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A B S T R A C T

Ensemble perception, the ability to assess automatically the summary of large amounts of information presented
in visual scenes, is available early in typical development. This ability might be compromised in autistic chil-
dren, who are thought to present limitations in maintaining summary statistics representations for the recent
history of sensory input. Here we examined ensemble perception of facial emotional expressions in 35 autistic
children, 30 age- and ability-matched typical children and 25 typical adults. Participants received three tasks: a)
an ‘ensemble’ emotion discrimination task; b) a baseline (single-face) emotion discrimination task; and c) a facial
expression identification task. Children performed worse than adults on all three tasks. Unexpectedly, autistic
and typical children were, on average, indistinguishable in their precision and accuracy on all three tasks.
Computational modelling suggested that, on average, autistic and typical children used ensemble-encoding
strategies to a similar extent; but ensemble perception was related to non-verbal reasoning abilities in autistic
but not in typical children. Eye-movement data also showed no group differences in the way children attended to
the stimuli. Our combined findings suggest that the abilities of autistic and typical children for ensemble per-
ception of emotions are comparable on average.

1. Introduction

Human perception will often seek the summary, the texture or the
‘gist’ of large amounts of information presented in visual scenes. Large
amounts of similar objects, for example, some books on a shelf, or the
buildings of a city may give rise to group precepts – the percept of a
book collection or a city view. Properties of group percepts – whether a
book collection is tidied up or not, whether a view belongs to an old or a
contemporary city – seem to be accessible rapidly and effortlessly, and
with little awareness of details differentiating individual elements.

This ability to assess automatically the summary or ‘gist’ of large
amounts of information presented in visual scenes, often referred to as
ensemble perception or ensemble encoding, is crucial for navigating an
inherently complex world (Chong and Treisman, 2003, 2005;

Haberman and Whitney, 2009; Sweeny et al., 2013). Given the pro-
cessing limitations of the brain, it is often efficient to sacrifice re-
presentations of individual elements in the interest of concise, summary
representations, which become available as the brain rapidly encodes
statistical regularities in notions of a ‘mean’ or a ‘texture’ (Haberman
and Whitney, 2012; Whitney et al., 2013).

Ensemble perception has been demonstrated consistently for low-
level visual attributes, including size, orientation, motion, speed, posi-
tion and texture (Ariely, 2001; Chong and Treisman, 2003; Parkes et al.,
2001). More recently, studies have also demonstrated ensemble per-
ception in high-level vision. In Haberman and Whitney (2007)'s initial
work on ensemble perception – and on which the current study was
based, three adult observers viewed sets of morphs (computer-gener-
ated continuous variations of expressions of the same face) ranging
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from sad to happy. Observers were then asked to indicate whether a
subsequent test face was happier or sadder than the average expression
of the set, a task that required creating an internal representation of an
average of facial expressions in the first set. The precision with which
the three observers completed this task was remarkably good. In fact,
two of the three observers were as precise in discriminating ensemble
emotions as they were in identifying the emotions of single faces (in a
control task). In another task, the same observers viewed sets of emo-
tional morphs and were subsequently asked to indicate which of two
new morphs was a member of the preceding set. All three observers
were unable to perform above chance in this condition, suggesting that
observers were unable to encode information about individual face
emotions, despite being able to encode seemingly effortlessly in-
formation about average emotions. Subsequent work has shown these
effects for a range of facial attributes (gender, ethnicity, identity,
emotion, attractiveness; Haberman et al., 2009; Haberman and
Whitney, 2007, 2009, 2010, 2011; Neumann et al., 2013).

