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Abstract 

The Travelling Traders’ Exchange Problem (TTEP) is formalised, aiming at studying the 

collision-exchange systems found in various research areas. As an example of the TTEP models, a 

1-D model is developed and characterised in detail. The computational stochastic simulation of the 

1-D TTEP model relies on a stochastic simulation algorithm implemented based on the Monte Carlo 

method. A model identification framework is proposed where the money distribution in the system 

obtained from the stochastic model is characterised in terms of (a) standard deviation of the money 

redistribution; (b) its probability density function. Results indicate that the expressions of the 

estimated functions for (a) and (b) are tightly related to the system input conditions. The example of 

curve fitting on the probability density function shows how the variation of money redistribution in 
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the system in time is driven by different values of the parameters describing the interaction 

mechanism. 

 

Keywords: Travelling traders’ exchange problem; collision-exchange system; Monte Carlo method; 

stochastic simulation 

1. Introduction 

Collision-exchange processes play a prominent role in a variety of natural phenomena and 

scientific applications. Collision refers to the consequence of particle movement in the system. 

Once two or more particles come across, the exchange process may occur and result in quantity 

transfers between involved particles. Systems in which these processes occur can be defined as 

collision-exchange systems. Stochastic collision-exchange systems are found in a number of 

relevant applications including chemistry
1
, physics

2
 and epidemiology

3
. In all these studies, 

computational approaches based on stochastic simulations
4
 are frequently employed for the study 

and characterisation of systems in which uncertainty needs to be accounted for. This method is 

widely employed when it is difficult to describe and analyse the system in a deterministic way. In 

particular, Bansal et al.
3
 studied a stochastic simulation of a compartmental model in epidemiology. 

Stochastic modelling was discussed for thermal conductivity in harmonic lattices.
2
 Stochastic 

simulation approaches with various extensions and modifications for chemical reaction processes 

are presented by a number of researchers.
1,5,6

 

As an important factor, the migration of particles in the system is sometimes non-negligible. 

Random migration does make a significant contribution to collision-exchange processes and 

eventually influences model behaviour. Stochastic models of random migration of molecules based 

on stochastic differential equations (SDEs)
7
, sometime called Smoluchowski equations, are 

illustrated by Erban et al.
8
. This work presented an example on how a single diffusing molecule 
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randomly moves in a bounded (one-dimensional) region. Andrews and Bray
9
 demonstrated a 

stochastic simulation of chemical reaction systems by treating each molecule as a point-like particle 

which freely diffuses in a three-dimensional space. They considered spatial diffusion and collisions 

of the molecules which may result in a forward/backward chemical reaction. In the stochastic 

modelling for bimolecular reaction-diffusion process by Erban and Chapman
10
, an off-lattice model 

based on the simulation of Brownian motion of individual molecules and their collisions was 

discussed. These reports considering random migration of molecules (i.e. diffusion, Brownian 

motion) in systems give a more comprehensive understanding of the stochastic modelling. However, 

higher complexity as reflected by a larger number of variables required (i.e. “binding radius” and 

“unbinding radius”
9
) makes simulations computationally exacting. In stochastic models involving 

molecular diffusion in bounded space, boundary conditions are crucial for the simulation. Several 

examples of boundary conditions and their implementation are presented in the literatures
8,11,12

.  

In order to establish a comprehensive understanding on specific collision-exchange systems to 

increase predictive power for relevant applications, The Travelling Traders’ Exchange Problem 

(TTEP) is formalised, aiming at studying the nature of the stochasticity in collision-exchange 

systems – and, eventually, linking average results to the understanding behind the laws of stochastic 

exchange. Regarding the stochastic systems, the Monte Carlo method
13
, flexible and easy to 

implement in very general settings
14

, is a powerful tool for modelling and simulating the systems in 

which collision-exchange processes occur and for which explicit differential equations are not 

available. Within this theoretical framework, a stochastic collision-exchange system is simulated 

via the discrete and sequential updating process, known as the stochastic simulation algorithm (SSA) 

or the Gillespie algorithm
15,16

 and consequently a theoretical scheme to produce and analyse both 

the kinetics of ensemble quantities and the final state of the system is presented. 

As uncertainties exist in systems, a stochastic simulation with the same input conditions 

would hardly produce exactly the same two realisations. That is, discrepancy among realisations is 

inevitable and it relies on the model complexity and nature of system uncertainties. So the 
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identification on the stochastic simulation results with respect to the entire set is of more significant 

importance. The visualisation of system changes in time would give a clear insight and 

understanding of stochastic collision-exchange systems with more details. 

The goal of this paper is to develop a first stochastic model for describing the proposed TTEP 

system as well as a general procedure for the investigation of the computational simulation results 

of the stochastic model by parametric studies and regression model identification. In model 

identification, the standard deviation of money and money distribution in the system are the key 

variables to investigate how the system status changes over time. The standard deviation quantifies 

the variation and dispersion of amount of money in the system and the money distribution presents 

the relationship between frequency and amount of money held by traders. 

This paper is structured as follows. Section 2 illustrates the stochastic modelling and 

simulations procedures with detailed introduction on TTEP stochastic model and identification 

strategy on the simulation results. Section 3 discusses the results of the case study on 1-D Model of 

TTEP system. Section 4 presents the conclusions. 

2. Stochastic Modelling and Simulation 

In order to investigate and set the scene for model identification of a stochastic system, a 

mathematical model is to be created, exact and computer-aided SSA based on certain simulation 

techniques are to be established, and computational simulation results for further data analyses 

needs be produced. Figure 1 shows the model building and simulation procedures employed for a 

stochastic system.  
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Figure 1. Schematic flow chart of model building and stochastic simulation procedures of the 

stochastic collision-exchange system. 

The main stochastic modelling and simulation procedures comprise three fundamental steps. 

In the first step, the formulation of models for the TTEP is developed mathematically according to 

the nature of collision-exchange process in systems. Several general assumptions for the TTEP 

system are listed in Section 2.1. According to the formulation of TTEP, a number of candidate 

models can be built depending on the different levels of complexity that one would like to achieve. 

Pre-set variables and initial conditions generated during model construction will be considered as 

input conditions for the corresponding model in stochastic simulation. In the second step, given the 

specific model of TTEP system, the stochastic simulations are realised computationally with 

different scenarios of input variables and conditions. In the third step, after the stochastic 

simulation, data analysis is a vital procedure in which results obtained are studied with several 

techniques and methods. Given the simulation results, parametric studies illustrate the impact of 

operating variables on the simulation behaviour. Regression models are employed to numerically 

analyse the model evolution over time with different input scenarios. Each simulation result at fixed 

input scenario presents an observable prediction on the system evolution. If the regression is 

repeated for all the potential input scenarios, eventually, a predictive model of the TTEP system 

would be developed. 
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2.1. Formulation of models for the travelling traders’ exchange problem 

(TTEP) 

A test case of quite general applicability for the studies on collision-exchange systems is 

proposed in this paper, namely the Travelling Traders’ Exchanges Problem (TTEP)
17

. The 

following assumptions are introduced for describing the TTEP problem, in order to identify the 

system by analysing a population of � traders who may randomly move in space and exchange 

money with each other: 

1. The traders initially start with a certain amount of money ��; 

2. The trader population size is set as � according to the number of traders studied; 

3. During a trading season lasting � the traders may be considered free to move over a bounded 

territory in the most general framework, or fixed on the sites;  

4. Each time the traders meet they may exchange money in various ways to be defined 

mathematically; 

5. The total amount of money is conserved. 

 

Figure 2. General sketch of the TTEP problem when number of traders, � � 3. 

