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Abstract
Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associ-
ated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar
and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs)
contribute to the cerebellar dysfunction. In this study, we compared AMPAR properties and synaptic transmission
in cerebellar granule cells from wild-type and Cln3 knock-out mice. In Cln3�ex1–6 cells, the amplitude of
AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or
rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance.
We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced
number of quantal events following mossy-fiber stimulation in Sr2�, altered short-term plasticity in conditions of
reduced extracellular Ca2�, and reduced mossy fiber vesicle number. Thus, while our results suggest early
presynaptic changes in the Cln3�ex1–6 mouse model of juvenile Batten disease, they reveal no evidence for altered
postsynaptic AMPARs.
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Introduction
Batten disease is the collective term for a group of rare

inherited neurodegenerative disorders, the neuronal ceroid

lipofuscinoses (NCLs). These result from mutations in one of
14 ceroid-lipofuscinosis, neuronal type (CLN) genes (Cot-
man et al., 2013; Mole and Cotman, 2015; Nita et al.,
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Significance Statement

Juvenile Batten disease is an inherited lysosomal storage disorder that affects children and leads to
premature death. Caused by mutations in the CLN3 gene, it results in a loss of CLN3 protein and neuronal
degeneration. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs)
contribute to cerebellar dysfunction. Here, we show that the properties of postsynaptic AMPA receptors in
granule cells from juvenile Cln3�ex1–6 mice are unaltered. Instead, loss of CLN3 protein leads to early
presynaptic changes and altered short-term plasticity.
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2016), the majority of which encode soluble lysosomal
enzymes or lysosome-associated transmembrane pro-
teins (Cárcel-Trullols et al., 2015). The most common NCL
is juvenile CLN3 disease or juvenile Batten disease (Wil-
liams and Mole, 2012). Children with this condition first
exhibit symptoms at four to seven years of age, suffer loss
of vision, seizures, progressive motor and cognitive de-
cline, and die prematurely in late adolescence (Munroe
et al., 1997; Haltia, 2003).

Juvenile Batten disease is caused by mutations in the
CLN3 gene, commonly a 1-kb deletion encompassing
exons 7 and 8, that result in the loss of full-length CLN3
protein (The International Batten Disease Consortium,
1995; Munroe et al., 1997; Kitzmüller et al., 2008). Like
other NCLs, juvenile Batten disease is considered a lys-
osomal storage disorder and is characterized by the
accumulation within lysosomes of autofluorescent lipop-
igments (lipofuscin-like ceroid; Seehafer and Pearce,
2006). Although the precise function of CLN3 remains
unresolved, it has been implicated in multiple cellular
phenomena, including endocytosis and endocytic traf-
ficking, lysosmal pH regulation, autophagy, proliferation,
cell-cycle control, and apoptosis (Cárcel-Trullols et al.,
2015).

Cerebellar atrophy is a feature of juvenile Batten dis-
ease (Nardocci et al., 1995; Autti et al., 1996) and likely
contributes to the eventual motor deficits (Raininko et al.,
1990). Likewise, in mouse models of the disease, there
are degenerative changes and neuronal loss in the cere-
bellum, seen most clearly in CLN3 knock-out animals
(designated Cln3�ex1–6 or Cln3–/–; Kovács et al., 2006;
Weimer et al., 2009) but also evident in mice with knock-in
of the most common human 1-kb deletion mutation
(Cln3�ex7/8; Cotman et al., 2002).

Several studies have provided evidence of a change in
neuronal AMPA-type glutamate receptors (AMPARs) in
juvenile Batten disease. Thus, in Cln3�ex1–6 and Cln3�ex7/8

mice, cerebellar granule cells – neurons in the cerebellum
that relay multisensory and motor-related information from
mossy fibers to Purkinje cells (Eccles et al., 1967; Huang
et al., 2013; Chabrol et al., 2015) – are reported to exhibit
increased susceptibility to excitotoxic damage following
activation of AMPARs (Kovács et al., 2006; Finn et al.,
2011). These receptors, mediate a majority of fast excit-
atory transmission in the brain, and function as homo- or
hetero-tetrameric assemblies of pore-forming subunits
(GluA1-4; Traynelis et al., 2010). Although most AMPARs

in the central nervous system contain the edited GluA2(R)
subunit, and are thus calcium impermeable (CI-AMPARs),
those lacking GluA2 constitute a widely distributed sub-
type of calcium permeable AMPARs (CP-AMPARs; Bur-
nashev et al., 1992; Geiger et al., 1995; Cull-Candy et al.,
2006).

Excess influx of Ca2� through CP-AMPARs appears to
be a feature common to several neurodegenerative dis-
orders, including stroke, motor neuron disease, and hy-
poxic ischemic white matter damage (Follett et al., 2000;
Kawahara and Kwak, 2005; Noh et al., 2005; Van Den
Bosch et al., 2006; Corona and Tapia, 2007). Increased
AMPAR-mediated excitotoxicity in Cln3�ex1–6 mice has
been suggested to reflect altered AMPAR trafficking, an
increase in CP-AMPAR number and enhanced AMPAR
function (Kovács et al., 2006). However, recent experi-
ments have described an increase in GluA2 protein in the
cerebellum of Cln3�ex1– 6 mice (Kovács et al., 2015), a
change which is more usually associated with increased
prevalence of CI-AMPAR subtypes.

Here, we have compared AMPAR properties and ex-
citatory synaptic transmission in cerebellar granule cells
from wild-type and Cln3�ex1–6 mice. Our results suggest
that loss of CLN3 results in altered mossy-fiber presyn-
aptic behavior but no alteration in postsynaptic AMPAR
function and no increase in CP-AMPAR prevalence.

