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Abstract 12 
Current water supply worldwide is facing growing pressure as a result of climate change and increasing 13 
water demand due to growing population and lifestyle changes. The traditional way of fulfilling the 14 
growing demand-supply gap by seeking new water supply options such as exploiting new fresh water 15 
resources and investing in the expansion of infrastructure is no longer considered environmentally or 16 
economically sustainable. A diverse portfolio of water efficiency measures is now a requirement for the 17 
majority of water companies in the UK. This paper presents results from a statistical analysis of a unique 18 
water efficiency program case study. The study evaluates the effectiveness of installing water-saving 19 
devices in single-family households in areas where a major UK water supply company operates. Using 20 
multilevel models, the study accurately measures the water savings achieved through the efficiency 21 
program and defines the factors that affect a household’s potential to save water.  Analysis illustrated a 22 
mean 7% decrease in consumption, explicitly attributable to the efficiency program. Research findings 23 
provide strong evidence that single resident and financially stretched households have a bigger potential 24 
to conserve water than larger and more affluent ones and also highlight the robustness of multilevel 25 
analysis, even in cases of data limitations.  26 
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INTRODUCTION 1 

The new direction the water industry should follow at a global-scale is the management of water demand 2 
through innovative methods, tools and procedures that promote water conservation (Turner et al., 2010). 3 
The Integrated Resource Planning (IRP) framework is a comprehensive decision-making process in 4 
which a suite of both supply-side and demand-side alternative options are evaluated on the basis of 5 

predefined, often conflicting water planning objectives and uncertainty is explicitly considered (NWC  6 
2011) and it is internationally considered as best practise. Leaders in IRP are the California Urban Water 7 
Conservation Council (CUWCC), the American Water Works Association (AWWA) as well as the 8 
Institute of Sustainable Futures (ISF) in Australia (Turner et al. 2010) that have established 9 
methodologies to account for projected future demand and plan for sustainable water conservation 10 

options. The IRP framework provides guidelines as to the methods that can be followed for an evaluation 11 
of a water efficiency program (Fyfe et al. 2010) and until today, this is the only comprehensive evaluation 12 
framework found in the water efficiency literature. In addition, robust methods for water savings 13 
evaluation such as end-use (micro-component) analysis are much more common in the Australian and 14 

USA literature (e.g. Makki et al. 2011; Willis et al. 2013) and they have only recently emerged in Europe 15 
(Parker 2013). Collection of end-use data is still uncommon for European water supply companies 16 

because of the technologically advanced equipment (smart meters and data loggers) that needs to be 17 
installed in advance. Thus water efficiency studies that use detailed micro-component analysis are very 18 
rare in the UK and European literature.  19 

 20 
Australia is the leader in the successful implementation of residential water efficiency programs 21 

currently. This might be due to the major droughts that the country has experienced in the recent decades. 22 
Even in the case of Australian research, thorough publicly available information about water savings 23 
that were achieved is limited. Fyfe et al. (2009) documented savings of between 8.5 and 12.4 24 

kl/household/yr for a showerhead exchange program in Melbourne while Turner et al. (2012) observed 25 
approximately the same levels of savings for another showerhead exchange program of Hunter Water 26 

Corporation (HWC) and savings of approximately 20 kl/household/yr for a toilet retrofit program.  27 

 28 

A diverse portfolio of water efficiency measures is now an inevitable requirement for the majority of 29 
water companies in the UK too. Controlling domestic water demand is a priority for the UK. In fact, as 30 

the Department for Environment, Food and Rural Affairs (Defra) (2012) presents, factors such as 31 
population growth and land use change may affect water supply and demand more than climate change. 32 
Defra’s strategy (2012), aims at reducing residential water consumption from 150 l to 130 l per capita 33 
per day until 2030. Since 2010, Ofwat, the water industry economic regulator for England and Wales, 34 

has set minimum water efficiency goals for the water industry, equivalent to decreasing water use by 1 35 
l per property daily. Several companies in the UK have taken major steps towards residential water 36 
efficiency by installing water meters, limiting leakage levels, launching information campaigns and by 37 
water using devices and fixtures retrofits at their customers’ homes. Water meters have been increasingly 38 
installed in British households during the last decade as a way to manage water demand effectively. 39 

