
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Automatic slice segmentation of
intraoperative transrectal ultrasound
images using convolutional neural
networks

Nooshin  Ghavami, Yipeng  Hu, Ester  Bonmati, Rachael
Rodell, Eli  Gibson, et al.

Nooshin  Ghavami, Yipeng  Hu, Ester  Bonmati, Rachael  Rodell, Eli  Gibson,
Caroline  Moore, Dean  Barratt, "Automatic slice segmentation of
intraoperative transrectal ultrasound images using convolutional neural
networks," Proc. SPIE 10576, Medical Imaging 2018: Image-Guided
Procedures, Robotic Interventions, and Modeling, 1057603 (12 March 2018);
doi: 10.1117/12.2293300

Event: SPIE Medical Imaging, 2018, Houston, Texas, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/3/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Automatic Slice Segmentation of Intraoperative Transrectal Ultrasound 
Images using Convolutional Neural Networks 

	

Nooshin Ghavami1, Yipeng Hu1, Ester Bonmati1, Rachael Rodell1, Eli Gibson1, Caroline Moore2, 3, 
Dean Barratt1 

1UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical 
Engineering, University College London, London, UK 
nooshin.ghavami.15@ucl.ac.uk 
2Division of Surgery & Interventional Science, University College London, UK 
3Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK 
 
 

ABSTRACT 

Clinically important targets for ultrasound-guided prostate biopsy and prostate cancer focal therapy can be defined on 
MRI. However, localizing these targets on transrectal ultrasound (TRUS) remains challenging. Automatic segmentation 
of the prostate on intraoperative TRUS images is an important step towards automating most MRI-TRUS image 
registration workflows so that they become more acceptable in clinical practice. In this paper, we propose a deep 
learning method using convolutional neural networks (CNNs) for automatic prostate segmentation in 2D TRUS slices 
and 3D TRUS volumes. The method was evaluated on a clinical cohort of 110 patients who underwent TRUS-guided 
targeted biopsy. Segmentation accuracy was measured by comparison to manual prostate segmentation in 2D on 4055 
TRUS images and in 3D on the corresponding 110 volumes, in a 10-fold patient-level cross validation. The proposed 
method achieved a mean 2D Dice score coefficient (DSC) of 0.91±0.12 and a mean absolute boundary segmentation 
error of 1.23±1.46mm. Dice scores (0.91±0.04) were also calculated for 3D volumes on the patient level. These suggest 
a promising approach to aid a wide range of TRUS-guided prostate cancer procedures needing multimodality data 
fusion. 
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1 INTRODUCTION 

Prostate cancer is the most commonly diagnosed non-cutaneous cancer in men in many parts of the Western World, and 
is a major cause of cancer-related death internationally. It is now widely acknowledged that the widespread use of 
prostate specific antigen (PSA) screening has led to an over-diagnosis of low-risk prostate cancer, and over-treatment of 
patients with low-to-intermediate risk with conventional radical radiation therapy or prostatectomy that carry a 
significant risk of side-effects is a source of concern [1].  

Consequently, accurate patient stratification and less invasive treatments are both critical to improving prostate cancer 
care. These goals are supported by transrectal-ultrasound (TRUS)-guided biopsies and therapies, respectively. In 
addition to real-time visualisation of instruments such as needles as well as anatomical structures, TRUS images also 
enable visualization of real-time deformations of the prostate during procedures at low cost. However clinically 
important tumours are frequently not visible on ultrasound images. Fusion of pre-procedural imaging modalities, such as 
multi-parametric MRI (mpMRI), with intraoperative TRUS is therefore necessary to localize tumours [2]. Sankineni et 
al. [2] showed that in 26% of patients with prostate cancer, TRUS-MRI fusion-guided biopsy detected the cancer, 
whereas the systematic 12-core sextant biopsy did not.  

Automatic registering of mpMRI visible targets with intraoperative TRUS images remains challenging due to differences 
in underlying imaging generation processes between different modalities, substantial tissue deformation and patient 
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motion. A common technique employed in most commercial guidance systems, requires segmentations of the prostate 
gland on both modalities to define their relative alignment. However, time constraints on the clinical workflow mean that 
accurate manual segmentation of the prostate boundary on intraoperative imaging can be very difficult. In addition, 
manually updating segmentations to account for real-time soft-tissue deformation during procedures places a significant 
additional time burden and therefore is rarely done in practice. Furthermore, intra- and inter-observer variability in 
manual delineation of the prostate can reduce the accuracy and reproducibility of the alignment. Having an automated 
method for localising and segmenting the prostate allows this variability to be reduced [2]. 

