
Wide Learning
Using an Ensemble of Biologically-Plausible Spiking Neural Networks for Unsupervised

Parallel Classification of Spatio-Temporal Patterns

Katarzyna Kozdon
Department of Computer Science

University College London
London, United Kingdom

k.kozdon@cs.ucl.ac.uk

Peter Bentley
Department of Computer Science

University College London
London, United Kingdom

p.bentley@cs.ucl.ac.uk

Abstract— Spiking neural networks have been previously used

to perform tasks such as object recognition without supervision.
One of the concerns relating to the spiking neural networks is their
speed of operation and the number of iterations necessary to train
and use the network. Here, we propose a biologically plausible
model of a spiking neural network which is used in multiple,
separately trained copies to process subsets of data in parallel.
This ensemble of networks is tested by applying it to the task of
unsupervised classification of spatio-temporal patterns. Results
show that despite different starting weights and independent
training, the networks produce highly similar spiking patterns in
response to the same class of inputs, enabling classification with
fast training time.

Keywords—spiking neural network; spike timing dependent
plasticity; pattern detection; parallel computing; ensemble network

I. INTRODUCTION
Spiking neural networks (SNNs) are the third generation of

neural networks (NNs) [1]. SNNs were inspired by information
processing in biological neurons: the predominantly binary
action potentials (APs) which propagate the signal across the
synapses, and the analogue membrane potentials of individual
neurons, which conveys the information about the quantity and
timing of incoming APs. The APs can be described by a function
with a spike-like appearance, where incoming signals
accumulate until the membrane potential reaches the firing
threshold leading to a rapid and brief further increase of the
membrane potential, followed by a decrease below the resting
potential and the subsequent restoration of the resting membrane
potential.

Two standard information encoding paradigms for SNNs are
rate coding and temporal coding. In the former, information is
encoded as the number of APs within a certain time window,
whereas the latter relies on the exact timing of each AP. Recent
biological findings suggest that the brain uses the temporal
spiking rule [2], [3].

The SNNs are more computationally expensive than
traditional NNs, but aspire to mimic the activity of biological
neurons more closely than traditional NNs and to take advantage
of the information contained in the temporal encoding of the
signals. However, while SNNs mimic some aspects of
information processing in the brain, they fail to mimic the

parallelisation of information processing. One of the key reasons
for this is the nature of the hardware commonly used in
computing [4]. While there is much research focused on tackling
this issue in hardware [5], [6], in this paper we propose a
software-based model of an ensemble of unsupervised SNN for
parallel, distributed processing of spatio-temporal data.

Section II describes biological inspiration of our model,
similar existing models and their limitations. Section III contains
the technical description of our model, and section IV provides
the experimental set-up used. Results are described in section V,
followed by conclusions in section VI.

II. BACKGROUND
The most common way of updating the weights in SNNs is

the widely-understood spike-timing-dependent plasticity
(STDP). STDP algorithms were inspired by the Hebbian
learning in the brain, commonly referred to as “fire together,
wire together” [7]–[9]. According to this hypothesis, the timing
of APs in a pair of neurons determines the strengthening and
weakening of the synapse between these neurons. According to
the experimental data [8], if the presynaptic action potential took
place up to 20 ms before the postsynaptic one, the connection
between the neurons strengthens and this process is referred to
as long term potentiation (LTP). Conversely, if the postsynaptic
neuron fired up to 20 ms before the presynaptic one, the
connection weakens (long term depression, LTD). It has been
reported that the strength of the connection between a pair of
neurons that fire together increases by 20-38% [9].

Slightly different rules for updating synaptic strengths were
observed when inhibitory neurons are involved. No LTD and
LTP were observed if the postsynaptic neuron was inhibitory
[8]. However, when the presynaptic neuron was inhibitory, the
connection between a pair of neurons firing within 10 ms from
each other strengthened irrespectively of the order in which they
fired [10].

SNNs with STDP have previously been used to classify
static images [11]–[13] and movement [14]–[16].

