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Abstract— Spiking neural networks have been previously used 

to perform tasks such as object recognition without supervision. 
One of the concerns relating to the spiking neural networks is their 
speed of operation and the number of iterations necessary to train 
and use the network. Here, we propose a biologically plausible 
model of a spiking neural network which is used in multiple, 
separately trained copies to process subsets of data in parallel. 
This ensemble of networks is tested by applying it to the task of 
unsupervised classification of spatio-temporal patterns. Results 
show that despite different starting weights and independent 
training, the networks produce highly similar spiking patterns in 
response to the same class of inputs, enabling classification with 
fast training time.  

Keywords—spiking neural network; spike timing dependent 
plasticity; pattern detection; parallel computing; ensemble network 

 

I.  INTRODUCTION  
Spiking neural networks (SNNs) are the third generation of 

neural networks (NNs) [1]. SNNs were inspired by information 
processing in biological neurons: the predominantly binary 
action potentials (APs) which propagate the signal across the 
synapses, and the analogue membrane potentials of individual 
neurons, which conveys the information about the quantity and 
timing of incoming APs. The APs can be described by a function 
with a spike-like appearance, where incoming signals 
accumulate until the membrane potential reaches the firing 
threshold leading to a rapid and brief further increase of the 
membrane potential, followed by a decrease below the resting 
potential and the subsequent restoration of the resting membrane 
potential. 

Two standard information encoding paradigms for SNNs are 
rate coding and temporal coding. In the former, information is 
encoded as the number of APs within a certain time window, 
whereas the latter relies on the exact timing of each AP. Recent 
biological findings suggest that the brain uses the temporal 
spiking rule [2], [3].  

The SNNs are more computationally expensive than 
traditional NNs, but aspire to mimic the activity of biological 
neurons more closely than traditional NNs and to take advantage 
of the information contained in the temporal encoding of the 
signals. However, while SNNs mimic some aspects of 
information processing in the brain, they fail to mimic the 

parallelisation of information processing. One of the key reasons 
for this is the nature of the hardware commonly used in 
computing [4]. While there is much research focused on tackling 
this issue in hardware [5], [6], in this paper we propose a 
software-based model of an ensemble of unsupervised SNN for 
parallel, distributed processing of spatio-temporal data.  

Section II describes biological inspiration of our model, 
similar existing models and their limitations. Section III contains 
the technical description of our model, and section IV provides 
the experimental set-up used. Results are described in section V, 
followed by conclusions in section VI. 

 

II. BACKGROUND 
The most common way of updating the weights in SNNs is 

the widely-understood spike-timing-dependent plasticity 
(STDP). STDP algorithms were inspired by the Hebbian 
learning in the brain, commonly referred to as “fire together, 
wire together” [7]–[9]. According to this hypothesis, the timing 
of APs in a pair of neurons determines the strengthening and 
weakening of the synapse between these neurons. According to 
the experimental data [8], if the presynaptic action potential took 
place up to 20 ms before the postsynaptic one, the connection 
between the neurons strengthens and this process is referred to 
as long term potentiation (LTP). Conversely, if the postsynaptic 
neuron fired up to 20 ms before the presynaptic one, the 
connection weakens (long term depression, LTD).  It has been 
reported that the strength of the connection between a pair of 
neurons that fire together increases by 20-38% [9]. 

Slightly different rules for updating synaptic strengths were 
observed when inhibitory neurons are involved. No LTD and 
LTP were observed if the postsynaptic neuron was inhibitory 
[8]. However, when the presynaptic neuron was inhibitory, the 
connection between a pair of neurons firing within 10 ms from 
each other strengthened irrespectively of the order in which they 
fired [10]. 

SNNs with STDP have previously been used to classify 
static images [11]–[13] and movement [14]–[16]. 

It has been reported that increasing the width of the network 
increases the performance in convolutional networks [17]. In 
case of unsupervised SNNs, wide modular voter ensembles 
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where each of the networks is shown identical input and 
contributes towards the ensemble’s output were reported to 
outperform individual classifiers [18]. 