However still only 41% of households are being metered and charged according to the water quantity 40 

that they use (Priestley 2015) in England and most importantly, little information is publicly available 41 

as to the magnitude of water savings that were achieved in the context of each water efficiency initiative.  42 

 43 

CASE STUDY: RESIDENTIAL EFFICIENCY PROGRAM IN EASTERN ENGLAND 44 

Anglian Water Services (AWS) is a company operating in the East of England, providing drinking water 45 
to 2.6 million properties. AWS report over 70% metering in the residential sector, one of the largest rates 46 



of metering penetration in the UK. It is forecasted that by 2019-2020 (AMP6), more than 95% of 1 

residential customers will have meters installed in their properties and more than 88% of them will be 2 
paying on the basis of volumetric charges, saving approximately 5.6 Ml/day (AWS 2015). During 2013 3 
and 2014, the company embarked on a water efficiency program that involved a qualified plumber 4 

installing water efficiency devices in a sample of metered domestic properties free of charge. Some of 5 
the devices that were provided were left to the customers who could fit them later on themselves if they 6 
decided to. Each participating household received a number of the following: dual flush toilet converters, 7 
garden kits, hosepipe guns, Save-A-Flush devices, shower restrictors, Tap Magic spray inserts and 8 
shower timers, among others. A subset of this sample of properties completed a questionnaire, providing 9 

household-specific demographic and water use information.  10 

Monthly water consumption data over a period of 43 months (2012–2015) comprising a sample of 72 11 
properties across the company’s area of operation were provided by the company and used for the 12 

subsequent analysis. Several extreme outliers were found in the AWS dataset using boxplots. All per 13 

capita consumption (pcc) values of more than 2000l/day were identified as extreme outliers and were 14 

subsequently removed. After removal of properties that presented a large number of outliers and periods 15 

of zero consumption, the dataset was reduced to 66 households. In parallel, monthly consumption data 16 
from a sample of 92 properties that did not participate in the water efficiency program were obtained for 17 
the same months. This sample was drawn from the same neighbourhoods as the participating households. 18 
The data used for the analysis are summarized in Table 1. The variable representing the take-up period 19 
for the water efficiency program for each household was a dummy variable which takes the value of 20 
either 0 or 1 to indicate the before and after program periods respectively.  21 

 22 
Table 1. Data used for subsequent analyses 23 

 Participants’ 

sample 

Monthly Water Consumption (litres/hh/day) 

Postcode  

Acorn class  

Number of Residents  

Intervention dates  

Weather data  

hh = household, Acorn = geodemographic segmentation of households, developed in the UK based on (among others) social/financial status 24 
and property size. Range: Acorn Category 1 (Affluent Achievers) to Category 5 (Urban Adversity) and Category 6 (Not Private hhs) 25 

Figure 1 illustrates consumption patterns of the participants and non-participants groups for 43 months, 26 

including the program duration period. The graph shows non-monotonic consumption trends for both 27 

groups, for the whole period under consideration, possibly because of other external factors, such as 28 

weather conditions and household-specific changes. However, on the whole, it can be seen that following 29 

the intervention, the participants’ consumption decreased, compared to consumption of the non-30 



participants group. Although this is a sign of the program’s effectiveness, further analysis is required to 1 

evaluate the water savings achieved.  2 

 3 
TECHNIQUES FOR WATER SAVINGS EVALUATION 4 
According to the literature, there are three main methods of residential water efficiency program 5 
evaluation: participant before-after parametric or non-parametric tests; participant-control means 6 

comparison methods, and regression techniques, including time series, covariate, cross-sectional and 7 
panel data regression (Fyfe et al. 2010). Before-after methods are subject to many sources of bias, as 8 

they do not account for external factors that may have a considerable effect on consumption. Participant-9 
control comparison methods are designed to limit the bias caused by external factors. However, a control 10 
group should possess the same household characteristics and should be drawn from the same 11 

geographical area as the participants’ sample for the comparison to be accurate. An alternative technique 12 

that effectively combines before-after testing with participant-control techniques is Matched Pairs Means 13 