It has been reported that increasing the width of the network
increases the performance in convolutional networks [17]. In
case of unsupervised SNNs, wide modular voter ensembles

978-1-5386-2726-6/17/$31.00 ©2017 IEEE

where each of the networks is shown identical input and
contributes towards the ensemble’s output were reported to
outperform individual classifiers [18].

III. NEURON MODEL WITH SPIKE-TIMING-DEPENDENT PLASTIC
SYNAPSES

In this section, we describe our neuronal model, the
differences between excitatory and inhibitory neurons in our
model, and STDP algorithm used to update the weights of the
synapses. Our neural network was written in C.

The biological inspiration for our model comes from the
brain’s association cortex, which, amongst others, merges
information from the primary sensory cortical areas receiving
unimodal inputs such as vision and hearing, to enable tasks to be
performed such as object recognition and naming [19].

A. Integrate and fire neuron model
We use the integrate and fire neuron (IF) model [20], which

has been previously used to develop computationally-
inexpensive models of the cortex [21], [22].

The membrane potential of each neuron is calculated as

v = v + (I * R) (1)

where v is the membrane potential (mV), I is injected current
(mA), R is membrane resistance constant (10 mΩ).

B. Signal processing
The resting membrane potential is defined as -70 mV. When

inputs accumulate and the firing threshold of -55 mV is reached,
the membrane potential is reset to -75 mV. Additionally, all
downstream targets of the neuron have their input current
updated according to

I = I + w * d * S (2)

where I is the input current (mA), w is synaptic weight, d is
a constant defining the size of a single input which, after
preliminary experiments, is set to 0.006. S describes if the input
came from an excitatory or inhibitory synapse and is equal to 1
or -1 respectively, thus defining if the change in current – and
subsequently the membrane potential - is positive or negative. In
our model, we specifically define if a neuron is inhibitory or
excitatory. This is in contrast to the commonly used
backpropagation learning algorithm [23] which leads to the
development of neurons containing both inhibitory and
excitatory synapses, which is biologically implausible. In the
nervous system, once the fate of a biological neuron is
established during embryogenesis, it remains either excitatory or
inhibitory, and it shifts the membrane potential of all its target
neurons in the same direction, albeit with different strength [24].

After running preliminary experiments, we determined the
optimal percentage of inhibitory neurons to be 15%, which

Fig. 1. Network's architecture A) Each network in the ensemble shares the same
architecture and is composed of three fully connected layers. B) The networks
are used in combination as an ensemble of individual networks processing
separate problems in parallel. The activity of the networks is interpreted using
a self organising map.

is consistent with the 15-20% reported in the cortex [25], [26].

After all neurons in one layer have been iterated over and the
input currents of their target neurons in the subsequent layer are
updated, the same process is repeated in the next layer.

C. Spike-timing dependent plasticity
The STDP rules have been defined separately for excitatory

and inhibitory neurons, in accordance with the published
biological observations [8], [10] .

When a neuron and its target fire within the same iteration,
the synaptic weight is doubled, and if the target neuron fires one
iteration after the presynaptic one, their synapse is strengthened
by 10%. Conversely, if the postsynaptic neuron fires but
presynaptic does not, the synaptic weight between them is
decreased by 70%.

However, for pairs of neurons where the presynaptic neuron
is inhibitory and postsynaptic excitatory, if the target neuron
fires during the same iteration, an iteration before or after the
inhibitory neuron, the connection between them is strengthened
by 50%.

Synaptic weights are initiated with random values between
0 and 2, and are clamped between 0 and 4.

D. Network architecture
We developed a three layer, feed-forward network (Fig. 1A).

The network is fully connected, although it is possible for the
synaptic weights to decrease to 0 during training thus effectively
silencing some of the synapses.

E. Using self organizing maps to interpret network activity
The activity of the networks is interpreted using self

organising maps (SOMs) (Fig. 1B). Unlike classical ensembles
in which the activity of their components is averaged in some
form [27], each of our networks is given its own separate task to
perform thus creating a “wide” neural network where the width
is created by the multiple networks.

