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Abstract 

1. Invasive alien species are a major threat to biodiversity. In addition to predation and 

parasitism, native species might suffer from competition when invasive alien species 

occupy a similar ecological niche.  

2. We focused on the potential interspecific interaction between two hornets: the Asian 

yellow-legged hornet, Vespa velutina, a high-concern invasive alien species recently 

arrived in Europe, and the native European hornet, Vespa crabro. The two species 

share a similar ecological niche and V. velutina is rapidly expanding across Europe, 

which suggests that V. crabro might suffer from competition.  

3. We investigated, under laboratory controlled conditions, two life history traits that 

might cause the two species to compete: i) the ability of workers to find food sources 

and their flexibility in exploiting them (through individual food item choice tests and 

exploration assays), and ii) the worker resistance to pathogens (through immune 

challenge tests).  

4. We show that trophic preference of both species highly overlaps, with a marked 

dietary preference for honeybees compared to other insect prey and non-prey protein 

items. No differences have been observed in the exploratory behaviour of both 

species. Finally, constitutive antibacterial activity was greater in workers of the native 

species than in workers of the invasive hornet.  

5. Our laboratory study provides a first assessment under controlled conditions of the 

factors affecting competition between workers of two hornet species and proposes a 

framework to assess, in wild contexts, the magnitude of the competition and the 

impact of the introduced V. velutina on the native V. crabro. 
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Introduction 

 

In the “era of globalization”, increased trades have resulted in and still produces a legacy of 

biological invasions (Meyerson & Mooney 2007; Hulme 2009), which causes severe 

ecological and economic impacts across the globe. Invasive alien species (IAS) are indeed 

one of the leading threats to native wildlife, human health and food safety/production 

(Clavero & Garcìa-Berthou 2005; Crowl et al. 2008; Pejchar & Mooney 2009; Butchart et al. 

2010; Vilà et al. 2010; 2011), with an associated economic impact estimated in hundreds of 

US$ billion each year (Pimentel et al., 2005; Pysek & Richardson, 2010). The arrival and 

spread of IAS are in particular considered among the main drivers of worldwide biodiversity 

loss (Clavero & Garcìa-Berthou 2005). Part of this impact can be explained by direct effects 

of IAS presence, as in the case of introduction of IAS which act as predators, parasites or 

pathogens of native species (Mooney & Cleland 2001; Tompkins et al. 2003; Gurevitch & 

Padilla 2004; Clavero & Garcìa-Berthou 2005; Salo et al. 2007). Introduction of alien 

predators and parasites/pathogens outside their natural geographical range can create novel 

ecological contexts in which the adaptive responses of native prey and hosts may not be 

successful (Tompkins et al. 2003; Strauss et al. 2006; Salo et al. 2007). Indeed, alien predators 

and parasites appear to have a relevant effect on native species (Kats & Ferrer 2003; 

Gurevitch & Padilla 2004; Salo et al. 2007; Roy et al. 2012; Nazzi & Le Conte 2016).  

A large and generally more difficult to predict and assess effect is related to 

competition, either mediated by second order ecological interactions (e.g. indirect dispersal 

and transmission of pathogens or parasites) or by competition for space and other resources 

between the IAS and native species (exploitation competition, Reitz & Trumble 2002; Duyck 

et al. 2004). The last scenario often occurs when the introduced IAS occupy an ecological 

niche very similar to the one filled by a native species (competitive exclusion principle, 



4 

 

Hardin 1960). Examples of native species ecological displacement and decline due to 

exploitation competition are more and more common in both plant and animal species, either 

vertebrates or invertebrates (Holway 1999; Brown et al. 2002; Duyck et al. 2004; Gherardi & 

Cioni 2004; Bevins 2008; Strubbe & Matthysen 2009; Vilà et al. 2011). Exploitation 

competition due to invasive species is indeed considered to be a major determinant of 

invertebrate species spatial displacement (Reitz & Trumble 2002).  

Understanding the potential life history traits that cause native and introduced species 

to compete is thus important to know, evaluate and prevent/reduce competition, and therefore, 

in turn, the loss of native biodiversity. 

Here, we investigated the potential life history traits affecting the competition between 

two hornets species: the native European hornet, Vespa crabro Linnaeus, 1758 (Hymenoptera: 

Vespidae), and the recently introduced alien invasive Vespa velutina Lepetier, 1836 

(Hymenoptera: Vespidae), also known as yellow-legged hornet.  

Vespa velutina is an invasive hornet species native of South East Asia (Monceau et al. 

2014a). Its presence was first recorded in South of France, in 2004 (Haxaire et al. 2006); since 

then the species rapidly spread across France and Europe (Rome et al. 2009; Villemant et al. 

2006; Villemant et al. 2011a; Robinet et al. 2016). At present, Vespa velutina is found in 

different European countries (e.g. Spain, Portugal, Italy, Belgium and United Kingdom, 

Monceau et al. 2014a, Robinet et al. 2016), also in areas disjointed from the front of invasion 

(e.g. Balearic Islands, Mar Leza Salord pes.comm. and Veneto region, Italy, Bortolotti and 

Cervo 2016). Based on climatic suitability models the potential invasion risk of the species 

(Villemant et al. 2011a) has been estimated to concern most of the European territory.  