Comparison (MPMC), developed by the Institute for Sustainable Futures, University of Technology in 14 
Sydney (Fyfe et al. 2010). MPMC is not discussed here. As for regression techniques, panel data 15 

regression is regarded as the most robust method for water savings evaluation. However, it is not 16 
frequently used in evaluation studies, as it is data-intensive and requires a certain level of statistical 17 
analysis skills. 18 

The decision of which method to use depends on the type of available data, their quality and sample 19 
sizes; but also on the skills and expertise available for the data analysis and interpretation of results. 20 
Most water companies both in the UK and worldwide experience data limitation problems that do not 21 
allow them to perform a robust evaluation of water savings. Common limitations include: 22 

 Absence of high-quality, small-interval meter readings (e.g. monthly, 2- or 6-monthly readings 23 
without consecutive periods of missing data).  24 

 Unknown program take-up dates for each participating household. 25 

 Small participating households sample sizes. 26 

 No information on participating household demographics (e.g. number of occupants, average 27 
household income etc.). 28 

 No information on non-participating household demographics, such as the number of occupants, 29 
which leads to the incapability to compare participant and control samples using pcc efficiently, 30 

    Figure 1. Water consumption of participating and non-participating households 



rather than aggregated per household consumption, and to select a control sample that matches 1 

the participants’ one.  2 

 Major intervention date differences among households and limited consumption records before 3 
and after the intervention dates. This common problem makes before-after techniques 4 
inapplicable.  5 

Improving the accuracy of before-after and participant-control methods 6 
It is very common that water companies in the UK do not possess household-related information such 7 
as household size, property size or average household income when deciding to embark on a water 8 
efficiency program. However, these data are essential for a robust water savings estimation using mixed-9 
effects models. If a water company wishes to explore the impact that a water efficiency initiative had on 10 
consumers of different social classes/property sizes and thus to draw important information that can be 11 

referenced when a similar program evaluation is needed in the future, the Acorn classification can prove 12 
to be useful. Even if no other demographic information is available for the participating household 13 
sample and for a sample of non-participating ones (which could be used as a control group), before-after 14 

means comparisons could be undertaken by disaggregating the participants’ sample into subsamples of 15 
the same Acorn classes and running t-tests. It should be stressed, however, that a sufficiently large 16 
sample of households belonging to each Acorn class would be necessary for this analysis to be possible.  17 

 18 
In a similar manner, if Acorn class and per household consumption are known for a sufficiently large 19 

sample of households that did not take part in the program and are located in the same geographical area 20 
as the participating homes, the change in consumption for the former group can be used as a 21 
representative reference case for comparison to the latter group’s consumption change after the 22 

efficiency program launch.   23 

 24 

Multilevel Modelling (Mixed Effects Models) 25 
It is very common that social data have hierarchical (nested) structures. A well-known form of nested 26 
data are panel data (observations over time that are nested in different subjects). In the context of this 27 

study, the subjects are the households, and the overtime observations are monthly water consumption 28 
readings and monthly weather-related data. Nested data are not statistically independent; thus, linear 29 

regression and other techniques such as ANOVA that require statistical independence are not suitable, 30 
as they would produce extreme Type I errors if they were to be used. Multilevel regression (i.e. 31 

hierarchical linear regression) is designed for application to hierarchical data structures as it accounts for 32 
the statistical dependence among sequential observations in the same group. It is an extension of 33 
regression; its difference lies in the fact that the parameters can be allowed to vary. Multilevel models 34 

also ignore the assumption of homogeneity of regression slopes; they can handle missing data with much 35 
greater ease than other statistical procedures; and, most importantly, they make use of data for each and 36 
every observation or time point, increasing the power of analysis (Goldstein 2003; Field 2012). 37 