The output of the network is interpreted using SOMs using
the Kohonen package for R [28] at two levels of abstraction: as
the sum of all APs at a given time point (collective) and as binary

Fig. 2. A) Vectorised inputs (seen in Fig. 3) are mapped onto the input layer.
Data is processed by the network and then interpreted based on either the
activity of each output neuron (individual vector, left arrow), where vectors
indicating the timing of APs for each neuron are concatenated, or based on the
overall activity of the network (collective vector, right arrow), where vectors
for all individual output neurons are added together. Following this, SOMs are
used to cluster spiking patterns of the networks in response to different stimuli.
B) An example of codebook vectors for individual neurons C) and
corresponding vectors for the network.

vectors tracking each output neuron separately throughout the
time (individual) (Fig. 2).

Correctness of pattern classification (precision) is scored
with the same equation for both levels of abstraction as follows

where nn is the number of nodes in the SOM, i is the sum of

the instances of the most common pattern in the node, i_total is
the total number of patterns assigned to the node, and total is the
total number of patterns in the whole SOM.

IV. EXPERIMENTS
In order to assess the effectiveness of this “wide learning”

approach, a series of experiments were performed. Several input
datasets with different spatio-temporal properties, and different
levels of noise were provided to the networks.

Table 1 lists all parameter values used during the
experiments. In all experiments, we used an ensemble of ten
separately trained networks. The SOMs used to interpret their
activity were divided into 9 nodes; learning parameters were
kept constant throughout the study. Two types of input with four

TABLE I. PARAMETER VALUES

Neural networks

Percent of inhibitory neurons 15 %

Number of input neurons (ni) 500

Number of hidden neurons (nh) 500

Number of output neurons (no) 10
Number of networks in the ensemble
(n) 10

Injected current, input layer 15

Discharge size (when stripes used as
input) 0.006 mA

Discharge size (when shapes used as
input) 0.06 mA

Resting potential -70 mV

Reset potential 75 mV

Firing threshold 55 mV

Resistance (R) 10 mΩ

Iterations per training round 5

Iterations per testing round 100

SOM

Number of nodes (nn) 9

 Collective
score

Individual
score

Training iterations 200 400

alpha 0.05, 0.01 0.5, 0.005

subtypes each were used. Ten separate trials were performed for
each experiment.

A. Experiment 1 - Classification of spatio-temporal patterns
The objective of the first experiment was to test if the output

of the network had discrete properties when a different subtype
of a stimuli was presented, if the activity patterns of individual
ensemble member networks would cluster by the input or by the
network, and how the performance of the networks changed
during training.

Ten networks, each initialised with different random
synaptic weights, were trained with moving stripes as an input.
Stripes were designed to mimic visual neuroscience experiments
in which rats watch a screen with moving stripes [23] (Fig. 3).
Regular horizontal and vertical stripes moved up, down, left or
right with the speed of one row or column per iteration (where
each iteration was equivalent to a 1 ms time step). The order in
which the stripes were presented during training was random
and different for each network. The width of the black stripes
was one and of the white stripes two pixels. The “screen” was a
32 pixel-wide bitmap.

The stripe matrices were vectorised and first 500 pixels were
mapped onto the 500 input layer neurons, with pixel one mapped
to neuron one etc. (Because of the regularity of the input, the
same pattern is represented by the first 500 pixels as in the

remaining 524, so it is not necessary to provide the full 1024
pixels.) “Black” pixels always caused the corresponding neurons
to fire and “white” pixels did not change the neurons’ state; the
values of the current injected into the neurons were 15 and 0 mA
respectively.

Stripes moving in one of the four directions (Fig. 3A) were
presented in random order and each pattern subtype was
presented in a random order to each network for 5 iterations. The
training outcome was tested after 100, 200 and 400 patterns.
During testing phase, each of the separately trained networks
was shown each of the stripe subtypes for 100 iterations. Inputs
shown to each network were identical. The networks’ activity
was then interpreted at the individual and collective level by
using SOMs to cluster spiking patterns obtained from the
networks in response to different stimuli. The SOMs’ training
parameters were 200 iterations and alpha = 0.05, 0.01 for the
analysis of the collective activity of the output layer, and 400
iterations and alpha = 0.5, 0.005 for individual activity.