Deep convolutional neural networks are a promising technique for automated segmentations of TRUS images of the 
prostate. They have yielded high accuracies for automatic prostate segmentations and cancer detection from MR images 
[3-5], using a variety of network architectures. Liu et al. [3], used an architecture called XmasNet for cancer 
classification and achieved high area under the curve (AUC) values of 0.84 on the testing data and outperformed 69 
different methods. Tsehay et al. [4] used a deep learning CNN adopted from a state-of-the-art edge detector which 
outputs image probability maps. The efficacy of their network was compared with an existing prostate computer aided 
design (CAD) system based on hand-crafted features and their method produced a detection rate of 86% while the 
existing system had a detection rate of 80%. Finally Liao et al.[5] used an independent subspace analysis (ISA) network 
using representation learning to learn the most effective features in a hierarchical and unsupervised manner. Their 
method achieved an average dice score of 86.7±2.2 which was higher than widely-used hand crafted features and state-
of-the-art segmentation methods.  

However, for TRUS prostate images, even though there has been work for automatic prostate segmentation, most studies 
in this field have used either feature based methods with support vector machines (SVM) [6-7] or statistical shape 
models [8]. However, since CNN approaches have shown high accuracy when applied to MR images of the prostate, the 
aim of this work is to test and evaluate this methodology on TRUS images. To the best of our knowledge only one paper 
has evaluated a CNN for whole prostate segmentation, on a limited cohort of ultrasound images from 17 patients 
cropped to prostate volume [9]. 

In this paper, we evaluate the accuracy of a CNN-based method for automatic prostate segmentation on clinically 
acquired US images from 110 patients. Using a 10-fold cross-validation, we quantify the segmentation accuracy of both 
3D volumes (to support segmentation-based registration) and 2D segmentation of sagittal slices (to support intra-
procedural motion tracking). 

2 METHODS 
2.1 Data and Pre-processing 
The TRUS images used in this work were acquired from the SmartTarget Biopsy Trial [10], consisting of 110 patients 
requiring targeted transperineal biopsies. For each patient, 38-177 para-sagittal slices were acquired with a digital 
stepper in a continuous rotation to avoid translational movement of the prostate gland during acquisition. This study used 
4055 2D slices presenting a subset of each acquired volume: up to 59 slices per volume sampled at 3-degree intervals, 
with a pixel size of 0.18×0.16mm and an image size of 576×720 pixels. 

Manual segmentation of the prostate (excluding seminal vesicles) was carried out using ITK-SNAP [11] by two 
experienced medical imaging research staff. Segmentation took between 20-30 minutes per volume to complete. These 
segmentations were used for training the proposed neural network as well as for evaluating the automatic segmentation 
results in the cross-validation experiment, where these manual segmentations were considered as the ground truth. 

2.2 Automatic Segmentation using CNN Algorithm 
The proposed algorithm uses a fully-convolutional neural network, based on an adapted U-network architecture [12] 
shown in Figure 1. The network takes an ultrasound slice of size S0 as input and propagates to feature maps of the same 
size and n0 (n0=32 here) initial channels, by a convolution (Conv), a batch normalisation (BN) and a nonlinear rectified 
linear unit (ReLU). The feature maps are then down-sampled to K different resolution levels by down-sampling blocks 
and each followed by a residual network unit (Resnet) block. At each k (k=1….K) level, the number of channels nk is 
doubled and size Sk  is halved. Each down-sampling block consists of a troika of Conv, BN and ReLU, followed by a 
max-pooling layer with stride 2; while each Resnet block has two Conv layers with BN and ReLU, with an identity 
shortcut over these layers. The up-sampling blocks reverse the down-sampling process using transpose convolution 
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layers with stride 2, replacing the max-pooling layers, to output an image sized logits layer to represent the 
segmentation. Summation shortcuts are added before each down-sampling block to the output feature maps from each 
compatibly-sized up-sampling block.  

	

Figure 1: Architecture of the convolutional neural network. 

	

2.3 Validation 
The network were implemented in Tensorflow TM and trained on a NVIDIAâ TITAN Xp GPU with 12 GB memory, 
using the Adam optimiser with 64 images in each minibatch. The results presented in this work were obtained by 
minimising a negative probabilistic Dice score that is differentiable with an added L2-norm weight decay on the trainable 
parameters, the weighting parameter being set to 1e-6. 

A 10-fold cross validation was carried out on a patient level in order to avoid bias and overfitting. Specifically, in the 
first fold, images from 11 patients were used to test the network performance and images from the remaining patients 
were used to train the network; in the second fold, images from another 11 patients were used for testing, and so on until 
all 110 patients were used for evaluation once. For each fold, the automatic segmentations were compared to the 
manually segmented images (ground-truth) using both the Dice similarity coefficient (DSC) and boundary distance. The 
boundary distance was defined as the mean absolute value of the distances between all the points from the automatically 
segmented boundary and the closest boundary points found on the left-out ground-truth. 