As far as this study is concerned, multilevel models offer a more appropriate and powerful analysis of 38 

the particular dataset than simple Ordinary Least Squares regression, as they allow for the full 39 

exploitation of the data, providing the opportunity to make use of both time-varying and time-invariant 40 

variables in the same analysis. In order to perform the analysis, the Nlme package in R software was 41 
used (Pinheiro et al. 2016). The first model that was developed was an unconditional means (empty) 42 
model which is equal to a one-way analysis of variance (ANOVA), followed by a step by step addition 43 
of fixed effects. The fixed effects components include weather and household demographic variables as 44 
well as a dummy variable representing the water efficiency program. Finally, several interactions 45 
between variables of interest were added to the models, completing the formation of a two-level random 46 



slopes model with cross-scale interactions. The level-1 unit of analysis are the separate consumption 1 

observations in time whereas the level-2 unit under which level-1 units are nested, is the household.  2 

 3 

Model Development 4 
Properties identified as flats were removed from the participants’ sample; thus only single-family 5 

participating households were used in the analysis. Pcc was not normally distributed; thus the natural 6 
logarithm of pcc was used as the dependent variable. To ensure normal distributions, all continuous 7 
independent variables were transformed to their natural logarithm. Multicollinearity can become a 8 
serious problem in mixed models especially when the model contains cross-level interactions 9 
(interactions that cross levels in the hierarchy) (Field et al. 2012). For this reason, it is suggested that 10 

predictor variables are centred before the analysis. By centring variables, we transform them into 11 
deviations around a fixed point and typically, level-1 variables should be centred. Centring predictor 12 
variables does not change the model’s fit. There are two ways to centre data, namely group mean centring 13 

and grand mean centring. In the group mean centred model, the variables are centred around the group 14 
mean whereas in the grand mean centred model, the variables are centred around the grand mean (Field 15 
et al. 2012). For this study, grand mean centring was used for the level-1 weather variables. 16 

An unconditional means model (empty model) that included only the intercepts and the random effect 17 

for the highest level variable of the nested structure – in this case each household – was run first. The 18 
interclass correlation coefficient, the proportion of variance in the dependent variable that lies between 19 
groups (O’Dwyer and Parker 2014), was 0.656 (p<0.001) for the log of pcc, meaning that 65.6% of the 20 

variation in water consumption can be attributed to between-household variations. Therefore, the 21 
variation between households should be taken into account in the model by allowing intercepts to vary. 22 

The empty model also allowed the assessment of the need for a multilevel model. A baseline model that 23 
only includes the intercept was structured. Then, the fit of the unconditional means model (where 24 
intercepts are allowed to vary over households) is compared to that of the baseline model using Analysis 25 

of Variance (ANOVA). ANOVA for models comparison (Quick 2010) produced a Likelihood ratio of 26 

2603 (p<.001), confirming that the varying intercepts of the empty model improved the model’s fit.  27 

The first variables to be entered in the model were the weather-related level-1 variables (Table 2). The 28 
natural logarithm of the number of days of more than 1 mm rain per month (Log.raindays) and the hours 29 
of sunshine per month (Log.Sunshine) were selected, as they appeared to have a more significant effect 30 

on water consumption than the other weather related variables (data on Maximum and Mean 31 
Temperature were also available for this time period). Also, it was possible for both of them to be used 32 

in the model, as the relationship between them appeared to be weak, with a correlation coefficient of 33 
0.31. At level-2, the dummy variable for the water efficiency program implementation (intervention), 34 
Acorn class (Acorn) and the number of residents per household (occupants), were included in the model. 35 
The interactions between variables were also explored. The heterogeneity of slopes for Log.raindays was 36 
not significant. Thus, Log.raindays was entered in the model only as a fixed effect.  37 