B. Experiment 2 - Clasification of novel inputs
The second experiment tested the ability of the networks to

generalise, by using stripes of previously unseen width - the
width of black, white or both stripes was changed and ranged
between one and five pixels. Throughout this paper we use the
notation sx by, where x is the stripe width and y is the background
stripe width. The only previously seen set up s1 b2 was treated
as the baseline response. The experiments were run as
previously.

C. Experiment 3 - Classification of noisy inputs
In order to test how the networks perform in response to

noisy data, in the third experiment we replaced 0, 1, 5, 10, 25,
50, 75, 90 and 100% percent of randomly chosen inputs with
random values between 0 and 15 mA. While the level of noise
was kept constant throughout the test, the exact pattern of noise
was individually generated for each network and each frame.
The networks were shown each pattern for 100 iterations and
then assessed on their ability to correctly cluster patterns
containing noise as well as how closely this clustering resembled
clustering of noise-free data.

D. Experiment 4 – Classification of incomplete inputs
In the fourth experiment, the ability of networks to recognise

patterns when some of the data is missing was tested by
presenting standard stripe patterns while silencing 0, 1, 3, 5, 10,
25, 50, 75 and 90 % of input neurons. Higher percentage of
missing data was not tested because our model does not exhibit
spontaneous activity and the output layer is silent when few or
no inputs are present. The percentage of missing data was kept
constant throughout each test but the exact pattern of silencing
was randomly generated for each network and each frame.

E. Experiment 5 – Classification of merged patterns
As real world data, such as audio data, often is a result of

interference between multiple patterns, in the fifth experiment
we combined inputs into pairs: one standard full-strength input
was superimposed over another standard input of varying
strength (Fig. 3B). Superimposed input pairs used were vertical
stripes moving left and horizontal stripes moving upwards, and

Fig. 3. Types of data used. We mapped moving visual patterns onto the neurons
in the input layer. The first pattern type was vertical stripes moving left or right
and horizontal stripes moving up or down. Modified versions of these inputs
were used in later tests. A) An example of vertical stripes moving left during
three consecutive iterations. Each of the stripe patterns was treated as a different
input class, and created on a 32 pixel-wide bitmap. B) An example of two
overlapping inputs of different strengths: vertical stripes moving left and
horizontal stripes moving downwards. C) Rectangle, grid, ellipse and cross
were used as a second type of input. Each of the shapes was treated as a different
input class, positioned randomly in a 25x20 bitmap space, and moved
downwards.

vertical stripes moving right and horizontal stripes moving
downwards. The strength of one of the inputs was fixed at 100%,
while the strength of the second was set to 0, 1, 3, 5, 10, 25, 50,
75, 90 and 100%. The strength of the second input would be
fixed at 100% and the strength of the first one changed.

The networks were then tested to determine if they could
recognise the dominating pattern, either of the patterns as well
as how this performance correlates with the strength of the
second overlapped input.

F. Experiment 6 – Classification of complex patterns
Finally, experiment 6 tested the ability of the networks to

process spatially non-uniform data with a higher degree of
pattern variability. For this task, we designed inputs using four
geometric shapes: squares, grids, ellipses and crosses (Fig. 3C).
Each of the shapes was composed of 40 black pixels in order to
keep the number of stimulated input neurons constant.

Each input frame was a bitmap 25 by 20 pixels, and
contained one of the patterns presented in triplicate. The shapes
had a random starting position, wrapped around the edges and
moved upwards at the speed of one row per iteration.

The input matrices were vectorised and mapped onto the
input layer neurons, with pixel one mapped to neuron one etc.
The networks were trained with 500 patterns presented in
random order for 5 iterations each. All shapes were moving in
the same direction (downwards). Following training, each of the
four shapes was presented to each of the ten networks. As during

Fig. 4. Results for Experiment 1: Improvement of pattern clustering.
Performance of the ensemble improved linearly with training at the collective
and, more slowly, the individual level. A) input clustering based on the
collective activity of the output layer B) and on the activity of the individual
output neurons. C) An example of pattern separation by the network (hb –
horizontal bottom, ht – horizontal top, vr – vertical right, vl – vertical left) D)
The corresponding codebook vectors.

training, they shared the same direction of movement but had
different starting locations thus a different image was presented
to each network even when the shape was the same. The
ensemble was then scored on their ability to cluster shapes.