Materials and Methods
Animals

We used wild-type C57BL/6J mice and Cln3 knock-out
mice (Cln3�ex1–6) on a C57BL/6J background. Cln3�ex1–6

mice were generated via targeted disruption of the Cln3
gene involving the deletion of exons 2–6 and most of exon
1 via replacement with a neomycin resistance gene that
was transcribed in reverse orientation from a mouse PGK
promoter (Mitchison et al., 1999). Both male and female
mice were used. All procedures for the care and treatment
of mice were in accordance with the Animals (Scientific
Procedures) Act 1986.

Western blotting
Cerebellar tissue was homogenized in RIPA lysis buffer

with proteinase inhibitors (Roche). Protein extracts were
boiled for 5 min at 95°C before loading onto 5–10% gradient
gels (50 �g of protein sample per lane). Gels were electro-
transferred to a 0.2-�m nitrocellulose membrane (GE
Healthcare). Blots were blocked in 4% milk (wt/vol) in PBS-
Tween 20 solution for 1 h, then incubated at 4°C overnight
with one of the following antibodies: anti-GluA2 (mouse,
Millipore MAB397, 1:500), anti-GluA4 (rabbit, Millipore
AB1508, 1:200), anti-cofilin (rabbit, Abcam ab42824,
1:10,000). Transferred proteins were detected with appro-
priate horseradish peroxide-conjugated (HRP) secondary
antibodies: goat anti-mouse IgG-HRP (Santa Cruz sc-
2005, 1:2000) or goat anti-rabbit IgG-HRP (Santa Cruz
sc-2030, 1:2000), reacted with chemiluminescent ECL
substrate (Thermo Scientific Pierce), and visualized by
ChemiDoc MP System (Bio-Rad Laboratories). Band in-
tensities of GluA2 and GluA4 were normalized to the
respective cofilin bands or to the total protein determined
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by Ponceau S staining of the membranes (Image Lab 5.2,
Bio-Rad Laboratories).

Dissociated cerebellar cultures
Cultures of dissociated cerebellar neurons were pre-

pared from postnatal day (P)5–P7 mice. Briefly, after de-
capitation, the cerebella were removed, cut into small
pieces and trypsinized at 37°C. Mechanically dissociated
cells were plated on poly-L-lysine-coated (Sigma) glass
coverslips, at a density of 2.1 � 105 cells per coverslip.
Cells were maintained in a humidified atmosphere at 37°C
(5% CO2) in basal medium Eagle (BME) supplemented
with 10% fetal bovine serum (FCS; v/v), 2 mM L-glutamine, and
100 mg ml�1 gentamicin (all Gibco). Cells were maintained
in “high K�” (25 mM KCl) to promote synaptic matura-
tion. Cytosine arabinoside (10 �M; Sigma) was added
24 h after plating to inhibit glial proliferation. In most
cases, wild-type and Cln3�ex1– 6 cultures were prepared
concurrently and examined in interleaved recordings
after 7–13 d.

Electrophysiology of cultured granule cells
Cells, identified according to previously described

criteria (Cull-Candy et al., 1988), were viewed using a
fixed-stage microscope (Zeiss Axioskop FS1 or Olympus
BX51WI) and perfused at a rate of 1.5–2 ml min�1 (2-ml
bath volume). The extracellular solution contained 145
mM NaCl, 2.5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 10 mM
glucose, and 10 mM HEPES (adjusted to pH 7.3 with
NaOH). Pipettes for whole-cell recording were pulled from
thick-walled borosilicate glass (1.5 mm o.d., 0.86 mm i.d.,
Harvard Apparatus), coated with Sylgard resin (Dow Corning
184) and fire-polished to a final resistance of �5–8 M�.
Pipettes were filled with a solution containing 145 mM
CsCl, 2.5 mM NaCl, 1 mM Cs-EGTA, 4 mM MgATP, and
10 mM HEPES (adjusted to pH 7.3 with CsOH). Spermine
tetrahydrochloride (500 �M, Sigma) was added to this
intracellular solution immediately before each recording
session.

Currents were recorded at 22–26°C using an Axopatch
1D or Axopatch 200B amplifier and acquired using
pClamp10 and a Digidata 1200 interface (Molecular De-
vices). Series resistance and input capacitance were read
directly from the amplifier settings used to minimize the
current responses to 5-mV hyperpolarizing voltage steps;
values were 6.3 � 0.4 pF for wild-type versus 5.9 � 0.5 pF
for Cln3�ex1–6 (n 	 34 and 42; W 	 861.5, p 	 0.12
Wicoxon rank sum test) and 25.2 � 0.8 versus 27.3 � 1.2
M� (W 	 604.5, p 	 0.25 Wilcoxon rank sum test).
Whole-cell current�voltage (I-V) relationships were gen-
erated by ramping membrane potential from –90 to �60
mV in the presence of 20 �M S-AMPA and 10 �M cy-
clothiazide (Ascent Scientific) applied by gravity-fed bath
perfusion. Ramps were delivered once currents had
reached steady-state amplitude. Records were filtered at
2 kHz and sampled at 5 kHz. The rectification index (RI)
was calculated as the ratio of slope conductance in pos-
itive (�20 to �40 mV) and negative (–40 to –20 mV) limbs
of the I-V.

mEPSCs in cultured granule cells
Miniature EPSCs (mEPSCs) were recorded at –60 mV

after blocking voltage-gated sodium channels, NMDA-,
GABAA-, and glycine receptors by adding 1 �M tetrodo-
toxin (TTX), 20 �M D-AP5, 20 �M SR-95531, and 1 �M
strychnine (Ascent Scientific). Before mEPSC recording,
the cells were briefly exposed (2–3 min) to 200 �M LaCl3
to increase mEPSC frequency (Chung et al., 2008). The
signal was filtered at 2 kHz and sampled at 20 kHz. Event
detection was performed using amplitude threshold
crossing (Igor Pro 5, Wavemetrics Inc; NeuroMatic 2.02,
www.neuromatic.thinkrandom.com), with the threshold
(typically �5 pA) set to 3� the baseline current variance.
The rectification index (RICM) was calculated by dividing
the mean mEPSC peak conductance calculated using all
events detected at �60 mV and a matching number of the
largest events at –60 mV. For fluctuation analysis (see
paragraph below) and kinetic analysis, only events that
exhibited a monotonic rise and an uncontaminated decay
were included. Such events were aligned on their rising
phase before averaging. The decay of the averaged
mEPSC was fitted with a double exponential, and the
weighted time constant of decay (�w, decay) calculated as
the sum of the fast and slow time constants weighted by
their fractional amplitudes. In some cases, mEPSCs were
adequately fit with single exponentials.