 

III. NEURON MODEL WITH SPIKE-TIMING-DEPENDENT PLASTIC 
SYNAPSES 

In this section, we describe our neuronal model, the 
differences between excitatory and inhibitory neurons in our 
model, and STDP algorithm used to update the weights of the 
synapses. Our neural network was written in C.  

The biological inspiration for our model comes from the 
brain’s association cortex, which, amongst others, merges 
information from the primary sensory cortical areas receiving 
unimodal inputs such as vision and hearing, to enable tasks to be 
performed such as object recognition and naming [19].  

A. Integrate and fire neuron model 
We use the integrate and fire neuron (IF) model [20], which 

has been previously used to develop computationally-
inexpensive models of the cortex [21], [22]. 

The membrane potential of each neuron is calculated as  

v =  v + (I * R )    (1) 

where v is the membrane potential (mV), I is injected current 
(mA), R is membrane resistance constant (10 mΩ). 

B. Signal processing 
The resting membrane potential is defined as -70 mV. When 

inputs accumulate and the firing threshold of -55 mV is reached, 
the membrane potential is reset to -75 mV. Additionally, all 
downstream targets of the neuron have their input current 
updated according to 

I = I + w * d * S   (2) 

where I is the input current (mA), w is synaptic weight, d is 
a constant defining the size of a single input which, after 
preliminary experiments, is set to 0.006. S describes if the input 
came from an excitatory or inhibitory synapse and is equal to 1 
or -1 respectively, thus defining if the change in current – and 
subsequently the membrane potential - is positive or negative. In 
our model, we specifically define if a neuron is inhibitory or 
excitatory. This is in contrast to the commonly used 
backpropagation learning algorithm [23] which leads to the 
development of neurons containing both inhibitory and 
excitatory synapses, which is biologically implausible. In the 
nervous system, once the fate of a biological neuron is 
established during embryogenesis, it remains either excitatory or 
inhibitory, and it shifts the membrane potential of all its target 
neurons in the same direction, albeit with different strength [24]. 

After running preliminary experiments, we determined the 
optimal percentage of inhibitory neurons to be 15%, which 

 
Fig. 1. Network's architecture A) Each network in the ensemble shares the same 
architecture and is composed of three fully connected layers. B) The networks 
are used in combination as an ensemble of individual networks processing 
separate problems in parallel. The activity of the networks is interpreted using 
a self organising map. 
 

is  consistent with the 15-20% reported in the cortex [25], [26].  

After all neurons in one layer have been iterated over and the 
input currents of their target neurons in the subsequent layer are 
updated, the same process is repeated in the next layer. 

C. Spike-timing dependent plasticity 
The STDP rules have been defined separately for excitatory 

and inhibitory neurons, in accordance with the published 
biological observations [8], [10] . 

When a neuron and its target fire within the same iteration, 
the synaptic weight is doubled, and if the target neuron fires one 
iteration after the presynaptic one, their synapse is strengthened 
by 10%. Conversely, if the postsynaptic neuron fires but 
presynaptic does not, the synaptic weight between them is 
decreased by 70%.  

However, for pairs of neurons where the presynaptic neuron 
is inhibitory and postsynaptic excitatory, if the target neuron 
fires during the same iteration, an iteration before or after the 
inhibitory neuron, the connection between them is strengthened 
by 50%. 

Synaptic weights are initiated with random values between 
0 and 2, and are clamped between 0 and 4.  

D. Network architecture  
We developed a three layer, feed-forward network (Fig. 1A). 

The network is fully connected, although it is possible for the 
synaptic weights to decrease to 0 during training thus effectively 
silencing some of the synapses. 

E. Using self organizing maps to interpret network activity 
The activity of the networks is interpreted using self 

organising maps (SOMs) (Fig. 1B). Unlike classical ensembles 
in which the activity of their components is averaged in some 
form [27], each of our networks is given its own separate task to 
perform thus creating a “wide” neural network where the width 
is created by the multiple networks.  