Sweeny et al. (2014) have also shown that ensemble perception of
size is also present, though not yet fully developed early in develop-
ment, in 4–6 year-old children. In the primary condition of their child-
friendly task, participants saw two trees, each containing eight differ-
ently sized oranges, and were asked to determine which tree had the
largest oranges overall. A secondary condition (see Sweeny et al., 2014)
included experimental manipulations that allowed for the empirical
simulation of performance in the primary condition with no ensemble
coding strategies available–that is, as if participants gave their response
after comparing the sizes of a single, randomly-chosen orange from
each tree. The difference in accuracy between the primary and sec-
ondary conditions provided an estimate of the extent to which parti-
cipants benefited from the use of ensemble perception strategies, the
‘ensemble coding advantage’ (Sweeny et al., 2014). They found sig-
nificant ensemble coding advantages in both young children and adults,
although children presented smaller such advantages than adults. An
ideal observer model, which was also used to predict the minimum
number of items integrated in the primary condition, suggested that
both children and adults did not necessarily derive ensemble codes
from the entire set of items (N=16), while children integrated fewer
items than adults (4.24 vs. 7.18 items, correspondingly, across both
trees), consistent with the smaller ensemble coding advantage they
exhibited.

In the current study, we examined ensemble perception of emotions
in autistic children and adolescents, and contrasted these with typical
children, adolescents and adults. Autism is a highly heterogeneous
neurodevelopmental condition known for difficulties in social interac-
tion and communication. However, autism is also characterised by
atypicalities in sensation and perception (DSM-5; American Psychiatric
Association, 2013; see Simmons et al., 2009; for review). Many studies
have focused on the processing of social stimuli and of faces in parti-
cular. This literature presents a confusing picture. While many studies
have reported that autistic children present pervasive difficulties in
emotion discrimination (see Uljarevic and Hamilton, 2012; for review),
other studies have found such difficulties specifically for negative or
more complex emotions (Jones et al., 2011) or no difficulties at all
(Ozonoff et al., 1990; Tracy et al., 2011).

Prominent theories have suggested difficulties in social perception
might be driven by fundamental problems in global processing (weak
central coherence; Happé and Frith, 2006) or a local-processing bias
that leads to strengths in the processing of simple stimuli and to
weaknesses in the processing of more complex stimuli (Mottron et al.,
2006). We have suggested that the unique perceptual experiences of
individuals with autism might be accounted for by attenuated prior
knowledge within a Bayesian computational model of perceptual in-
ference (Pellicano and Burr, 2012). This hypothesis posits limitations in
the abilities of individuals with autism to derive, maintain and/or use
efficiently summary statistics representations for the recent history of
sensory input. Such limitations lead to a processing style where sensory

input is modulated to a lesser extent by norms derived from prior
sensory experience.

Karaminis et al. (2016) have recently demonstrated this account
formally, in the context of temporal reproduction, using a Bayesian
computational model for central tendency (Cicchini et al., 2012), which
suggested that the phenomenon reflects the integration of noisy tem-
poral estimates with prior knowledge representations of a mean tem-
poral stimulus. Karaminis et al. (2016) contrasted the predictions of this
ideal-observer model with data from autistic and typical children
completing a time interval reproduction task (measuring central ten-
dency) and a temporal discrimination task (evaluating temporal re-
solution). The simulations suggested that central tendency in autistic
children was much less than predicted by computational modelling,
given their poor temporal resolution.

Pellicano and Burr's (2012) hypothesis has also received empirical
support from studies showing diminished adaptation in the processing
of face (e.g., Pellicano et al., 2007; Pellicano et al., 2013) and non-face
stimuli (e.g., Turi et al., 2015; van Boxtel et al., 2016). Such findings
appear to generalise to ensemble perception, i.e., summary statistics
representations derived on a trial-by-trial basis from stimuli presented
simultaneously and for brief time intervals. Rhodes et al. (2015) have
developed a child-appropriate version of a paradigm for ensemble
perception of face-identity (Neumann et al., 2013), which they ad-
ministered to 9 autistic children and adolescents and 17 age- and
ability-matched typical children. These authors found reduced re-
cognition of averaged identity in autistic participants.

In the current study, we evaluated two predictions, based on
Pellicano and Burr (2012), for the patterns of performance of autistic
and typical children and adolescents (aged between 6 and 18 years;
hereafter ‘children’) by developing a developmentally-appropriate
version of Haberman and Whitney (2007)'s paradigm for ensemble
perception of emotions.