The main threat posed by Vespa velutina is on beekeeping activities, as the yellow-

legged hornet is a specialized predator of honeybees (Monceau et al. 2014a). Such predation 

can be intense during summer and autumn, and represents a further threat to honeybee 



5 

 

populations, which are already suffering a noteworthy decline all over Europe because of 

several factors (Goulson et al. 2015). In addition to the economic impact on apiculture, the 

invasive hornet has also a potentially significant ecological impact, due to its predation on a 

vast array of insect species (Spradbery 1973; Matsuura & Yamane 1990), some of which 

(honeybees included) provide valuable ecosystem services, such as pollination, as well as a 

potential impact on human health (Monceau et al. 2014a), since envenomation of Vespa 

velutina can induce severe allergic or toxic reactions, resulting in organ failure and death (Liu 

et al. 2015). 

Due to competition for a similar ecological niche, Vespa velutina may also be a threat 

for the native hornet species. The European hornet, Vespa crabro, represents one of the two 

hornet species native of Europe along with the Oriental hornet, Vespa orientalis. The species 

is found throughout Europe, differently from Vespa orientalis, which occurs only in the 

southern countries. European hornets show a very similar lifecycle compared to the yellow-

legged hornet (Matsuura & Yamane 1990; Matsuura 1991; Takahashi et al. 2004; Monceau et 

al. 2014a) (see Material and Methods).  

Similarities in life history traits create several dimensions of potential competition 

between the invasive and the European species (Monceau et al. 2015a). Competition over 

shared resources can occur in two main phases of the hornet lifecycle: colony foundation 

(Spring, Matsuura 1991) and colony growth (late Summer/Autumn; Matsuura 1991). During 

colony foundation, foundresses of the two species might compete for nesting sites, (Edwards 

1980; Matsuura & Yamane 1990; Matsuura 1991), but due to the different nesting habits (see 

Material and Methods), competition for nesting sites might become relevant only under very 

high Vespa velutina population density.  

In the phase of colony growth, workers of the two species might compete over two 

main challenges they face: finding food and resisting disease transmission. 
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The nutritional requirements differ between adult hornets and their larvae, with adults 

mainly feeding on carbohydrates and larvae on proteins (Raveret Richter 2000). Foragers 

collect protein sources mainly through summer and autumn to feed the developing brood 

(Spradbery 1973; Edwards 1980); the gathering of proteins increase during the rearing of 

sexuals, especially gynes, as they require more proteinaceous food to build up their fat storage 

(Spradbery 1973; Edwards 1980; Monceau et al. 2015a), as it occur for other social wasps, 

where the quality and quantity of fat bodies reflect nutritional status, and particularly protein 

uptake, during larval development (Hunt 2007; Daugherty et al,.2011). Both Vespa crabro 

and Vespa velutina prey on a wide range of arthropods (Spradbery 1973; Matsuura & Yamane 

1990), with a preference for honeybees in apiaries (Matsuura & Yamane 1990; Matsuura 

1991; Baracchi et al. 2010; Monceau et al. 2013a, 2014a, 2015a). Their similar feeding habits 

and partially overlapping phenologies suggest that the two species may likely compete for 

food (Monceau et al. 2014a; 2015a). It is however largely unknown how much the feeding 

spectrum of the two species overlap, and whether they are similarly placed along the 

specialist/generalist continuum. Indeed, Vespa velutina is reported to specialize on honeybee 

prey (Tan et al. 2007, 2012), but probably both the yellow-legged hornet and the European 

hornet should be classified as semi-generalists (Matsuura 1991; Monceau et al. 2013b). Under 

this perspective, any trait that facilitates or enhances the efficiency in food finding, processing 

and uptaking might give an advantage to a species over the other. For example, behavioural 

traits such as boldness and explorative tendency, which are thought to play a relevant role in 

colony founding, differs between foundresses of the two species, favouring Vespa velutina 

invasion and potentially enabling it to outcompete Vespa crabro (Monceau et al. 2015b). 

A second main challenge to colony survival and species diffusion is represented by 

pathogen pressure. Social insect colonies represent a preferential target for parasitic and 

pathogen infections, since they usually consist of large numbers of closely related individuals 
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that frequently interact favouring the spread of parasites and pathogens among colony 

members (Cremer et al. 2007). Moreover, the costant internal enviroment mantained within a 

nest of a social insect species to favour brood development creates optimal condition to 

pathogens and parasite growth (Cremer et al. 2007). Ability to resist pathogen infections is 

therefore a crucial trait for the ecological success of a species and to predict its invasive 

potential (Traniello et al. 2002; Lee & Klasing 2004; Prenter et al. 2004; Nadolski 2013).  

The role of pathogen pressure in shaping biological invasions is still debated, as IAS 

might either benefit from the absence of specialized pathogens, the so-called “enemy release 

hypothesis” (Colautti et al. 2004; Liu & Stiling 2006), or suffer from the presence of 

pathogens with which they did not coevolve (Prenter et al. 2004). The “evolution of increased 

competitive ability” hypothesis predicts that invasive species are subjected to less predation 

and parasitization than sympatric native species, and thus can allocate resources from defence 

and immunity to growth and fecundity, thereby achieving higher fitness (Lee & Klasing 2004; 

Liu & Stiling 2006; Manfredini et al. 2013). A higher individual antibacterial activity could 

be advantageous for the colony not only in the case of reproductive individuals, but also for 

sterile workers. Foragers are exposed to pathogens at foraging hotspots (Durrer & Schimd-

Hempel 1994) and they may represent routes for bringing new infections into the colony 

(Cremer et al. 2007); therefore, a stronger immune system in workers could enhance colony 

efficiency in foraging activities allowing the invasive hornets to outcompete the native 

species.  