The output of the network is interpreted using SOMs using 
the Kohonen package for R [28] at two levels of abstraction: as 
the sum of all APs at a given time point (collective) and as binary 



 
Fig. 2. A) Vectorised inputs (seen in Fig. 3) are mapped onto the input layer. 
Data is processed by the network and then interpreted based on either the 
activity of each output neuron (individual vector, left arrow), where vectors 
indicating the timing of APs for each neuron are concatenated, or based on the 
overall activity of the network (collective vector, right arrow), where vectors 
for all individual output neurons are added together. Following this, SOMs are 
used to cluster spiking patterns of the networks in response to different stimuli. 
B) An example of codebook vectors for individual neurons C) and 
corresponding vectors for the network. 

 
vectors tracking each output neuron separately throughout the 
time (individual) (Fig. 2). 

Correctness of pattern classification (precision) is scored 
with the same equation for both levels of abstraction as follows 

 
where nn is the number of nodes in the SOM, i is the sum of 

the instances of the most common pattern in the node, i_total is 
the total number of patterns assigned to the node, and total is the 
total number of patterns in the whole SOM.  

 

IV. EXPERIMENTS 
In order to assess the effectiveness of this “wide learning” 

approach, a series of experiments were performed. Several input 
datasets with different spatio-temporal properties, and different 
levels of noise were provided to the networks.  

Table 1 lists all parameter values used during the 
experiments. In all experiments, we used an ensemble of ten 
separately trained networks. The SOMs used to interpret their 
activity were divided into 9 nodes; learning parameters were 
kept constant throughout the study. Two types of input with four  

TABLE I. PARAMETER VALUES 

Neural networks 

Percent of inhibitory neurons 15 % 

Number of input neurons (ni) 500 

Number of hidden neurons (nh) 500 

Number of output neurons (no) 10 
Number of networks in the ensemble 
(n) 10 

Injected current, input layer 15 

Discharge size (when stripes used as 
input) 0.006 mA 

Discharge size (when shapes used as 
input) 0.06 mA 

Resting potential -70 mV 

Reset potential 75 mV 

Firing threshold 55 mV 

Resistance (R) 10 mΩ 

Iterations per training round 5 

Iterations per testing round 100 

SOM 

Number of nodes (nn) 9 

 Collective 
score 

Individual 
score 

Training iterations 200 400 

alpha 0.05,  0.01 0.5, 0.005 

 
subtypes each were used. Ten separate trials were performed for 
each experiment. 

A. Experiment 1 - Classification of spatio-temporal patterns 
The objective of the first experiment was to test if the output 

of the network had discrete properties when a different subtype 
of a stimuli was presented, if the activity patterns of individual 
ensemble member networks would cluster by the input or by the 
network, and how the performance of the networks changed 
during training.  

Ten networks, each initialised with different random 
synaptic weights, were trained with moving stripes as an input. 
Stripes were designed to mimic visual neuroscience experiments 
in which rats watch a screen with moving stripes [23] (Fig. 3). 
Regular horizontal and vertical stripes moved up, down, left or 
right with the speed of one row or column per iteration (where 
each iteration was equivalent to a 1 ms time step). The order in 
which the stripes were presented during training was random 
and different for each network. The width of the black stripes 
was one and of the white stripes two pixels. The “screen” was a 
32 pixel-wide bitmap. 

The stripe matrices were vectorised and first 500 pixels were 
mapped onto the 500 input layer neurons, with pixel one mapped 
to neuron one etc. (Because of the regularity of the input, the 
same pattern is represented by the first 500 pixels as in the 



remaining 524, so it is not necessary to provide the full 1024 
pixels.) “Black” pixels always caused the corresponding neurons 
to fire and “white” pixels did not change the neurons’ state; the 
values of the current injected into the neurons were 15 and 0 mA 
respectively. 

