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Abstract
Two leading European professional societies, the European Society of Human Genetics and the European Society for
Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at
the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the
expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded
carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced
genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively
parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in
human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline
genome editing. The resulting paper represents a consensus of both professional societies involved.
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Introduction

The two leading European professional societies in the field
of assisted reproduction and medical genetics, the European
Society of Human Genetics (ESHG) [1] and the European
Society for Human Reproduction and Embryology
(ESHRE) [2], have been working together since 2004 to
evaluate the impact of the rapid progress of research and
diagnostic technologies at the interface of assisted

reproduction and medical/molecular genetics. Previously,
the outcomes of the two consensus meetings have been
published [3, 4] in both society journals. The inter-
disciplinary expert group (further referred to in this paper as
‘the panel’) co-opted several new members and met for the
third time in Amsterdam (21–22 September 2016).

Recently, there have been many research developments
in the field of genomics, comprising mainly the ongoing
transition from traditional 'monogenic genetics' towards
comprehensive testing of the human genome by integrating
massively parallel sequencing (MPS; or synonym 'next
generation sequencing') approaches, together with advanced
bioinformatics. Currently, it is possible to elucidate the
entire single nucleotide-(SNV), copy number-(CNV) and
structural variation (SV) of the human genome, i.e., beyond
the original medical indication for which a patient (together
with his or her family) was referred for genetic testing.
These technological advances are being reflected in
expanded carrier screening (ECS), voiding of gamete donor
anonymity, preimplantation genetic testing (PGT) and non-
invasive prenatal testing (NIPT), and in our understanding
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of the underlying causes of male and female infertility.
Likewise, issues related to mitochondrial replacement in
human oocytes and to cross-generational epigenetic
inheritance or germline genome editing (GGE) technologies
are gradually creating paradigm shifts in the field of assisted
reproductive technology (ART). Therefore, the panel
mainly focused on the aforementioned selected topics,
which are currently being or are likely to be introduced into
clinical practice.

Recently, transnational registry data provided evidence
that the number of ART cycles in Europe is gradually
increasing [5], with more than 640,000 cycles reported in
2012, making a growing contribution to the overall birth
rate in many nations in Europe and beyond. The unprece-
dented complexity of generated research data and the fast
(and often hurried) implementation of new technologies into
the fields of assisted reproduction as well as of reproductive
genetics render the translation of research results into clin-
ical practice challenging. Therefore, due to the increasing
population impact of ART and fast developments in
research, the introduction both of novel diagnostics [6] and
therapies into routine ART clinical practice requires pru-
dence and evidence [7].

It also needs to be acknowledged that there is a blurred
boundary between research and its clinical application.
Medical and legal liability issues may also arise if the roles
and responsibilities of different actors at different stages of
translation of research results are not clearly established.
Genetic counselling has become increasingly important for
patients with various disorders associated with infertility
and for future parents to make informed reproductive
choices.

The aim of the current consensus paper is to outline the
latest developments in ART and genetics/genomics,
including their practical implications for clinical manage-
ment of patients with genetic risks and/or infertility.

ECS in preconception- and gamete donor contexts

An increasing number of preconception carrier tests for
autosomal recessive (AR) diseases have become available
for couples who want to achieve a pregnancy. Initially,
carrier testing was developed for AR diseases that were
frequent in specific ethnic groups (for example, Tay–Sachs
disease in Ashkenazi Jews, hemoglobinopathies in Medi-
terranean and African populations and cystic fibrosis in
European-derived populations). Various professional
societies have recommended preconception carrier testing
in high-risk populations (American College of Obsetrics
and Gynecology Committee, 2015 [8]) and the American
College of Medical Genetics and Genomics 2015 [9, 10].
Given the technological advances in the field of genetic
testing, panels for ECS have become broadly available,

offering parallel analysis of disease-associated variants in
multiple genes, for individuals or couples regardless of their
ancestry. A number of such tests are now provided as
commercial products, and even within a direct-to-consumer
(DTC) setting [11, 12].

The primary objective of ECS in individuals or couples
should be to inform them of possible genetic disease risks
for their future offspring and their reproductive options in
order to foster autonomous reproductive choices [10].
Although the secondary outcome of broadly offered ECS
schemes may decrease the frequency of a target condition,
as reported, for example, in cystic fibrosis [13], its primary
goal is to ensure reproductive autonomy in tested couples.
Therefore, non-directive counselling in a pre- and post-test
setting is of utmost importance within this context [14].
Still, complex questions may arise if a 'positive' infertile
carrier couple would request ART treatment, while rejecting
PGD. Would it, then, be morally acceptable or even morally
obliged for medical professionals to get involved, given
their responsibility to take account of the welfare of the
possible future child, to withhold access to assisted repro-
duction? [15].

Readily available ECS requires a proper implementation
strategy [10]. In this regard relevant questions need to be
answered first, i.e., what are the responsibilities of health-
care professionals who see couples before pregnancy; which
genes and diseases should be tested for; which population
groups should be targeted; who will pay for ECS; are
couples aware that de novo disease-associated variants are
not accounted for and that some disease-associated variants
(for example, CNV, SNV) in multiple AR conditions are
not examined due to the methodology used and its inherent
technical limitations?

To ensure successful implementation of population-
based ECS, efforts should be made to increase knowledge
about genetic disease (i.e., not only on AR disorders) within
primary care, among gynaecologists, obstetricians and the
general public, in order to create appropriate awareness and
address personal benefits of screening in a non-directive
manner [16]. Such information should include residual risks
of tested diseases and age specific risks of de novo disease-
associated variants [17]. Importantly, dominant de novo
mutations represent a non-negligible (1–2%) cause of
genetic disorders [11, 18].

The ESHG has recommended that in ECS panels 'priority
should be given to carrier screening panels that include (a
comprehensive set of) severe childhood-onset disorders
[10]. Tests should be designed to achieve high clinical
validity (clinical sensitivity, negative and positive predictive
values (PPV) and should have established clinical utility'.
Current and/or future genome-wide approaches to ECS
should also strive to minimise incidental findings [19] since
the capacity of genetic services to provide follow-up
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counselling is limited (see, for example, the 2013 overview
of clinical genetics staffing in selected European countries
from a survey conducted by ESHG in 2013: [20]). Providers
should also take into account individual differences in
genetic risk and disease severity perception by the general
population. Finally, increasing immigration of non-
European populations requires expansion of the disease
coverage to those particularly occurring in large immigrant
ethnic groups and may pose interpretational and counselling
challenges both due to a different spectrum of disease-
associated variants (often with unclear phenotypic impact,
since there is a general lack of evidence in non-European
populations because of the scarceness of respective studies)
and to divergent cultural perceptions of examined indivi-
duals and/or of their families [16, 21, 22].

ECS may be of utility for infertile couples when donor
gametes are used to allow the matching of the donor with
the respective partner [11, 23]. Couples who already have a
child with a monogenic condition may also be interested in
avoiding other genetic disorders, and consanguineous cou-
ples may also benefit from this approach. Consequently,
increased use of ECS may lead to an increased use of PGD
and thus less frequent requirement of prenatal diagnosis
(PND), both leading to a decrease of elective termination of
pregnancy (ETP) for severe genetic disease. Furthermore,
antenatal ECS and genetic testing in different phases of life
may become intertwined. While early offers of preconcep-
tion ECS may target serious childhood conditions for which
PGD or PND are an option to avoid the live birth of an
affected child, ECS may also include treatable conditions
(for example, phenylketonuria or medium-chain acyl-CoA
dehydrogenase deficiency) to allow for treatment immedi-
ately after birth or even during pregnancy (for example, 21-
hydroxylase deficiency/congenital adrenal hyperplasia) [24,
25].