Here, we evaluated the potential competition of Vespa velutina and Vespa crabro over 

these two contexts. First, we investigated if workers of the two species differ, at the individual 

level, in two traits that could affect resource finding and exploitation: (i) boldness and 

exploratory tendencies, which are likely to be correlated to the species ability to rapidly find 

and exploit food sources; and (ii) preference for different food items, which could provide 
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valuable information on the dietary flexibility of the two species to understand where to place 

them in the specialist/generalist continuum and to evaluate their likelihood to compete for 

food. Then we compared the immune ability of Vespa velutina and Vespa crabro workers 

through an immune challenge by using as a proxy the individual antibacterial activity in the 

two species. 

By focusing on individual life history traits under controlled laboratory conditions, 

where confounding variables such as colony size and brood abundance can be controlled for, 

this paper provides a first insight into the possible factors affecting competition between these 

two hornet species and propose a framework that future studies could use to assess, in wild 

contexts, the magnitude of the competition and the impact of the introduced yellow-legged 

hornets on native hornet species. 

 

 

Material and methods 

Species biology 

Vespa velutina and Vespa crabro show a very similar lifecycle (Matsuura & Yamane 1990; 

Matsuura 1991; Takahashi et al. 2004; Monceau et al. 2015a). Single queens start their 

colonies in spring after a wintering diapause, the colony grows in size throughout summer, 

with the production of thousands of workers, and new generations of sexuals (i.e. males and 

gynes) are produced in late summer/early autumn. Mating occurs during the fall, and a new 

generation of mated queens enter hibernation (Matsuura & Yamane 1990; Matsuura 1991; 

Takahashi et al. 2004; Monceau et al. 2014a). The main differences between Vespa velutina 

and Vespa crabro regard the length of the annual lifecycle, which is longer in the invasive 

species, going from February/March till November and the size of the colony, with the 

yellow-legged hornet building bigger nests which contain a consistently higher number of 
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individuals (Monceau et al., 2015a). Moreover, while Vespa crabro usually builds its nest in 

confined spaces such as tree cavities (Edwards 1980; Matsuura & Yamane 1990), Vespa 

velutina nests both in confined and exposed sites, apparently with a preference for the latter 

(Monceau et al. 2014a). 

 

Sample collection and rearing 

Vespa velutina and Vespa crabro workers were emerged in the laboratory from combs 

collected in the field. Vespa velutina combs with sealed brood were collected during the 

months of October and November 2015 in the surroundings of Ventimiglia (Imperia, Liguria, 

Italy), from five nests that were gathered by local beekeepers. Vespa crabro combs were 

collected during the same months in the surroundings of Florence (Tuscany, Italy), from four 

nests. Combs from different nests were maintained at 26±2 °C in separated glass cages (50 × 

50 × 50 cm). Workers were collected at emergence, individually marked with a spot on the 

thorax with Uni Posca® paint markers using different colors according to day of emergence 

and nest of origin and transferred in groups of 10-15 individuals to 15 × 15 × 15 cm glass 

cages with a mesh wire side, at room temperature, with ad libitum water and sugar as food, 

until behavioural or immune challenge assays were performed. At the end of the assays all 

workers were dissected in order to confirm their worker phenotype, by checking the fat 

storage in their abdomen; in Vespa velutina, the size of workers and gynes may largely 

overlap, but, as in other vespid species which go through a winter diapause, reproductive 

gynes present well-developed fat bodies for overwintering (Hanson & Olley 1963; Spradberry 

1973; Perrard et al. 2012) clearly visible on the internal surface of their tergites and sternites, 

while workers have very scant or null fat deposit on their abdominal segments (Beani et al. 

2011; Cappa et al. 2013). At the time of behavioural experiments or immunochallenge assays, 

all used workers of both species were on average eight days old (Vespa crabro: 8.620+-5.454; 

http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2012.02527.x/full#b17
http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2012.02527.x/full#b46
http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2012.02527.x/full#b46
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range:5-36; Vespa velutina: 8.434+-3.146; range:5-20) and  no significant differences exists 

in age between the two species (t-test: t=0.630, p=0.528, n=221 vs 252). 

 

Behavioural assays: explorative tendency and feeding preference  

1) Boldness and exploration assays 

To assess the explorative behaviour of Vespa velutina and Vespa crabro workers, we 

measured two behavioral traits (boldness and exploration) that have already been investigated 

in queens of the two species (Monceau et al. 2015b). The two traits were measured at the 

same time using an open-field apparatus modified from that used by Monceau and co-workers 

(2015b). The apparatus was represented by an experimental arena consisting of a square 

opaque acclimatization box (15 × 15 × 15 cm) connected via a trapdoor (Ø 3 cm) to one side 

of a rectangular transparent test box (32 × 24 × 16 cm) virtually divided in 24 equivalent 

sections (8 × 8 × 8 cm). Each part of the apparatus was carefully washed with 96% ethanol 

between trials. Each worker (Vespa velutina, N=22; Vespa crabro, N=21) was kept in the 

opaque box for 5 min of acclimatization before the trial; the trapdoor was then opened to 

allow the hornet to explore freely the test box for 10 minutes or to return to the opaque box as 

a refuge.  

