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Useful pharmacodynamic endpoints in children: selection,
measurement, and next steps
Lauren E Kelly1, Yashwant Sinha2, Charlotte I S Barker3, Joseph F Standing3 and Martin Offringa4

Pharmacodynamic (PD) endpoints are essential for establish-
ing the benefit-to-risk ratio for therapeutic interventions in
children and neonates. This article discusses the selection of
an appropriate measure of response, the PD endpoint, which
is a critical methodological step in designing pediatric efficacy
and safety studies. We provide an overview of existing
guidance on the choice of PD endpoints in pediatric clinical
research. We identified several considerations relevant to the
selection and measurement of PD endpoints in pediatric
clinical trials, including the use of biomarkers, modeling,
compliance, scoring systems, and validated measurement
tools. To be useful, PD endpoints in children need to be
clinically relevant, responsive to both treatment and/or
disease progression, reproducible, and reliable. In most
pediatric disease areas, this requires significant validation
efforts. We propose a minimal set of criteria for useful PD
endpoint selection and measurement. We conclude that,
given the current heterogeneity of pediatric PD endpoint
definitions and measurements, both across and within
defined disease areas, there is an acute need for internation-
ally agreed, validated, and condition-specific pediatric PD
endpoints that consider the needs of all stakeholders,
including healthcare providers, policy makers, patients, and
families.

Expanding the evidence base for rational drug use in
children presents numerous challenges, including a

paucity of high-quality research on commonly used medica-
tions, complexities in designing and conducting clinical trials
(CTs), and a lack of robust data on how developmental
changes and disease progression affect drug exposure
and response (1). Although pediatricians endeavor to
deliver evidence-based pharmacotherapy, high-quality phar-
macokinetic (PK) and pharmacodynamic (PD) data to
inform patient management are frequently lacking. Without

appropriate data on relationships between drug exposure and
drug response in children and neonates, healthcare practi-
tioners have insufficient information to definitively maximize
the therapeutic benefit when prescribing drugs, while
minimizing the toxicity (2).

PEDIATRIC PHARMACODYNAMIC MEASURES: WHAT ARE
THEY?
PD is broadly defined as “what the drug does to the body” and
is often characterized as drug response. In contrast, PK is
“what the body does to the drug”. PD endpoints measure a
drug’s activity in the body using biomarkers and/or clinical
outcomes to quantify efficacy and safety (3). Although various
measures of drug response are used by clinicians every day to
guide therapy, PD endpoints in CTs are most often
parameterized (e.g., turned into a score) so that the treatment
effects can be quantitatively compared across studies. For
example, a clinical question relating to mild, moderate, and
severe symptoms may be transformed to a numeric rating
scale from 1 to 10. This concept is discussed further in the
section on Outcome-Scoring Systems.
The relationship between drug exposure and PD endpoints

has been inadequately studied in children (4,5). Importantly,
developmental (ontogenetic) changes can affect how a drug is
absorbed, distributed, and cleared from the body. This
developmentally dependent variability in drug exposure
affects both the desired pharmacological response and the
risk of adverse effects (6,7). As “pediatric” patients represent
extremely diverse populations with body weights ranging
from below 500 g to well over 70 kg, the reporting of
pharmacological research is often limited by the lack of
adequate stratifications according to age or developmental
stage in CT design and analysis plans (6).
A clinical example of the pediatric PD endpoint knowledge

gap is in evaluating the management of an oxygen-dependent
newborn diagnosed with severe pulmonary hypertension
(PH). For a pediatric study, the industry-standard, primary
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PD endpoints for PH trials include exercise capacity evaluated
by the 6-min walk distance (8). This PD endpoint is clearly
inappropriate for newborns and pre-ambulatory children.
Pediatric PH PD endpoints need to account for the age and
neurodevelopmental status of the child, and —in chronic
conditions—take into account how these endpoints are
expected to change over time as the disease progresses (9).
Previously, pediatric PH studies have used various nonstan-
dardized primary endpoints such as cardiac catheterization
parameters and bicycle-ergometry evaluation of exercise
tolerance (10). With variable PD endpoints used across
studies, research cannot be compared or combined to
determine which treatments are most effective in the pediatric
PH population. Identifying validated, age-appropriate,
condition-specific pediatric efficacy, and safety PD endpoints
is a serious challenge currently faced by pediatricians,
scientists, and drug developers alike.
This paper provides an overview of PD endpoints in

children while exploring the scientific principles and chal-
lenges underlying the selection and validation of robust PD
endpoints in children and neonates.