 38 

 39 

 40 

  41 



RESULTS 1 

Table 2. Multilevel model results 2 

 Unconditiona

l Means 

Model 

Level-1 

fixed 

Level-2 

fixed 

Level-2 fixed 

(incl. 

interactions) 

Full model 

(incl. Random 

Slopes) 

Intercept 4.682 4.681 4.91 4.911 4.909 

Log.raindays - -0.0233* -0.025** -0.024* -0.023* 

Log.Sunshine - 0.0335** 0.041*** 0.015 0.013 

Intervention - - -0.072*** -0.076*** -0.075*** 

Acorn class - - -0.074** -0.074** -0.073** 

occupants - - -0.079** -0.106** -0.106** 

Interaction: Intervention-

occupants 

- - - 0.052*** 0.052*** 

Interaction: Log.Sunshine-

Intervention 

- - - 0.056** 0.059** 

Interaction: Log.Sunshine-

occupants 

- - - -0.032*** -0.032** 

*p<0.1, **p<0.05, ***p<0.001 Notes: water use observations = 2682; households = 66; observations per household = 41 on average. 3 
Weather datasets were obtained via the Met Office (www.metoffice.gov.uk/climate/uk/summaries)  4 
 5 
Pcc increased with the hours of sunshine and decreased with days of rain of more than 1 mm, as expected. 6 

A 10% increase in daily sunshine is associated with a 0.41% increase in consumption, while a 10% 7 

increase in days with rain of more than 1 mm can lead to a 0.25% decrease in consumption. At the 8 

household level, water use was negatively correlated with the dummy variable for the water efficiency 9 

program, Acorn class and the number of occupants.  10 

We can conclude that after the program launch there was a 6.95% decrease in consumption (1-exp(-11 
0.072)), which can be attributed to the water efficiency program. Using the intervals ( ) function of the 12 

nlme package in R, 95% confidence intervals were obtained for the intervention variable: [-0.092,-13 
0.0525]. Taking into account the transformation of pcc to its natural logarithm, we can conclude that the 14 
water efficiency program resulted in a consumption decrease of between 5.1–8.8%. 15 

As for the consumption of separate Acorn classes, the full model shows that moving from Acorn class 1 16 
to Acorn class 5, pcc decreases by 7.1%. In other words, an average resident of an Acorn class 1 17 
household consumes 7.1% more water than that of an average Acorn class 5 household. In the case of 18 
the number of people in the household, the full model demonstrates that an average occupant of a 19 

household of five members consumes 7.6% less water than an average occupant who lives on their own.  20 

The interaction of the intervention with the number of occupants was positive and highly significant 21 
(0.052, p<0.001). This finding translates into the fact that the negative effect of device installation (-22 
0.072, p<0.001) became less negative with increasing number of people in the household. In simpler 23 
words, it shows that in households with more occupants, the water efficiency program was less effective, 24 
as the pcc decrease that was caused by the device installation became smaller. The interaction of the 25 
intervention with log.Sunshine was positive and significant (0.059, p<0.05). This finding shows that in 26 

http://www.metoffice.gov.uk/climate/uk/summaries


periods of increased sunshine, the effect of the intervention became less negative. This notion translates 1 

to the fact that the water efficiency program appeared to be less effective in reducing consumption during 2 
periods of sunny weather. Finally, the interaction term of log.Sunshine and occupants was negative and 3 
significant (-0.032, p<0.05). The negative effect of occupants (-0.079, p<0.05) became less negative 4 

with increasing log.Sunshine (which has a positive effect on pcc), indicating that during periods of sunny 5 
weather, a person would consume much more water than usual if he/she lived alone than if he/she lived 6 
together with more people. Variance inflation factors (VIFs) of the independent variables were 7 
calculated. All VIFs were under 2.4; thus it can be assumed that there is no multicollinearity problem in 8 
the dataset. 9 

Results comparison between before-after means comparison and multilevel model 10 
The multilevel model demonstrated that there was a mean 5.1–8.8% pcc decrease, attributable to the 11 
water efficiency program. A simple before-after test for the sample of participating households was also 12 

conducted using participants’ pcc data only (not shown here). Six months before the program take-up 13 

period and the same six months of the following year were used for the comparison for each household. 14 