Following Monceau et al. (2015b), we directly (real-time) measured two behaviours: (i) the 

latency to the first exit from the acclimatization box after trapdoor opening, which was used 

as a measure of boldness (i.e., the lower is the score, the bolder is the individual); (ii) the 

number of different sections visited, which was used as a measure of exploration (maximal 

score = 24). Trials were performed in the central hours of the day, from 11:00h to 15:00h, 

when workers are most active (pers. obs.). One worker of each species was tested at the same 

time in one of two identical open-field apparatus. 
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2) Feeding preference assays  

In order to assess the food preference and diet flexibility of Vespa velutina and Vespa crabro 

workers for different food sources, food choice trials were performed. Individual workers 

(Vespa velutina, N=123.; Vespa crabro, N=118) were kept without food for 1 hour before the 

trials; each worker was then transferred to a plastic transparent cage (20 × 15 × 14 cm) and 

left for 10 minutes for acclimatation.  At the end of the acclimatation period, different food 

sources were introduced inside the cage through a slide tray (9 × 3 cm). Food sources were 

presented in small circular plastic cups (Ø 2.5 cm × 1 cm) on the tray at one end of the cage. 

Each food source was separated by 0.5 cm from the other/s. Workers were then observed for 

10 minutes and the time spent feeding/manipulating on each food item was directly recorded. 

Four trials were performed, 3 with protein baits and 1 with sugar baits. Each worker was used 

only once. In a first choice trial we assessed the workers’ preference for one specific prey 

item, Apis mellifera honeybee foragers (presented as dead individuals, killed by freezing), 

with respect to generic protein sources: minced meat versus fish (canned tuna). We then 

assessed the preference of the workers for the two protein non-prey items (meat versus fish), 

and for honeybee foragers compared to another potential prey item, the paper wasp Polistes 

dominula (presented as dead individuals, killed by freezing), whose nests are plundered by 

Vespa crabro in late summer/early autumn (pers. obs.) and which belongs to a genus which is 

part of the diet of another hornet, Vespa tropica (Matsuura 1991). Both A. mellifera and P. 

dominula where collected in the field (surroundings of Florence) while foraging. Finally, we 

evaluated the workers’ preference for different carbohydrate sources: honey, honeybee sugar 

candy (sucrose and corn syrup, 3:1) and grape. We chose grape as a potential carbohydrate 

source since European hornets along other social wasps are often seen foraging on grapes, and 

they indeed appear to play a relevant role in the ecology of yeast strains involved in the 

production of fermented beverages (Stefanini et al. 2012; 2016). The four trials were 
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performed during central hours of the day, from 11:00h to 15:00h, in a random order. Sample 

size were the following: Meat, fish, honeybee: Vespa velutina N=31; Vespa crabro N=31; 

Meat, fish: Vespa velutina N=30; Vespa crabro N=30; Honeybee, Polistes sp.: Vespa velutina 

N=30; Vespa crabro N=33; Honey, honeybee sugar candy, Grape: Vespa velutina N=30; 

Vespa crabro N=28). 

 

 

Antibacterial activity assays  

To compare the ability of hornet workers of the two species to remove bacterial cells from 

their haemolymph (i.e. bacterial clearance), workers belonging to each species were injected 

with the Gram-negative bacteria Escherichia coli, an immune elicitor commonly used to test 

antibacterial activity in insects (Yang and Cox-Foster 2005; Manfredini et al. 2010; 

Gätschenberger et al. 2013; Manfredini et al. 2013; Cappa et al. 2015; Polykretis et al. 2016).  

We chose to measure bacterial clearance as a good proxy of workers immunity since different 

parameters linked to antimicrobial immune response (e.g. number of haemocytes, 

phagocytosis, nodule formation, PO activity, encapsulation response) appear correlated in 

insects’ immunity (Gillespie et al. 1997; Cotter and Wilson 2002; Lambrechts et al. 2004; 

Schimd-Hempel 2005) and injection of live bacteria provide an integrative view of the 

activation of the an organism’s immune system (Charles & Killian 2015). E. coli is not 

naturally found in Vespa velutina and Vespa crabro, thus, we could exclude its presence in 

our hornet workers prior to artificial infection. Pathogens, such as E. coli, that do not infect 

wild insect populations are often used in laboratory bioassays to elicit the immune response 

and induce the production of antimicrobial peptides (Gillespie et al. 1997; Siva-Jothy et al. 

2005).  

In order to select the infectious bacterial cells and minimize the competing effect by other 

possible microorganisms, we used the E. coli tetracycline-resistant strain XL1 Blue 
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(Stratagene, La Jolla, CA, USA). Bacterial cultures were grown aerobically in Luria-Bertani 

(LB) complex medium (Miller, 1972) containing tetracycline at a concentration of 10 μg/mL 

overnight at 37 °C in a shaking incubator. After centrifugation, bacteria were washed twice in 

phosphate-buffered saline (PBS), re-suspended and diluted to the desired concentration with 

PBS (~1,5 x 108 cells/ml). The approximate amount of bacterial cells in the solution was 

determined using a haemocytometer (Neubar) and confirmed by plating the bacterial solution 

on LB agar (dilutions 10-6, 10-7) and counting the colony forming units (CFUs) that grew 

overnight at 37 °C. Each hornet (Vespa velutina, N=69; Vespa crabro, N=52) was infected by 

injecting 1 µL of inoculum, containing ~1,5 x 105 cells, with a HamiltonTM micro syringe 

between the 2nd and the 3rd tergite (Yang & Cox-Foster, 2005). Before injection, workers 

were cooled down in a refrigerator (T 4°C) to facilitate their manipulation. After infection, 

hornets were introduced in groups of about 10, separated for species and colony of origin into 

