∆1(∆2)2,

with ∆1 squarefree. The condition ω2
1z2 ≡ ω2

2z1 mod |∆|/θ2 implies that

(ω2
1,∆/θ

2) = (ω2
2,∆/θ

2), so we can write

(ω2
1,∆/θ

2) = (ω2
2,∆/θ

2) = d1d
2
2

with d1 squarefree. Then d1|∆1, d2|∆2, (d1,∆2/d2) = 1, and we can make

a change of variables ωi = d1d2ηi, there ηi runs over the residue classes

modulo |∆|/θd1d2 and coprime with |∆|/θ2d1d
2
2. Setting b1 = ∆1/d1 and

b2 = ∆2/d2, the analogue of the equation on top of [7, p.978] becomes

G′′(h1, h2; θ) =
1

|∆|
∑∑
b1d1=|∆1|
b2d2=∆2
(d1,b2)=1

∑∑
η1,η2 mod θb1b22d2

(η1η2,b1b2)=1
η21z2≡η22z1 mod b1b22

e((η1h1 + η2h2)/θb1b
2
2d2)

The innermost sum vanishes unless h1 ≡ h2 ≡ 0 mod θd2, so G′′(h1, h2) is

equal to

1

|∆|
∑

b1d1=|∆1|
(d1,b2)=1

∑
b2d2=∆2
θd2|(h1,h2)

θ2d2
2

∑∑
η1,η2 mod b1b22
(η1η2,b1b2)=1

η21z2≡η22z1 mod b1b22

e((η1h1 + η2h2)/θb1b
2
2d2).

Performing the change of variables η2 = ωη1, the analogue of equation [7,

(8.3), p.978] becomes

1

|∆|
∑

b1d1=|∆1|
(d1,b2)=1

∑
b2d2=∆2
θd2|(h1,h2)

θ2d2
2

∑
ω≡z2/z1 mod b1b22

R((h1 + ωh2)(θd2)−1; b1b
2
2),

where R(h; b) is the classical Ramanujan sum defined on [7, p.978]. Now the

same argument as on [7, p.978] yields the desired upper bound (6.19).�
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We now turn our attention back to G′(h1, h2). In case c0 = 0, we’re in

the case of Lemma 6.4 and

|G′(h1, h2)| = |G′′(h1, h2; 4)| ≤ 16τ3(∆)|∆|−1(z1h
2
1 − z2h

2
2,∆).

If, on the other hand, c0 = 2, we note that G′(h1, h2) = G′′(h1, h2; 2) −
G′′(h1, h2; 4) since ∆ ≡ 0 mod 16. Hence

|G′(h1, h2)| ≤ 32τ3(∆)|∆|−1(z1h
2
1 − z2h

2
2,∆).

The same arguments as those in Section 9 of [7] now suffice to show that

the main term in the Fourier expansion indeed comes from h1 = h2 = 0.

Specifically, if we define

D′0(M,N) :=
∑∑
(z1,z2)=1

βz1βz2C
′
0(z1, z2),

where

(6.20) C ′0(z1, z2) = |z1z2|−1/2F0(z1, z2)G′0(z1, z2),

then the reader may easily check that the above estimates yield the following

analogue of [7, (9.10), p.983].

Lemma 6.5. Let η > 0 and A > 0, and take B as in (6.2). Then there

exists x0 = x0(η, A) such that for all x ≥ x0, for all M and N satisfying

(6.3) and (6.9), and for all C satisfying (6.4), we have

|D′∗(M,N)−D′0(M,N)| ≤ ϑ−1τ 2N2(logN)η
−1/η

,

where τ is defined in (6.10).

It now remains to estimate D′0(M,N). We turn to obtaining an exact

formula for G′0(z1, z2). Recall, from top of [7, p.979], that

G0(z1, z2) :=
1

|∆|
∑∑

γ1,γ2 mod |∆|
γ21z2≡γ22z1 mod |∆|

1 = N(z2/z1; |∆|)/|∆|,

where N(a; r) denotes the number of solutions (γ1, γ2) modulo r to

aγ2
1 ≡ γ2

2 mod r.