V. RESULTS

A. Classification of spatio-temporal patterns
The results for Experiment 1 showed that the performance of

the ensemble improved linearly with training and after 400
rounds of training, it was able to correctly cluster 84.42% (SD =
4.7%) of patterns on average (Fig. 4A). Distinctive firing
patterns in response to different stimuli were also observed at the
level of individual output neurons (Fig. 4B), and after 400
rounds of training 78.4% (SD = 5.9%) of inputs were clustered
correctly. In both cases, the input pattern and not the network
was the decisive factor for unsupervised clustering - separately
trained networks produced similar firing pattern in response to
the same stimuli.

B. Clasification of novel inputs
The results for the second experiment show how the

networks can generalise when presented with unseen versions of
the input – inputs with modified widths of the stripes (Fig. 5). In
most cases, the percentage of correctly classified patterns
decreased when compared to the seen inputs. However, it did
improve in case of widely distributed stripes (stripe width = 1,
background stripe with = 5; s1b5) and reached 93.75% (SD =
6%) and 89.25% (SD = 5.53%) for collective and individual
clustering respectively. In all cases, activity of the individual
output neurons allowed better pattern classification.

Fig. 5. Results for Experiment 2: Classification of unseen inputs. Modified
input patterns were used in order to test if the networks can generalise to classify
unseen patterns. Columns are marked sx by, where x is the stripe width, y is the
background stripe width. The horizontal black and blue lines (which nearly
overlap) indicate the baseline performance in response to standard, seen inputs
(s1b2) at the collective and individual levels respectively. In all but one (s1b5)
cases, clustering was less correct than in case of previously seen patterns. In all
cases, better performance was achieved using individual output neuron activity.

C. Classification of noisy inputs
The results for the third experiment show how the stability

of the networks’ predictions is affected by the addition of
varying amounts of random noise to the standard inputs. The
performance of the ensemble decreased non-linearly. On
average, for 1% of noise, collective pattern clustering was
72.75% (SD = 3.62%, decrease by 8.58%) correct, and
individual 80.25% (SD = 4.16%, decrease by 1.4%) correct, see
Fig. 6A and 6B, and Table II. At 50% noise level, collective
pattern clustering was 52.75% (SD = 3.22%, decrease by 28.9%)
correct, and individual 57.5% (SD = 3.73%, decrease by
23.33%) correct. In comparison to collective activity of the
output layer, activity of individual output neurons produced
better results at all level of noise except 90%.

The similarity between the SOMs (i.e. to which node and
with which other patterns each activity pattern was assigned;
linked to what are the perceived relationships between the
patterns and indicating possible disruptions of those
relationships) of the noisy and noise-free inputs decreased
sharply and with 10% noise plateaued around 20% similarity
(Fig. 6C), which is close to 25% identity expected by chance.

Fig. 6. Results for Experiment 3: Resistance to random noise. Inputs with a
different percent of random noise were presented to the networks. Clustering
based on A) collective and B) individual spiking patterns of the output neurons.
C) Identity with firing patterns in response to noise-free signal. Performance of
the ensemble decreased in a non-linear fashion in response to increasing levels
of noise.

D. Classification of incomplete inputs
The results for Experiment 4 show the resistance of the

networks to processing corrupted data (with randomly removed
inputs). The networks performance initially sharply drops but
then plateaus in the middle section. When 10% of the data
removed, collective pattern clustering was an average of 61.25%
(SD = 2.43%, decrease by 8.25%) correct, and individual
71.75% (SD = 4.57%, decrease by 20%) correct, see Fig. 7A and
7B, and Table II. When 50% of the data was removed, collective
pattern clustering was 60% (SD = 2.64%, decrease by 21.25%)
correct, and individual 60.75% (SD = 4.57%, decrease by
19.25%) correct.

Similarity between the SOMs of the complete and
incomplete inputs decreased sharply and when 10% of the data
was removed, it plateaued around 35% similarity (Fig. 7C),
which was a better result than when processing noisy inputs.