First, we predicted that autistic children should present difficulties
in Task 1 assessing average emotion discrimination (see Fig. 1), evi-
denced by lower precision than typical children in the average relative
to the baseline emotion discrimination task (as autistic children/ado-
lescents might present general difficulties in emotion discrimination;
Uljarevic and Hamilton, 2012). We further tested this prediction using
computational modelling and eye-tracking methodologies. Computa-
tional simulations (akin to Sweeny et al., 2014) should suggest a weaker
ensemble coding advantage and fewer items sampled in autistic chil-
dren compared to typical children. Eye-tracking data could also reveal
atypicalities in the ways autistic children attended to the stimuli (e.g.,
in the number of faces sampled).

Second, we predicted that autistic children should perform better
than typical children in Task 3, identifying emotional morphs that had
been previously presented to them. This advantage could be due to a
greater reliance upon detailed representations of individual items,
which are more important in this particular task, rather than on sum-
mary statistics (cf. Happé and Frith, 2006; Pellicano and Burr, 2012).

Finally, we also included a group of typical adults to examine de-
velopmental differences between children and adults in ensemble per-
ception of emotions. We hypothesised that children were likely to show
reduced abilities for ensemble perception compared to adults, similar to
Sweeny et al.'s (2014) findings for the development of ensemble per-
ception of size.

2. Material and methods

2.1. Participants

Participants' demographics are shown in Table 1. Thirty-five autistic
children and adolescents (28 boys) aged between 7 and 16 years
(M=11.67; SD=2.30) were recruited via schools in London and
community contacts. All autistic children/adolescents had an in-
dependent clinical diagnosis of an autism spectrum disorder (ASD) and
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met the criteria for an ASD on the Autism Diagnostic Observation
Schedule – 2 (ADOS-2) (Lord et al., 2012; cut-off score= 7) and/or the
Social Communication Questionnaire – Lifetime (SCQ) (Rutter et al.,
2003; cut-off score= 15) (see Table 1 for scores).

Thirty typically developing children and adolescents (19 boys), re-
cruited from local London schools and community contacts, were
matched with autistic children in terms of chronological age, t

(63)= 0.19, p= 0.85, as well as on verbal IQ, t(50.84)= 1.34,
p=0.19, performance IQ, t(63)= 0.02, p= 0.99, and full-scale IQ, t
(58.13)= 0.82, p= 0.41, measured by the Wechsler Abbreviated
Scales of Intelligence – 2nd edition (WASI-II; Wechsler, 2011). All
children were considered to be cognitively able (Full-scale IQ
scores> =70).

25 typical adults (11 men), aged between 18.70 and 44.40 years
(M=27.44; SD=5.50) recruited from the University and community
contacts, also took part.

Four additional autistic children and 4 typical children were tested
but excluded from the analysis due to poorly fitting psychometric
functions (R2 < 0.70, see below). Two additional autistic children
were excluded because their IQ scores (WASI-II; Wechsler, 2011) were
lower than 70.

2.2. Stimuli

Stimuli were two sets of 50 faces created by linearly interpolating
two emotionally extreme faces, one with a sad expression and one with
a happy expression of a boy (first set) and a girl (second set). The
emotional extremes were chosen from the Radboud face database,
based on their rankings of emotional intensity, clarity, genuineness and
valence (Langner et al., 2010). Linear interpolation was performed
using morphing software (FantaMorph, http://www.fantamorph.com),
placing 250 landmarks in each endpoint face. The two sets of faces were
taken to establish two continua of 50 emotional morphs, from sad to
happy. Similar to Haberman and Whitney (2007), the distance between
two successive morphs was one emotional unit, an arbitrary measure of
the representation of happiness in successive morphs, assumed constant
across the two continua and the same for the two sets. The saddest
morphs were assigned an emotional valence value of 1, the happiest of
50, while the mean of the continua of 25.