15 × 15 × 15 cm glass cages with a mesh wire side previously rinsed with 96% ethanol, 

provided with ad libitum sugar cubes as food. Twenty-four hours later, during which the 

hornets were maintained under controlled conditions, (20 ± 2 °C; 55% RH), each worker was 

inserted in a sterile plastic bag with 10 mL of PBS after removing the sting and the venom 

sac, in order to avoid a possible reduction of the bacterial count due to the presence of 

antimicrobial peptides in the bee venom (Baracchi et al., 2011). We chose the timeframe of 

twenty-four hours from the bacterial challenge as it is a widely used procedure in insect 

immunity studies since it provides a view of the organism rapid response to the microbial 

infection (Gillespie et al. 1997; Siva-Jothy et al. 2005; Charles and Killian 2015).  Each 

sample was then processed with a Stomacher® 400 Circulator at 230 rpm for 10 min in order 

to homogenize the hornet body and extract haemolymph and content of the internal organs in 

the PBS. Afterwards, 0.1 mL of serially diluted PBS suspensions (dilutions 10-1, 10-2) of each 

sample were plated on LB solid medium added with tetracycline (10 μg/mL) and incubated 
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overnight at 37°C. The following day, the colonies grown on the plate surface were counted 

and the viable bacterial count was expressed as Colony Forming Units (CFUs) per worker. At 

least 3 control hornets per colony for each species (Vespa velutina N = 12; Vespa crabro, N = 

12) were injected with 1 µL of PBS, homogenized and plated following the same procedure of 

E. coli-infected workers, to ensure absence of other bacterial strains capable of growing on 

our LB agar plates added with tetracycline (10 μg/mL).  

A total of 121 hornets were infected with E. coli and plated: 69 Vespa velutina workers, 52 

Vespa crabro workers. Workers age range was 3-14 days post-emergence, at least 10 workers 

were infected from each of 8 nests (4 for each species).  

 

Statistical analysis 

In order to account for the non-independence of data (i.e. workers belonging to the same 

colony), we used a generalized estimating equations (GEE) approach, which extends the 

generalized linear model to allow for analysis of correlated observations such as clustered 

data (Burton et al 1998), and it is robust against  misspecification of the error structure model 

and more relaxed on distributional assumptions (Hubbard et al., 2010, Overall & Tonidandel 

2004). For all GEEs, model selection was performed on the basis of the “quasilikelihood 

under the independence model” criterion QIC, by choosing the model parameters that resulted 

in the smallest QIC  (Pan 2001).  

We assessed differences in boldness and exploratory activity between the two species using 

the following model parameters: boldness or exploration activity as dependent variables; 

tweedie probability distribution; log link fuction; independent working correlation matrix; 

fixed effect: species; subject effect: colony of origin. Feeding preferences were assessed, for 

all experiments, both using the time spent feeding on a bait item and the latency to first item 

as dependent variables. In the first case we used the following model parameters: tweedie 
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probability distribution, log link fuction, independent working correlation, species, bait and 

their interaction as fixed effects, colony of origin and individual as subject effects. In the case 

of latency as dependent variable all the parameters were the same except for the probability 

distribution, which was a negative binomial one for the honeybee vs wasps experiment, and a 

gamma one for all the other experiments. The influence of species on anti-bacterial response 

was assessed using log-transformed CFU count as a dependent variable, species as a fixed 

effect and colony origin as a subject effect, and the following parameters: independent 

working correlation matrix and  gamma-log link distribution. All analyses used a model-based 

estimater and a  type III analysis. Stastistical Analyses were performed in SPSS 20.0 (SPSS, 

2011).  

 

 

Results 

1. Boldness and exploratory activity 

Neither boldness nor exploratory tendencies differed between Vespa velutina and Vespa 

crabro workers. There was no difference either in the time of latency to the first exit from the 

acclimatization box after trapdoor opening or in the number of visited sections for workers of 

the two species (Boldness: Wald chi-square=1.713, df=1, p=0.191; Exploration: Wald chi-

square=0.396, df=1, p=0.529; Fig. 1). 

 

2. Feeding preference 

Proteins sources 

Meat, fish, honeybee 

The total time spent feeding on any protein item differed between species (Wald chi-

square=9.108, df=1, p=0.003) with Vespa velutina spending more time on protein items than 
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Vespa crabro (Fig 2, top left). The time spent feeding on each item differed among items for 

workers of both species (Wald chi-square=337.895, df=1, p<0.001), with both species 

spending more time in feeding on honeybees than on fish or meat (pairwise comparisons, 

honeybee vs meat: p>0.001, honeybee vs fish: p>0.001, meat vs fish: p=0.181). However, the 

interaction between species and bait was significant (Wald chi-square=13.906, df=1, 

p=0.001), which suggest that, while both species spent more time on honeybees, V. velutina 

tended to spend more time on fish than meat, while for V. crabro the opposite trend was 

observed (even if this was not significant after multiple comparison correction, Fig 2, top 

left). 