Finally, there is increasing evidence that combined low-
grade somatic and germline mosaicism eludes current
detection techniques and that routine utilisation of blood
leucocytes as a proxy for examination of germline variation
is insufficient. Therefore, if economically and technically
feasible it could be prudent to test in unclear cases genetic
variation in the three major embryonic lineages in a given
patient in order to estimate the degree of potential post-
zygotic mosaicism (i.e., from white blood cells reflecting
mesoderm, urine sediment cells—endoderm and dry buccal
swab cells or hair follicules—ectoderm). Nonetheless, even
after such a complex genetic testing approach mosaicism
cannot be completely excluded. In this regard low-grade
undetected parental mosaicism may be responsible for
erroneously assigned 'de novo status' for observed variation
and could skew recurrence risk counselling [26]. Possible
germline mosaicism should thus always be mentioned and

couples should be informed about the empiric <1% recur-
rence risk in simplex de novo variants [27].

Thus, ECS may provide a false sense of reassurance, and
the lay and professional public should be duly educated in
this regard [10].

The panel recommends that national professional
organisations in the field of ART and medical/clinical
genetics either adopt relevant international guidelines
for ECS with modification if required, or develop their
own guidelines on how to make ECS responsibly
available for their respective populations. The panel
also calls upon ECS providers to transparently declare
the inherent limitations of the applied methodology.

Advances in genetic testing and voiding of
anonymity of gamete donors

Historically, gamete donation has been predominantly
anonymous. Moreover, many heterosexual parents choose
not to disclose the donor origin to their children, regardless
of whether the donation was anonymous or not [28, 29].
Most but not all European countries delegate the decision
on whether to disclose to the parents [30].

Some registries, such as the Donor Sibling Registry [31],
Donor-Conceived Register [32] and Family Tree DNA [33],
allow donors, donor-conceived children and donor siblings
to trace each other through genetic ancestry testing, thus
possibly reversing the anonymity of the donor. When both
parties have consented to find genetic relatives, there is little
ethical and legal concern. However, within the context of
DTC genetic testing, the discovery of relatives can be
accidental and/or relatives may be traced without their prior
knowledge or consent. In this regard, DTC genetic testing
has already been used by several million people to deter-
mine their ancestry [30]. The results of these tests, which
are usually provided commercially, enable the consumer to
match relatives 'on-line'. This strategy has also already been
broadly used by adoptees and foundlings [34]. Moreover,
the current affordable costs of DTC genetic testing make it
accessible to the majority of consumers in Europe and
beyond.

With the growing use of DTC genetic testing, the
anonymity of gamete donors can no longer be guaranteed
[30, 35]. It does not suffice for the donors to refrain from
entering genetic data into the databank. If any of their
relatives do, the donor’s family can be 'collaterally' identi-
fied. Also children whose parents did not disclose that they
were donor-conceived may inadvertently find out about
their donor origin. DTC genetic testing may provide inter-
esting information regarding an individual's ancestry
(although even in this instance there is a potential for ser-
ious misuse of such information [36]) and sometimes even
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useful information on genetic predispositions. Furthermore,
donor-conceived children may also find their half-siblings,
the donor himself/herself or other relatives through ancestry
testing [37, 38].

Consequently, anonymous gamete donors should be
informed that even though the fertility centre or donor
agency will strive to protect their identity, their anonymity
cannot be absolutely guaranteed. They should be made
aware of the fact that even if they do not submit their DNA
to one of the donor registries, they themselves or one of
their relatives could be identified. Also, the donor's own
(future) biological offspring may find half-siblings through
these registries. Those donating or conceiving with donated
gametes should keep this possibility in mind when deciding
whether or not to disclose their donor status/donor con-
ception to their relatives. Another emerging issue is related
to the fact that identity disclosure reopens substantiated
analyses and legal discussions on numerical limits in donor
conception regimes in terms of their potential population
genetic impact [39].

The panel recommends that patients undergoing ART
treatment with gamete donation should be informed
that their children may eventually discover their donor
by genetic testing. Furthermore, laboratories offering
DTC genetic testing should transparently inform their
customers about the potential impact of their services
on the possible discovery of non-paternity or
unknown family relationships. ART centres that are
using anonymous gamete donors need to provide clear
information that donors may eventually be traced.

Advances in the genetics of fertility disorders

The fields of male (MI) and female (FI) infertility have
witnessed substantial research advances on the underlying
genetic causes of infertility. However, it needs to be noted
that MI/FI are of complex multifactorial origin and have a
very broad spectrum of clinical manifestations. Moreover,
the diagnosis of 'infertility' is generally defined in clinical
terms only, with little a priori patient stratification involved
in scientific studies. Much of the stated research progress is
mainly due to the utilisation of MPS and other 'omics'
technologies, including state-of-the-art bioinformatics
approaches. Nonetheless, despite such advances, current
treatment options in MI/FI have not made a substantial
progress [40, 41].

Male infertility

The algorithm of genetic testing in MI has not changed.
Karyotyping (mainly aimed at examination of gonosomal
aberrations, which are the major cause of MI) is followed by

testing of disease-associated variants in the CFTR gene and/
or Y chromosome microdeletions. However, in ~40% of all
cases of MI the underlying genetic pathogenesis is
unknown, 'idiopathic MI' [42]. Genetics might play a role
but there still needs to be progress in the understanding of
the roles of environmental factors, for example, obesity or
endocrine disruptors [43], smoking and air pollution [40]
and epigenetic mechanisms (see further). Another factor
which is important to take into account in Western popu-
lations is the increasing paternal age and the concurrent
increase of de novo germline disease-associated variants
[44].

Recently, a 9-year prospective study from a single centre,
comprising 1737 cases, has identified major causes of MI in
40% of all patients with regards to 'reduced total sperma-
tozoa counts' [45]. Additional progress was brought by
proteomics and expression profiling analyses [46], includ-
ing the study of relevant animal models (for example,
Mouse Genome Informatics) [47] and of the reproductive
tract microbiome [48]. However, application of research
outcomes into routine clinical practice has been hampered
by unclear definitions of MI cohorts under study, including
unclear specification of 'idiopathic MI' (i.e., what exclusion
criteria were applied, what exclusion tests were utilised?),
which precludes replication or evidence-based meta-ana-
lyses [49]. Another confounding factor is related to the fact
that many studies use different standards for sperm analyses
and do not always adhere to the standardised World Health
Organisation criteria [49].

The association of SNV variation [50], drawn from
genome-wide association studies (GWAS) in MI, is often
based on small cohorts [42]. Nonetheless, there has been
marked progress in the identification of disease genes and
disease-associated variants in 'non-syndromic' MI. Some of
the more prominent instances include teratozoospermia in
its rare forms characterised by globozoospermia with
disease-associated variation detected in DPY19L2 [51];
SPATA16 [52], macrozoospermia in AURKC [53], altera-
tions of sperm flagella in TUN-STBG1 (Viville et al. 2017;
personal communication) and asthenozoospermia in
DNAH1 [54], CATSPER1, GALNTL5 [55]. In the case of
spermatogenic failure characterised by azoospermia and/or
oligozoospermia there has also been progress in terms of
identification of disease genes comprising, for example,
NR0B1, NR5A1, TEX11, TEX15 [56] and MAGEB4,
NANOS1, NR5A1, SOHLH1, SYCE1, TAF4B, WT1 and
ZMYND15 (in alphabetical order) (see Table 1 for gene
names). Interestingly, TEX11 is an X-linked gene with both
SNV and CNV hemizygous disease-associated variants,
causing female-transmitted male meiotic arrest [57].
Although there is no predominant disease-associated var-
iation observed thus far, from the clinical point of view
identification of such variation associated with
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spermatogenic failure could indicate the utility of sperm
cryopreservation at an appropriate age, to preserve fertility
in individuals involved. Novel targeted biomarker assays
are under development [40], which could improve genetic
counselling and patient stratification for targeted ART
treatment.