METHODS
Through the StaR Child Health network (2), an expert group was
convened, including pediatric pharmacology and CT experts from
the United Kingdom, Australia, and Canada. The StaR Child Health
network is an international consortium working to improve global
standards for child health research (2). A literature review guided by
an experienced research librarian was performed to identify evidence
about pediatric PD endpoint selection for clinical research. The
evidence was summarized to provide the basis for recommendations
for selecting pediatric PD endpoints and identify current knowledge
gaps. MEDLINE (Ovid) and EMBASE (Ovid) were searched from
1946 to September 2017 to identify citations potentially relevant to
the topic of “standards for assessing PD endpoints in children”. A
search strategy incorporating the subjects of PD, practice guidelines,
and “clinical trials as topic” with age-specific limits was developed
(Supplement, online only). Guidelines from regulatory authorities
(European Medicines Agency (EMA), FDA, and Therapeutic Goods
Administration) were reviewed for existing standards relevant to
establishing and measuring PD endpoints in children. Electronic
searching was limited by a lack of standardized terminology and
indexing of papers in the field. The broader electronic search
identified papers specific to therapeutic areas, drug classes, and
individual drugs, with no general standards for PD endpoints
identified (Supplementary Table 1, online).

CURRENT REGULATORY GUIDANCE
To increase the efficiency of pediatric studies and maximize
the use of existing information, regulatory authorities have
accepted extrapolated data from trials in other populations
(mainly adults). The FDA (US Food and Drug Administra-
tion) produced draft guidance in 2014 regarding general
considerations for pediatric studies for drugs and biological
products (11). It includes a pediatric study planning and
extrapolation algorithm relevant to PD endpoints in children,
reflecting an update of the FDA pediatric study decision tree
previously published in 2003 (11). The decision tree addresses
the circumstances under which full or partial extrapolation
can be considered in children, given a similar disease

progression and response to intervention. It is noteworthy
that an FDA report highlighted that only 6% of drugs
reviewed could be completely extrapolated from efficacy data
in adults (12). If the efficacy or toxicity endpoint is delayed,
rare, or cannot be directly measured, the FDA recommends
the selection of a biomarker for this purpose (11). Available
data on validated pediatric biomarkers are currently limited
and, again, when extrapolating biomarker endpoints from
other populations, age-dependent changes in the context of
pediatric disease progression require consideration (7). The
FDA has also started a Letter of Support Initiative where
comments from the Center for Drug Evaluation and Research
on the potential value of a biomarker can be appended (13).
These letters are meant to increase transparency and provide
contact information for other academic, industry, or govern-
ment groups to provide collaborative data.
The FDA has published a table of biomarkers used as

outcomes in the evaluation of FDA-approved therapeutics
available online (14). Although this is undoubtedly helpful,
little information is given on the context of use, and if
pediatric patients were included in the evaluated studies. The
Framework for Defining Evidentiary Criteria for Biomarker
Qualification drafted by the NIH Biomarkers Consortium to
harmonize the biomarker qualification process is available
online (15), and further details regarding the qualification
process are agency specific and outside the scope of this
review.
The EMA Committee for Medicinal Products for Human

Use (CHMP) has published several guidelines relating to drug
development and PK in children (16) and in newborns (17).
These guidelines are updated periodically, drafted by working
parties, and subject to public consultation from relevant
stakeholders. Disease-specific guidelines sometimes contain
relevant PD standards in pediatric addenda (e.g., guidelines
for pulmonary arterial hypertension (18), acute cardiac failure
(19), and lipid disorders (20)). These addenda acknowledge
the differences in the pathophysiology of these conditions
between adult and pediatric patients and provide guidance to
the pharmaceutical industry regarding trial design and
appropriate endpoints in pediatric studies.
Regulatory–academic–industry partnerships have formed to