Peak-scaled non-stationary fluctuation analysis (ps-
NSFA) was used to estimate the weighted mean single-
channel conductance of synaptic receptors (Traynelis
et al., 1993; Hartveit and Veruki, 2007). Each mEPSC was
divided into 30 bins of equal amplitude, and, within each
bin, the variance of the mEPSC about the scaled average
was computed. The variance was plotted against the
mean current value, and the weighted mean single-
channel current was estimated by fitting the full parabolic
relationship with the equation:

�PS
2 � iĪ � Ī 2/Np � �B

2

where �2
PS is the peak-scaled variance, I� is the mean

current, i is the weighted mean single-channel current, Np

is the number of channels open at the peak of the EPSC,
and �2

B is the background variance. The weighted mean
chord conductance for each cell was calculated assuming
a reversal of 0 mV.

Acute cerebellar slices
Mice (P10–P15) were anesthetized with isoflurane and

decapitated. After brain dissection, 250-�m-thick sagittal
slices were cut in an ice-cold oxygenated solution (85 mM
NaCl, 2.5 mM KCl, 0.5 mM CaCl2, 4 mM MgCl2, 25 mM
NaHCO3, 1.25 mM NaH2PO4, 64 mM sucrose, and 25
mM glucose; pH 7.3 when bubbled with 95% O2 and 5%
CO2), using a vibratome (Microm HM 650 V or Campden
7000smz). To prevent NMDAR-mediated cell damage 20
�M D-AP5 (Tocris Bioscience) was included. Slices were
stored in the same solution at 35°C for 30 min and then
transferred into recording “external” solution at 23–26°C
(125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 25
mM NaHCO3, 1.25 mM NaH2PO4, and 25 mM glucose;
pH 7.3 when bubbled with 95% O2/5% CO2).
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Slice electrophysiology
Slices were viewed using a fixed stage upright micro-

scope (Olympus BX 51WI with infrared differential inter-
ference contrast or oblique illumination) and recordings
were made from visually identified neurons in the internal
granule cell layer (Kaneda et al., 1995). To block NMDA
and GABAA receptors, 20 �M D-APV and 20 �M SR-
95531 (Ascent Scientific) were added. The internal solu-
tion contained 128 mM CsCl, 10 mM HEPES, 10 mM
EGTA, 2 mM Mg2ATP, 0.5 mM CaCl2, 2mM NaCl, 5 mM
TEA, 1 mM N-(2,6-dimethylphenylcarbamoylmethyl) tri-
ethylammonium bromide (QX-314), and 0.1 mM spermine
tetrahydrochloride (pH 7.3 with CsOH). Currents were
recorded using an Axopatch 200B amplifier, filtered at 2
kHz and digitized at 20 kHz (pClamp 10.2 Molecular
Devices or Igor Pro 5 with NeuroMatic). All currents were
recorded at room temperature, with the exception of mini-
mally evoked EPSCs (meEPSCs; see ‘Quanta and evoked
EPSCs’ below). Series resistance and input capacitance
were read directly from the amplifier settings used to
minimize the current responses to 5-mV hyperpolarizing
voltage steps. Series resistance was compensated (up to
75%). Measured values at room temperature were 3.9 �
0.3 pF for wild type versus 3.6 � 0.3 pF for Cln3�ex1–6 (n 	
11 and 12; W 	 76.5, p 	 0.54 Wilcoxon rank sum test)
and 10.0 � 0.5 versus 12.4 � 1.0 M� (W 	 40.5, p 	 0.12
Wilcoxon rank sum test).

Quantal and evoked EPSCs
To record quantal EPSCs (qEPSCs), the standard ex-

tracellular solution was replaced with a Ca2�-free solution
containing 5 mM SrCl2 (Goda and Stevens, 1994; Abdul-
Ghani et al., 1996). Mossy fibers were stimulated (0.5 Hz)
using a concentric bipolar tungsten electrode placed in
the white matter tract (Digitimer DS/2A constant voltage
stimulator; 100 V/200 �s). Events were detected using
amplitude threshold crossing, with the threshold (typically
�5 pA) set according to the baseline current variance. To
avoid the inclusion of multiquantal events, only qEPSCs
occurring 
10 ms after the mossy fiber stimulus were
included. When analyzing event frequency, any qEPSC
with a distinct peak was included. When analyzing qEPSC
amplitude, all events with a monotonic rise were included,
irrespective of overlapping decays. For kinetic analysis,
only events with a monotonic rise and uncontaminated de-
cay were included; they were aligned on their rising phase
before averaging. The decay of the averaged qEPSC was
fitted with a double exponential, and the weighted time
constant of decay (�w, decay) calculated.

To record eEPSCs, mossy fibers were stimulated (0.5
Hz) using a concentric bipolar tungsten electrode placed
in the white matter tract (Digitimer DS/2A constant voltage
stimulator). Pairs of eEPSCs were recorded at room tem-
perature with an extracellular solution containing 2 mM
Ca2�/1 mM Mg2�.