Similarly,

G′0(z1, z2) = N ′(z2/z1; |∆|)/|∆|,

where N ′(a; r) is the number of solutions (γ1, γ2) modulo r to the congru-

ences {
aγ2

1 ≡ γ2
2 mod r

γ1 ≡ γ2 ≡ c0 mod 4.
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Since z2/z1 ≡ 1 mod 64 and ∆ ≡ 0 mod 64, we are only concerned with the

case a ≡ 1 mod 64 and r ≡ 0 mod 64.

6.5. Computation of N ′(a; r)/r.

6.5.1. Case c0 = 0. First let us compute N ′(a; r)/r when c0 = 0. Since

γ1 ≡ γ2 ≡ 0 mod 4, we can make a change of variables γ1 = 4ω1 and

γ2 = 4ω2, where now ωi are congruence classes modulo r/4, to find that

N ′(a; r) = 16N(a; r/16), i.e.

N ′(a; r)/r = N(a; r/16)/(r/16).

This leads to a formula of type [7, (8.16), p.980]. If 16 · 2ν with ν ≥ 1 is the

exact power of 2 dividing ∆, we get

G′0(z1, z2) = ν
∑

16d|∆
d odd

ϕ(d)

d

(
z2/z1

d

)
.

Since ∆ ≡ 0 mod 64, we are only interested in the case ν ≥ 2, where this

becomes

(6.21) G′0(z1, z2) = 2
∑

64d|∆

ϕ(d)

d

(
z2/z1

d

)
,

by the same reasoning as in [7, Lemma 8.4, p.980].

6.5.2. Case c0 = 2. When c0 = 2 and 4|r, we can make a change of variables

γ1 = 2ω1 and γ2 = 2ω2 so that N ′(a; r) is 4 times the number of solutions

(ω1, ω2) modulo r/4 to the system of congruences{
ω1 ≡ ω2 ≡ 1 mod 2

aω2
1 ≡ ω2

2 mod r/4.

When 16|r, we must subtract from 4N(a; r/4) those solutions with ω1 ≡
ω2 ≡ 0 mod 2. This gives N ′(a; r) = 4N(a; r/4)− 16N(a; r/16), i.e.

N ′(a; r)

r
=
N(a; r/4)

r/4
− N(a; r/16)

r/16
.

Hence if 16 · 2ν with ν ≥ 2 is the exact power of 2 dividing ∆, we get

(6.22) G′0(z1, z2) = 2
∑

16d|∆

ϕ(d)

d

(
z2/z1

d

)
− 2

∑
64d|∆

ϕ(d)

d

(
z2/z1

d

)
,

which is the analogue of (6.21).
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6.6. End of proof of of Lemma 6.3. We now turn back to estimating

D′0(M,N). As in [7, (10.4), p.985], we can use (6.18) to write

D′0(M,N) = 2f̂(0)N
1
2T ′(β) +O

(
(τ−1 + θ)Y ′(β)M

1
2N−

1
2 logN

)
where

T ′(β) :=
∑∑
(z1,z2)=1

βz1βz2G
′
0(z1, z2) log 2|z1z2/∆|

and

Y ′(β) :=
∑∑
(z1,z2)=1

|βz1βz2|τ(|z1|2)τ(|z2|2)τ3(∆).