Awareness of rare genetic syndromes is also relevant in
unexplained MI. Although such syndromes are often
detected by a medical and family history, typical dys-
morphic features, associated disabilities and medical
examination, i.e., prior to the diagnosis of MI itself, there
could be mild forms of these diseases presenting in adult-
hood as MI, due to improved standard medical and social
care. These clinical entities, for example, comprise hypo-
gonadotrophic hypogonadism (Kallmann syndrome—MIM:
308700), where MPS led to the identification of additional
candidate genes [58]. Research progress has been made in
the case of Klinefelter syndrome by application of testis
transcriptomic analysis [59] MI is also commonly asso-
ciated with rare syndromes with maldescended testes where
most of the progress in research is again due to the appli-
cation of MPS and bioinformatics: Noonan—MIM:163950
[60], Cleidocranial dysplasia—MIM:119600 [61], Bloom—

MIM:210900 [62] and Silver–Russel syndromes—
MIM:180860 [63]. Likewise, primary ciliary dyskinesia
(MIM: 244400) and myotonic dystrophy 1 (MIM: 160900),
which are associated in their milder forms with MI, have
been subjected to similar research strategies [64, 65].

The panel recommends that standardised clinical
terminology and inclusion/exclusion criteria for MI
should be used to allow replication studies and
evidenced-based meta-analyses to move the field
forward. Due to rapid progress in research, selected
gene panels may soon become a useful tool allowing
identification of additional causes of MI, and thus
improve genetic- and reproductive counselling, facil-
itate patient stratification and therefore enable more
precise ART approaches.

Female infertility

In the same way as in MI, research on the underlying
genetic causes of FI is quickly advancing. Nonetheless,
relatively little is still known about the genetic background
of most cases of FI or female subfertility (FSF), and even
less is translated into novel clinical practice. Evidently, FI is
of complex multifactorial origin as reflected by the clinical
and genetic heterogeneity of the cohorts under study, which
then hinders replicability of previously performed analyses.
Presumably hundreds of genes have to interact in a precise
manner during sex determination, gametogenesis, complex
hormone actions/interactions and embryo implantation andTa
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its early development, in order to create a healthy offspring.
Thus, disorders related to FI/FSF are expected to be highly
polygenic [66]. Considering that in mice more than 500
genes have already been associated with FI (MGI, see
above) many more disease genes are waiting to be identified
in humans in the coming years. Non-coding RNA's and
epigenetic modifications have also been implicated in the
control of ovarian function and thus their disturbances are
likely to be associated with FI [67].

Chromosomal aberrations remain a major known cause
of premature ovarian insufficiency (POI) and recurrent
miscarriages, thus decreasing the chance of successful
pregnancy [68, 69]. A sizeable proportion of disorders of
sexual development are also caused by gonosomal aberra-
tions, and for other aetiologies, such as
hypothalamic–pituitary–gonadal deficiencies, many addi-
tional disease-causing genes have already been identified
[70].

There has been some progress in understanding of the
role of genetic disease-causing genes in common multi-
factorial disorders such as polycystic ovary syndrome
(PCOS) and endometriosis, each affecting around 10% of
women with FI/FSF. In PCOS, better patient stratification
and functional genomics could provide novel research
avenues [71, 72], while in endometriosis [73] abnormal
epigenetic mechanisms in stromal cells may play a patho-
genic role.

Progress has also been achieved in the identification of
monogenic causes of FI/FSF, in particular for 'non-syn-
dromic' POI for which multiple X-linked and autosomal
genes have been identified as recently reviewed [74]. POI is
highly clinically heterogeneous and is associated either with
ovarian dysgenesis reflected by primary amenorrhoea or
with secondary amenorrhoea. However, the majority of POI
cases are 'idiopathic'. Additional disease-causing genes have
been identified by candidate gene approaches, GWAS and/
or whole-exome analyses utilising MPS. However, disease-
associated variants in these genes were reported in a rather
small number of cases, some being confined to specific
populations [66, 67, 75]. Interestingly, recent studies
revealed a complex genetic architecture of POI [76]. The
authors screened both known and potential candidate genes
in a clinically well characterised cohort of patients. Disease-
associated variants were found, for example, in BMP15,
FIGLA, FOXL2, GALT, GDF9, LHX8, NOBOX, REC8,
SMC1β and SOHLH1 (in alphabetical order), which fall into
transcription factor TGF-β ligand, enzyme and 'meiosis'
functional categories [53]. In the latter category, other
authors have reported disease-associated variants in STAG3
[77], SYCE1 [78], HFM1 [79], MCM8 and MCM9 [80]
(Table 1 for gene names). From the clinical point of view,
variation linked to POI may also predict the risk of a pre-
mature menopause in affected families [67, 81].

The list of disease-causing genes related to 'syndromic'
POI, where its pathogenesis is related to other clinical
entities, was reviewed elsewhere [75]. In many instances,
these multi-system syndromes rather than FI itself lead to
the clinical diagnosis and referral for genetic testing, often
in the pre-reproductive age. Disease-associated variants in
the FOXL2 gene provide an example. Altered function of
this gene causes the blepharophimosis/ptosis/epicanthus
inversus syndrome (BPES; MIM: 110100) with or without
POI. Progressive external ophthalmoplegia (MIM: 157640)
together with other symptoms, including POI, is caused by
disease-associated variants in POLG thereby implicating
mitochondria-related pathology [82]. Disease-associated
variants in GALT (MIM: 230400 for galactosaemia),
PMM2 (MIM: 212065 for congenital disorders of glyco-
sylation type Ia), CLPP (MIM: 614921 for congenital dis-
orders of glycosylation type It), NOG (MIM: 185800 and
186500 for symphalangism 1a and multiple synostoses
syndrome 1, respectively), EIF2B2 (MIM: 603896 for leu-
koencephaly with vanishing white matter syndrome) and
HARS2 (MIM: 157400 for progressive external ophtamo-
plegia with mitochondrial DNA (mtDNA) deletions) have
also been secondarily implicated in POI (see above) (see
Table 1 for gene names). Likewise, disease-associated
variants in several different disease-causing genes (CLPP,
HARS2, HSD17B4, LARS2 and TWNK; in alphabetical
order (see Table 1 for gene names) are implicated in the
development of the Perrault syndrome (MIM: 233400),
which associates sensorineural hearing loss and ovarian
dysfunction [83]. Finally, CGG expansions in the 'pre-
mutation range' in the FMR1 gene remain a well-established
cause of isolated POI, more frequent in families with Fragile
X syndrome (MIM: 300624), than in sporadic cases of POI.

Recently, dominant negative disease-associated variants
in the TUBB8 gene, causing defects in spindle assembly and
leading to oocyte maturation arrest, have been described in
several families. This autosomal disorder was either male-
transmitted or de novo and its phenotype was female-
specific [84]. Disease-associated variants in TLE6 were
linked to preimplantation embryonic lethality [85].
Although the existence of the genuine empty follicle syn-
drome is still a matter of debate, disease-associated variants
in the LH/CG receptor gene (LHCGR) have been reported
in this disorder [86].