To more closely approximate physiologically relevant
conditions, meEPSCs were recorded at an elevated tem-
perature (30–34°C). Mossy fibers were stimulated using
constant voltage pulses (80–100 �s; 20–48 V) delivered
through a glass electrode filled with extracellular solution

positioned �100–200 �m from the recorded granule cell.
The criteria for minimal stimulation included an initial
�30% failure rate during repeated single stimuli at 0.25
Hz and invariant EPSC latency and amplitude with increased
stimulus intensity. The mean voltage of the threshold stim-
ulus was 32.7 V for wild-type cells and 34.2 V for Cln3�ex1–6

cells. For each cell, trains of five stimuli (100 Hz, �2 V above
threshold) were delivered at 3-s intervals and meEPSCs
recorded at –70 mV in both “high” and “low” extracellular
Ca2� (2 mM Ca2�/1 mM Mg2� and 1 mM Ca2�/2 mM
Mg2�). In each case the amplitudes of evoked currents were
normalized to the mean amplitude of the first response
(meEPSC1) in 2 mM Ca2�/1 mM Mg2�

.

Transmission electron microscopy
Sagittal slices (200 �m) of cerebellar vermis were pre-

pared from six P13 C57BL/6 mice and three age-matched
Cln3�ex1–6 mice, as described above. Slices were cut in
slicing solution, immediately transferred into 4% parafor-
maldehyde and 0.5% glutaraldehyde, and left overnight at
4°C. Following primary fixation, the tissue was washed
and osmicated for 1 h at 4°C in 1% OsO4 in 0.1 M phos-
phate buffer, enblocked, stained in 2.0% uranyl acetate
buffer for 30 min at 4°C, dehydrated in ethanols, cleared in
propylene oxide, and embedded in Araldite. Sections of
70–80 nm in thickness were made. These were collected on
copper mesh grids, counterstained with lead citrate, and
viewed in a JEOL 1010 electron microscope.

Mossy fiber axons were identified by their structural
characteristics (Xu-Friedman and Regehr, 2003). Release
sites were identified by the presence of a presynaptic
cluster of vesicles close to the membrane, active zone
material and a postsynaptic density. Electron micrographs
were analyzed by individuals blinded to the genotype and
quantified using ImageJ software (v1.46; https://image-
j.nih.gov/ij/). To evaluate the density of vesicles in each
terminal, a grid composed of multiple squares (each with
an area 0.1 �m2) was overlaid on the image. We counted
the number of vesicles (of �30 nm in diameter) within
each square. Squares containing organelles, or those
containing the border of the mossy fiber terminal were
excluded from analysis. Vesicles were considered to
be proximal to the release site if they were �100 nm from
the presynaptic membrane of an active zone. The active
zone vesicle density was then calculated as the number of
vesicles per 50 nm of active zone length. As accurate
identification of docked vesicles is demanding, even in
much thinner slices than used here (Molnár et al., 2016),
we opted to count those within one vesicle radius of the
active zone and term them “membrane adjacent” vesi-
cles.

Statistical analysis
Summary data are presented in the text as mean �

SEM from n cells (or mossy fiber terminals). Comparisons
involving two datasets only were performed using a Wil-
coxon rank sum test. For the comparison of paired-pulse
ratios (PPRs) at different frequencies and analysis of
short-term plasticity, we used two- and three-way re-
peated measures ANOVA. For EM data, nested analysis
was performed using a likelihood ratio test comparing two
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linear mixed-effect models (Bates et al., 2015). Exact p
values are presented to two significant figures, except
when p � 0.0001. Differences were considered significant
at p � 0.05. Statistical tests were performed using R
(version 3.3.2; the R Foundation for Statistical Computing;
http://www.r-project.org/) and R Studio (version 1.1.383;
RStudio). No statistical test was used to predetermine
sample sizes; these were based on standards of the field.

Results
Levels of GluA2 and GluA4 are unaltered in cerebella
of Cln3�ex1–6 mice

The increased AMPAR-mediated excitotoxicity seen in
dissociated and slice cultures of cerebellum from 8- to
10-d-old Cln3�ex1–6 mice was originally suggested to re-
flect altered AMPAR trafficking, and a possible increase in
the number of GluA2-lacking CP-AMPARs (Kovács et al.,
2006). However, the same authors later described an
increase in GluA2 protein in the cerebellum of one-month-
old Cln3�ex1–6 mice (Kovács et al., 2015). To investigate
possible AMPAR subunit changes, we initially measured
protein levels for GluA2 and GluA4 in cerebellum from
wild-type and Cln3�ex1–6 mice in the second postnatal
week, around the age when the first structural and func-
tional defects are observed in Cln3�ex1–6 mice (Weimer
et al., 2009).

We prepared cerebellar tissue lysate from 12 wild-type
and 12 Cln3�ex1–6 mice (P14–P16). For each group, four
samples were generated by pooling tissue from three
littermate mice. All eight samples were run together and
the membrane probed with the relevant antibodies (mouse
anti-GluA2, mouse anti-GluA4, rabbit anti-cofilin; see Ma-
terials and Methods; Fig. 1A,B). We found no difference in
total protein for either GluA2 (0.29 � 0.04 for wild type vs
0.29 � 0.06 for Cln3�ex1–6, normalized to the intensity of
the cofilin band; W 	 10, p 	 0.69) or GluA4 (0.33 � 0.05
vs 0.30 � 0.07 normalized to the intensity of cofilin; W 	
9, p 	 0.89; Fig. 1C,D). Similar results were obtained
when values were normalized to total protein (data not
shown; see Materials and Methods).

AMPA-evoked currents are unchanged in cultured
Cln3�ex1–6 granule cells

To determine whether the magnitude of AMPAR-mediated
currents or the prevalence of CP-AMPARs was altered in
cerebellar granule cells from Cln3�ex1–6 mice, we first
made recordings from cultured neurons and examined
whole-cell currents evoked by bath application of AMPA
(20 �M). The responses were compared during voltage
ramps from –90 to �60 mV, with spermine (500 �M)
included in the pipette (intracellular) solution (Fig. 2A). As
this polyamine blocks CP-AMPARs in a voltage-dependent
manner, with pronounced block at depolarized potentials,
it allows their presence to be identified from the charac-
teristic inwardly rectifying I-V relationship (Bowie and Mayer,
1995; Kamboj et al., 1995; Koh et al., 1995).