The latency time to reach each food item confirmed the pattern shown by time of feeding, 

with honeybee being the food item reached most promptly by both species (Wald chi-

square=356.477, df=1, p<0.001, pairwise comparisons between honeybee and meat or fish, 

for both species, all p<0.001). However, there was a significant effect of the species-bait 

interaction (Wald chi-square=38.287, df=1, p<0.001), with Vespa crabro showing smaller 

latency time for meat than fish, and Vespa velutina showing the opposite pattern (even if none 

of the pairwise comparison was significant, p>0.100). No differences between species were 

found in the general latency time toward any protein item (Wald chi-square=0.184, df=1, 

p=0.668). 

A strong feeding preference for honeybee was also corroborated by the analysis of the number 

of switches from one food item to another. When the honeybee was found as the first food 

item, both Vespa crabro and Vespa velutina switched to other food items less often than when 

the first found item was meat or fish (Vespa crabro: proportion of individuals switching from 

honeybee to meat or fish=0.217, from meat or fish to honeybee=1, χ2 =9.28, df=1, p=0.002; 

Vespa velutina: proportion of individuals switching from honeybee to meat or fish=0.412, 

from meat or fish to honeybee=1, χ2=6.99, df=1, p=0.008).  



17 

 

 

Honeybee versus Polistes sp 

The time spent on each prey item differed between items for both Vespa velutina and Vespa 

crabro, with workers of both species spending more time on A. mellifera honeybee baits than 

on Polistes dominula (Wald chi-square=19.195, df=1, p<0.001, Fig. 2, bottom left). The total 

time spent on any prey item did not differ between species (Wald chi-square=0.575, df=1, 

p=0.448, Fig 2, bottom left). Interaction between species and bait was not significant (Wald 

chi-square=1.107, df=1, p=0.293). 

The latency time to reach each food item confirmed the pattern shown by time of 

manipulation, with honeybees being the reached most promptly than wasps by both species 

(Wald chi-square=73.624, df=1, p<0.001). General latency time was significantly smaller in 

Vespa velutina than in Vespa crabro (Wald chi-square=5.170, df=1, p=0.023). Interaction 

between species and bait was not significant (Wald chi-square=1.711, df=1, p=0.191). 

The preference for the honeybee over the wasp was confirmed for both species also when 

comparing the number of switches from one food item to another, but in this case the 

difference was significant only for Vespa velutina (proportion of individuals switching from 

honeybee to wasp=0.263, from wasp to honeybee=0.889, χ2=7.26, df=1, p=0.007) but not for 

Vespa crabro (proportion of individuals switching from honeybee to wasp=0.550, from wasp 

to honeybee=0.846, χ2=1.92, df=1, p=0.192).  

 

 

Meat versus fish 

In meat versus fish trials, species had a significant effect on the time spent feeding on items 

(Wald chi-square=271.327, df=1, p<0.001), with Vespa velutina spending more time on baits 

than Vespa crabro (Fig.2, top right). Bait had only a slightly significant effect (Wald chi-
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square=4.124, df=1, p=0.042), with more time spent feeding on fish than meat in both species 

(Fig 2, top right). Interaction between specie and bait was not significant (Wald chi-

square=0.024, df=1, p=0.876). Latency time analyses overall confirmed the results: species 

had a significant effect (Wald chi-square=4.423, df=1, p=0.035), with Vespa velutina being 

faster than Vespa crabro in starting to feed. Nor bait nor the interaction between bait and 

species had a significant effect (Wald chi-square=0.031, df=1, p=0.859; Wald chi-

square=0.189, df=1, p=0.664). This pattern was also confirmed by comparing the number of 

switches from one food item to another. The proportion of cases in which an individual 

switched from one item to another was not different, in any species, whether the first chosen 

item was meat or fish (Vespa crabro: proportion of individuals switching from meat to 

fish=0.600, from fish to meat=0.444, χ2=0.05, df=1, p=0.823; Vespa velutina: proportion of 

individuals switching from meat to fish=0.455, from fish to meat=0.714, χ2=0.820, df=1, 

p=0.365).  

 

Carbohydrate sources 

Honey, honeybee sugar candy, grape 

Workers of the two species spent a different amount of time feeding on any carbohydrate item 

(Wald chi-square=8.525, df=1, p=0.004), with Vespa Crabro spending more time on 

carbohydrate baits than Vespa velutina (Fig.2, bottom right). Bait type had a significant effect 

(Wald chi-square=13,666, df=1, p=0.001), with more time spent manipulating honey and 

grape than candy. However, the interaction between species and bait was significant (Wald 

chi-square=7,053, df=1, p=0.029). showing that Vespa crabro was spending a similar amount 

of time on all carbohydrate sources (all pairwise comparison >0.05) while Vespa velutina was 

spending more time on honey and grape than on candy (all pairwise comparisons p<0.005). 

The analysis of latency time showed that the two species did not differ in the overall latency 
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time to reach carbohydrate items (Wald chi-square=0.592, df=1, p=0.441), nor the kind of bait 

influenced the latency time (Wald chi-square=1.402, df=1, p=0.496)- Finally, no significant 

interaction between species and bait was found (Wald chi-square=1.964, df=1, p=0.375)  

 

3. Immune ability 

Workers of the two species exhibited significantly different response to E. coli infection (Fig. 

3). Vespa crabro workers had a significantly higher anti-bacterial response (or bacterial 

clearance) than Vespa velutina workers (Wald chi-square=6.165, df=1, p=0.013). The 

bacterial loads found in the homogenate of native hornets were significantly lower than those 

found in invasive yellow-legged hornets (Fig. 3). No bacteria were detected in the plates of 

PBS-injected samples of both species. There was no correlation between worker age and 

individual bacterial clearance (Spearman rho=0.154, N=121, p=0.091). 