Each face subtended 5.19°× 4.16° (h x w) of visual angle.
Depending on the task, faces were presented in three possible config-
urations: i) in a passport photograph setup, i.e., as a group of four faces

Fig. 1. Paradigm structure. The paradigm comprised 1) an ensemble emotion discrimination task, 2) a baseline emotion discrimination task and 3) a face identification task. In Task 1,
four different facial expressions (‘clones’) appeared near centre-screen for 2000ms. Participants were instructed to indicate whether the four clones were overall more like the happy
(upper right corner) or the sad clone (upper left corner). Task 2 (control) was identical to Task 1, apart from the fact that the four centre-screen emotional expressions were identical. In
Task 3, four different facial expressions (‘clones’) appeared near centre-screen for 2000ms and were followed by two more expressions. Participants were asked to indicate which of these
two new faces was a member of the faces shown earlier. All tasks were child-appropriate versions of corresponding tasks in Haberman and Whitney (2007).

Table 1
Descriptive statistics for developmental variables for autistic and typical children.

Measures Autistic Typical Statistical comparison

N 35 30
Gender (n males: n

females)
28: 7 19: 11 X2(2, N=65)= 2.24,

p=0.13
Age (years)
Mean (SD) 11.67 (2.30) 11.79 (3.18) t(63)= 0.19
Range 7.42–16.83 6.99–17.60 p=0.85

Verbal IQa

Mean (SD) 99.00 (19.07) 103.87 (9.29) t(50.84)= 1.34,
Range 57–130 86–122 p=0.19

Performance IQa

Mean (SD) 104.60 (16.32) 104.53 (15.78) t(63)= 0.02,
Range 81–143 80–154 p=0.99

Full-Scale IQa

Mean (SD) 101.80 (16.61) 104.60 (10.46) t(58.13)= 0.82,
Range 73–136 88–132 p=0.41

ADOS-2 scoreb

Mean (SD) 10.33 (4.31)
Range 2–20

SCQ scorec

Mean (SD) 25.06 (8.31) 5.84 (4.19)
Range 5–37 1–14

Notes: aVerbal, Performance and Full-Scale IQ were measured using the Wechsler
Abbreviated Scales of Intelligence (WASI-II; Wechsler, 2011); bADOS-2: Autism Diag-
nostic Observation Schedule – 2 (cut-off score= 7; Lord et al., 2012), cSCQ: Social
Communication Questionnaire (score out of 40; Rutter et al., 2003). Higher scores on the
ADOS-2 and the SCQ reflect greater autistic symptoms.
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in a 2×2 grid, presented in the middle of the screen and over 10.81° x
8.79° of visual angle (including a 0.52° gap between individual faces);
ii) as reference stimuli on the left and the right hand corner of the
screen, 10.30° left or right and 5.19° above centre screen (this applied
only to the saddest and the happiest morphs, respectively); iii) in a
1× 2 (row x columns) grid, subtending 5.19°× 8.79° (see Procedure).

The experiments also included a centrally located fixation point, of
grey colour and a diameter of 0.31° of visual angle.

Stimuli were presented on a light grey background (R=227;
G=227; B=227) of a 15.6-inch LCD monitor with 1920×1080 pixel
resolution at a refresh rate of 60 Hz. All participants viewed the stimuli
binocularly from a distance of 55 cm from the screen. We wrote the
experiments in MatLab, using the Psychophysics Toolbox extensions
(Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

2.3. Procedure

All child/adolescent and adult participants were given three tasks
(see Fig. 1): 1) an ensemble emotion discrimination task; 2) a baseline
emotion discrimination task; and 3) a facial expression identification
task. The order of presentation of tasks was counterbalanced across
participants, as was stimuli gender (i.e., for a given participant, all three
tasks were based on a single set of faces).

Tasks were presented in the context of a child-friendly computer
game, in which participants competed with characters from a popular
animated movie (‘Despicable Me’) in activities involving judging emo-
tions of clones of a boy or a girl or identifying clones who had been
presented to them before.