Stripes moving in one of the four directions (Fig. 3A) were 
presented in random order and each pattern subtype was 
presented in a random order to each network for 5 iterations. The 
training outcome was tested after 100, 200 and 400 patterns. 
During testing phase, each of the separately trained networks 
was shown each of the stripe subtypes for 100 iterations. Inputs 
shown to each network were identical.  The networks’ activity 
was then interpreted at the individual and collective level by 
using SOMs to cluster spiking patterns obtained from the 
networks in response to different stimuli. The SOMs’ training 
parameters were 200 iterations and alpha =  0.05,  0.01 for the 
analysis of the collective activity of the output layer, and 400 
iterations and alpha = 0.5, 0.005 for individual activity. 

B. Experiment 2 - Clasification of novel inputs 
The second experiment tested the ability of the networks to 

generalise, by using stripes of previously unseen width - the 
width of black, white or both stripes was changed and ranged 
between one and five pixels. Throughout this paper we use the 
notation sx by, where x is the stripe width and y is the background 
stripe width. The only previously seen set up s1 b2 was treated 
as the baseline response. The experiments were run as 
previously.   

C. Experiment 3 - Classification of noisy inputs 
In order to test how the networks perform in response to 

noisy data, in the third experiment we replaced 0, 1, 5, 10, 25, 
50, 75, 90 and 100% percent of randomly chosen inputs with 
random values between 0 and 15 mA. While the level of noise 
was kept constant throughout the test, the exact pattern of noise 
was individually generated for each network and each frame. 
The networks were shown each pattern for 100 iterations and 
then assessed on their ability to correctly cluster patterns 
containing noise as well as how closely this clustering resembled 
clustering of noise-free data. 

D. Experiment 4 – Classification of incomplete inputs 
In the fourth experiment, the ability of networks to recognise 

patterns when some of the data is missing was tested by 
presenting standard stripe patterns while silencing 0, 1, 3, 5, 10, 
25, 50, 75 and 90 % of input neurons. Higher percentage of 
missing data was not tested because our model does not exhibit 
spontaneous activity and the output layer is silent when few or 
no inputs are present. The percentage of missing data was kept 
constant throughout each test but the exact pattern of silencing 
was randomly generated for each network and each frame. 

E. Experiment 5 – Classification of merged patterns 
As real world data, such as audio data, often is a result of 

interference between multiple patterns, in the fifth experiment 
we combined inputs into pairs: one standard full-strength input 
was superimposed over another standard input of varying 
strength (Fig. 3B). Superimposed input pairs used were vertical 
stripes moving left and horizontal stripes moving upwards, and 

Fig. 3. Types of data used. We mapped moving visual patterns onto the neurons 
in the input layer. The first pattern type was vertical stripes moving left or right 
and horizontal stripes moving up or down. Modified versions of these inputs 
were used in later tests. A) An example of vertical stripes moving left during 
three consecutive iterations. Each of the stripe patterns was treated as a different 
input class, and created on a 32 pixel-wide bitmap. B) An example of  two 
overlapping inputs of different strengths: vertical stripes moving left and 
horizontal stripes moving downwards. C) Rectangle, grid, ellipse and cross 
were used as a second type of input. Each of the shapes was treated as a different 
input class, positioned randomly in a 25x20 bitmap space, and moved 
downwards. 

 
vertical stripes moving right and horizontal stripes moving 
downwards. The strength of one of the inputs was fixed at 100%, 
while the strength of the second was set to 0, 1, 3, 5, 10, 25, 50, 
75, 90 and 100%. The strength of the second input would be 
fixed at 100% and the strength of the first one changed. 

The networks were then tested to determine if they could 
recognise the dominating pattern, either of the patterns as well 
as how this performance correlates with the strength of the 
second overlapped input. 