Similarly as in [7, Lemma 10.1, p.985], we can bound Y ′(β) by

Y ′(β)� θ4N2(logN)219 ,

so that we are left with estimating the sum T ′(β). In each of the cases c0 = 0

and c0 = 2, we can use the formula for G′0(z1, z2) and F0(z1, z2) to write

T ′(β) as a sum similar to [7, (10.13), p.986]. If we define

T ′(β, ξ) := 2
∑
d

ϕ(d)

d

∑∑
(z1,z2)=1

∆(z1,z2)≡0 mod ξd

βz1βz2

(
z2/z1

d

)
log 2|z1z2/∆|,

then

T ′(β) =

{
T ′(β, 64) if c0 = 0

T ′(β, 16)− T ′(β, 64) if c0 = 2

Lemma 6.3 now follows from this analogue of [7, Proposition 10.2, p.986]:

Lemma 6.6. Fix ξ ∈ {16, 64}. Let η > 0, A > 0, and σ > 0, and take B

as in (6.2). Then there exists x0 = x0(η, A) and C0 = C0(η, A, σ) > 0 such

that for all x ≥ x0, for all N satisfying (6.3), and for all C satisfying (6.4),

we have

T ′(β, ξ) ≤ C0N
2(logN)−σ + P−1N2 logN,

where P is any number in the range (6.1).

We recall that N and P appear as parameters restricting the support of

βz; see (6.14).

6.7. Proof of Lemma 6.6: oscillations of characters and symbols.

Although complicated, the proof of [7, Proposition 10.2] generalizes directly

to the proof of Lemma 6.6. One can check in [7, Sections 15-17] that the

same arguments are valid when ξ = 16 or 64 instead of ξ = 4. For instance,

on [7, p.1005] and [7, p.1015], one now sums over multiplicative characters

of the groups (Z[i]/ξdZ[i])× and (Z[i]/ξbdZ[i])×, respectively.
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Moreover, the restriction on the support of βz to z in a fixed primary con-

gruence class modulo 64q1 (where q1 is as in (4.5)) as opposed to modulo 8 is

handled in the same way as in [7, Sections 15-17]. For sums over medium-size

moduli, the estimation of βz is trivial and so the restriction on the support

is irrelevant (see bottom of [7, p.1003]). For sums over small moduli, i.e. d

of size at most a large power of logN , the key sum to bound from above is

the character sum

(6.23) Skχ(β) =
∑
z

βzχ(z)

(
z

|z|

)k
,

where χ is a multiplicative character of the group (Z[i]/ξdZ[i])× (see [7,

(16.14), p.1005]). The restriction on the support of βz can be detected by

multiplicative characters modulo 64q1, so that we can simply transform χ

into a character for the group (Z[i]/64q1dZ[i])×. The sum (6.23) is bounded

by studying the Hecke L-functions

L(s, ψ) =
∑
a

ψ(a)(Na)−s,

where the sum ranges over the non-zero odd ideals a of Z[i] and

ψ(a) := χ(z)

(
z

|z|

)k
where z is the unique primary Gaussian integer which generates a. The

dependence on χ of the bound given for Skχ(β) is only through the modulus

of χ (see [7, Lemma 16.2, p.1012]) and this modulus is different from 4d by

a fixed constant. Similarly, for the sums over large moduli, the key sum to

bound from above is the character sum

(6.24) Skχ(β′) =
∑
z

β′zχ(z)

(
z

|z|

)k
,

where χ is a multiplicative character of the group (Z[i]/ξbdZ[i])× (where b

is an integer and d is again bounded by a large power of logN) but β′z is

now

β′z = i
r−1
2

(
s

|r|

)
βz

if z = r + is (see [7, (17.8), p.1014] and [7, (17.12), p.1015]). Again, the

restriction on the support of βz (and hence also β′z) can be detected by

multiplicative characters modulo 64q1, so that we can transform χ into a

character for the group (Z[i]/64q1bdZ[i])×. Cancellation in the sum (6.24)

is now achieved due to the oscillation of the symbol

i
r−1
2

(
s

|r|

)
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as z varies over primary Gaussian integers, but again the dependence on

χ of the bound given for (6.24) is only through the modulus of χ (see [7,

Proposition 17.2, p.1016]) and this modulus is again different from 4bd by

a fixed constant. This shows that Lemma 6.6 follows from [7, Proposition

10.2] and hence Proposition 6.1 is proved.
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