There have also been advances in pharmacogenomics
research focusing on the identification of genetic variation
related to the individual response to controlled ovarian
hyperstimulation (COH). While a number of candidate
genes are known, only FSH receptor (FSHR) variation (the
p.Asn680Ser 'polymorphism') has clinical utility due to its
defined predictive value [87], and this variation was also
linked to some instances of POI [88].
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The panel concludes that the increasing knowledge of
the genetic background, together with rapid techno-
logical developments, could foster improved diagnos-
tics in FI. This means that in addition to the current
routine testing of patients with POI for chromosomal
aberrations and FMR1 pre-mutations, selected gene
panels may soon become a useful tool allowing
identification of additional causes of FI, and thus
improve genetic and reproductive counselling and
patient stratification. The same is true for infertile
women producing no or only non-viable oocytes or
those suffering from premature menopause. Even-
tually, oocyte donation could be offered in a more
personalised manner in FI.

Advances in PGT

PGT is defined as the multidisciplinary clinical application
of genetic and ART technologies aimed at the examination
of a limited number of cells of an embryo in its pre-
implantation phase of development in vitro, i.e., within the
context of IVF. PGT is a complex sequential laboratory
procedure, which requires multidisciplinary collaboration of
ART specialists with laboratory geneticists experienced in
the analysis of minimal numbers of cells.

Currently, the arbitrary distinction between the two
major PGT modalities, comprising PGD and PGS, is gra-
dually vanishing as genome-wide SNV and CNV variation
genetic laboratory testing is being carried out simulta-
neously from the technical point of view. This is also
reflected by the proposed change of nomenclature for these
laboratory procedures within the 'International glossary on
infertility and fertility care', which is currently in prepara-
tion by the International Committee for Monitoring Assisted
Reproductive Technology [89]. There, PGT would become
the 'root procedural term' to which chromosomal aneuploidy
screening/testing (PGT-A) and PGT monogenic disease
diagnosis (PGT-M) or any other genetic testing modality
could be annexed.

PGT-M is aimed at diagnosing a specific 'Mendelian'
genetic disorder in the embryo for which the prospective
parents are at increased risk [90]. PGT-M has an advantage
over conventional PND as it precludes the need to consider
ETP in an affected ongoing pregnancy.

PGT-A (also known in the literature as PGS, 'PGD for
aneuploidy screening/testing/- PGD-AS' or 'PGD for aneu-
ploidy – PGD-A') is aimed at the detection of chromosomal
aneuploidy (one or more of the 23 human chromosomes) in
order to select (i.e., 'screen') embryos without disease-
associated chromosomal aberrations. These embryos are
expected to have the highest chance of proceeding to a
healthy live birth. PGT-A is principally carried out to

improve IVF efficiency [91]. The beneficial effect of PGT-
A utilising 'comprehensive chromosome screening' tech-
nology on clinical and sustained implantation rates, in
particular in patients with normal ovarian reserve, has been
documented in a meta-analysis [92]. However, as the stu-
dies included in the aforementioned paper only refer to
good prognosis patients, more data are needed to confirm
the validity of PGT-A for improving the clinical outcome of
PGT-A in other patient categories and various stages of
embryo biopsy [7]. It is important to note that since 'IVF
success' has been defined by different authors in many
ways, it is almost impossible to compare the outcomes of
various studies within evidence-based meta-analysis [91].
Better patient stratification prior to PGT-A would help to
assess which testing strategy is optimal for specific patient
populations. Therefore, currently the beneficial effects of
PGT-A do not have a sufficient level of evidence, as the
results of standardised RCTs have not been published [7].
Since PGT-A is costly, 'positive' RCT outcomes also
commonly represent a prerequisite for PGT-A reimburse-
ment within most European health-care systems.

Since improved vitrification methods are currently being
introduced [93] and a specific RCT has been carried out
[94], selection of fresh embryos for transfer by PGT is
increasingly being replaced by frozen embryo transfer. This
approach allows for more time to perform high-quality PGT
and aggregate more 'diagnostic cases' for simultaneous
examination, which also decreases costs. Essentially, the
increased utilisation of evidence-based PGT is intertwined
with advances in embryo vitrification and reliant on high-
quality expertise in embryo micromanipulation [91],
including properly established indicators [95].

Whole-genome haplotyping approaches, for example,
karyomapping [94–98], as well as MPS-based whole-gen-
ome 'deep sequencing' allows for concurrent haplotyping,
SNV and CNV examination, hence enabling aneuploidy
assessment when specific PGT and informatics approaches
are applied [99]. Haplotyping enables reliable PGT-M for
virtually any inherited disease-associated variants (even
without the necessity of a prior work up identifying the
respective variants within a given family), while genome-
wide low-coverage MPS allows PGT-A, including diag-
nosis of partial chromosomal aneuploidies down to as little
as 1.8 Mbp in size [98–102]. Whereas most PGT-M testing
methods to date had focused on analysing a single locus or a
localised region of the genome, novel technical approaches
may provide broader examination of an embryo's genomic
variation. As a consequence, not only the genetic variants of
interest, but also genomic variation unrelated to the original
referral and request of the couple, may be detected. This
approach opens novel ethical issues to be explored [103,
104] and subsequently professional guidelines ought to be
developed.
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PGT, like all forms of clinical genetic testing, requires
strict quality assurance and assessment. Regular participa-
tion in external quality assessment should be considered as
essential and is indeed obligatory for genetic tests in some
countries. PGT-specific schemes are readily available for
both monogenic and aneuploidy testing in Europe, and
beyond. Laboratory accreditation according to ISO15189 is
still considered the most effective route to quality assurance
[105] and its uptake is increasing in Europe, and beyond. It
needs to be noted that technique-specific guidelines, such as
those for diagnostic MPS, are equally relevant and impor-
tant for PGT and should be observed [106, 107].

Likewise, the 'Standards and guidelines for the inter-
pretation of sequence variants: a joint consensus recom-
mendation of the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology'
should be observed [108]. Moreover, Human Genome
Variation Society recommendations on sequence variant
nomenclature and proper assignment of 'disease association'
in detected variants (hence reserving the prefix 'pathogenic'
only to a clear set of diagnostic situations denoting that a
given variant 'causes disease when in a specific context')
[109], including relevant recommendations for the reporting
of diagnostic tests, ought to be followed in PGT [110].

Another issue related to the clinical implementation of
PGT-A is due to the fact that embryo mosaicism challenges
provision of categorical (or 'conclusive') results. Although
trophectoderm (TE; 'day 5' or 'day 6') biopsy allows for
obtaining 'aggregate' template DNA from multiple
embryonic cells, rather than one or two cells within a
blastomere ('day 3') biopsy, it remains merely a general
biopsy technique with its inherent limitations regarding the
representativeness of the sample drawn in terms of the tis-
sue/organ under study. These limitations are similar to those
currently discussed in the domain of cancer, where accurate
diagnosis and/or replicable research progress also to a large
extent depend on the experience of the biopsy operator and
exact position of the biopsy within the tissue of interest
[111]. Therefore, the sample of cells obtained by embryo
biopsy (at any given developmental stage) might not be
representative of the entire embryo, as high rates of
mosaicism have been also reported at the blastocyst stage
[112]. In conclusion, while MPS improves analytical sen-
sitivity and thus detection of mosaicism in a given embryo
biopsy, it does not remedy the limitation that only the cells
present in the biopsy are being analysed [113].

There already are reports on successful pregnancy out-
comes following the replacement of selected mosaic aneu-
ploidy blastocysts [114, 115]. This observation, potentially
changing the current paradigm of PGT-A, calls for follow-
up multicentric studies to this initial observation and to duly
prioritise embryos for transfer in terms of quantitative and
qualitative parameters of embryo chromosomal mosaicism.