Bootstrapped 95% confidence intervals were obtained for the consumption change using the boot.ci() 15 

function from boot package in R, showing an average decrease of between 7.98–27.12%. Bootstrapping 16 
is a computationally intensive technique which enables inferences without making strong distributional 17 
assumptions, it rather uses Monte Carlo resampling to estimate a distribution (Wright et al. 2011). As 18 
evident, there is a large difference between the consumption decrease ranges that the two techniques 19 
provide, with the multilevel model providing a much more precise estimate and much narrower 20 
confidence intervals.  21 

 22 
 23 

DISCUSSION 24 
In our study, a 10% increase in daily sunshine was associated with a 0.41% increase in consumption 25 
(p<0.001), while a 10% increase in days with rain of more than 5mm was shown to lead to a 0.25% 26 

decrease in consumption (p<0.05). These results are in line with past American and Australian research, 27 

which in its larger extent found climate variables to be significant but of low magnitude (Gato et al. 28 
2007, Mieno and Braden 2011). Pcc in Acorn class 1 properties was 7.1% higher than in class 5 ones 29 
(p<0.05). The most likely explanation for this is that richer homes usually contain more water amenities, 30 

both indoors and outdoors and that due to their affluence, they might be less concerned about their water 31 
bills. This finding is also supported by relevant research which shows that suburban affluent homes in 32 

the UK and Phoenix, Arizona respectively, use more water than the rest household types (Harlan et al. 33 
2009). The effect of household size on pcc was also tested in the present study. It was shown that people 34 
living alone consume 7.6% (p<0.05) more water daily than those who live in a five-member home. Many 35 
researchers suggest that pcc decreases with an increase in household size, due to economies of scale with 36 
many residents in a house, where food preparation, dish washing, gardening and other activities take 37 

place despite the household size and are capitalized on a shared living environment (Polebitski and 38 
Palmer 2010). An interesting finding was that during periods of sunny weather, a person would consume 39 

much more water than usual if he/she lives alone. A possible explanation for this is summer outdoor use. 40 
Water quantity used for irrigation is larger during sunny weather, due to evapotranspiration and 41 
decreased frequency of rain events and garden watering is going to take place regardless of how many 42 
people live in a household. Past American research (Bao 2013) suggests that there is a relationship 43 
between a household’s consumption sensitivity to weather and household size, although this relationship 44 
appears to be weak in most instances. Finally, it was illustrated that in households with more occupants, 45 



the efficiency program was less effective, as the pcc decrease that was caused by the devices installation 1 

became smaller. This result agrees with the previous UK study by Gilg and Barr (2006).  2 

In contrast to price-related policies, technological changes such as retrofit programs and other non-price 3 
demand management policies have gained less attention, as Millock and Nauges (2010) recognise, 4 
mainly because of the lack of adequate data. Even in the cases when researchers have explored the 5 
effect of technological changes on water demand, they usually rely on engineering assumptions of the 6 
expected demand reductions (Kenney et al. 2008).  7 

 8 
 9 

CONCLUSIONS 10 
This study further contributes to the existing literature, as disseminating knowledge obtained through 11 
implemented water efficiency programs internationally is crucial for the establishment of a robust 12 

evaluation framework that will move existing evaluation practices forward. Based on the results of the 13 

multilevel model, the water efficiency program was successful in decreasing per capita water 14 

consumption of the households that took part by approximately 7%. Moreover, it was illustrated that 15 

Acorn class can be used effectively in water efficiency evaluation studies as a proxy for household 16 
income and property size when these data are not readily available and that powerful analysis can be 17 
conducted for the evaluation of efficiency programs using multilevel models, even without a control 18 
sample of households. Based on robust multilevel modelling results, it is highly recommended that future 19 
efficiency programs are targeted to small households, where the potential to save more water is larger. 20 
 21 
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