F. Experiment 6 – Classification of complex patterns 
Finally, experiment 6 tested the ability of the networks to 

process spatially non-uniform data with a higher degree of 
pattern variability. For this task, we designed inputs using four 
geometric shapes: squares, grids, ellipses and crosses (Fig. 3C). 
Each of the shapes was composed of 40 black pixels in order to 
keep the number of stimulated input neurons constant.   

Each input frame was a bitmap 25 by 20 pixels, and 
contained one of the patterns presented in triplicate. The shapes 
had a random starting position, wrapped around the edges and 
moved upwards at the speed of one row per iteration.  

The input matrices were vectorised and mapped onto the 
input layer neurons, with pixel one mapped to neuron one etc. 
The networks were trained with 500 patterns presented in 
random order for 5 iterations each. All shapes were moving in 
the same direction (downwards). Following training, each of the 
four shapes was presented to each of the ten networks. As during 



 
Fig. 4. Results for Experiment 1: Improvement of pattern clustering. 
Performance of the ensemble improved linearly with training at the collective 
and, more slowly, the individual level.  A) input clustering based on the 
collective activity of the output layer B) and on the activity of the individual 
output neurons. C) An example of pattern separation by the network (hb – 
horizontal bottom, ht – horizontal top, vr – vertical right, vl – vertical left) D) 
The corresponding codebook vectors.  
 
training, they shared the same direction of movement but had 
different starting locations thus a different image was presented 
to each network even when the shape was the same. The 
ensemble was then scored on their ability to cluster shapes. 

 

V. RESULTS 

A. Classification of spatio-temporal patterns 
The results for Experiment 1 showed that the performance of 

the ensemble improved linearly with training and after 400 
rounds of training, it was able to correctly cluster 84.42% (SD = 
4.7%) of patterns on average (Fig. 4A). Distinctive firing 
patterns in response to different stimuli were also observed at the 
level of individual output neurons (Fig. 4B), and after 400 
rounds of training 78.4% (SD = 5.9%) of inputs were clustered 
correctly. In both cases, the input pattern and not the network 
was the decisive factor for unsupervised clustering - separately 
trained networks produced similar firing pattern in response to 
the same stimuli.  

B. Clasification of novel inputs 
The results for the second experiment show how the 

networks can generalise when presented with unseen versions of 
the input – inputs with modified widths of the stripes (Fig. 5). In 
most cases, the percentage of correctly classified patterns 
decreased when compared to the seen inputs. However, it did 
improve in case of widely distributed stripes (stripe width = 1, 
background stripe with = 5; s1b5) and reached 93.75% (SD = 
6%) and 89.25% (SD = 5.53%) for collective and individual 
clustering respectively. In all cases, activity of the individual 
output neurons allowed better pattern classification.  

 

 
Fig. 5. Results for Experiment 2: Classification of unseen inputs. Modified 
input patterns were used in order to test if the networks can generalise to classify 
unseen patterns.  Columns are marked sx by, where x is the stripe width, y is the 
background stripe width. The horizontal black and blue lines (which nearly 
overlap) indicate the baseline performance in response to standard, seen inputs 
(s1b2) at the collective and individual levels respectively. In all but one (s1b5) 
cases, clustering was less correct than in case of previously seen patterns. In all 
cases, better performance was achieved using individual output neuron activity.  
 

C. Classification of noisy inputs 
The results for the third experiment show how the stability 

of the networks’ predictions is affected by the addition of 
varying amounts of random noise to the standard inputs. The 
performance of the ensemble decreased non-linearly. On 
average, for 1% of noise, collective pattern clustering was 
72.75% (SD = 3.62%, decrease by 8.58%) correct, and 
individual 80.25% (SD = 4.16%, decrease by 1.4%) correct, see 
Fig. 6A and 6B, and Table II. At 50% noise level,  collective 
pattern clustering was 52.75% (SD = 3.22%, decrease by 28.9%) 
correct, and individual 57.5% (SD = 3.73%, decrease by 
23.33%) correct. In comparison to collective activity of the 
output layer, activity of individual output neurons produced 
better results at all level of noise except 90%.  