accelerate the development of safe and effective medicines for
children. An example of this partnership is the International
Neonatal Consortium (INC) that includes nurses, clinicians,
researchers, industry, regulators, and parent representatives.
The goal of INC is to unite stakeholders, forge a predictable
regulatory path, and to develop practical tools (21) that can be
incorporated into clinical trials to increase efficiency (https://
c-path.org/programs/inc/). The applicability of recommenda-
tions generated from such groups of international experts will
likely extend beyond the neonatal period. Recently, INC
released a white paper (22) to support investigators evaluating
medicines in neonates that recommends linking PD data to
PK where possible to determine the exposure–response
relationships and interpreting this response in the context
of available evidence in other populations. In October 2017,
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the FDA awarded a grant to the Institute for the Advance-
ment of CTs for Children (I-ACT) and the Pediatric Trials
Network (PTN) based out of Duke University in the United
States (23). I-ACT and PTN share a goal of providing expert
advice on CT design and conduct for drugs and medical
devices in children. The Global Research in Pediatrics (GRiP)
Network of Excellence, funded by the European Union has
developed guidance and research tools for pediatric studies
(24–28) that can be found in their publication repository
(http://www.grip-network.org/index.php/cms/en/publications).
The advantages of these international partnerships include
harmonization, development of best research practice, and a
global union of expertise and experience in pediatric clinical
research.

SELECTING AND MEASURING USEFUL PD ENDPOINTS
Useful PD endpoints are defined as measures, which, when
collected systematically, can inform decision making at the
bedside, by policy makers and by health authorities
(regulators). Several identified considerations that are relevant
to selecting and measuring useful PD endpoints in children,
infants, and neonates that include the use of biomarkers,
modeling and extrapolation, compliance, outcome-scoring
systems, and measurement validation are summarized below.

Biomarkers as PD Endpoints
A biomarker is defined as a “characteristic that is objectively
measured and evaluated as an indicator of normal biologic
processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention” (29,30). Systematic reviews
have identified a wide variety of biomarkers that have been
used to measure response (31–33). Historically, many
biomarkers validated for use in adults were inappropriately
extrapolated to children without careful assessment of the
influence of the developmental aspects of pathogenesis,
ontogeny, and therapeutic response (7). There remains a
dearth of validated biomarkers in pediatrics and neonatology,
which has contributed to the “PD knowledge gap” recognized
in pediatric drug development (34,35). Validated biomarkers
facilitate prediction of disease progression and treatment
response. Importantly, they can provide useful surrogate
endpoints within the trial design, when they have reliably
demonstrated that they can predict the relevant clinical
outcomes (35). In order for biomarkers to serve as valid
pediatric PD endpoints, changes in biomarker concentrations
must also predict beneficial or harmful clinical response in the
population of interest (22).
The use of biomarkers in clinical trials is highly context

specific, and regulators require that high standards of
validation be met to accept biomarker data during the
marketing authorization process. For example, the FDA (36)
and EMA (37,38) launched formal biomarker qualification
processes and provide scientific advice to support innovation
in this field. In an effort to disseminate information regarding
the established biomarkers, the FDA established the BEST
(Biomarkers, EndpointS, and other Tools) (36) resource that

contains examples and explanations. During the FDA’s review
of new molecular entities, several studies reported the use of
biomarkers as outcomes in clinical trials (39). For example,
biomarkers used to evaluate inborn errors of metabolism
included blood cell count, growth, serum low-density
lipoprotein-C, blood phenylalanine, forced vital capacity,
hemoglobin, plasma concentrations of ammonia, glutamine,
and citrulline, as well as splenic volume measured by
MRI (39).
In situations where a biomarker is known to change with

age as a child develops, an a priori correction may be applied
to account for age. One such method is to convert biomarker
measures into a z-score. A z-score follows the standard
normal distribution (i.e., mean of 0 and standard deviation
of 1). Hence, the z-score gives the magnitude and direction of
deviation from the expected value for age in standard-
deviation units, with a z-score of zero representing a child
having the expected biomarker value for their age. An
example of z-scoring in PD modeling is the measurement of
CD4 T-lymphocyte count in HIV-infected patients treated
with antiretrovirals. The adaptive immune system develops
rapidly during early childhood, and while the thymus may
cease growing after 1 year, changes in the epithelial space
occur over the first two decades of life. The implication of this
is that the normal CD4 T-cell count drops threefold during
childhood, stabilizing in early adolescence (40). CD4 T-cell
reconstitution following antiretroviral initiation has been
modeled using z-scores (41). One potential criticism of z-
score conversion is the strong underlying assumption that the
study population has the same age-dependent distribution
values as an available reference population from which the z-
score is calculated (42). Where appropriate, juvenile animal
models may shed light on the relationship between growth
and development with variability in PD endpoints.
When evaluating biomarkers in pediatric drug develop-

ment, clinical, regulatory, and methodology experts should be
consulted as early as possible in the study-design process.
Biomarkers must be developed and tested within a specific
context of use in drug development that includes the class of
biomarkers and the specific research question (33). The
financial cost of validating biomarkers to meet regulatory
standards and the time frames involved must not be
underestimated. This is an area where dedicated funding
streams will be critical to enable sustained progress in
biomarker development and to underpin future progress in
pediatric therapeutics.