2.3.1. Task 1: ensemble emotion discrimination task
In this task, participants were told they would see a sad and a happy

face appearing in the left and the right corner of the screen, corre-
spondingly, and four different faces appearing near centre-screen for a
limited time. They were instructed to indicate whether the four clones
were overall more like the happy or the sad clone using the keyboard
(keys ‘A’ and ‘L’). The experimenter used hand gestures to indicate the
notion of ‘overall’.

As shown in Fig. 1 (left), each trial began with the reference stimuli
presented near the two upper corners of the screen, along with the four
faces in a 2×2 grid, presented in centre-screen for 2 s. The reference
stimuli remained on screen for the duration of the trial.

Faces in the grid were all different from each other, separated by a
standard distance of 6 emotional units. This meant that the emotional
mean of each set was 9 units higher than the saddest face and 9 units
lower than the happiest face in the set.

The task comprised 6 practice trials and 80 test trials. Practice trials
familiarized the participant with the procedure and tested the following
emotional means: 10, 40, 15, 35, 40 and 10 (in this order). Feedback
was given. Practice trials were repeated (after a random permutation) if
the participant produced incorrect judgements in at least two trials
(three autistic children, two typical children).

The 80 test trials comprised 5 repetitions of 16 values of tested
emotional means: 10, 12, 14, …, 40. No feedback apart from general
positive encouragement was given to participants.

2.3.2. Task 2: baseline emotion discrimination (control) task
This task (Fig. 1, middle) was identical in procedure to the average

emotion discrimination task, including 6 practice trials and 80 test
trials. In this task, however, the four faces in the 2×2 grid were in-
distinguishable. This implied a zero variance in which the emotional
valence of the four faces coincided with the tested mean. We used four
identical faces rather than just one face to achieve similar levels of
perceptual complexity across the two tasks.

Participants were told they would see a sad and a happy clone ap-
pearing in the left and the right corner of the screen, correspondingly,
and four identical clones appearing near centre-screen for a limited time

(2 s). Participants were instructed to indicate whether the four clones
were more like the happy or the sad clone using the keyboard.

Practice trials tested the following emotional means: 10, 40, 15, 35,
40 and 10 (in this order) and included feedback. They were repeated
(after a random permutation) in the case of incorrect judgements in at
least two of these trials (for one autistic child). Test trials included 5
repetitions of 16 values of tested emotional means: 10, 12, 14, …, 40.
No feedback was given.

2.3.3. Task 3: facial expression identification task
In this task, participants were told they would see four faces (clones)

appear on the screen and then disappear. Two more faces would then
appear. Participants were instructed to indicate which of the two faces
was present in the group of four faces by making a corresponding
keypress (A: left; L: right).

As shown in Fig. 1 (right), trials began by presenting a 2×2 grid of
four different faces in centre-screen. These faces differed by 6 emotional
units, i.e., similarly to the average emotion discrimination task. The
emotional mean of the faces in the grid ranged from 10 to 40 with an
increment of 2 emotional units (16 means X 5 trials= 80 trials in total).

After 2 s, the first set of faces disappeared and a new set of two faces
(in a 1× 2 grid) was shown in centre-screen. A target face in the second
set was also a member of the first set of faces while the other was a
distractor. The distance between the two faces in the second set could
take one of three values: 3, 15 or 17 emotional units (that is, in each
trial the distractor was 3, 15 or 17 units happier or sadder than the
target face: Haberman and Whitney, 2007).

There were 6 demonstration trials and 80 test trials. Demonstration
trials used target-distractor distances of 20 and 15 in this order: 20, –20,
+15, –15, –20, +20, combined with the following emotional means
values: 10, 40, 35, 15, 10, 40. These were repeated for five autistic
children and four typical children.

Of the 80 test trials, 26 tested a target-distractor distance of 3
emotional units, 27 tested a distance of 15 emotional units, and 27
tested a distance of 17 units. Similar to the other two tasks, test trials
considered 5 repetitions of 16 emotional means (10, 12, …, 40), as-
signed randomly to testing trials.