The similarity between the SOMs (i.e. to which node and 
with which other patterns each activity pattern was assigned; 
linked to what are the perceived relationships between the 
patterns and indicating possible disruptions of those 
relationships) of the noisy and noise-free inputs decreased 
sharply and with 10% noise plateaued around 20% similarity 
(Fig. 6C), which is close to 25% identity expected by chance. 



 
Fig. 6. Results for Experiment 3: Resistance to random noise.  Inputs with a 
different percent of random noise were presented to the networks. Clustering 
based on A) collective and B) individual spiking patterns of the output neurons. 
C) Identity with firing patterns in response to noise-free signal. Performance of 
the ensemble decreased in a non-linear fashion in response to increasing levels 
of noise.  

 

D. Classification of incomplete inputs 
The results for Experiment 4 show the resistance of the 

networks to processing corrupted data (with randomly removed 
inputs).  The networks performance initially sharply drops but 
then plateaus in the middle section. When 10% of the data 
removed, collective pattern clustering was an average of 61.25% 
(SD = 2.43%, decrease by 8.25%) correct, and individual 
71.75% (SD = 4.57%, decrease by 20%) correct, see Fig. 7A and 
7B, and Table II. When 50% of the data was removed, collective 
pattern clustering was 60% (SD = 2.64%, decrease by 21.25%) 
correct, and individual 60.75% (SD = 4.57%, decrease by 
19.25%) correct.  

Similarity between the SOMs of the complete and 
incomplete inputs decreased sharply and when 10% of the data 
was removed, it plateaued around 35% similarity (Fig. 7C), 
which was a better result than when processing noisy inputs. 

E. Classification of superimposed inputs 
The results for experiment 5 show that the networks 

performed better than in the presence of the corresponding 
amount of noise (30%) (Fig. 8 A, B, and Table II). Moreover, 
when either of the superimposed patterns was accepted as the 
correct answer, the networks’ performance improved as the 
strength of the second pattern increased, and reached 97.5% (SD 
= 3.54%) correct clustering when the second input’s strength 
was 75%, and 100% (SD = 0%) correct clustering when the 
strength was 100% (Fig. 8C).  The inputs were highly clustered 
also at the level of the activity of individual output neurons (Fig. 
8D) with 97.5% (SD = 2.58%) and 100% (SD = 0%) patterns 
correctly clustered when the second pattern’s strength was 75% 
and 100% respectively. 

 
Fig. 7. Results for Experiment 4: Classification of incomplete information.  
Inputs with different percent of data missing were presented to the networks. 
Clustering based on A) collective and B) individual spiking patterns of the 
output neurons. C) Identity with firing patterns in response to 100% of 
information present. The performance of the ensemble decreased in a non-linear 
fashion when data was removed. 

 
 

 
Fig. 8. Results for Experiment 5: Pattern classification of superimposed inputs. 
One standard pattern and one additional superimposed pattern of varying 
strength were simultaneously presented to the networks. A) clustering based on 
the collective activity of the output layer B) and on the activity of the individual 
output neurons. Additionally, clustering was assessed with either of the two 
presented patterns accepted as the correct answer C) clustering based on the 
collective activity of the output layer D) and on the activity of the individual 
output neurons. The ability of the ensemble to identify the dominant pattern 
decreased as the strength of the second superimposed pattern increased. 
Simultaneously, the ensemble became better at identifying the input as one of 
the superimposed patterns and sharply distinguishing it from the patterns that 
were not superimposed. 



Fig. 9. Results for Experiment 6: Classification of complex patterns. One out of 
four geometric shapes was presented to either untrained or trained networks. 
Correctness of pattern classification was assessed at the level of network 
(collective) and individual neuron activities. Untrained networks performed 
better than expected by chance. The performance of the networks was further 
improved with modest training. 