Modeling: Extrapolating Exposure–Response Relationships
Several challenges arise when extrapolating exposure–
response (PK–PD) relationships across indications and age-
groups. One fundamental source of uncertainty is a lack of
reliable data on disease progression, particularly in neonates
and young children who were historically excluded from
clinical research. Without clear knowledge of the differences
in disease progression, it is problematic to use one population
to predict clinical response in another (43). Although it is
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increasingly possible to make assumptions about the impact
of age-related changes in enzymes, transporters, and organ
function on a drug’s PK, it is often less clear how these
variables affect PD response (44). A further challenge occurs
when several medications with multiple mechanisms of action
are coadministered, such as combined chemotherapy in
oncology.
Modeling and simulation are increasingly required by

regulators to inform the design and conduct of PK/PD
studies for drugs used in pediatric populations (11,45). A
recent report by Mulugeta et al., identified 31 products
approved in children by the FDA between 1998 and 2012 with
full (39%) or partial (61%) extrapolation (43). Most of these
products (n= 25/31) were studied in more than one other
pediatric age group (37). PD can be modeled alone, or
simultaneously with PK (25,46,47). A detailed overview of the
principles of PKPD modeling is available elsewhere (47–50).
In brief, a PK model describes the relationship between the
drug-dosing regimen and the plasma drug concentration time
profile, whereas a PD model describes the relationship
between drug concentration and the biological effect (48).
Mathematical techniques for creating models of the interac-
tions between developmental physiology, PK, PD, and disease
(pharmacometrics) have become increasingly sophisticated in
recent years, resulting in the successful application of PD
models in pediatric drug development and post-marketing
research (47,51–54).
Furthermore, PKPD models can be used to inform the

design of comparative randomized control trials (45,53,55). In
some cases, simulation and extrapolation from robust adult
PKPD data are sufficient for licensing medicines in children,
for example, esomeprazole for gastroesophageal reflux disease
in children aged 1–17 years (56). PKPD models can play an
important role in determining if the expected outcome effect
size will be similar in children of different ages and make the
best use of available data in other populations (57). For
example, the new class of antidiabetic medications sodium-
glucose cotransporter 2 (SGLT2) inhibitors exert their effects
by promoting renal glucose elimination, through reduction of
glucose reabsorption in the proximal tubule (58). Adolescent
patients with type-2 diabetes tend to have superior renal
function to adult patients, and hence SGLT2 inhibitors will
potentially be more effective at equivalent doses. Quantifying
this with modeling can thereby reduce CT sample size
requirements using a predicted increased effect size in the
adolescent age-group.

Compliance and PD Response
Patient adherence with the therapeutic intervention can
influence the evaluation of treatment differences between
study arms. Sophisticated research into pediatric PD in
explanatory trials needs to be accompanied by consideration
of medication adherence, particularly in ambulatory settings
and in complex diseases. Although adherence is often
considered separately from PD endpoints of treatment
success, the consequences of disregarding patient adherence

(or compliance) during the early phases of drug development
are wide-reaching as nonadherence to treatment regimens can
reduce or prevent the detection of treatment efficacy, thus
having an impact (potentially significantly) upon trial results
(59). Achieving medication adherence can be highly challen-
ging in the pediatric setting (60). Various innovative ways of
evaluating adherence in pediatric clinical studies, including
electronic measurement (61), and measurements of drug
and metabolites through various media (62,63) merit further
research.