Figure 2 illustrates the sketch of the TTEP problem with number of traders � � 3. In Figure 

2(a), three traders randomly migrate over time in the system with their trajectories recorded. In 

Figure 2(b), four examples of money exchanges are illustrated with different pairs of traders. This 

paper studies how the TTEP system dynamically evolves in the given processing time from a 

number of travelling traders starting with initially given amounts of money ��  to the terminal 
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money redistribution of ���	�
� through a series of interactions among traders. A number of vital 

model parameters such as time scale, random generators and nature of the collision processes do 

affect and drive the money redistribution, and give different degrees of contributions. The TTEP 

system will be introduced as the simplest paradigm of systems with collision-exchange processes.  

2.2. Computational stochastic simulation on the 1-D Model 

The TTEP presents a general model formulation for systems in which one can have 

interactions between traders and where the system evolution is determined by the way in which 

traders interact with each other. In physical applications, these traders refer to carriers or sites that 

are able to store or carry materials, of which amount or property vary in time and affect the system 

homogeneity. The complexity of specific TTEP model used to represent different industrial and 

experimental processes is based on corresponding assumptions leading to model simplification. 

Compared to stochastic models with multi-dimensions, it is more convenient to investigate the 

TTEP problem in a computationally tractable way using a simple one dimension model. The term 

“dimension” here refers to the dimension in which traders interact with each other, rather than the 

spatial movement of traders in the system. Since an important aspect of the work is systematically 

building up an understanding of how aggregate measures of stochastic models respond to changes 

in operating conditions, the present contribution focuses exclusively on the 1-D version of the 

interaction problem so as to gain initial insights on the emerging properties of the TTEP system. 

One-dimension position-fixed linear model (or 1-D Model) is a fundamental model created to 

mathematically describe the TTEP system with the collision-exchange processes taking place. For 

simplification, not all rules listed above are applied. In particular, in the 1-D Model, � �
��, ��, ⋯ ,���  traders, numbered from 1 to � , are sequentially placed in the following one-

dimensional sequence (see Figure 3): 
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Figure 3. One-dimension sequence of traders in 1-D Model 

The position of each trader remains unchanged during the simulation process, that is, the 

spatial change of each trader is not considered in this model and, consequently, the position of each 

point-like element (i.e. trader) is stationary and time-independent. The term “fixed-position” refers 

to the fact that each trader is specifically fixed in the sequence and its relative position does not 

change over time. Note that this restricts only the relative positions of traders while the absolute 

movements between two neighbouring traders are still considered in the model. Motion of traders is 

thus allowed so far as collisions are needed and dispersion of carriers (i.e. traders) can be 

considered as a further level of complexity. The traders are assigned an initial amount of money 

�� � ���, ���, ⋯ ,���� . The money exchanges are considered occurring sequentially in the 

system between arbitrary pair of traders who are next to each other. In this work, random motion of 

traders is simplified into instantaneous interactions between neighbouring traders. The time gap 

between every two adjacent exchange events, i.e. events �� and ����, is denoted by ∆� 
 ∆� � ���� � ��,						∀	� ∈ �� (1) 

Further assumptions are: 

(a) Only one money exchange takes place at each exchange event. This assumption is 

reasonable because the likelihood of simultaneous collisions of more than two traders are negligible 

since realistic “trader densities” over a large territory are relatively low. Two or more money 

exchanges occurring simultaneously are not considered in this model. Any two or more 

simultaneously-occurring money exchanges are regarded as separate and sequential exchange 

events, i.e. events �� , ����  and ����  occurring simultaneously are considered as occupying three 

separate simulation time points, see Figure 4. 
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(b) For simplicity, the time gap ∆�  between two adjacent exchange events is assumed 

constant, see Figure 4. In reality ∆� is a physical time gap which is not constant and does affect the 

collision-exchange processes. However, in this study, the focus is on the simulation behaviour of 1-

D Model based on Monte Carlo method and ∆� is regarded as a timer instead of a real physical time 

gap. 

(c) Only two traders are involved in each money exchange event and multi-collisions 

involving three or more traders are not considered, i.e. binary collision only. 

(d) Money exchanges occur only between two adjacent traders. That is, the traders at the 

boundary positions  �� and �� can only exchange money with the trader next to them, i.e. �� and 

�� �, respectively. The rest of traders have two exchange directions, forward and backward. 

 

Figure 4. Sketch of the allocation of simultaneously-occurring money exchange events into 

separate and sequential money exchange events in simulation 

With assumptions proposed above, the money exchange process between arbitrary two 

neighbouring traders can be simulated in time. For simulation implementation, some model 

variables and relative glossary of the 1-D Model are introduced and defined for the SSA 

construction. 

� Forward exchange propensity, !" – the probability that the active trader would like to 

execute a money exchange event “forward” to the next trader, i.e. !" � 0.5 represents 

that if trader n is selected as active trader in one event, traders n-1 and n+1 have the 

same chance to be determined as passive trader. 
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� Active trader – the trader determined by the location	&�  of the exchange event �� . A 

random number generator from a discrete uniform distribution is applied to randomly 

select an event location and, consequently, an active trader in the model. The command 

unidrnd(N) in MATLAB
®
 generates an independent positive integer '( ∈ )*|1 ≤ * ≤

�, ��. to determine the location &�. 
� Passive trader – the trader determined by the active traders’ exchange direction, /� , 

which relies on the forward exchange propensity !".  A random number generator from 

a continuous uniform distribution is applied. The command rand(1) in MATLAB
®
 

returns an independent random value '0 ∈ 10, 12 . The exchange direction is then 

confirmed according to the equation below: 

 /� � 3 4567869, '0 ≤ !"
:8;<7869, '0 > !"  (2)  

  The forward exchange propensity !" is used to characterise the exchange direction in each 

exchange event. Denoting with !> the corresponding backward propensity one has   

 !" + !> � 1 (3)   

The interaction mechanism of traders is crucial in TTEP systems and the money 

redistribution is the consequence of money exchange processes. When the exchange couples are 

determined, the money exchange occurs. Each money exchange in the 1-D Model comprises two 

money transfers: @A denotes the money transferred from active trader to passive trader, @B denotes 

the money transferred reversely from passive trader to active trader. Consider the following 

interaction mechanism: 

 @A � <�A�CDEFA + <�AG�CDEFA H� + <IAG�CDEFA HI +⋯ (4)  

 @B � <�B�CDEFB + <�BG�CDEFB H� + <IBG�CDEFB HI +⋯ (5)   

Here �CDEFA  and �CDEFB  are the amount of money owned by active and passive traders before money 

exchange, respectively; <�A	� � 1,2,3,⋯ � is the money transfer coefficient of i-th order term of 
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active trader; <�B	� � 1,2,3,⋯ �  is the money transfer coefficient of i-th order term of passive 

trader. 