F. Classification of complex patterns. 
The results for experiment 6 show that untrained networks 

correctly classified 52.25% (SD = 3.43%) and 50% (SD = 
2.64%) patterns at the network and neuron level respectively, 
which is higher than 25% expected in case of random 
classification. After a short training (500 patterns shown for 5 
iterations each), 65.25% (SD = 4.63%) and 64.75% (SD = 
3.63%) of patterns were correctly classified at the collective and 
individual level respectively. Given that each network in the 

TABLE II. SUMMARY OF SELECTED RESULTS 

Experiment 3 Classification of noisy inputs 

Noise level 
[%] 0 1 5 10 25 50 75 90 100 

Collective 
score 80.8 72.8 62.8 57.3 60.5 52.8 37.8 41.5 39.5 

Individual 
score 81.7 80.2 73.3 60.8 62.9 57.5 39.8 39.8 42.0 

Experiment 4 Classification of incomplete inputs 

Missing 
inputs 

[%] 
0 1 3 5 10 25 50 75 90 

Collective 
score 81.3 80.5 73.5 68.5 61.3 60.5 60.0 48.5 34.3 

Individual 
score 80.0 81.8 79.5 68.5 71.8 57.3 60.8 52.8 36.8 

Experiment 5 Classification of superimposed inputs 

Second 
input 

strength 
[%] 

0 1 3 5 10 25 50 75 90 100 

Collective 
score 81.5 72.5 75.0 65.5 66.3 59.5 50.5 62.3 56.5 50.0 

Individual 
score 79.8 75.3 74.3 70.0 68.0 61.0 63.0 62.5 60.3 50.0 

ensemble were exposed to a different random view of the input 
shapes, this classification performance is considered good. 

 

VI. CONCLUSIONS 
The goal of this work was to develop a biologically inspired 

model of a network – a spiking network with activity-dependent 
plasticity – that has a potential to overcome the traditional 
limitation of biologically-realistic networks, namely low speed 
and high computational cost in comparison to non-spiking 
networks. 

In this study, we used two types of simple spatio-temporal 
patterns as inputs: moving stripes and geometric shapes, each 
with four subclasses. An ensemble of ten independently trained, 
unsupervised networks was used to process subtasks in parallel, 
and their activity was interpreted using SOMs. 

We demonstrated that the networks can be used to process 
subsets of data independently of each other, and produce similar 
spiking patterns in response to the same class of input. In the 
current form, the ensemble has a capacity to generalise and a 
limited capacity to process noisy, incomplete data, which has 
been previously observed in some SNN [29], [30]. However, in 
our experiments we used random noise and complete silencing 
of a proportion of input neurons, which are extreme cases of data 
corruption as there is no link between the corrupted values and 
the original data.   

Even before training, the networks exhibited some ability to 
classify inputs because of the use of SOMs. During training, 
unlike classical networks using backpropagation, spiking 
networks using STDP adjusted their weights in response 
network’s activity but did not optimise for the seen inputs in the 
classical sense – the activity of the trained network was an 
emergent property rather than the results of weights adjusting to 
minimise an error. These properties are of vital importance for 
understanding information processing and optimisation in the 
biological neural networks. When it comes to applied research, 
we anticipate that the suitability of the networks to perform user-
defined tasks could be improved with supervision [11], [31] and 
reinforcement [32]. 

In this proof of concept the networks were small and could 
easily be used on a personal computer. One hundred iterations 
of training took on average 801631.3 clock ticks (SD = 7811.5, 
n = 20), whereas one hundred iterations of testing 425568.8 (SD 
= 7502.4, n = 20). However, their ability to train and process 
data independently of each other offers the possibility of easy 
parallelisation and scalability of data processing. We anticipate 
that in the future, such “wide learning” networks could be used 
to identify patterns in massive data sets that change in time based 
on the shared temporal and quantitative properties of the data. 
They could also be used to examine how novel patterns relate to 
known ones suggesting potential applications in fraud detection 
or bioinformatics. 
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