E. Classification of superimposed inputs
The results for experiment 5 show that the networks

performed better than in the presence of the corresponding
amount of noise (30%) (Fig. 8 A, B, and Table II). Moreover,
when either of the superimposed patterns was accepted as the
correct answer, the networks’ performance improved as the
strength of the second pattern increased, and reached 97.5% (SD
= 3.54%) correct clustering when the second input’s strength
was 75%, and 100% (SD = 0%) correct clustering when the
strength was 100% (Fig. 8C). The inputs were highly clustered
also at the level of the activity of individual output neurons (Fig.
8D) with 97.5% (SD = 2.58%) and 100% (SD = 0%) patterns
correctly clustered when the second pattern’s strength was 75%
and 100% respectively.

Fig. 7. Results for Experiment 4: Classification of incomplete information.
Inputs with different percent of data missing were presented to the networks.
Clustering based on A) collective and B) individual spiking patterns of the
output neurons. C) Identity with firing patterns in response to 100% of
information present. The performance of the ensemble decreased in a non-linear
fashion when data was removed.

Fig. 8. Results for Experiment 5: Pattern classification of superimposed inputs.
One standard pattern and one additional superimposed pattern of varying
strength were simultaneously presented to the networks. A) clustering based on
the collective activity of the output layer B) and on the activity of the individual
output neurons. Additionally, clustering was assessed with either of the two
presented patterns accepted as the correct answer C) clustering based on the
collective activity of the output layer D) and on the activity of the individual
output neurons. The ability of the ensemble to identify the dominant pattern
decreased as the strength of the second superimposed pattern increased.
Simultaneously, the ensemble became better at identifying the input as one of
the superimposed patterns and sharply distinguishing it from the patterns that
were not superimposed.

Fig. 9. Results for Experiment 6: Classification of complex patterns. One out of
four geometric shapes was presented to either untrained or trained networks.
Correctness of pattern classification was assessed at the level of network
(collective) and individual neuron activities. Untrained networks performed
better than expected by chance. The performance of the networks was further
improved with modest training.

F. Classification of complex patterns.
The results for experiment 6 show that untrained networks

correctly classified 52.25% (SD = 3.43%) and 50% (SD =
2.64%) patterns at the network and neuron level respectively,
which is higher than 25% expected in case of random
classification. After a short training (500 patterns shown for 5
iterations each), 65.25% (SD = 4.63%) and 64.75% (SD =
3.63%) of patterns were correctly classified at the collective and
individual level respectively. Given that each network in the

TABLE II. SUMMARY OF SELECTED RESULTS

Experiment 3 Classification of noisy inputs

Noise level
[%] 0 1 5 10 25 50 75 90 100

Collective
score 80.8 72.8 62.8 57.3 60.5 52.8 37.8 41.5 39.5

Individual
score 81.7 80.2 73.3 60.8 62.9 57.5 39.8 39.8 42.0

Experiment 4 Classification of incomplete inputs

Missing
inputs

[%]
0 1 3 5 10 25 50 75 90

Collective
score 81.3 80.5 73.5 68.5 61.3 60.5 60.0 48.5 34.3

Individual
score 80.0 81.8 79.5 68.5 71.8 57.3 60.8 52.8 36.8

Experiment 5 Classification of superimposed inputs

Second
input

strength
[%]

0 1 3 5 10 25 50 75 90 100

Collective
score 81.5 72.5 75.0 65.5 66.3 59.5 50.5 62.3 56.5 50.0

Individual
score 79.8 75.3 74.3 70.0 68.0 61.0 63.0 62.5 60.3 50.0

ensemble were exposed to a different random view of the input
shapes, this classification performance is considered good.

VI. CONCLUSIONS
The goal of this work was to develop a biologically inspired

model of a network – a spiking network with activity-dependent
plasticity – that has a potential to overcome the traditional
limitation of biologically-realistic networks, namely low speed
and high computational cost in comparison to non-spiking
networks.

In this study, we used two types of simple spatio-temporal
patterns as inputs: moving stripes and geometric shapes, each
with four subclasses. An ensemble of ten independently trained,
unsupervised networks was used to process subtasks in parallel,
and their activity was interpreted using SOMs.