After each exchange, the amount of money for active and passive traders can be obtained as 

 �KLM � �KLEFM � @M + @N (6) 

 �KLN � �KLEFN � @N + @M (7) 

Where �CDA  and �CDB  are the amount of money owned by active and passive traders after money 

exchange, respectively. 

By substituting @A and @B in Equation (6) and (7), the relation between �CDEFand �CD  can be 
written as 

 �CDA � �CDEFA  

 �O<�A�CDEFA + <�AG�CDEFA H� + <IAG�CDEFA HI +⋯P 

 + O<�B�CDEFB + <�BG�CDEFB H� + <IBG�CDEFB HI +⋯ P 

(8) 

 �CDB � �CDEFB  

 � O<�B�CDEFB + <�BG�CDEFB H� + <IBG�CDEFB HI +⋯ P 

 +O<�A�CDEFA + <�AG�CDEFA H� + <IAG�CDEFA HI +⋯P 

(9) 

For simplification, in the 1-D Model, the interaction between active and passive traders is 

considered as linear. In other words, each trader exchanges a fixed fraction of what they own during 

each exchange. Note that the assumption of linear interaction is plausible only for certain systems. 

Even though the linear interaction mechanism is not always suitable for every real stochastic system 

found in industrial or experimental processes, it represents the simplest mechanism to simulate a 

money exchange process since it introduces a lower number of money exchange parameters and 

therefore reduces the number of factors that impact simulation results. As for the real process, its 
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interaction mechanism needs to be adjusted and verified by further investigations and analysis. 

Thus, higher order money transfer processes are not considered:  

 <�A � <�B � 0,						∀	� ≥ 2 (10) 

Finally, the relations between �CD  and �CDEF in an exchange event are given by 

 �CDA � �CDEFA � <�A�CDEFA + <�B�CDEFB  (11) 

 �CDB � �CDEFB � <�B�CDEFB + <�A�CDEFA  (12) 

Rearranging equation (11) and (12), 

 �KLM � G1 � <�MH�KLEFM + <�N�KLEFN  (13) 

 �KLN � 1 � <�N��KLEFN + <�M�KLEFM  (14) 

In a stochastic simulation, the state of the 1-D Model evolves dynamically over time and the 

system keeps updating continuously due to the sequential money exchanges. RSTSUV denotes the total 

simulation time. As the time step  ∆� is constant, the total number of exchange events is obtained 

from the termination time, i.e. number of exchange events is RSTSUV ∆�⁄ . 

By setting input variables and initial conditions, the money redistribution of the 1-D Model 

can be simulated as a sequence of discrete money exchange events. Figure 5 schematically shows 

the simulation process of the 1-D Model. 
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Figure 5. Time evolution of trader sequence of the 1-D Model in stochastic simulation. The vector 

�� represents the money state of the model at � � ��. ��X   represents the amount of money held by 

the trader �X at � � ��. @ represents the terminal time of the simulation at the end. 

According to the model and its interaction mechanism introduced above, the Gillespie SSA 

of the 1-D Model can be implemented and shown in Figure 6. 
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Figure 6. Flow chart of the stochastic simulation algorithm of the 1-D Model. 

2.3. Identification of regression model 

In this paper, the standard deviation of money and money distribution in the system are the 

selected response variables to investigate the system status changing in time. The former quantifies 

the amount of variation and dispersion of amount of money in the system and the latter presents the 

frequency of amount of money held by traders. A curve fitting analysis is applied to estimate the 

curves of standard deviation evolution and money distribution by looking for an analytical 

expression. Two or more candidate expressions may give similar goodness of fit for the same 

simulation realisation but with completely different complexities. Thus, it is crucial to balance the 

goodness of fit and complexity of the expression form. A sketch of the proposed model 

identification procedure, namely two-layer model identification strategy, for the representation of 

realisations from the 1-D Model stochastic simulation is shown in Figure 7. This strategy is applied 
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for describing the time evolution of standard deviation and probability density function of money 

distribution in time through nonlinear regression models.  

For the probability density function of money distribution, each candidate model has the 

general form which can be fitted by an appropriate regression model. 

 Y � 4�,��, RSTSUV, ∆�, <�A, <�B , !" , �� � 4Z, �� (15) 

 Y[ � \], �� (16) 

In Equation (15), Z � 1�,��, RSTSUV, ∆�, <�A, <�B , !"2^ is the Nφ-dimensional set of operating 

variables used in the stochastic simulation and in Equation (16), ] is an Nθ-dimensional set of 

regression parameters. In the first layer, the PDF curves extracted at each sampling time point are 

defined and fitted by candidate models in the form 

 Y[|_`_F � \G]_F , ��H|a � \�Gb�,_�, b�,_�, bI,_�, ⋯ H|a 

Y[|_`_c � \G]_c , ��H|a � \�Gb�,_�, b�,_�, bI,_�, ⋯ H|a 

⋯ 

Y[|_`_d � \G]_d , �eH|a � \eGb�,_e, b�,_e, bI,_e,⋯ H|a. 

(17)  

In the second layer, a nonlinear curve fitting is applied to find a parameterised function to estimate 

how time-dependent parameters ]� in Equation (17) will evolve over processing time. Optimisation 

can be carried out computationally to find a curve fitting function with the best trade-off between 

Residual Sum of Squares (RSS) (model adequacy) and number of parameters (Nθ) (evaluating 

model complexity) through the Akaike information criterion
18

 for the evaluation of the minimum 

Akaike information index fgh � 2�i � logm��.  
For the time evolution of standard deviation of money, Equation (15) still applies the 

general form. However, the identifications in the first and second layer are of slightly difference. In 

the first layer, the time-dependent STD curves are defined and fitted by the candidate models, in the 

form 
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 Y|ZF � 4Zn, �� 
Y|Zc � 4Zo, �� 

⋯ 

Y|Zd � 4Zp, �� 

(18)  

And, 

 Y[|ZF � \]n, �� 
Y[|Zc � \]o, �� 

⋯ 

Y[|Zd � \]p, �� 

(19) 

 

In the second layer, a nonlinear curve fitting is applied to find a parameterised function to estimate 

how time-dependent parameters ]�  in Equation (19) will evolve over processing time. Same 

optimisation on RSS and Nθ will be carried out. 

In general, the identification of regression model on the standard deviation of money 

requires a number of simulation results with different input scenarios Zn, Zo, …	 , Zp to estimate the 

functions of ], while that on the money distribution requires only one simulation results with 

specific input variables and condition Z to estimate the time evolution of ]. 
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Figure 7. Sketch of the two-layer model identification strategy for stochastic model simulation of 

TTEP problem. 

 

3. Results and Discussion 

Both the analyses of standard deviation evolution and of money redistribution consist of two 

sections, parametric study and regression model identification. For clarity, the fixed values of model 

input variables, Z, and initial conditions are given at the beginning of section 3.1 The values of 

specific variables studied in the parametric study will be explicitly mentioned in figures or captions. 