 

Discussion 

Our results show a similar pattern of exploratory behaviour and a marked overlapping of 

feeding preferences in workers of the two hornet species, suggesting that invasive Vespa 

velutina might represent a potential competitor for the European hornet, at least in terms of 

foraging and food source consumption or exploitation. As regards the exploratory behaviour, 

differently from what previously found for queens of the two species (Monceau et al. 2015b), 

with Vespa velutina queens bolder and more prone to exploration compared to Vespa crabro, 

workers were found similar in terms of both boldness and exploratory activity. The 

comparable exploratory tendencies of hornet workers of the two species could be due to the 

fact that workers, as their duties mainly consist of providing building material and food (thus 

usually spatially closer to the colony), might be less under the selective pressure for dispersal 

that likely acts on the foundress phenotype. Taking together the results about the foundress 
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and worker phenotypes, we suggest that competition between the two species might be a two 

step process: Vespa velutina might outcompete Vespa crabro during colony foundation 

because of higher explorative tendencies of queens, and it might later outcompete Vespa 

crabro for resource exploitation during summer and autumn because of its foraging strategy, 

with a high number of foragers patrolling and defending food sources (Tan et al. 2007; 

Monceau et al. 2014b), rather than individual differences in boldness and exploratory 

behaviour. 

Behavioural assays investigating the dietary preferences clearly highlighted a strong 

preference for honeybee prey in workers of both the invasive and native hornet compared to 

other generic protein sources potentially available. Such preference is quite interesting since it 

underlines a rather evident specialization in feeding behaviour of both species towards A. 

mellifera honeybee prey, although both species are considered semi-specialists (Matsuura 

1991). Previous work indicated that honeybees might represent one-third to two-thirds of 

dietary protein of Vespa velutina (Villemant et al. 2011b), but the proportion was suggested to 

depend on the nest location and surrounding environment (Villemant et al. 2011b; Monceau et 

al. 2014a). Thus, it is likely that, in case of beehive availability, hornets of both species would 

concentrate their foraging effort on the preferred prey, therefore increasing the chances of 

competition. Honeybee colonies represent an excellent protein source for a growing nest of 

hornets (Ono et al. 1995); the high concentration of potential prey and the lack of effective 

defensive strategies (Tan et al. 2013; Tan et al. 2012; Arca et al. 2014) could explain the 

dietary preferences showed by workers in our trials.  

The results of our laboratory assays are mirrored by the intense predation observed on 

beehives in the field for both species but, especially, for yellow-legged hornets (Baracchi et 

al. 2010; Tan et al. 2007; 2012; Monceau et al. 2013a; b; 2014b). The similar pattern of 

exploratory activities and the overlapping preference for honeybee prey observed for both 
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species in our laboratory trials further corroborate the hypothesis of a possible competition for 

the preferred food source (i.e. honeybees) between native and invasive hornets in the field. 

Moreover, considering a) the different predation strategies adopted by foragers of the two 

species in the field (Baracchi et al. 2010; Tan et al. 2007; Monceau et al. 2013b; 2014b), b) 

that A. mellifera is able to defend, at least partially, from Vespa crabro attacks (Baracchi et 

al., 2010) while is not able to counteract Vespa velutina attacks (Arca et al. 2014) and c) that 

Vespa velutina drastically outnumber Vespa crabro both in colony density and colony size 

(Monceau et al. 2014b; Monceau & Thiery 2016), it is predictable that  the native European 

hornet may be easily displaced by the invasive one apiaries.  

Indeed, while Vespa crabro has a relatively mild predation impact on honeybees, with 

only few hornets patrolling beehives in order to catch bees (Baracchi et al. 2010), Vespa 

velutina specializes in hawking honeybee foragers returning to their nest (Tan et al. 2007), 

imposing a much higher predation pressure on beehives, with tens of hornet foragers 

patrolling the hive entrances (Tan et al. 2007; Monceau et al. 2013b, 2014a).  

Feeding preference towards honeybees was confirmed for both species also when the 

preferred prey was presented with alternative Hymenoptera prey items (Polistes wasps). The 

higher attraction of workers of both species towards honeybee prey could be explained by the 

fact that the relatively small colonies of paper wasps and the scant number of Polistes foragers 

encountered in the field may be a less valuable source of protein for hornets, especially when 

honeybee prey are available  

The feeding preference towards honeybees and, to a lesser extent, wasps is unlikley to 

be due to the presence of prey’s haemolymph, which might be considered as a sugar-reward 

for hornets, as if hornets were attracted by bees (or wasps) only or mainly for the sugar 

content of hemolymph, we would not expect to observe hornets manipulating preys as they 
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usually do when foraging, by removing heads and legs and carrying the thorax, a behavioral 

pattern that indeed was very clear. 

 In the absence of the preferred prey item, Vespa velutina workers showed a 

significantly higher consumption of both the meat and fish baits compared to Vespa crabro. 

The higher feeding rate towards general protein sources in the yellow-legged hornet is a trait 

found in other opportunistic predatory species, favouring their invasion success (Rehage et al. 