Outcome-Scoring Systems
Scoring systems, which assign numerical merit to outcomes to
estimate the degree of a clinical situation, remain popular in
pediatric medicine (53,64). Scoring systems can support
pediatric PD measurement in CTs by combining several
isolated measures into one score to monitor disease status
before and after therapeutic intervention(s). However, scoring
systems derived for adults again may not be suitable or valid
for use in the pediatric population (65). Dedicated age-specific
scoring systems need to be developed and then validated for
use as endpoints in CT settings, as well as within clinical
practice (65–67). Examples of age-appropriate PD-related
scoring systems include the COMFORT-B score (68) used to
measure sedation in pediatric critical care and the Premature
Infant Pain Profile (69) used to measure pain in nonverbal
children. In adults, the gold standard for measuring pain is
self-report, which is clearly inappropriate for younger age
groups. The COMFORT-B score is made up of six items:
alertness, calmness, respiratory response (for ventilated
children) or crying (for spontaneously breathing children),
body movements, facial tension, and muscle tone. Each item
is rated on a scale 1–5 so that the total score ranges from 6
to 30. The COMFORT-B score has been validated in this
clinical setting, and if CT use of COMFORT-B is planned,
outcome assessors should be trained with video assessment
and test patients (68). Satisfactory results compared with an
experienced scorer to measure inter-rater reliability (70,71)
should be achieved before collecting PD CT data. However,
while scoring systems confer the advantage of combining
multivariate data into a univariate quantity (72), they sacrifice
the granularity of detail within the data. Ideally, it is preferable
to retain all raw data used to generate composite scores
whenever feasible, to facilitate more detailed statistical
analysis. For example, the Finnegan Score (73) for neonatal
abstinence syndrome includes 21 signs and symptoms. If raw
data are maintained, investigators may be able to answer more
specific research questions regarding the intervention’s effect
on generalized convulsions (one of the score items).

Validation of PD Endpoints
Although the validation process presents practical and
financial challenges, it is essential to ensure that PD endpoints
are meaningful, reproducible, and relevant (3). There are
several examples of validated pediatric PD endpoints (5). The
aforementioned COMFORT-B score presents a useful
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example. Given the potential limitations of a scoring system
vulnerable to interobserver variability, Ista et al. (74) ensured
reliability by training PICU nurses with video material and
bedside instructions. Nurses new to the scoring system
underwent repeated assessments with a trained nurse to
maximize the fidelity of their scoring. Such a rigorous
approach to staff training benefits the application of scoring
system-based PD endpoints in both clinical and research
settings, and is strongly recommended for all PD endpoints
that depend on proxy (healthcare professionals’ or parents’)
observations or measurements.
In the analytical setting, the validation of laboratory

biomarker assays can present additional difficulties. This
was demonstrated in the management of type-1 diabetes,
where long-term monitoring of HbA1c (glycated hemoglobin)
was affected by technical aspects of the measurement
methods. This led to speculation over whether the differences
in patients’ longitudinal HbA1c measurements were due to the
laboratory assays rather than differences in clinical manage-
ment strategies: details of the HbA1c assay laboratory and
equipment factors are discussed elsewhere (75–78). These
experiences highlight the importance of the new regulatory
guidelines on bioanalytical method validation (79,80), as well
as inter-laboratory proficiency testing and methodological
standardization for both old and new biomarker assays (78).
Quantitative biomarker assays should be reliable, selective,
and validated under conditions equivalent to good laboratory
practice whenever feasible (3). For multicenter-CTs, transfer-
ence studies should be planned prospectively to quantify
variability related to laboratory instrumentation.
Clinical aspects of validation include the definition of the

normal ranges/values of PD markers (including biomarkers)
in both healthy children and the target patient population.
The latter can be difficult, given the rarity of many pediatric
diseases, which affect small, heterogeneous patient popula-
tions (81). The identification of age-matched controls can be
challenging. Developing suitable pediatric reference value
distributions thus requires dedicated research in its own right

(82). There is ongoing research into the identification and
validation of pediatric biomarkers in different subspecialist
clinical contexts (32,83–85). For example, there have been
rapid advances in candidate biomarkers for renal function
and acute kidney injury in children, such as cystatin C,
neutrophil gelatinase-associated lipocalin, and kidney injury
molecule 1 (86–88), although translation from research into
clinical practice has been slow (89). The use and uptake of
validated biomarkers will be improved by efforts of regulators
to swiftly disseminate new information and updates regarding
biomarkers relevant to both clinical practice and CT
outcomes in children.