The chance of a healthy live birth will vary depending both
on the rate of mosaicism and on the type of aneuploidy
(which chromosome, monosomy vs. trisomy, are involved).
The current challenge in this field is thus to define 'cut-off'
levels, allowing to classify embryos as transferrable as first
priority (i.e., no mosaicism detected), transferrable as sec-
ond priority (i.e., moderate level of mosaicism with exclu-
sion of those chromosomes potentially related to viable
pathological conditions) and non-transferrable (i.e., exces-
sive level of mosaicism or mosaics including chromosomes
potentially related to viable pathological conditions [116].
Therefore, PGT-A could be considered primarily as a
'ranking tool' (i.e., a 'quantitative selection strategy'), rather
than a 'screening tool' (i.e., 'qualitative selection strategy'),
in order to discern euploid embryos from aneuploid ones
[117].

This important observation leads to further questions
about who should decide on the ranking or exclusion of
embryos for transfer, and about what information is pro-
vided by the genetic laboratory to the ART clinician and
IVF laboratory, and the prospective parents [103]. Com-
prehensive reproductive and genetic counselling with the
latter is needed in order to ensure an adequate under-
standing by couples of the possibilities and limitations of
the current genomics and ART approaches related to PGT-
A. Infertile couples also need to be made transparently
aware of the fact that PGT-A alone cannot increase the live
birth rate per cycle initiated, since it represents a ranking
mechanism, not a therapy per se [7]. However, secondary
outcome measures, such as mitigation of embryo implan-
tation failures, miscarriage rate and cost-effectiveness, may
be positively affected by performing PGT-A in specific
patient populations [91, 101, 118]. PGT-A also allows
negative selection of embryos with viable trisomies in
selected couples with limited reproductive prospects, for
example, owing to parental age. As current evidence is
limited, more research has to be carried out and data from
multicentric RCTs need to be gathered by harmonised
methodologies, thereby enabling the proposed 'PGS 2.0'
concept [91, 119, 120, 121]. Utilisation of advanced MPS-
based technologies allowing sensitive and specific labora-
tory testing procedures together with the appropriate stan-
dardisation of IVF success reporting in accordance with the
proposed 'ICMART' glossary (see above) could foster
replicability of RCTs in PGT-A.

Even in the absence of RCTs, PGT-A is currently prac-
tised in an increasing number of laboratories globally. As
soon as there is proven laboratory technology, which can
select clearly non-viable embryos based on their chromo-
some constitution, the application of PGT-A could be
considered as a part of medical practice in high-risk cases
(for example, with advanced maternal age). By avoiding
inevitable failure of respective ART cycles by deselecting
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evidently non-viable chromosomally abnormal embryos,
PGT-A may mitigate unnecessary suffering of patients,
improve the overall efficiency of IVF in the couple involved
and decrease unnecessary COH-related costs.

There has been promising research progress in the utili-
sation of blastocoele fluid (BF) [122, 123] serving as an
alternative source of template DNA for PGT carried out by
MPS [124]. BF reflects the chromosome status of the
embryo (i.e., of the inner cell mass; ICM), compared to the
sampling of TE cells, which represent only the extra-
embryonal tissues. BF is sampled by aspiration with a fine
needle (blastocentesis), prior to embryo vitrification (see
above). It has been documented that the timing of blas-
tocoele re-expansion in vitrified-warmed cycles represents a
favourable predictive factor for positive clinical pregnancy
outcome: the faster the re-expansion of the blastocoele, the
higher the further developmental potential of the blastocyst
[125]. Research in this area is ongoing but when technical
difficulties are overcome and outcomes of PGT-A following
blastocentesis could be independently validated, then BF
may become the preferred source of DNA for PGT.

Finally, utilisation of extracellular embryonic 'matrices',
for example, drawn from spent in vitro culture media (CM),
represents another research avenue for sampling of template
DNA (although likely fragmented) for 'non-invasive PGT'.
However, there are concerns that CM are not produced
under 'human DNA-free' conditions and/or there remains a
possibility that residual DNA from maternal (for example,
cumulus) cells could be present [126, 127].

The future of PGT is closely related to the develop-
ment of novel genome-wide MPS strategies, but also
reliant on advances in blastocyst vitrification, together
with appropriate embryo micromanipulation expertise
of a given IVF centre. The majority of relevant
professional guidelines for genetic/genomic testing
within the 'postnatal domain' are applicable to PGT,
including rigorous adherence to quality assurance.

The panel calls for a balanced view on the current role
PGT-A in ART in terms of the overall improvement
of IVF efficiency. Currently, PGT-A represents a
ranking mechanism, which has documented positive
impact in selected patient populations regarding
positive secondary outcome measures such as reduc-
tion of embryo implantation failures or miscarriage
rates.

The panel also calls for a standardised description of
IVF success reporting (for example, related to live
birth rate) so that current and/or future RCTs related to
application of novel PGT-A approaches could be
replicated and thus stand up to the requirements of

evidence-based medicine, hence in support of the
'PGS 2.0 concept'.

Whole-genome approaches to PGT-A offer the
potential to prioritise embryo transfer not only on
the basis of the absence of disease-associated (SNV/
CNV) variants related to the primary genetic referral
and request of the infertile couple, but also the overall
genetic constitution of the embryo. However, guide-
lines on how to use this information in the genetics
laboratory are lacking, as are relevant ethical con-
siderations, and thus need to be addressed by
professional societies in the near future. Hopefully,
novel techniques related to utilisation of BF or spent
CM could overcome invasive template DNA sampling
of the early embryo for PGT.

Non-invasive PND and prenatal screening

Similarly to 'procedural' characterisation of PGT (see
above), the term NIPT should be generally reserved for the
description of genetic technologies utilising the analysis of
cell-free ‘foetal’ DNA (cffDNA) circulating in the maternal
plasma [128]. Nonetheless, due to the initial clinical
application of NIPT for the detection of selected foetal
chromosomal aneuploidies (i.e., for chromosomes 13, 18,
21, X and Y), this term historically coalesced with this
primary screening purpose (see below).

The ‘foetal fraction’ comprises ~10% of cffDNA in the
first trimester of pregnancy, and derives from the placenta.
NIPT is equivalent to the concept of 'liquid biopsy' of the
placenta, with all its diagnostic limitations historically
gathered from the utilisation of chorionic villus biopsy [129,
130] as a source of template DNA in PND. The circulating
genetic material of foetal origin can be either used for non-
invasive prenatal diagnosis (NIPD) of, for example,
monogenic disorders [131, 132], and/or to 'screen' for foetal
chromosomal aneuploidy by non-invasive prenatal testing
(NIPT; alternative terminology: non-invasive prenatal
screening—NIPS [133]. The term NIPS is more appropriate
since this prenatal screening process may also involve
pregnant women without a priori genetic indication for their
testing, such as in population-based screening schemes.

Implementation of NIPS in PND clinical practice has
received considerable attention from professional societies,
which have developed relevant guidelines [133, 134, 135].
Additional reports duly assessed the global outlook and
barriers to the implementation of NIPS within the context of
PND [136, 137], including its role in 'post-PGD' [138]
pregnancies. Relevant ethical issues have been reviewed in
a joint ESHG/American Society of Human Genetics
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document [139] and recently by the Nuffield Council of
Bioethics [140].