We found the mean current amplitude at –90 mV was
unaltered in Cln3�ex1–6 cells compared with wild-type
(wild-type 131.9 � 41.4 and Cln3�ex1–6 126.4 � 34.7, n 	
10 and 13, respectively; W 	 67, p 	 0.95; Fig. 2A,B). This

situation persisted when current amplitudes were normal-
ized to the measured cell capacitance. Moreover, the I-V
plots were similar. Cells from both wild-type and Cln3�ex1–6

mice exhibited near-linear I-V relationships (Fig. 2C–E),
with rectification indices (RIs; see Materials and Methods)
of 0.91 � 0.08 and 0.85 � 0.07, n 	 9 and 10, respectively
(W 	 52, p 	 0.60). This observation suggests that loss of
CLN3 does not alter the predominant expression of CI-
AMPARs in cultured granule cells.

mEPSCs and synaptic AMPARs are unaltered in
granule cells from Cln3�ex1–6 mice

We next examined synaptic AMPARs by recording
mEPSCs in the presence of TTX (1 �M; Fig. 3A–D). The
amplitude and frequency of mEPSCs at –60 mV was
similar in cells cultured from wild-type and Cln3�ex1–6

mice (10.7 � 0.8 vs 9.8 � 0.5 pA, W 	 374, p 	 0.49 and
3.1 � 1.1 vs 2.5 � 0.9 Hz, W 	 404, p 	 0.22; n 	 24 and
28 cells, respectively; Fig. 3C–E).

To determine whether loss of CLN3 led to an alteration
in the basic properties of synaptic AMPARs in granule
cells, we assessed their kinetics, voltage-dependence
and mean single-channel conductance by analyzing syn-
aptic currents. The 10–90% risetime and weighted decay
of mEPSCs (see Materials and Methods) did not differ
between cells cultured from wild-type and Cln3�ex1–6

mice (0.33 � 0.02 vs 0.34 � 0.02 ms, W 	 36, p 	 0.76
and 1.27 � 0.10 vs 1.42 � 0.12 ms, W 	 33, p 	 0.57;
n 	 10 and 8 cells). Likewise, we found no difference in
the weighted mean single-channel conductance deter-
mined using ps-NSFA (see Materials and Methods;

WT Cln3Δex1–6

GluA4

20 kD

100 kD

0

50

100

150

200

G
lu

A
2 

ex
pr

es
si

on
 (%

 W
T)

WT Cln3Δex1–6

GluA2

20 kD

100 kD

0

50

100

150

200

G
lu

A
4 

ex
pr

es
si

on
 (%

 W
T)

C n.s. D n.s.

A B

Cln3Δex1–6WT Cln3Δex1–6WT
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for GluA2. Lower bands (at 20 kDa) show the corresponding
labeling for cofilin. B, Same as A but for GluA4. C, Pooled data
for GluA2 expression normalized to mean WT expression. Box-
and-whisker plots indicate the median value (black line), the
25–75th percentiles (box), and the 10–90th percentiles (whis-
kers); filled black circles are data from individual cells and open
circles indicate means. D, Same as C but for GluA4 (n.s., non-
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11.5 � 1.5 vs 11.2 � 0.9 pS, W 	 40, p 	 1.00; n 	 10 and
8 cells; Fig. 3F) or in mEPSC rectification (RICM �60/–60
mV; see Materials and Methods; 0.99 � 0.05 vs 1.05 �
0.08, W 	 36, p 	 0.65; n 	 12 and 7 cells; Fig. 3G). The
fact that the mEPSCs remained non-rectifying and their
underlying single-channel conductance remained low in
Cln3�ex1–6 mice suggests that, in keeping with the data
from whole-cell AMPA-evoked currents, CI-AMPARs are
the predominant subtype present at granule cell synapses
following loss of CLN3.

Quantal events at mossy fiber-granule cell synapses
of Cln3�ex1–6 mice

To investigate transmission at mossy fiber to granule
cell synapses formed in vivo, we next moved to acute
cerebellar slices. As spontaneous mEPSCs occurred only
at low frequency, we initially examined quantal events
(qEPSCs) in response to mossy fiber stimulation. We
made recordings in the presence of 5 mM extracellular
SrCl2 to trigger the asynchronous release of transmitter
such that individual quanta could be identified (Fig. 4A,B).
This approach allowed us to measure both the size and
the number of quanta released per stimulus.

Unexpectedly, in slices from Cln3�ex1–6 mice, each
mossy fiber stimulation evoked a smaller initial EPSC and
far fewer discrete qEPSCs than in wild type (initial ampli-
tude reduced from –52.3 � 6.9 pA to –21.2 � 6.3 pA, n 	
6 and 7, W 	 4, p 	 0.014 and number of quantal events
reduced from 10.0 � 2.6-2.5 � 0.7; W 	 41, p 	 0.0023;

Fig. 4C). Of note, in slices from wild-type mice no “fail-
ures” (sweeps in which no response was evoked) were
seen, but in slices from Cln3�ex1–6 mice, the average
failure rate was �10% (range 0–23.3%). In slices from
Cln3�ex1–6 mice the amplitude of qEPSCs was similar to
wild-type (14.0 � 1.6 vs 12.4 � 1.5 pA, n 	 6 and 7; W 	
24, p 	 0.73; Fig. 4D), and both the 10–90% risetime
(RT10–90%; 0.34 � 0.01 vs 0.33 � 0.03 ms; W 	 30.5, p 	
0.20) and weighted decay time (�w, decay; 2.11 � 0.23 vs
2.79 � 0.44 ms; W 	 13, p 	 0.29) of qEPSCs remained
unchanged (Fig. 4E). These results demonstrate no
change in postsynaptic responsiveness at mossy fiber
synapses of Cln3�ex1–6 mice, but the activation of fewer
mossy fibers or a potential reduction in the probability of
transmitter release.