3.1. Simulation realisations from the 1-D Model 

The preliminary stochastic simulations on the 1-D Model are presented by using fixed 

values of input variables Z which are listed in Table 1. Five realisations of SSA using the same 

input conditions in Table 1 are plotted with different colours in Figure 8(left). Each curve represents 

the temporal evolution of the standard deviation of the money distribution function. Variability is 

the natural consequence of the stochasticity of the process.
8
 Thus, fluctuations among dynamic 
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trajectories starting from the same conditions are to be expected. However, as will be shown below, 

this variability is of limited importance compared to the effect of changing the values of input 

conditions. The subsequent sections will present how changing the values of input conditions 

affects the realisation of stochastic simulation. Figure 8(right) presents the probability density 

function (PDF) of the money distribution in the 1-D Model at four simulation time points and the 

last picture also illustrates the final money distribution of the system at the termination time 

RSTSUV � 1 × 10s . The computational domain, 1�tuv, �tUw2  (i.e. 10,30002  in Figure 8(right)) is 

divided into x � 60 compartments of width 7 � 50. The height of the bar in each compartment 

represents how many traders fall into the corresponding range of money. 

Table 1. Fixed values of model input variables and initial conditions for the stochastic simulation 

in the 1-D Model. 

Variable/condition Symbol Fixed value 

(1) Number of traders � 1000 

(2) Initial amount of money for each trader �� 1000 

(i.e. ��� � ��� � ��I � ⋯ � ��z)   

(3) First order money transfer coefficient of active trader <�A 0.5 

(4) First order money transfer coefficient of passive trader <�B 0.25 

(5) Termination time RSTSUV 1×10
4 

(6) Exchange event time gap ∆� 1 

(7) Exchange direction propensity !" 0.5 

(8) Sampling time gap ∆�{ 100 
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Figure 8. Left: Five realisations of SSA for the 1-D Model with input variables and condition in 

Table 1, each colour representing one individual stochastic simulation; right: One realisation of 

money distribution change over simulation time with input variables and condition in Table 1. 

3.2. Parametric study 

3.2.1. Number of traders and exchange direction propensity 

The size of the population of traders involved in the exchange system has a significant 

influence on the time evolution of the standard deviation. Figure 9 graphically illustrates the plots of 

the standard deviation on both symmetric (!" � 0.5) and asymmetric (!" | 0.5) systems. In Figure 

9(a) the blue curve with � � 1000 reaches steady fluctuation region within a short processing time 

and the green line with � � 20000 is the last one to leave launch region. Launch region is an initial 

transient region in which the curve has a clear increasing trend. It takes longer time for the system 

with larger trader populations to equilibrate. This is obvious because the system with larger 

population size requires higher number of money exchange events, which can affect the majority of 

the traders in the system, to approach steady fluctuation region. In the steady fluctuation region, 

which comes after launch region and shows the fluctuation around certain average value, the blue 

curve with the smallest population of traders has the highest degree of fluctuation while the green 

curve evolves smoothly. This is because when the system has a relatively small population, every 

single money exchange event would be an important contribution to the system so that the state of 
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the system would give a fast reaction within a short period of processing time and present a 

significant change. Figure 9(b) illustrates the time evolution of standard deviation in the asymmetric 

system. The blue curve with � � 1000 comprises three different regions clearly (i.e. launch, steady 

fluctuation and reacceleration), within a process time RSTSUV � 3 × 10} . Reacceleration region 

appears when the system has a small trader population and/or unbalanced exchange direction 

propensity. In this region, the curve does not fluctuate around the average value any longer but 

starts showing an increasing trend again (see blue curve after time � � 5 × 10s in Figure 9(b)). In 

the reacceleration region, the trajectory slowly deviates from the original range of fluctuation. This 

behaviour can also be found for  � � 2000.  
The appearance of a reacceleration region is due to the overall difference between the 

money transferred in forward and backward exchanges and, consequently, money accumulation in 

the asymmetric systems. For the systems with small trader populations and !" | 0.5 , money 

accumulation easily happens and presents a growing trend of standard deviation of money in the 

system as the processing time of stochastic simulation increases, which produces the reacceleration 

region. A comparison plot on the system with � � 1000 and !" � 0.25 has been presented in 

Figure 9(c). The blue curve presents the time evolution of standard deviation with respect to all 

traders in the system while the orange curve presents that with respect to the traders from 101 to 

900 only, i.e. exclusive of the first and last 100 traders. As expected, the time evolution of standard 

deviation of these 900 traders in the bulk still stays in the steady fluctuation region. According to 

the simulation result, the average amount of money on the 900 traders in the bulk fluctuates 

between 998.4 and 1003.7, extremely close to the initial mean of 1000, which means the 

asymmetric exchange direction propensity would have little effect on the traders in the bulk within 

the process time RSTSUV � 3 × 10}. However, this effect gradually spreads to all the trades as process 

time increases. On the other hand, a clear money accumulation is observed in the simulation result. 

The average amount of money held by the first 100 traders gradually increases over time while that 
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held by the last 100 traders gradually decreases. At the termination, the largest amount of money 

held by trader No. 4 is 9610.8 and the smallest one held by trader No. 1000 is 1.92. For asymmetric 

systems, the trader holding the largest amount of money at the termination is not always the same 

one due to the stochasticity in the simulations but the trader holding the largest amount of money 

can usually be observed at the boundary region in model, so as the trader holding the smallest 

amount of money. 

 

Figure 9. Stochastic simulation results of the 1-D Model with different � (��, <�A, <�B, ∆� at the 

fixed values in Table 1, RSTSUV � 3 × 10} , ∆�{ � 300). (a) Symmetric system for !" � 0.5; (b) 

Asymmetric system for !" � 0.25; (c) The comparison between the time evolutions of STD with 

respect to all and partial traders in the system with � � 1000 and !" � 0.25. 

A further illustration on the effect of exchange direction propensity !" is presented in Figure 

10. As all traders have the same initial amount of money at � � 0, with all other input variables and 

condition fixed, the influence of exchange direction propensity !" is solely based on the interval 

!" ∈ 10,0.52, i.e. !" � 0.3 and !" � 0.7 basically give similar model behaviours. The importance 

of exchange direction propensity can be neglected in the initial period of simulation process and this 

period changes according to system configuration, especially population size. In Figure 10(a), 

� � 1000, the curves separate approximately at � � 2 × 10s and the stochastic simulations with 

smaller !" gives a faster money accumulation in the model. For systems with larger populations, i.e. 

� � 5000, higher number of model updates is required for the STD curve to leave the steady 

fluctuation region. According to the results of simulation (not shown here), for the system with 

� � 5000 , a clear separation of the curves occurs at about � � 3 × 10} , which is of great 
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difference from what is observed in the system with  � � 1000. Money accumulation is inevitable 

in systems with asymmetric exchange direction propensity and its appearance is a matter of time for 

systems with large population size. The traders at two ends of the model sequence, i.e. first and last 

trader, have only one exchange direction. When exchange direction propensity is strongly 

asymmetric, especially !" � 0, the money accumulated on the boundary is extremely hard to be 

transferred back to the traders in the bulk. 