 

3 RESULTS 
3.1 Segmentation outputs-Qualitative Results 
Figure 2 shows a comparison of the automatic segmentations with the manually segmented images for four different 
slices (A-D). The results show a good qualitative agreement between these segmentations. 
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Figure 2: Examples of the manual and automatic prostate segmentations. The manually segmented prostate is shown in the middle, 
followed by the automatic segmentations on the right-hand side shown in 4 different example slices (A-D) chosen at random. These 

slices are representative from all the images segmented. 

Figure 3 shows the results of the automatic segmentation for two slices (A-B) over the different iterations during 
training. In the first slice shown (A, original image) the shape of the prostate is quite visible on the original image and 
therefore the network started to converge to ground-truth segmentation after around 16400 iterations. For the second 
slice shown however (B, original image), there is a small part to the left of the prostate which the network seems to 
associate with being prostate even up to 18600 iterations. This evolution can also be seen from Figure 4 which shows 
the loss function against the number of iterations for the first fold of the testing. Even though the loss function stabilizes 
after around 5000 iterations, there is still some peaks and troughs due to these very different evolutions of the automatic 
segmentations.  

 

 

 

A.	 B.	
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Figure 3: Evolution of the automatic segmentation over number of iterations for two different slices (A-B). We can see that depending 
on the prostate size and shape, the automatic segmentations stabilize after a different number of iterations. The manual segmentations 

shown in these images were done by observer 1. 

	

Figure 4: Plot of the loss function through the different iterations. The image shows that after around 5000 iterations the loss function 
becomes stable. However even after these many iterations there is still some variations in the loss function and this is due to the large 

differences in the prostate images themselves as shown in the previous figure. 

B.	
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3.2 Similarity measures-Quantitative Results 
The DSC and boundary distances were calculated between the automatic and manual prostate segmentations for each 
fold of the cross validation. The proposed segmentation method achieved mean (±standard deviation (SD)) DSC of 
0.91±0.12 over all cross-validation folds. The average boundary distance is 0.38±0.36mm. Dice scores (0.91±0.04) were 
also calculated for 3D volumes on the patient level. This was done by only taking into account the slices used in the 
testing in each fold and calculating the average dice score over the patients from which these slices are taken from only. 
This is computed on volumes reconstructed with the slices from the individual patient, which arguably is more relevant 
to the registration application of interest. The mean absolute distance appears on the same order of magnitude of other 
ultrasound segmentation methods [6-7] which reported results of 0.81 and 1.12 respectively. Unfortunately, lacking 
access of these detailed results and data prevented a direct statistical comparison. 

3.3 Comparison between different observers 
As mentioned in the methods, two different observers carried out the manual segmentations and the neural network was 
trained separately on each of the two sets of segmentations. Table 1 shows the results of the comparison between the 
manual and automatic segmentations from each of the two observers. Moreover, the manual segmentations from the two 
observers were also compared with each other to see how much inter-observer variability existed. The DSC between the 
two observers was calculate to be 0.92±0.06. 

Table 1: Comparison of the different similarity measures obtained between automatic and manual segmentations done by two 
different observers. 

Observer 2D Dice Scores 3D Dice Scores Boundary Distance (mm) 
1 0.91±0.12 0.91±0.04 1.23±1.46 
2 0.89±0.11 0.89±0.04 1.55±1.48 

 

4 CONCLUSION 

In this paper, we propose a deep learning CNN algorithm for fully automatic prostate segmentation from US images. 
Results obtained from the network showed convergence of the loss function after a few thousand iterations and good 
agreement with the manually segmented images in terms of both visual assessment and similarity measures, giving 
competitive quantitative results on both 2D and 3D cases. Our work gives comparable results to the work carried out by 
Yang et al [8], 0.91 Vs 0.92, validated on a much larger dataset. Also, our method achieves DSC that are very close to 
the DSC computed in the inter-observer experiment which is very good. These results should be considered in the 
context of a few limitations of the presented work. First, we did not extensively tune the hyperparameters in the 
proposed CNN architecture, and therefore our results may underestimate the potential accuracy of the proposed method. 
Second the data used in this study was acquired at a single center, precluding generalisation about its performance. 
Finally, our results have not been compared statistically with other existing algorithms.  

Future work will focus on improving the accuracy, by adding a temporal or spatial prior to take into account 3D 
information, e.g. slice positions. When the segmentations are done manually, the observer looks at the slices around the 
current slice as well in order to determine exactly where the prostate is, and therefore adding this 3D information into the 
network should also hopefully improve the results. Another extension would be to have the manual segmentations done 
by more observers, especially more experienced clinicians, to have better reference standard.  
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