NIPS has been widely introduced in the context of pre-
natal screening for common chromosomal aneuploidies
from as early as the 10th week of pregnancy [141]. Low-
coverage genome-wide MPS together with advanced (often
proprietary) bioinformatic algorithms are often used to
determine the number of DNA fragments from each tar-
geted chromosome in order to determine the probability of
foetal chromosomal aneuploidy. Other approaches assess
copy number by microarray or SNV analyses [142, 102].
The main benefit as compared with traditional combined
first trimester antenatal screening (cFTS) [143], which is
based on maternal age, ultrasound assessment of foetal
nuchal translucency (NT) and selected biochemical bio-
markers in maternal blood, are higher detection rates and a
much lower percentage of false-positive (FP) results (~0.1%
in NIPS as compared cFTS where it could be up to 5%).
NIPS thus reduces the overall number of follow-up invasive
PND procedures and potentially iatrogenic miscarriages
[142–146]. Nonetheless, there is increasing evidence that
NIPS and cFTS are complementary approaches within the
process of complex provision of antenatal screening in low-
and high-risk pregnancies. Each approach has its inherent
strengths and limitations, as reviewed for cFTS [147] and
for NIPS [104], that could be pragmatically complemented
within a synergistic (for example, contingent) diagnostic
strategy [148]. Due to the fact that to date NIPS is not
reimbursed by most European health-care systems, com-
pared to established cFTS regional- or nationwide schemes,
such a contigent approach might be cost effective for most
solidarity-based health-care systems. For example, the UK
NHS Rapid protocol suggests NIPS in women with a
defined cFTS-related risk range, and thus might assure
equitable access to antenatal screening [131, 149].

There are several specific issues related to the imple-
mentation of NIPS within broad antenatal screening strate-
gies [150]. The first issue to be taken into account is related
to the fact that, unlike NIPD for monogenic disorders, NIPS
is not a diagnostic test. Tested individuals need to be aware
that accuracy of NIPS is affected by confined placental
mosaicism or detection of unexpected maternal chromoso-
mal abnormalities. Thus, NIPS carried out by whole-
genome techniques is not only a 'liquid biopsy' of the pla-
centa [102, 151], but also detects other circulating DNA
material, for example, originating from circulating tumour
cells [152, 153].

The second issue is related to discussions as to how NIPS
optimally fits within a comprehensive prenatal screening
policy, taking into account also its cost-effectiveness [154,
155], and optimisation of its diagnostic yield [156]. A
'contingent' procedure, offering NIPS for intermediate risk
cases after cFTS, would be beneficial in terms of costs and

mitigate maternal stress following an inconclusive cFTS
result. However, both the high sensitivity of NIPS and
shorter waiting time are valuable if NIPS is applied as a
first-line test. In this regard, studies which assessed the
clinical utility of NIPS offered through primary obstetrical
care providers to a general population of pregnant women
provided evidence that NIPS has a high uptake and that
patients understand its basic concept and limitations. The
authors concluded that NIPS could be integrated into rou-
tine antenatal screening practice in primary care. Moreover,
the complementarity of prenatal ultrasound NT measure-
ments within the context of NIPS was also discussed [157,
158].

The third issue is whether NIPS should be offered for
other abnormalities beyond common chromosomal aneu-
ploidies, including sex chromosome abnormalities and
clinically significant microdeletions (for example, for the
detection of the DiGeorge syndrome; MIM: 188400).
However, the rarity, marked genetic and clinical hetero-
geneity of these conditions, and thus the resulting low PPV,
may lead to an undesirable increase in invasive PND pro-
cedures to account for more FP results [159, 160]. Such a
scenario could undo much of the potential benefits of
introducing NIPS, hence addition of other clinical entities
into NIPS 'panels' needs to be carefully considered. None-
theless, some current commercial NIPS assays do include
sex chromosome abnormalities and microdeletions, some of
which may even have a variable phenotype. In some cases
these may be of maternal origin. It is unclear whether
informing apparently healthy women about their mosaicism
is of clinical utility. As testing for milder conditions may
not lead to termination, the clinical utility will depend on
whether the findings enable better treatment for the child.
On the positive side, parental awareness could enable
treatment of some conditions at birth rather than waiting for
symptoms to occur to trigger postnatal testing. On the other
hand, there are also concerns that benefits may be out-
weighed by stigmatisation after diagnosis of phenotypically
mild sex chromosomal anomalies or microdeletions. More
research is needed to clarify this balance [139]. Some NIPS
tests may even offer new opportunities for reproductive
health, PGT and pregnancy management [102]. In sum-
mary, currently improved technology seems to 'push' the
development of such testing offers, rather than established
clinical utility and/or relevant patient/client perspectives.

The fourth issue is related to the quality of information
and counselling with regard to all relevant aspects com-
prising incidental findings [139]. There is a concern that
women are insufficiently made aware of the fact that NIPS
is not a diagnostic test and that eventual ETP should
therefore not be based on its findings alone, especially in
low-risk populations, in which the PPV is significantly
lower than in a high-risk population. A 'positive' NIPS
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result should always be followed by an invasive PND for
verification, as in all other prenatal screening approaches.

Among the first applications of NIPD for monogenic dis-
orders was foetal sexing [161] in X-linked recessive disorders,
where the identification of a female foetus avoids the need for
invasive PND [162]. The first gene-specific NIPD were
introduced for paternally inherited autosomal dominant (AD)
and AR disorders, where parents carry distinguishable
disease-associated variants compared to the foetus. For other
recessive disorders, the challenge still is to reliably discern
between genetic information deriving from the foetus and
from the pregnant woman [131, 132]. NIPD could also be
used as a follow-up (confirmatory) procedure to PGT-M,
mainly as an alternative to PND, in couples who are reluctant
to undergo invasive procedures (for example, due to repeated
IVF failure or parental anxiety), which are associated with a
risk of iatrogenically induced pregnancy loss [138].

In view of future scenarios of non-invasive whole-genome
NIPS, there is a need for debate about the overall scope of
antenatal screening, also taking account of the informational
privacy interests of the future child [163, 164]. The possibility
of foetal therapy might also impact on the indications for
NIPD/NIPS in the near future. Should intrauterine treatment
become possible for an increasing number of genetic condi-
tions, including, for example, Down syndrome [165], then the
informed decision needs to take into account such 'dual goals'
of antenatal screening, be it cFTS or NIPS, or their
combination.

The panel recommends that future interdisciplinary
discussions are carried out between respective profes-
sional societies, which are responsible for the
implementation of non-invasive antenatal screening
policies and their potential association with the
development of appropriate antenatal therapies. Indi-
viduals undergoing NIPS testing should be made
aware of the fact that its positive results need to be
confirmed by invasive PND. Moreover, tested indivi-
duals should be made aware that NIPS using whole-
genome approaches may detect 'incidental' findings,
for example, circulating tumour DNA in the mother.
Finally, technological advances foster broader clinical
implementation of NIPD as a more acceptable
alternative to standard PND associated with invasive
sampling of foetal cells or tissues.

Mitochondria: from diagnosis to treatment

Preventing transmission of mtDNA disease-associated
variants

It is now technically possible to accurately establish the
mtDNA disease-associated variant load (henceforward in

legacy terminology 'mutation load') in different types of
samples, including embryo biopsies and amniotic fluid, and
therefore select an embryo/foetus with a mutation load
below the threshold considered as 'pathogenic' when per-
forming PGT-M and PND. Therefore, PGT-M and PND
may be used to lower the risk of a child affected by various
mitochondrial disorders [166, 167]. However, this 'selective'
approach suffers from several drawbacks. One important
issue is that there remains uncertainty whether the mutation
load found in the tested sample is consistently representa-
tive of the rest of the embryo/foetus. Also, the mutation load
may change during embryonic/foetal development, and it is
difficult to establish the cut-off value for selection because
of the uncertainty in correlation between the mutation load
and resulting clinical symptoms. Finally, from a clinical
point of view, there may be questions on the efficiency of
this approach, as there is no guarantee that a woman with a
given heteroplasmic load in her somatic tissues produces
oocytes with a sufficiently low mutation load for a suc-
cessful PGT cycle [168].