 

Figure 10. Stochastic simulation results of both (a) small and (b) large population 1-D Model with 

different exchange direction propensity (�� , <�A , <�B , ∆�  at the fixed values in Table 1). (a) 

� � 1000, RSTSUV � 1 × 10}, ∆�{ � 100; (b) � � 5000, RSTSUV � 1 × 10}, ∆�{ � 100. 

Figure 11 illustrates the PDF of the money distribution after long simulation time RSTSUV �
3 × 10} in both (a) extremely asymmetric and (b) symmetric situations and it visualises the money 

accumulation from another perspective. According to the figure, the money distributions in two 

situations resemble each other in bulk, i.e. domain 1250,25002. Most of the traders drop in the 

compartments of 1250,25002 with few outliers. The obvious difference between 11(a) and 11(b) is 

the number of traders in the compartments from � � 0  to � � 250 , especially for the first 

compartment of 10,502. In Figure 11, two sub-figures use the same axis scale for amount of money 

10,30002. The total numbers of traders included in the histograms are 995 and 1000, respectively. 

The traders with amount of money more than 3000 are not visualised in the histograms. As 
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expected, the asymmetric !" in system, causing an unbalanced money transfer, gives some traders 

big amount of money after simulation and on the other hand, results in a few traders with almost no 

money.  

 

Figure 11. Stochastic simulation results of the 1-D Model with different exchange direction 

propensity (� , �� , <�A , <�B , ∆�  for fixed values in Table 1, RSTSUV � 3 × 10} ). (a) !" � 0; (b) 

!" � 0.5 

3.2.2. Initial amount of money 

Figure 12(a) are symmetric systems with !" � 0.5 . The trader populations for the 

simulations are � � 1000 . In the figure, the initial amount of money for the traders mainly 

determines the level of the standard deviation in the steady fluctuation region. From the view of 

mathematical point, when two systems with the same population size but different initial amount of 

money, �� and ��, undergo the computational simulations with exactly the same money exchange 

process, i.e. each pair of active and passive trader from one system matches the other, as the 

standard deviation � satisfies, 

 

�� ∝�*� � *̅��
�

�`�
 (20) 

And, 
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 *��
*��

� *̅�*̅� �
��
�� (21) 

The standard deviation ratio of two systems at one time would be, 

 ����
���� �

��
�� (22) 

According to Equation (22), as expected, the initial amount of money linearly affects the scale of 

standard deviation of the system at not only the steady fluctuation region but also other regions. The 

plot of standard deviation at steady fluctuation region to initial amount of money is presented in 

Figure 12(b).  

 

Figure 12. Stochastic simulation results of the 1-D Model with different initial amount of money 

for the traders (<�A, <�B, ∆� of the fixed values in Table 1,	� � 1000,	!" � 0.5, RSTSUV � 1 × 10}, 

∆�{ � 100). (a) Time evolution of standard deviation with different ��; (b) STD – �� plot. 

3.2.3. Money transfer coefficient 

Coefficients <�A and <�B represent the fraction of money extracted from active and passive 

traders in each exchange event, respectively. In symmetric systems they are equivalent and have the 

same physical meaning. Hence the stochastic simulations results for <�A � 0.5 , <�B � 0.25  (as 

shown in Table 1) and <�A � 0.25, <�B � 0.5,  with other input conditions set the same, are the 

same.  
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Figure 13(a) implies that when considering a given <�A, for example  <�A � 0.5, and two <�B 
are symmetric with respect to <�A (i.e. <�B � 10.2, 0.82, <�B � 10.3, 0.72, and <�B � 10.4, 0.62), their 
realisations will be the similar. And the similarity increases as the values of <�B pairs approach to 

0.5. As illustrated by Figure 13(b), the level of standard deviation curve of money in steady 

fluctuation region is affected by the difference between <�A and <�B. The values of <�B for the curves 

in Figure 13(b) from top to bottom are <�B � 1, 0.7, 0, 0.4 and 0.3. The differences between <�A 
and <�B from top to bottom are |<�A � <�B| � 0.75, 0.45, 0.25, 0.15 and 0.05. According to Figures 

13(c) and 13(d), when <�A � 0.3, two curves with different <�B, even being symmetric with respect 

to <�A, do not give the similar realisations of stochastic simulation. The results show that in each 

pair of <�B (being symmetric with respect to <�A), when <�A < 0.5, the larger <�B would give a smaller 

standard deviation in steady fluctuation region (see Figure 13(c)). On the contrary, when <�A > 0.5, 
the smaller <�B  in each pair of <�B  (being symmetric with respect to <�A ) would give a smaller 

standard deviation in steady fluctuation region (see Figure 13(d)). In general, three rules can be 

summarised to identify the level of standard deviation in steady fluctuation region with fixed <�A 
and different <�B. 

i. The larger difference between <�A and <�B would give higher standard deviation in steady 

fluctuation region. This big difference will cause an unbalance money transfer between 

active and passive traders involved in each exchange event. After long simulation time, 

some traders will be holding big amount of money while some other traders will be 

having little money. This huge money difference will actually increase the standard 

deviation of money in the system.  

ii. When <�A � 0.5 , two <�B  being symmetric about <�A  would give similar standard 

deviation evolution behaviours and the similarity increases with the difference between 

two <�B decreasing. When two <�B are symmetric about <�A � 0.5, they would present the 

same coefficient difference |<�A � <�B|, and the values of money transfer from active and 

Page 25 of 43

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

__________________________________________________________________________ 

Copyright © 2018 C. Huang, P. M. Piccione, F. Cattani and F. Galvanin 

26

passive traders at each exchange event would be of little discrepancy, resulting in the 

similarity in standard deviation. When <�A | 0.5 and two <�B are symmetric with respect 

to <�A, the smaller standard deviation in steady fluctuation region would be given by the 

<�B  that is closer to 0.5. In this situation, the similarity of two standard deviation 

evolutions decreases since the impact of coefficient difference |<�A � <�B|  becomes 

complicated in the system. 

Moreover, money transfer coefficients <�A and <�B	have a clear influence on the nature of the 

PDF Figure 14 presents four realisations of stochastic simulations with different couples of <�A and 

<�B, giving four different PDFs on the computational domain of 10,60002.. In Figure 14, the forms 

of PDF of money distributions are (a) exponential, (b) transition between log-normal and 

exponential, (c) normal distribution with skewness or log-normal and (d) normal distribution. The 

form of money distribution at terminal simulation time is significantly affected by the values of <�A 
and <�B. The discrepancy between the values of <�A and <�B would make contribution to the money 

reallocation to the traders in the system and eventually, the different forms of terminal money 

distribution are given.   