Unaltered paired-pulse depression of eEPSCs in
Cln3�ex1–6 granule cells

Mossy fiber-granule cell synapses are known to sustain
high bandwidth transmission, but the majority show an
initial short-term depression during high frequency
stimulation (Nieus et al., 2006; Saviane and Silver,
2006; Chabrol et al., 2015). Although the reduced number
of qEPSCs in slices from Cln3�ex1–6 mice could be con-
sistent with a decrease in release probability in 0 Ca2�/5
mM Sr2�, this was not evident when we examined eEP-
SCs in 2 mM Ca2�. Responses to paired stimuli at 5, 10,
20 and 100 Hz showed no difference in PPR. For example,
at 100 Hz, the PPR indicated similar magnitude of depres-
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sion (0.41 � 0.13 and 0.30 � 0.05 for wild-type and
Cln3�ex1–6 cells; n 	 5 and 4, respectively; W 	 10, p 	
1.00, Wilcoxon rank sum test). Across the frequency
range examined, two-way RM ANOVA showed an effect
of inter stimulus interval (F(3,21) 	 16.88, p � 0.0001), no

effect of genotype (F(1,7) 	 0.24, p 	 0.64), and no inter-
action (F(3,21) 	 0.80, p 	 0.51). As both qEPSCs and
eEPSCs were recorded under “non-physiological” condi-
tions, we next chose to examine synaptic transmission at
near-physiological temperature, and in 1 mM extracellular
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Ca2�, a concentration thought likely to approximate more
closely the situation in vivo (Borst, 2010).

Altered short-term plasticity of meEPSCs in
Cln3�ex1–6 mice in reduced [Ca2�]o

We examined meEPSCs in response to brief trains of
high frequency mossy fiber stimulation (five stimuli at 100
Hz) at 30–34°C in both “normal” and reduced extracellular
Ca2� (2 mM Ca2�/1 mM Mg2� and 1 mM Ca2�/2 mM
Mg2�; Fig. 5A,B). For each cell (six wild type and six
Cln3�ex1–6), meEPSC amplitudes were normalized to that
of the first event in 2 mM extracellular Ca2�. In both
groups of mice, we observed a wide range of amplitudes
for the first meEPSC (peak conductance of 0.56–2.91 nS
for wild-type and 0.33–1.56 nS for Cln3�ex1–6), within the
wide range (0.11–3.33 nS) reported by Chabrol et al.
(2015) for different mossy fiber input pathways. In 2 mM
Ca2�, meEPSCs in granule cells from wild-type mice
exhibited short-term depression (meEPSC2/meEPSC1

was 0.46 � 0.07; W 	 36, p 	 0.0028). When the same
cells were recorded in 1 mM extracellular Ca2�, there was
no depression (meEPSC2/meEPSC1 was 0.81 � 0.12;
W 	 27, p 	 0.18; Fig. 5A). However, for Cln3�ex1–6 cells,
paired-pulse depression was seen in both 2 and 1 mM
extracellular Ca2� (0.30 � 0.05 and 0.31 � 0.06, respec-
tively; both W 	 36, p 	 0.0028 and p 	 0.0022). A
three-way repeated measures ANOVA was run to exam-
ine the effect of stimulus number, extracellular Ca2� con-
centration and genotype on meEPSC amplitude
(normalized to meEPSC1 in 2 mM Ca2�). There was a
significant three-way interaction, F(4,80) 	 3.67, p 	 0.0085.
Thus, the effect of lowering extracellular Ca2� on the
meEPSC amplitudes during short trains was affected by
deletion of CLN3. Overall, these results suggest altered
release dynamics in Cln3�ex1–6 mice, that are revealed in
conditions of reduced extracellular Ca2�. Of note, the
mean amplitude of meEPSC1 in 2 mM Ca2� did not differ
between genotypes (77.3 � 26.0 and 69.7 � 12.0 pA;
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W 	 14, p 	 0.59), but amplitudes of meEPSC1 in 1 mM
Ca2� (normalized to those of meEPSC1 in 2 mM Ca2�)
were different (0.42 � 0.06 and 0.82 � 0.07 in wild type
and Cln3�ex1–6, respectively; W 	 2, p 	 0.0087).

Structural changes at mossy fiber-granule cell
synapses in Cln3�ex1–6 mice

We next used 2D transmission electron microscopy to
compare mossy fiber to granule cell synapses from
Cln3�ex1–6 and wild-type mice (P13). Mossy fiber rosettes
were identified from their characteristic size and appear-
ance (many small vesicles, and a large number of mito-
chondria; Xu-Friedman and Regehr, 2003; Rothman et al.,

2016), and the fact that the mossy fiber makes contact
with a large number of granule cell dendrites.

Initial examination revealed no striking gross anatomic
differences between Cln3�ex1–6 and wild-type synapses
(Fig. 6A,B). The average vesicle diameter was unchanged
in Cln3�ex1–6 compared to wild type (mean vesicle diam-
eter per mossy fiber terminal 33.5 � 0.5 vs 32.2 � 0.5 nm,
n 	 20 and 19 terminals from three mice each; W 	 130,
p 	 0.094; Fig. 6C). We observed a high average density
of vesicles within each mossy fiber terminal, comparable
to the values of 118–170 �m�2 reported by Rothman
et al. (2016). However, the average density of vesicles per
mossy fiber terminal was decreased in Cln3�ex1–6 mice,
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from 131.7 � 8.9 to 92.6 � 6.0 �m�2 (n 	 16 and 21
terminals; W 	 267, p 	 0.0025; Fig. 6C). Additionally,
when we determined the number of vesicles proximal to
each active zone (within 100 nm), the average number per
50-nm length of active zone was reduced by �30% (from
2.70 � 0.19 to 1.92 � 0.16, n 	 9 terminals in each of
three mice; W 	 69, p 	 0.013; Fig. 6D). When we
considered only membrane adjacent vesicles (those within
one vesicle radius of the presynaptic membrane), the num-
ber was reduced by �40% (from 1.24 � 0.16 to 0.71 �
0.15 per active zone; W 	 67, p 	 0.022 and from 0.37 �
0.04 to 0.22 � 0.04 per 50 nm of active zone; W 	 65, p 	
0.034; Fig. 6D). Of note, use of nested analysis (see
Materials and Methods), rather than average measures
per terminal, did not qualitatively alter the outcome. Thus,
while vesicle diameter was unchanged, the overall vesicle
density per terminal was slightly decreased, as was the
average number of vesicles proximal to active zones and
the number of membrane adjacent vesicles.