We demonstrated that the networks can be used to process
subsets of data independently of each other, and produce similar
spiking patterns in response to the same class of input. In the
current form, the ensemble has a capacity to generalise and a
limited capacity to process noisy, incomplete data, which has
been previously observed in some SNN [29], [30]. However, in
our experiments we used random noise and complete silencing
of a proportion of input neurons, which are extreme cases of data
corruption as there is no link between the corrupted values and
the original data.

Even before training, the networks exhibited some ability to
classify inputs because of the use of SOMs. During training,
unlike classical networks using backpropagation, spiking
networks using STDP adjusted their weights in response
network’s activity but did not optimise for the seen inputs in the
classical sense – the activity of the trained network was an
emergent property rather than the results of weights adjusting to
minimise an error. These properties are of vital importance for
understanding information processing and optimisation in the
biological neural networks. When it comes to applied research,
we anticipate that the suitability of the networks to perform user-
defined tasks could be improved with supervision [11], [31] and
reinforcement [32].

In this proof of concept the networks were small and could
easily be used on a personal computer. One hundred iterations
of training took on average 801631.3 clock ticks (SD = 7811.5,
n = 20), whereas one hundred iterations of testing 425568.8 (SD
= 7502.4, n = 20). However, their ability to train and process
data independently of each other offers the possibility of easy
parallelisation and scalability of data processing. We anticipate
that in the future, such “wide learning” networks could be used
to identify patterns in massive data sets that change in time based
on the shared temporal and quantitative properties of the data.
They could also be used to examine how novel patterns relate to
known ones suggesting potential applications in fraud detection
or bioinformatics.

VII. REFERENCES
[1] W. Maass, “Networks of spiking neurons: The third generation of neural

network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[2] W. Bair and C. Koch, “Temporal precision of spike trains in extrastriate
cortex of the behaving macaque monkey.,” Neural Comput., vol. 8, no. 6,
pp. 1185–202, Aug. 1996.

[3] P. Reinagel and R. C. Reid, “Temporal Coding of Visual Information in
the Thalamus,” J. N, vol. 20, no. 14, pp. 5392–5400, 2000.

[4] J. Backus and John, “Can programming be liberated from the von
Neumann style?: a functional style and its algebra of programs,” Commun.
ACM, vol. 21, no. 8, pp. 613–641, Aug. 1978.

[5] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson,
D. R. Lester, A. D. Brown, and S. B. Furber, “SpiNNaker: A 1-W 18-Core
System-on-Chip for Massively-Parallel Neural Network Simulation,”
IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1943–1953, Aug. 2013.

[6] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I.
Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P.
Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron integrated
circuit with a scalable communication network and interface,” Science
(80-.)., vol. 345, no. 6197, 2014.

[7] D. O. Hebb, “Organization of behavior. New York: Wiley,” J. Clin.
Psychol., vol. 6, no. 3, pp. 307–307, Jul. 1950.

[8] G.-Q. Bi and M.-M. Poo, “Synaptic Modifications in Cultured
Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength,
and Postsynaptic Cell Type,” J. Neurosci., vol. 18, no. 24, pp. 10464–
10472, 1988.

[9] Markram, H. Lubke, J. ; Frotscher, M. ; Sakmann, and Bert, “Regulation
of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,”
Science (80-.)., vol. 275, no. 5297, 1997.

[10] J. D’amour and R. Froemke, “Inhibitory and excitatory spike-timing-
dependent plasticity in the auditory cortex,” Neuron, 2015.

[11] J. Hu, H. Tang, K. C. Tan, H. Li, and L. Shi, “A Spike-Timing-Based
Integrated Model for Pattern Recognition,” Neural Comput., vol. 25, no.
2, pp. 450–472, Feb. 2013.

[12] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“STDP-based spiking deep neural networks for object recognition.”

[13] B. W. Mel, M. Tatsuno, P. U. Diehl, and M. Cook, “Unsupervised learning
of digit recognition using spike-timing-dependent plasticity,” Front.
Comput. Neurosci. | www.frontiersin.org 1, vol. 9, 2015.