By varying the values of <�A and <�B from 0 to 1, respectively, with step change equal to 

0.05, the k1
A
-k1

P
 map is produced in Figure 15, showing the form of the PDF at steady state in the 

1-D Model. The k1
A
-k1

P
 map presents a clearly symmetric behaviour. This is because with all other 

input variables and condition fixed, the values of money transfer coefficients for active and passive 

traders can be swapped and they will give the same simulation behaviour of the model with respect 

to the aggregate descriptors considered here, i.e. <�A � 0.5, <�B � 0.25 and <�A � 0.25, <�B � 0.5 are 
equivalent for the model, The step change of <�A and <�B applied to produce the map in Figure 15 is 

0.05. A smaller step change would give a map with higher precision, especially for the points on the 

boundaries. Actual regressions and goodness of fit are required, especially to determine the 

behaviour at the boundaries of the different regions since it is very hard to identify the form of PDF 
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solely by vision. The map presented in Figure 15 is obtained at specific input condition. From 

author’s point of view, however, this map can still be used to determine the final form of the PDF at 

steady state of the 1-D Model with other input conditions. This is because, as discussed before, the 

population of traders and initial amount of money mainly impact the smoothness and oscillation of 

the curves or plots and the interaction mechanism is the key force that dynamically drives the 

system evolution within simulation time. 

 

 

Figure 13. Stochastic simulation results of the 1-D Model with different money transfer 

coefficients of active and passive traders (�, �� , RSTSUV, ∆�, !"  of the fixed values in Table 1, 

∆�{ � 10, see legends for <�B). (a) <�A � 0.5; (b) <�A � 0.25; (c) <�A � 0.3; (d) <�A � 0.7. 
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Figure 14. Stochastic simulation results of the 1-D Model with different money transfer 

coefficients (�, ��, ∆�, !"  for fixed values in Table 1, RSTSUV � 1 × 10}). (a) <�A � 0.5, <�B � 0; 

(b) <�A � 0.2, <�B � 0.8; (c) <�A � 0.4, <�B � 0.7; (d) <�A � 0.5, <�B � 0.6. 

 

Figure 15. The k1
A-k1

P map of the 1-D model with � � 1000, �� � 1000, RSTSUV � 1 × 10}, 

∆� � 1 and !" � 0.5. 
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3.3. Regression model identification 

In this section, the simulation results are investigated to build regression models. It is 

important to select suitable input conditions when simulating the model as inappropriate input 

conditions may cause issues in the regression, listing below: 

• The small trader population in the system may bring strong curve oscillation in 

steady fluctuation region, see Figure 9, which does not benefit the curve fitting. 

Improper large trader population needs significantly large process time to get the 

system adequately simulated, making the simulation computationally expensive. 

• In this section, the model behaviour after steady fluctuation region, i.e. 

reacceleration region, is not considered, so that !" is fixed at 0.5 to avoid money 

accumulation in the simulation. 

• If the simulation time was too long simulation would not be computationally 

efficient because when the system reaches steady state the further simulation does 

not significantly affect the system. If the simulation time was too short the traders in 

the model would not be adequately simulated.   

Considering the issues above, the 1-D Model is simulated with input conditions in Table 1 

with � � 5000 and RSTSUV � 1 × 10} . The data of this realisation contains 1,001 points sampled 

from � � 0 to � � 1 × 10}  with sampling time step ∆�� � 100 . In the first layer of the model 

identification strategy, a nonlinear curve fitting of the STD based on least square method is carried 

out on simulation realisation. Table 2 summaries the results of nine candidate functions used for 

curve fitting on the data of realisation. 
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Table 2. Summary of the curve fittings on the time evolution of STD. Relevant values of RSS, COD, 

Nθ and AIC are shown in boldface. 

Function Expression RSS COD Nθ AIC 

Asymptotic Y � 8 � :;� 75633 0.954 3 17.23 

Exponential Y � Y� + f���� 75633 0.954 3 17.23 

Hill Y � ���� *e
<e + *e 6194 0.996 3 14.73 

Logistic Y � f� � f�
1 + � **��

� + f� 5229 0.997 4 16.56 

Michaelis-

Menten 
Y � ����*

x� + * 14401 0.991 2 13.58 

Bradley Y � 8 ln�: ln *� 111439 0.927 2 15.62 

Poly Y � 8� + 8�* + 8�*� +⋯+ 8e*e � 18889 0.989 10 29.85 

Langmuir 

EXT 
Y � 8:*� �

1 + :*� � 6194 0.996 3 14.73 

Nelder Y � * + 8
:� + :�* + 8� + :�* + 8�� 5298 0.997 4 16.58 

 

All the curve fittings presented have converged and reached the Chi-Sqr tolerance value of 

��c � 1 × 10 �. According to Table 2, estimating functions with relatively complicated expressions 

return the best coefficients of determination (COD). However, Michaelis-Menten function presents 

the lowest value for AIC, offering a good curve fitting on the simulation results (COD = 0.991) with 

the lowest model complexity, and is consequently selected for the second layer, where parameters 

����  and x�  are studied by using curve fitting analysis on a number of stochastic simulation 

realisations with different values in Z. The investigation mainly focuses on the crucial variables 

which have significant impacts on simulation results, i.e. �, ��, <�A and <�B. Results are given in 

Figure 16 to 18.   

It is worth noting that, in a Michaelis-Menten function, ���� (part of numerator) positively 

influences the function value while x� (part of denominator) correlates inversely with the function 
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value. Larger populations of traders increase the value of x� and, on the contrary, decrease the 

value of ����. According to Michaelis-Menten expression, when x is small (x can be substituted by 

simulation time t) the y value is determined together by ���� and x�  and produces several launch 

region forms of STD curve (Figure 9). When x is large, the y value is mainly determined by ���� 
while x� has little contributions to that. That is, when the simulation time increases, ���� becomes 

much more important than x� and the standard deviation approximates to the value of ����.  
In Figure 16, both ���� and x� show a linear dependency on the number of traders �. The 

���� value shows slight change from 370 to 366 as trader population increases from 2000 to 20000. 

It implies that the trader population has slight impact on the standard deviation at steady state, and 

this is consistent with the fact that, in Figure 9, the standard deviation curves with different trader 

population have the similar steady fluctuation region. In Figure 17, the linear fitting is excellent on 

���� – �� but poor on x� – ��. The goodness of ���� – �� is consistent with Equation (22) that 

initial amount of money affects the scale of standard deviation. 

 

Figure 16. Curve fitting analysis on the impact of � on STD function for �� � 1000, <�A � 0.5, 

<�B � 0.25, !" � 0.5 and RSTSUV � 3 × 10}. (a) ����  vs �; (b) x� vs �. 
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Figure 17. Curve fitting analysis on the impact of �� on STD function for � � 5000, <�A � 0.5, 

<�B � 0.25, !" � 0.5 and RSTSUV � 3 × 10}. (a) ����  vs ��; (b) x�  vs ��. 

 

 

Figure 18. Curve fitting analysis on the impact of <�B  on STD function for � � 5000, �� � 1000, 

<�A � 0.5, !" � 0.5 and RSTSUV � 3 × 10}. (a) ���� vs <�B in Poly fit; (b) x�  vs <�B in Poly fit. 