IDENTIFYING A USEFUL PD ENDPOINT
PD endpoints must be able to consistently quantify the
clinical response of a child to a specific intervention, as
measured at a specific stage of development. Valid PD
endpoints are described within the context of the “four Rs”:
relevant, responsive, reproducible, and reliable (90,91). The
characteristics of an ideal PD endpoint are summarized in
Table 1. PD endpoints must be clinically relevant and, where
possible, should take into account how the patient feels and
functions (92). PD endpoints must be responsive to changes
in clinical progression over time; this characteristic is essential
to track disease improvements and treatment progression
(92).
To ensure validity, PD endpoints should be reproducible,

for example, in patients of different ethnicities. Due to age-
dependent variability in rates of disease progression and
organ function in children, different PD endpoints in specific
age groups (e.g., neonates, toddlers, and adolescents) are
typically required. Within these age groups, PD endpoints
must be reliable and should be similar, regardless of the
environment or the person who takes the measurement. To
determine which PD endpoints should be evaluated, we
recommend undertaking a systematic review and using a
consensus process to select outcomes and measurement tools.
Patients and families, as well as policy makers should be

Table 1. Seven characteristics of useful PD endpoints

1. Meaningfully describe the patient’s pharmacological and clinical responses to drug therapy with respect to

(a) Incorporating both harms and benefits

(b) Accounting for patient and families well-being (quality of life)

2. Can be interpreted against data extrapolated from other diseases or age-groups and existing scientific literature

3. Can be used to answer the research question while informing healthcare decision making at the bedside and policy level

4. Is responsive to change and comes with a defined age-specific minimally important difference

5. Is reproducible and, where possible, objective

6. Can be consistently and reliably measured by outcome assessors

7. Has an established age-appropriate validated measure with established reference ranges in the specific age group and disease state

8. Is feasible with respect to

(a) Acceptability in terms of burden on the child or caregivers with minimal compliance/adherence concerns

(b) Timing: where possible combined with routine tests

(c) Cost considerate: license, equipment, and skill set of the outcome assessor
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included in the process to select meaningful PD endpoints.
Methods for the development of disease-specific core out-
come sets are described by Williamson et al. (93). A
repository of core outcome sets is available online through the
Core Outcome Measures in Effectiveness Trials (COMET)
initiative (http://www.comet-initiative.org/). If a core outcome
set exists for the condition of interest, it should be employed,
whereas additional relevant PD endpoints may be added.

CURRENT PD RESEARCH NEEDS
Stemming from a review of the currently available regulatory
and scientific evidence, recommendations for future research
for specific disease areas are presented in Table 2. In order to
increase the quality, consistency, and usefulness of PD
endpoints, targeted methodology research is needed. For
example, as outlined above, scoring systems comprising a
composite of several measures have a risk of losing
information since different combinations of subscores can
give the same overall score. Item response theory approaches
could be useful in teasing out contributions of the individual
subscores to the PD response (72). The heterogeneity of
definitions of PD endpoints exacerbates the difficulty in
introducing generic recommendations; however, efforts to
harmonize approaches internationally will begin to address
these issues.
A further challenge for synthesizing scientific literature and

guidance in this area includes a lack of appropriate and valid
search terms. Ideally, the development of MeSH search terms
would improve the ability of future researchers to identify,
compare, and contrast pediatric PD marker validation studies.
As the validation of PD endpoints often requires large sample
sizes, there is an important role for industry–academic–
regulatory partnerships to moving the science behind
selecting valid PD endpoints forward. Data from previous
studies where PK–PD may not be the primary objective, could
potentially be used by researchers to better characterize the
PK–PD relationships in pediatric diseases where such
information is lacking. This will require open data-sharing
agreements and partnerships. Additional research is needed
into the ability of real-world evidence (routine laboratory
tests, patient registries, and electronic health records) to
support the selection of high-quality pragmatic pediatric PD

endpoints. Recently, the use of patient-reported outcomes in
clinical practice has increased; however, the validation of
patient-reported outcomes to meet regulatory requirements
should be explored. Finally, how to best engage patients and
families in the process of selecting PD endpoints requires
further evaluation.

CONCLUSIONS
The importance of utilizing appropriate pediatric PD end-
points, including biomarkers, and facilitating their validation
in children is clear. Although there is increasing knowledge of
PK in neonates and children, there is a paucity of information
related to PD. Based on the available evidence, no overall
recommendation for the selection of pediatric PD endpoints
in CTs can be provided at this stage. However, we provide
criteria for selecting and measuring useful PD endpoints for
each age-disease-specific group, and set an agenda for
research in this field. Engaging with regulators early in the
development process will help ensure that endpoints meet the
regulatory validation requirements. Trial sponsors and
regulators need to agree to use early-phase trials to validate
candidate PD endpoints, including biomarkers, to advance the
field. Across these domains, PK/PD modeling enhances both
pediatric PD research and trial design, and, where resources
permit, model-based approaches should underpin future
pediatric PD research.
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