Discussion
We have examined granule cell AMPARs and cerebellar

mossy fiber to granule cell synapses in the Cln3�ex1–6

mouse, a widely used model of juvenile Batten disease.
Our main findings are as follows: First, GluA2 and GluA4
expression in cerebellar tissue from Cln3�ex1–6 mice is
unaltered. Second, AMPA-evoked currents in granule
cells cultured from wild-type and Cln3�ex1–6 mice are not
different. Third, the properties of synaptic AMPARs, their
kinetics, voltage-dependence, and single-channel conduc-
tance, are unaltered. Fourth, loss of CLN3 leads to altered
short-term plasticity in conditions of reduced extracellular

Ca2�. Fifth, in mossy fiber terminal from Cln3�ex1–6 mice the
density of synaptic vesicles and their proximity to active
zones is reduced. Thus, our experiments reveal unantici-
pated presynaptic changes but no evidence for altered post-
synaptic AMPARs.

Changes in synaptic transmission occur early in
Cln3�ex1–6 mice

Although the original studies of Cln3�ex1–6 mice re-
ported accumulation of lysosomal storage material at ap-
proximately three months of age (Mitchison et al., 1999;
Seigel et al., 2002) the mice were thought to lack clinical
symptoms, even at 12 months (Mitchison et al., 1999).
Subsequent studies identified deficits in motor coordination
as early as P14 (Kovács et al., 2006), which were preceded
by thinning of the cerebellar granule cell layer and Purkinje
cell loss (Weimer et al., 2009). Our results suggest that there
are indeed early changes in synaptic transmission in the
cerebellum of Cln3�ex1–6 mice (P10–P15).

Our experiments do not allow us to conclude whether
the observed changes are a direct consequence of CLN3
loss or represent secondary effects. In this regard, it is of
note that extensive changes in gene expression and pro-
tein levels occur in Cln3�ex1–6 mice (Brooks et al., 2003;
Llavero Hurtado et al., 2017), potentially disrupting multi-
ple neuronal pathways. Nevertheless, our findings in a
mouse model of juvenile CLN3 disease complement mo-
lecular, structural, and functional studies in various animal
models of infantile CLN1 disease (Virmani et al., 2005; Kim
et al., 2008; Kielar et al., 2009), late infantile CLN6 disease
(Kielar et al., 2009), congenital CLN10 disease (Koch
et al., 2011), and late infantile CLN5 disease (Amorim
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Figure 6. Reduced vesicle density in mossy fiber terminals of Cln3�ex1–6 mice. A, Representative electron micrograph showing a
wild-type (WT) mossy fiber terminal (MF) making a synaptic contact (delineated by arrows) with a granule cell dendrite (d). B, Same
as A but from a Cln3�ex1–6 mouse. C, Box-and-whisker plots (as in Fig. 1) showing the unaltered vesicle diameter and the reduced
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test).
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et al., 2015), and suggest that early synaptic alteration is
a characteristic feature of NCLs.

No change in the rectification of AMPARs in
Cln3�ex1–6 granule cells

Previous studies reported increased AMPA-mediated
neurotoxicity in dissociated granule cells and organotypic
cultured cerebellar slices from one-week-old Cln3�ex1–6

mice (Kovács et al., 2006), and improved motor skills in
one- to seven-month-old mice following AMPAR block-
ade (Kovács and Pearce, 2008; Kovács et al., 2011).
These authors proposed an increase in the number of
CP-AMPARs in Cln3�ex1–6 cerebellar granule cells, and
abnormally increased AMPA receptor-mediated neu-
rotransmission in the cerebellum. More recently, the same
authors reported an increase in both total and surface
GluA2 in acute cerebellar slices from one-month-old
Cln3�ex1–6 mice, and proposed a decrease in the number
of CP-AMPARs (Kovács et al., 2015). Our biochemical
analysis and patch-clamp recordings do not support ei-
ther of these proposals. We found no difference in the
levels of GluA2 or GluA4 protein in cerebellar lysates of
wild-type and Cln3�ex1–6 mice. Importantly, we found the
magnitude and I-V relationships of AMPAR-mediated cur-
rents obtained in the presence of intracellular spermine to
be similar in cultured cerebellar granule cells from wild-
type and Cln3�ex1–6 mice. In both groups of mice, I-V
relationships were linear, a feature characteristic of
GluA2-containing calcium-impermeable AMPARs. Given
that mEPSCs in Cln3�ex1–6 cells exhibited no detectable
alteration in amplitude, rise time, decay time, rectification
properties or underlying mean single-channel conduc-
tance, it seems highly likely that the number and compo-
sition of AMPARs at synapses was also unchanged. The
reason for these disparities is unclear, but it should be
noted that our studies were conducted using mice on a
C57BL/6J background, whereas the work of Pearce and
colleagues used mice on a 129S6/SvEv background. Im-
portantly, while there are some background-specific dif-
ferences in motor phenotype of these Cln3�ex1–6 strains,
both exhibit clear motor deficits (Kovács and Pearce,
2015).