Figures 18 shows how the values of ���� and x� change with different values of <�B with fixed 

<�A � 0.5. It is found in Figure 18(a) that the values of ���� are symmetric about <�B � 0.5 and the 

small values of ����  are given by the simulation in which  <�B  is near 0.5. This symmetry is 

consistent with the results of the parametric study on <�A and <�B given in Section 3.2.3, see Figure 

13(a). Figure 18(b) presents an approximate symmetry about <�B � 0.5. This symmetry ensures the 

similar evolutions of standard deviation in launch region.  
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By simulating the 1-D Model with input conditions in Table 1 with <�B � 0.45 and RSTSUV �
2500, the PDF of money redistribution is obtained for further investigation by using the two-layer 

model identification strategy. According to the k1
A
-k1

P
 map, the final form of PDF would be the 

normal distribution. The Gaussian function shown below is applied in the first-layer curve fitting 

for the plots extracted at each sampling time. 

 

Y � Y�� + f��
 G� ��

�Hc
���c  

(23) 

The 1-D Model was simulated for m � 100 times to obtain 100 R-by-K arrays of different 

time evolutions of money distribution. K denotes the number of compartments in the money 

domain. Then, the average time evolution of money distribution, “average array”, is derived by 100 

R-by-K arrays. The samples used for curve fitting are extracted from the “average array”. In the first 

layer, 26 samples from � � 0 to 2500 are non-linearly fitted by the Gaussian function to obtain the 

time-dependent parameters Y�� , *�� , 7�  and f� . In the second layer, these parameters are non-

linearly fitted again by several candidate functions, i.e. asymptotic function, logistic function. 

Figure 19 graphically illustrates the results of curve fitting on parameters in Gaussian function. No 

functions are used to fit the parameter Y��  because (i) it is hard to find a function with simple 

expression to precisely describe the plot of the Y�� shown in the figure and (ii) according to the scale 

of y-axis, the values of Y�� are quite close to zero which is very small compared to the values of 

other parameters (i.e. *�� , 7�  and f� ). Consequently, the curve fitting on parameter Y��  is not 

necessary and parameter Y�� in Gaussian function can be neglected. However, a rigorous analysis 

via confidence interval is required to further justify the neglecting procedure. The other sub-figures 

present the good fit on the estimated data obtained in the first-layer with corresponding functions. 
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Figure 19. Second-layer curve fitting on the time-dependent parameters (b) ���, (c) �� and (d) �� 

in Gaussian function with input variables and conditions in Table. 

The estimated sample is averaged from 100 simulation runs. The expressions determined in 

the second layer for *����, 7��� and f��� are asymptotic. As simulation time � increases the 
expression terms containing independent variable t can be eliminated, showing, 

 lim_→£*���� � *��
�  (24) 

 lim_→£7��� � 7�
�  (25) 

 lim_→£f��� � f�
� (26) 

Then the Equation (23) can be written as, 

 

Y � f���
 G� ���

� Hc
����

c
 

(27) 

Here x is the amount of money of the traders. 
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Figure 20. 3D plot of the time evolution of money redistribution in the 1-D Model based on the 

estimated Gaussian function obtained by using two-layer model identification strategy. (a) Normal 

view; (b) Time-axis view. 

 

Figure 21. 3D plot of the time evolutions of standard deviation with different values of <�Bwhile 

<�A � 0.5 in the 1-D Model based on the estimated Michaelis-Menten function obtained by using 

two-layer model identification strategy. (a) Normal view with step change ∆<�B � 0.05 ; (b) 

Standard deviation vs time plot with different values of <�B . For clarity, the values of <�B applied 

are listed only for the top four pairs of curves. 

The time evolution of estimated Gaussian function is presented in terms of 3D plots in 

Figure 20. The height of the curve gradually decreases and approaches to the steady state and it is 

observed that the axis of symmetry of Gaussian curve slowly deviates from its initial position (see 
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blue and red curves in Figure 20(b)). Similarly, the time evolutions of estimated Michaelis-Menten 

function with different value of <�B are presented in terms of 3D plots in Figure 21. 

The regression model analysis on the money distribution evolution in time is carried out at 

fixed input variables and condition, ¤. Although the result is valid only at this specific scenario, the 

analysis procedure presents a good approach to study the money distribution evolution by looking 

for candidate regression functions and estimating the evolutions of function parameters. In order to 

have the regression model validated and predictive on the stochastic simulation, the regression 

model identifications on different input scenarios, i.e. ¤n, ¤o, …	 , ¤p, are required to formulate the 

data set inclusive of various situations as many as possible. A full regression model analysis on one 

fixed input scenario comprises two sections, i.e. simulation and identification, which could be 

computationally expensive and intensive.  

4. Conclusion 

In this paper, a new problem, namely the Travelling Traders’ Exchange Problem (TTEP) is 

formulated and proposed based on several assumptions to investigate collision-exchange systems of 

interest in a wide range of physical applications. The purpose of TTEP is to characterise the 

distribution of money over time related to a population of traders which can interact with each 

other. TTEP models offer a novel general mathematical formulation to investigate a wide range of 

physical phenomena (molecular and particle interactions in chemical reaction processes
1
, thermal 

conduction in lattice
2
, disease transmission mechanisms in epidemiology studies

3
 are only some 

examples).  Different assumptions on the interaction mechanisms and dimension can be introduced 

in the detailed construction of these models according to the specific features of real processes. In 

this paper, a 1-D stochastic model of TTEP has been developed to explore the behaviour of the 

TTEP requiring the definition of (i) initial allocation of amount of money to each trader; (ii) 

interaction mechanism of any two traders who collide. The exchange events are mathematically 
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expressed via a number of operating variables including money exchange location, money exchange 

direction and money transfer coefficients. A simple linear interaction mechanism is postulated to 

minimise the number of model parameters, preserving at the same time the significance and 

tractability of the mathematical problem.  

A two-layer model identification strategy has been employed to develop nonlinear 

regression models from 1-D stochastic simulations capable of representing the observed distribution 

of money exchange in time as a function of operating variables. Stochastic modelling and 

simulation based on Monte Carlo method represent suitable approaches to reveal the nature of the 

TTEP. The 1-D Model has been discussed from two different aspects, time evolution of standard 

deviation and probability density function of money redistribution. Several illustrative examples are 

used to compare the results of different stochastic simulations on the 1-D Model with various input 

scenarios. Parametric study on input variables qualitatively illustrates and visualises the impact of 

these variables on the simulation results of the 1-D Model. In regression model identification 

section, a Michaelis-Menten function is selected in the first layer to be further refined in the second-

layer identification. A symmetric k1
A
-k1

P
 map is obtained to present different terminal forms of PDF 

of money distribution at steady state conditions in the 1-D Model. This map represents a useful tool 

to characterise the TTEP system with different money transfer coefficients. The Gaussian function 

applied to estimate the sample data gives smooth fit results in the second layer. With the help of 

k1
A
-k1

P
 map and the two-layer identification strategy, a regression model can be validated and 

predict the probability density function of money distribution in time the 1-D TTEP model. Future 

work will aim at automating the regression model identification procedure and to extend. 