To address this issue, mitochondrial replacement therapy
(MRT) has been developed [169, 170]. It consists of the
transplantation of pronuclei, meiotic spindle or polar bodies
of the patient’s oocytes to the cytoplasm of enucleated
donor oocytes, which are presumed to contain 'healthy'
mitochondria. Pronuclear transfer was first performed in the
mouse [171], but the resulting offspring showed high levels
of mitochondrial carryover [170]. A second approach is
based on transplanting pronuclei shortly after completion of
meiosis rather than shortly before the first mitotic division,
which results in lower mtDNA carryover [167, 172].

The spindle transfer technique was pioneered in the
Rhesus monkey, where it proved to be efficient and safe
[173]. The feasibility of mtDNA replacement by spindle
transfer has also been demonstrated in the human, although
some of these oocytes displayed abnormal fertilisation [174,
175]. The first birth of a child after spindle transfer was
reported in a mother who carried a mtDNA mutation
causing Leigh syndrome (MIM 256000) that resulted in
four pregnancy losses and two deceased children. Although
the child born after spindle transfer had a mutation load of
5.7% and was doing well at the time of reporting, long-term
follow-up is necessary [176]. The first clinical pronuclear
transfer in human oocytes with the result of a healthy birth
was carried out in China. It was initially reported at the
annual American Society of Reproductive Medicine Annual
Meeting in 2003, but published only 13 years later [177].
Polar body transfer has been successfully achieved in the
mouse [170] and recently also in humans [178]. However,
there are inherent technical difficulties as polar bodies
experience a brief lifetime owing to apoptotic pressures that
lead to DNA fragmentation and degradation [170]. Overall,
given the experimental nature of all these approaches, PGT
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and/or PND should always be considered after MRT, as an
extra 'safety net' testing procedure.

Ethical issues under discussion include the acceptability
of modifying the human genome [179], the role of the
mitochondrial donor as a contributor to the 'parental project'
(i.e., concept of 'three parent families' in the lay press) and
implications for offspring identity, the proportionality of
developing MRT technology as based on a view of the
importance of genetic parenthood, and finding a balance
between taking appropriate precautions and hampering
innovation [180, 181, 182, 183].

Autologous germline mitochondrial transfer to enhance/
improve embryo development

Mitochondrial supplementation methods were introduced
about two decades ago with the aim of overcoming poor
oocyte quality and repeated IVF failure [184]. Despite the
promising success rates of these first experimental trials,
further research was largely abandoned because of safety
concerns, particularly after such procedures resulted in 45,X
pregnancies. Articles evidencing the existence of adult
oogonial (oocyte-generating) stem cells in mice, and pos-
sibly in women [185], have re-opened the prospects of
delivering a source of pristine and patient-matched germline
mitochondria to boost egg health and embryonic develop-
mental potential without the need for young donor eggs to
obtain 'healthy cytoplasm' [186]. However, broader clinical
experience with this procedure is limited and the existence
and role of adult oogonial stem cells in the human is still a
matter of professional debate [115, 187].

mtDNA copy number as a marker of embryo viability

The mtDNA quantity in TE and blastomere biopsies has
been associated with advanced female age and chromoso-
mal aneuploidy, and proposed to provide an independent
measure of embryonic implantation potential [188, 189].
The quantity of mtDNA appears significantly higher in
embryos from older women and in aneuploid embryos,
independent of the patient age. Blastocysts that successfully
implant contain lower mtDNA quantities than those failing
to implant, with a mtDNA quantity threshold above which
implantation was never observed. However, many embryos
that failed to implant also had mtDNA amounts below the
said threshold. A recent study was not able to confirm these
results, and found no statistically significant differences in
blastocysts grouped by chromosomal ploidy, maternal age
or implantation potential after application of a mathematical
correction factor [190].

Conversely, it has been demonstrated that mtDNA is
being reduced in the preimplantation embryo prior to its
subsequent increase during the blastocyst stage [191]. To

allow proper extrapolations from TE biopsies, it would be
necessary to study the correlation between mtDNA content
in the TE and the ICM of the blastocyst. Finally, it may be
of value to measure the mtDNA content in a day 3 embryo
growing in vitro to improve identification of viable embryos
with a high developmental potential [192].

The panel concluded that application of various
mitochondria-related procedures in ART still lack a
sufficient level of evidence, and that further basic and
translational research is necessary in this regard.
Furthermore, relevant ethical issues need to be taken
into consideration prior to the applications of these
technologies in clinical practice.

Epigenetic inheritance-related issues in ART

Even though multiple definitions can be found for epige-
netic inheritance, the most accepted one is as follows 'any
potentially stable and heritable change in gene expression
that occurs without a change in DNA sequence' [193, 194].
Epigenetics involves controlling the structure of the chro-
matin and the switching between an open to a closed con-
figuration, thereby affecting transcription. Different
modifications take place, such as covalent modification of
DNA by methylation and/or post-translational modifications
of proteins associated with DNA, mainly the histones [195].
So far, most experimental studies in the field of epigenetic
inheritance have been performed using mouse models
[196]. This implies that application of their outcomes to
humans needs to be further substantiated.

Major epigenetic changes responsible for erasure and
renewed establishment of the human epigenome occur
during gametogenesis and early embryo development.
These complex molecular processes include post-
fertilisation reprogramming to generate a totipotent zygote
and are followed by germline reprogramming to generate
gametes [197]. These processes together with environ-
mental influences on the formation of human epigenome,
especially during early development, are well documented
[198, 199]. Consequently, there is a possibility that some
ART procedures may inadvertently alter the gamete- and/or
embryonal epigenome and potentially generate adverse
medical consequences in the offspring.

The epigenetic mechanisms in gametes remain more or
less a 'black box' at present, especially regarding oogenesis.
In mice it has been shown that sperm DNA can be
methylated and hydroxymethylated, but the exact role of
such methylation processes is unclear. It is believed that
methylation could both have a global impact on DNA sta-
bilisation and a specific purpose, i.e., to silence (imprint)
specific genes. It has also been shown that some specific
genomic loci will keep their histones during meiosis,
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instead of exchanging them for protamines, and that this
molecular mechanism is correlated with hypomethylation. It
is hypothesised that the genes escaping protamination are
the ones that need to be expressed very early during
embryonic development [200]. After fertilisation, paternal
DNA is actively demethylated, but some loci remain
methylated (mainly in the case of imprinted genes). Thus
far, the role of sperm DNA methylation in future embryonic
development is not well understood [201].

The level of DNA methylation in the oocyte is half of
that in spermatozoa. DNA methylation in the oocyte does
not play a role in the regulation of gene expression of the
oocyte itself, but is important for embryonic development
[202]. Interestingly, regions that are methylated in the
oocyte are more likely to be also methylated in the embryo
[203]. These complex processes might be regulated by
incomplete demethylation during the post-fertilisation
reprogramming of the maternal allele or another kind of
memory mechanism and present a potential way of epige-
netic intergenerational inheritance of environmentally
induced (for example, by COH and/or CM) alterations in
DNA methylation patterns of the oocyte [106].

Another function of DNA methylation in the germline is
to control the expression of transposable elements (TPE).
These are ancestral traces of retroviruses, representing
approximately one-half of the human genome. TPE are
reactivated during primordial germ cell formation and early
development, and are tightly controlled not to jump 'any-
where' in the genome. The pathway(s) controlling the
expression and transposition of TPE are not fully under-
stood, thus far. However, in the mouse, potentially patho-
genic alterations of proteins involved in their control can
cause MI, mainly by a meiotic blockage at the pachytene
stage [204, 205]. Recently, there is also growing evidence
on the implication of TPE in various human diseases [206].