[14] P. U. Diehl and M. Cook, “Learning and Inferring Relations in Cortical
Networks,” 2016.

[15] A. Nere, U. Olcese, D. Balduzzi, and G. Tononi, “A Neuromorphic
Architecture for Object Recognition and Motion Anticipation Using
Burst-STDP,” PLoS One, vol. 7, no. 5, 2012.

[16] Z. Yang, A. Murray, F. Wörgötter, K. Cameron, and V. Boonsobhak, “A
Neuromorphic Depth-from-Motion Vision Model with STDP
Adaptation.”

[17] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,” May 2016.

[18] Y. Shim, A. Philippides, K. Staras, P. Husbands, N. Logothetis, and A.
Tolias, “Unsupervised Learning in an Ensemble of Spiking Neural
Networks Mediated by ITDP,” PLOS Comput. Biol., vol. 12, no. 10, p.
e1005137, Oct. 2016.

[19] B. T. T. Yeo, F. M. Krienen, J. Sepulcre, M. R. Sabuncu, D. Lashkari, M.
Hollinshead, J. L. Roffman, J. W. Smoller, L. Zöllei, J. R. Polimeni, B.
Fischl, H. Liu, and R. L. Buckner, “The organization of the human
cerebral cortex estimated by intrinsic functional connectivity.,” J.
Neurophysiol., vol. 106, no. 3, pp. 1125–65, Sep. 2011.

[20] L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model
neuron (1907).”

[21] T. W. Troyer and K. D. Miller, “Physiological gain leads to high ISI
variability in a simple model of a cortical regular spiking cell.,” Neural
Comput., vol. 9, no. 5, pp. 971–83, Jul. 1997.

[22] M. N. Shadlen and W. T. Newsome, “The variable discharge of cortical
neurons: implications for connectivity, computation, and information
coding.,” J. Neurosci., vol. 18, no. 10, pp. 3870–96, May 1998.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[24] C. Kelsom and W. Lu, “Development and specification of GABAergic
cortical interneurons.,” Cell Biosci., vol. 3, no. 1, p. 19, Apr. 2013.

[25] S. Sahara, Y. Yanagawa, D. D. M. O’Leary, and C. F. Stevens, “The
fraction of cortical GABAergic neurons is constant from near the start of
cortical neurogenesis to adulthood.,” J. Neurosci., vol. 32, no. 14, pp.
4755–61, Apr. 2012.

[26] C. Beaulieu, Z. Kisvarday, P. Somogyi, M. Cynader, and A. Cowey,
“Quantitative distribution of GABA-immunopositive and -
immunonegative neurons and synapses in the monkey striate cortex (area
17).,” Cereb. Cortex, vol. 2, no. 4, pp. 295–309.

[27] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation
and active learning,” Proceedings of the 7th International Conference on
Neural Information Processing Systems. MIT Press, pp. 231–238, 1994.

[28] R. Wehrens, L. M. C. Buydens, R. Wehrens, and L. M. C. Buydens, “Self-
and Super-organizing Maps in R: The kohonen Package,” J. Stat. Softw.,
vol. 21, no. i05, Oct. 2007.

[29] Q. Yu, R. Yan, H. Tang, K. C. Tan, and H. Li, “A Spiking Neural Network
System for Robust Sequence Recognition,” IEEE Trans. Neural Networks
Learn. Syst., vol. 27, no. 3, pp. 621–635, Mar. 2016.

[30] T. Iakymchuk, A. Rosado-Muñoz, J. F. Guerrero-Martínez, M. Bataller-
Mompeán, and J. V Francés-Víllora, “Simplified spiking neural network
architecture and STDP learning algorithm applied to image
classification,” EURASIP J. Image Video Process., no. 4, 2011.

[31] F. Ponulak and A. Kasi ski, “Supervised learning in spiking neural
networks with ReSuMe: sequence learning, classification, and spike
shifting.,” Neural Comput., vol. 22, no. 2, pp. 467–510, 2010.

[32] R. V. Florian, “Reinforcement Learning Through Modulation of Spike-
Timing-Dependent Synaptic Plasticity,” Neural Comput., vol. 19, no. 6,
pp. 1468–1502, Jun. 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