The study on the TTEP via the simulation of the 1-D Model gives visible and accessible 

insights about the emergent behaviour of stochastic processes and evolution over time of the 

distribution of traders’ accounts. The results obtained by regression model identification reveal the 

relation between the money redistribution and operating conditions. These phenomena would 

benefit from further optimisation studies on operating conditions with the goal to achieve target 
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money distribution properties. The study on the TTEP system becomes extremely valuable when 

input variables in the stochastic simulation can directly be linked to the real industrial or 

experimental operating variables. Future work will aim at providing a feasible and systematic 

approach to process optimisation where these operating variables will be manipulated to achieve 

tunable distribution properties while minimising the overall processing time.  
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List of symbols 

General symbols 

f� Parameter in Gaussian function 

f�� Value of f� at large simulation time 

/¥� Difference between money transfer coefficients for active and passive traders 

/� Exchange direction of event �u with respect to active trader 

@ Terminal simulation time point 

@A Amount of money transferred from active to passive trader in exchange event 

@B Amount of money transferred from passive to active trader in exchange event 

x Number of compartments in computational domain 1�tuv, �tUw2 
x� Parameter in Michaelis-Menten function 

<�A Money transfer coefficient of i-th order term of active trader 

<�B Money transfer coefficient of i-th order term of passive trader 

&� Exchange location of event �u with respect to active trader 
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��X Amount of money held by the trader �¦ after the exchange event �u 
�tUw Upper bound of the computational domain 

�tuv Lower bound of the computational domain 

�CDA  Amount of money held by involved active trader after exchange event 

�CDB  Amount of money held by involved passive trader after exchange event 

�CDEFA  Amount of money held by involved active trader before exchange event 

�CDEFB  Amount of money held by involved passive trader before exchange event 

� Number of traders (population of traders) in the system 

Nθ Dimension of set of operating variables 

Nφ Dimension of set of regression parameters 

!> Backward money exchange propensity 

!" Forward money exchange propensity  

m Number of simulation runs 

�� i-th money exchange event 

RSTSUV Termination time 

� Time 

�� Time at exchange event �u 
���� Parameter in Michaelis-Menten function 

7 Width of compartments in computational domain 1�tuv,�tUw2 
7�  Parameter in Gaussian function 

7��  Value of 7�  at large simulation time 

*� x-axis value of � in the sample 

*��  Parameter in Gaussian function 

*���  Value of *��  at large simulation time 

Page 39 of 43

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

__________________________________________________________________________ 

Copyright © 2018 C. Huang, P. M. Piccione, F. Cattani and F. Galvanin 

40

'0 Output of random number generator 

'( Output of random number generator 

Y Stochastic simulation results 

Y[ Estimated function of corresponding simulation results 

Y� y-axis value of � in the sample 

Y�� Parameter in Gaussian function 

�� Set of positive integers 

 

 

Vectors and Matrices [dimension] 

�� Vector of initial amount of money in the 1-D Model [N] 

� Vector of trader sequence in the 1-D Model [N] 

] Set of candidate function parameters [Nθ] 

Z Set of model operating variables [Nφ] 

 

Greek Letters 

∆� Time gap between two adjacent exchange events 

∆�{ Sampling time step 

� Total time for trading season 

 

Acronyms 

COD Coefficients of determination 

PDF Probability density function 

RSS Residual Sum of Squares 

SSA Stochastic simulation algorithm 
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SDEs Stochastic differential equations 

STD Standard deviation 

TTEP Travelling traders’ exchange problem 

 

References 

1. Gibson, M. A.; Bruck, J. Efficient exact stochastic simulation of chemical systems with many 

species and many channels. J. Phys. Chem. A. 2000, 104, 1876-1889. 

2. Basile, G.; Bernardin, C.; Jara, M.; Komorowski, T.; Olla, S. Thermal Conductivity in Harmonic 

Lattices with Random Collisions. Thermal Transport in Low Dimensions: From Statistical Physics 

to Nanoscale Heat Transfer; Springer International Publishing: Cham, 2016; pp. 215-237. 

3. Bansal, S.; Grenfell, B. T.; Meyers, L. A. When individual behaviour matters: homogeneous and 

network models in epidemiology. J. Royal Soc. Interface 2007, 4, 879-891. 

4. Nelson, B. Foundations and Methods of Stochastic Simulation: A First Course; Springer US: 

New York, 2013. 

5. Gillespie, D. T. Approximate accelerated stochastic simulation of chemically reacting systems. J. 

Chem. Phys. 2001, 115, 1716-1733. 

6. Haseltine, E. L.; Rawlings, J. B. Approximate simulation of coupled fast and slow reactions for 

stochastic chemical kinetics. J. Chem. Phys. 2002, 117, 6959-6969.  

7. Oksendal, B. Stochastic differential equations: an introduction with applications; Springer-

Verlag Berlin Heidelberg, 2003. 

8. Erban, R.; Chapman, J. S.; Maini, P. A practical guide to stochastic simulations of reaction-

diffusion processes, 2007, arXiv:0704.1908. arXiv preprint. https://arxiv.org/pdf/0704.1908.pdf 

9. Andrews, S. S.; Bray, D. Stochastic simulation of chemical reactions with spatial resolution and 

single molecule detail. Phys. Biol. 2004, 1, 137. 

Page 41 of 43

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

__________________________________________________________________________ 

Copyright © 2018 C. Huang, P. M. Piccione, F. Cattani and F. Galvanin 

42

10. Erban, R.; Chapman, J. S. Stochastic modelling of reaction-diffusion processes: algorithms for 

bimolecular reactions. Phys. Biol. 2009, 6, 046001. 

11. Erban, R.; Chapman, J. S. Reactive boundary conditions for stochastic simulations of reaction-

diffusion processes. Phys. Biol. 2007, 4, 16. 

12. Erban, R.; Chapman, J. S. Time scale of random sequential adsorption. Phys Rev E. 2007, 75 

(4), 041116. 

13. Ulam, S.; Richtmyer, R. D.; Neumann, J. von Statistical methods in neutron diffusion. Los 

Alamos Sci. Lab., [Rep.] 1947, LAMS-551. 

14. Doucet, A.; De Freitas, N.; Gordon, N. An Introduction to Sequential Monte Carlo Methods; 

Springer: New York, 2001. 

15. Gillespie, D. T. A general method for numerically simulating the stochastic time evolution of 

coupled chemical reactions. J. Comput. Phys. 1976, 22, 403-434. 

16. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 

1977, 81, 2340-2361. 

17. Huang, C.; Piccione, P. M.; Cattani, F.; Galvanin, F. Travelling traders' exchange problem: 

stochastic simulation and sensitivity analysis. Proceedings of the AIChE Annual Meeting, San 

Francisco, CA, November 13–18, 2016. 

18. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 

1974, 19, 716-723. 

Page 42 of 43

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

__________________________________________________________________________ 

Copyright © 2018 C. Huang, P. M. Piccione, F. Cattani and F. Galvanin 

43

 

 

 

 

 

 

 

 

 

Page 43 of 43

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