Animal studies have shown that ART procedures may be
associated with multiple alterations in gene expression and
DNA methylation, mainly of imprinted genes [207]. How-
ever, the potential relationship with phenotypic outcomes (if
any) remains largely unknown. Also in human studies,
epigenetic alterations associated with ART have been
reported in embryos and placental tissue or umbilical cord
blood [208]. However, these alternations have not yet been
unambiguously associated with any clinically relevant out-
comes, thus far. Future studies should focus on the normal
epigenetic regulation in human gametes and embryos, the
natural inter-individual variation in, for example, DNA
methylation, the consequences of slight alterations in DNA
methylation and phenotypical (long-term) consequences of
epimutations [209].

Recently it was suggested that there is inter-individual
variation in susceptibility to environmentally mediated
epigenetic alterations in humans [210]. Furthermore, the

environmentally induced epimutations occur possibly on a
stochastic basis [211] making 'one-to-one' associations
between an environmental clue and epigenetic alterations at
a specific gene or set of genes less informative. This
observation might also explain inconsistencies found
between various studies. ART-induced epigenetic altera-
tions, if they exist, might thus occur at random places in the
genome, in only a subset of vulnerable subjects, probably
leading to a wide range of adverse phenotypic con-
sequences, which would complicate research on the
potential epigenetic effects of ART [211]. Finally, it needs
to be noted that these follow-up studies are also hampered
by common parental unwillingness to disclose previous IVF
treatments, including data security concerns regarding
relevant patient registries.

The panel concluded that more research is needed on
the potential impact of specific ART procedures on
the epigenome and its consequences for the offspring,
including possible epigenetic inheritance pathways. In
addition, standardisation of follow-up methodologies
and post-IVF patient registries could overcome
complex biological issues and foster replicability of
initial observations of adverse epigenetic inheritance-
related phenomena in children/adults conceived by
IVF. Furthermore, relevant social and ethical issues
related to this issue need to be explored.

Germline genome editing

Genome editing using tools allowing for exact modification,
such as zinc-finger nucleases and TALENs (transcription
activator-like effector nucleases), have been available for
many years and have been widely used in research [212].
However, with the recent introduction of the CRISPR/Cas9
(clustered regularly interspaced short palindromic repeats/
Cas9 nuclease) system, genome editing has become much
simpler, cheaper and more efficient, opening the road to
somatic gene therapy and eventually also GGE [213].

GGE can be performed in different germ cell types, such
as spermatogonial stem cells, in vitro matured oocytes, stem
cell-derived gametes differentiated in vitro from pluripotent
stem cell lines obtained after somatic cell nuclear transfer or
induced pluripotent stem cells, and even in the early embryo
[214, 215].

GGE at the embryo level has important technical draw-
backs, such as incomplete editing leading to mosaic
embryos and off-target effects (induced disease-associated
variants at sites other than the intended on-target site) that
need to be solved before considering possible clinical
applications of the technique. As newer, more accurate,
efficient, and therefore safer GGE systems are being
developed, it is to be expected that these technical
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limitations could be overcome [216] as was recently
documented in the case of hypertrophic cardiomyopathy
[217].

Nevertheless, the number of clinical indications that
could be envisaged for GGE remediation is limited, thus far,
since PGT-M offers an alternative for couples at risk for a
genetic disease in their offspring. The potential use of GGE
could be envisioned in very high-risk couples, for example,
if one partner is homozygous for an AD disease, or when
both partners suffer from the same AR disorder. Less
'stringent' indications could be in cases where the number of
embryos expected to be obtained after PGT-M is small, for
example, in case of advanced maternal age, or couples at
high risk for transmitting more than one genetic disease, or
when HLA-matching embryos considered for curing a sib-
ling affected by a severe monogenic disease. Other medical
fields also started to discuss the potential implications of
GGE [218]. Recently, the American Society of Human
Genetics published their position statement on human GGE
[219] and ESHG and ESHRE are jointly developing
recommendations specific to this topic ('Responsible inno-
vation in human germ-line genome editing'; de Wert et al,
2017, personal communication). Furthermore, there is an
ongoing debate on the ethical (i.e., the 'slippery slope'
argument) and social implications of GGE, and eventually
current restrictions on GGE may require a renewed debate
[220–223]. Finally, a transparent and broad collaboration is
necessary in order to move the field of GGE responsibly
forward [224, 225].

The panel concluded that although research in the
field of GGE is rapidly developing, its potential
medical applications within the context of ART and
genetic medicine require further basic and transla-
tional research. Consensus guidelines need to be
developed by respective professional societies, which
will take into account any potentially adverse
individual-, population genetic-, ethical- and societal
implications of this novel medical technology.

Conclusion

The intersection of ART and genomics is a fast growing
scientific field, both from the basic and translational
research points of view. A selected portfolio of emerging
topics was included in the agenda for the third panel
meeting, mainly covering issues, which have the highest
potential of entering, or that are already part of, current
clinical practice. As molecular genetic techniques are
improved, complete characterisation of the entire human
genome variation of an embryo might become a reality.
Together with the emergence of therapeutic possibilities

comprising, for example, mitochondrial transfer and GGE,
professional and ethical discussions around these develop-
ments need to be undertaken and international recommen-
dations drawn up in order to determine how such novel
technologies ought to be implemented in ART practice in a
responsible and evidence-based manner, and accordingly
regulated. The panel looks forward to the fourth meeting to
discuss these ongoing developments at a European level in
the near future.

What does this mean for patients?

This paper is the report of a meeting of experts from around
Europe to assess how the latest developments in genetics
might impact on assisted reproduction.

Their discussion included testing for genetic diseases for
people wanting to get pregnant and the growth of com-
mercial genetic testing, which may mean that anonymity for
people who have donated eggs or sperm cannot be guar-
anteed. They also considered advances in identifying
genetic factors in both male and female infertility and in
genetic testing or screening of embryos. They discussed
early pregnancy screening and techniques involving mito-
chondria as well as the impact of IVF on the way genes
might work and new techniques for editing, or altering,
genes.

They concluded that developments in genetics are
increasingly relevant in the fertility field as some new
techniques are already being used in clinics. They called for
international recommendations to consider how new tech-
nologies should be introduced into the field of assisted
reproduction.
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Appendix

AD autosomal dominant

AR autosomal recessive

ART assisted reproductive technology

CNV copy number variants

CRISPR Clustered Regularly Interspaced Short Palindromic

Repeats

DTC direct to consumer (genetic testing)

ECS expanded carrier screening

ESHG European Society of Human Genetics

ESHRE European Society of Human Reproduction and

Embryology

ETP elective termination of pregnancy

FI female infertility

GGE germline genome editing

IVF in vitro fertilisation

MI male infertility

MIM Mendelian inheritance in man (number)

MPS massive parallel sequencing

mtDNA mitochondrial DNA

NIPD non-invasive prenatal diagnosis

NIPT non invasive prenatal testing

NIPS non invasive prenatal screening

PCOS polycystic ovary syndrome

PGD preimplantation genetic diagnosis

PGS preimplantation genetic screening

PGT preimplantation genetic testing

PGT-A preimplantation genetic testing-aneuploidy

PGT-M preimplantation genetic testing-Mendelian disorders

PND prenatal diagnosis

PPV positive predictive values

SNV single nucleotide variants

SV structural variants

WHO World Health Organisation
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