Presynaptic changes at mossy fiber-granule cell
synapses in Cln3�ex1–6 mice

As with mEPSCs in cultured granule cells, the ampli-
tude and kinetics of qEPSCs evoked at mossy fiber to
granule cell synapses (in the presence of Sr2�) were
unaffected by loss of CLN3. However, we found a marked
decrease in the number of quanta released per stimulus in
Cln3�ex1–6 mice. This could indicate a reduction in the
probability of release or simply the activation of fewer
mossy fibers. Intriguingly, a recent report described in-
creased hippocampal field excitatory post-synaptic po-
tentials in Cln3�ex7/8 mice and suggested increased
axonal excitability at the earliest age studied (one month;
Burkovetskaya et al., 2017), tending to argue against the
second of these possibilities. In a separate set of exper-
iments in 2 mM Ca2�, we found the PPR of eEPSCs was
not affected by loss of CLN3, suggesting no change in

release probability. Thus, the effect of CLN3 loss may
depend on the extracellular Ca2� concentration.

In both wild-type and Cln3�ex1–6 slices, we observed
depression of eEPSC amplitudes during short trains of
mossy fiber stimulation in the presence of standard
extracellular divalent cations (2 mM Ca2�/1 mM Mg2�).
Surprisingly, when we reduced release probability by low-
ering extracellular Ca2� (1 mM Ca2�/2 mM Mg2�), we
observed loss of depression in wild-type cells (Nieus
et al., 2006; Saviane and Silver, 2006) but not in Cln3�ex1–6

cells. The fact that the loss of CLN3 appeared to have a
functional impact on transmission only when extracellular
Ca2� was reduced suggests the possibility of an alteration
in Ca2� handling or sensing. Recent studies have indeed
suggested that in both neurons (Warnock et al., 2013) and
neuronal progenitor cells (Chandrachud et al., 2015) cal-
cium handling is disrupted following loss of CLN3. This
has been shown to result in the aberrant elevation of
intracellular Ca2� following K�-induced depolarization or
moderate inhibition of the sarco/endoplasmic reticulum
Ca2�-ATPase by thapsigargin. Whether altered Ca2� han-
dling in mossy fiber terminals could account for the dif-
ferences in short term plasticity between Cln3�ex1–6 and
wild-type mice is unclear.

Ultrastructural changes at mossy fiber terminals in
Cln3�ex1–6 mice

Our 2D EM analyses revealed presynaptic structural
changes in Cln3�ex1–6 mice, including a decrease in the
vesicle density per mossy fiber terminal, a decrease in the
number of vesicles proximal to active zones, and a de-
crease in membrane adjacent vesicles. Interestingly,
broadly similar findings have been described in a different
NCL. A reduction in vesicle number has been seen in
cortical neurons from palmitoyl-protein thioesterase-1
knock-out mice (Ppt1–/–), a model of infantile CLN1 dis-
ease (Virmani et al., 2005; Kim et al., 2008). This effect was
linked with persistent membrane association of palmitoy-
lated synaptic vesicle proteins preventing endocytosis. Con-
versely, in cathepsin D knock-out mice (Ctsd–/–), a model of
congenital CLN10 disease, there is a reported increase at
hippocampal CA1 synapses in the total vesicle number
and in the number of docked vesicles (Koch et al., 2011).
Thus, changes in the presynaptic vesicle pool may be a
common feature of multiple NCLs. How, or if, the reduc-
tion we observe in synaptic vesicles of Cln3�ex1–6 mice
relates to previously described changes in intracellular
vesicular trafficking of CLN3-deficient cells (Fossale et al.,
2004; Metcalf et al., 2008; Tecedor et al., 2013; Wavre-
Shapton et al., 2015) remains to be determined. However,
it is possible that the reduced vesicle numbers constitute
a compensatory mechanism to overcome the tendency
toward elevated release under physiologic conditions.
This idea follows from our observation that in 1 mM Ca2�

normalized amplitudes of meEPSC in Cln3�ex1–6 mice
were greater than those of wild-type mice. Of note, the
reduced Ca2� recordings are likely to reflect more accu-
rately the situation in vivo, where the concentration of
extracellular Ca2� is thought to be closer to 1 rather than
2 mM (Borst, 2010).
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Very recently, a paper was published which described
disruption of supraspinal synaptic transmission in the
Cln3�ex1–6 mouse due to impaired presynaptic release,
and proposed this as a causative mechanism in juvenile
Batten disease (Grünewald et al., 2017). CLN3 loss was
found to impair inhibitory PSCs or inhibitory synaptic
transmission and to cause loss of GABAergic interneu-
rons, in amygdala, hippocampus, and cerebellum. In ad-
dition, the authors reported a reduction in the amplitude of
eEPSCs in both principal neurons of the lateral amygdala
and granule cells of the dentate gyrus, no change in the
amplitude of mEPSCs or spontaneous EPSCs, but a re-
duction in their frequency. Paired-pulse facilitation during
stimulation of the lateral perforant path was also reduced.
Overall, the findings were interpreted as reduction of excit-
atory and inhibitory inputs. Our results echo these observa-
tions in identifying presynaptic changes in Cln3�ex1–6 mice.

Irrespective of the precise mechanism underlying syn-
aptic changes in Cln3�ex1–6 mice (Cárcel-Trullols et al.,
2015; Grünewald et al., 2017), our observations are po-
tentially important in understanding the locus of early
changes in juvenile Batten disease. While the recent study
of Grünewald et al. (2017) examined synaptic function in
symptomatic (14-month-old) Cln3�ex1–6 mice, the synap-
tic changes we observed in two-week-old mice occurred
in the presymptomatic phase of the disease, and are thus
likely to reflect the initial causative changes. Previous
functional studies focused primarily on an apparent se-
lective increase in AMPAR function in cerebellar granule
cells of Cln3�ex1–6 mice, and proposed a block of AMPARs
as a potential therapeutic approach (Kovács et al., 2011).
Importantly, our results argue strongly against any early
change in postsynaptic AMPARs.
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