2005; Eloranta et al. 2011; Almeida et al. 2012), and might explain the aggregated distribution 

of yellow-legged hornet nests, observed at a local scale, in anthropic areas at the seafront in 

the proximity of fishery activities (Monceau & Thiery 2016). Invasive Vespids are often 

opportunistic foragers and are attracted to seafood products, which can be used as bait in food 

traps (Spradbery 1973; Edwards 1980; Matsuura & Yamane 1990; Pereira et al. 2013; 

Monceau et al. 2014, 2015a; Unelius et al. 2014). The attraction of Vespa velutina towards 

characteristic seafood odors, such as p-xylene (Couto et al. 2014), which is a component of 

fish odors (Piveteau et al. 2000; Grigorakis et al. 2003; Varlet et al. 2006), might explain the 

higher feeding rate towards general protein sources Vespa velutina workers in our trials. 

However, the dramatic preference of Vespa velutina for honeybee bait over meat and fish 

baits clearly suggests that meat or fish baited traps might be of little efficacy when used 

within or near apiaries. 

Interestingly, Vespa crabro workers showed a higher feeding rate when it comes to 

carbohydrate sources compared to Vespa velutina workers. A possible explanation refer to 

potential differences in the physiology and morphology of the two species, and in primis in 

the size difference between them with Vespa crabro being bigger that Vespa velutina 

(Monceau et al., 2014). Whatever the explanation, this specular difference, with workers of 

the invasive species spending more time on protein sources, while native hornet workers 

consuming more carbohydrates, seems to further highlight the ability of the invasive species 
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to outperform the native one in foraging. In fact, while protein items are collected and 

manipulated by workers to feed the developing brood in the nest, carbohydrates are used by 

adults to supply their energetic needs.  

Overall, our laboratory assays on feeding behaviour suggest that Vespa velutina 

workers should be more prone to exploit and collect protein items with lower energetic 

demands than Vespa crabro workers, both traits should underline a higher foraging efficiency 

in workers of the yellow-legged hornet. 

When it comes to individual immunity, the results of our immune challenge showed 

that workers of the native species were significantly more immunocompetent than Vespa 

velutina workers in terms of ability to remove bacteria from their haemolymph. The reduced 

immunocompetence in V. velutina workers might be linked to a higher degree of inbreeding in 

the invasive species with respect to the native one due to invasion bottleneck (Darrouzet et al. 

2015), although this is not observed in inbred populations of honey bees which present a 

similar immune response when compared with outbred populations (Lee et al. 2013). Our 

results, however, seem to support the “evolution of increased competitive ability” hypothesis 

(Lee & Klasing 2004; Liu & Stiling 2006). If yellow-legged hornet workers left behind their 

natural enemies, they should afford to invest their resources in other activities rather than 

immunity. A less costly immune system could reduce the individual energetic demands and 

explain the lower consumption of highly energetic carbohydrate sources compared to Vespa 

crabro workers observed in our trials on trophic habits.  

Overall, our laboratory study highlights a number of potentially relevant life-history 

traits that could allow workers of the invasive Asian hornet to outperform workers of the 

native species in the likely case of competition during the phase of colony growth when 

workers unrelentingly forage outside the nest to provide for food and nest-building material. 
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Although workers of the two species are similar in terms of exploratory behaviour, 

under standardized laboratory conditions Vespa velutina workers showed a higher ability in 

exploiting protein sources, crucial for colony provision, with apparently lower energetic needs 

than Vespa crabro workers. If we take into account also the aforementioned differences in 

predatory strategies of the two species in the field, it appears plausible that the native hornet 

species might be easily outcompeted and displaced by the invasive one at foraging hotspots. 

The results of our work give new insights in the biology of the invasive yellow-legged 

hornet and provide a basis for evaluating its impact on native potential competitors in the 

field. Indeed, two complementary approaches can be adopted for the study of competition: a 

top-down approach, which collect evidence of competition and try to figure out potential 

influencing factors, and a bottom-up approach, which infers potential competition from the 

comparison of life history traits. While the top-down approaches might have the advantage of 

showing the order of magnitude and the direction of competition based on field-rooted 

studies, the bottom up approach adopted in our study has the potential to reveal possible 

competition even before clear/evident effects are recognized, allowing researchers to act in 

advance before competition occurs. This is particularly valuable in the case of recently arrived 

and fast spreading IAS, such as Vespa velutina in Europe. 
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Figure captions 

 

Fig.1 Boldness (the latency to the first exit from the acclimatization box) and Exploration (the 

number of different sections visited) of Vespa velutina (Vv) and Vespa crabro (Vc) 

workers. For each sample, boxes, horizontal lines inside the boxes and short horizontal 

lines ("whiskers") respectively represent the 25-75 percent quartiles, the median and 

the minimal and maximal values, ns= non significant comparison, see text for details. 

 

Fig.2 Comparison of feeding preferences (time spent on each item) of Vespa velutina (Vv) 

and Vespa crabro (Vc) workers. For each sample, boxes, horizontal lines inside the 

boxes and short horizontal lines ("whiskers") respectively represent the 25-75 percent 

quartiles, the median and the minimal and maximal values. See result section for 

significant comparisons. 

 

Fig.3 Comparison of antibacterial activity (viable bacterial count expressed as Colony 

Forming Units, CFUs, per worker) of Vespa velutina (Vv) and Vespa crabro (Vc). For 

each sample, boxes, horizontal lines inside the boxes and short horizontal lines 

("whiskers") respectively represent the 25-75 percent quartiles, the median and the 

minimal and maximal values. 
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