2.3.4. General procedure
Children were tested individually in a quiet room at the University,

at school or at home, and adults were tested in a quiet room at the
University or at home. Testing lasted around 30–40min. We collected
eye-tracking data using a Tobii-X30 eye tracker, with a five-point ca-
libration procedure repeated prior to each task. The WASI-II and the
ADOS-2 were administered in later sessions.

The University's Faculty Research Ethics Committee approved this
study. Adults gave their informed written consent and parents gave
their consent for their child's participation prior to taking part.

2.4. Measurements and analysis

For ensemble and baseline emotional discrimination (Tasks 1 and
2), we fitted individual data from participants with bootstrapping
(Efron and Tibshirani, 1993) with 200 repetitions and a ‘maximum
likelihood’ fitting method (Watson, 1979). From the fitted curves we
derived precision thresholds for each condition (the standard deviations
of the fitted Gaussians). We conducted a mixed-design ANOVA on these
measures with condition (ensemble and baseline emotion discrimina-
tion) as a repeated measures factor, and group (autistic, typical chil-
dren, and adults) as a between-participants factor. For facial expression
identification (Task 3), we measured accuracy in the three conditions of
the tested distance (3, 15 and 17). We examined whether these mea-
sures differed from chance performance with two-tailed t-tests and
examined differences across groups and conditions by conducting a
3×3 mixed-design ANOVA.

We also examined correlations between the so-obtained measures
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and age and performance IQ in the two groups of children, as well as
correlations with measurements of autistic symptomatology in the
group of autistic children, and correlations between precision thresh-
olds in the two conditions in all groups. We calculated Pearson's linear
correlations with permutation tests (100,000 permutations) and cor-
recting for multiple comparisons using the “max statistic” method to
adjust the p-values (Groppe et al., 2011). This method controlled for the
family-wise error rate without being as conservative as Bonferroni
correction (Groppe et al., 2011). We also used Fisher tests to assess
whether correlations differed significantly between groups (for corre-
lations that were significant in one group of children but not the other,
N=6), adjusting alpha levels for multiple comparisons with the Sidak
method (adjusted α=1 – (1 – α)1/N, with α=0.05). Fisher tests were
therefore conducted with adjusted alpha levels of 0.008 per test.

Participants' eye movements were analysed to provide additional
insight into the way participants attended to the stimuli. We obtained
usable eye-tracking data for 27 autistic children, 17 typical children
and 14 adults. For these participants, we focused on trials where fixa-
tions were detectable at least 90% of the time, around 50% of the trials
for all groups. We analysed recordings for these trials by deriving a
scanning path for each participant and each trial. A scanning path was
defined as a sequence of fixations in one of the four regions-of-interest,
the square areas where the four facial expressions were shown on
screen. A participant was taken to fixate in a given region if gaze re-
mained in that region for more than 150ms, otherwise these data were
not included in the scanpath. For the scanning-path length and the
mean number of samples scanned by a given participant in each task,
we conducted mixed-design ANOVAs with task (ensemble, baseline
emotion discrimination and facial identification) as a repeated mea-
sures factor, and group (autistic, typical children, and adults) as a be-
tween-participants factor.

2.5. Computational modelling

Our computational modeling aimed to assess the amount of in-
formation that participants used in the ensemble emotion discrimina-
tion task (rather than their mere performance in the same task). This is
akin to the approach in Sweeny et al. (2014) on ensemble perception of
size. Sweeny et al. (2014) included a control condition that allowed for
the behavioural simulation of participants' abilities to perceive average
size with no ensemble coding strategies available. Contrasting perfor-
mance in this condition with performance in the principal condition,
where participants were required to employ ensemble perception stra-
tegies, yielded the ensemble coding advantage. The ensemble coding
advantage essentially measured the extent to which participants uti-
lized ensemble perception strategies. Sweeny et al. (2014) also con-
sidered ensemble perception advantages predicted by ideal-observer
models that assumed pooling of different amounts of items. They con-
trasted modelling results with human data to predict the number of
individual items that participants integrated in the ensemble perception
task in that study. Our computational modeling work aimed to perform
a similar analysis and provide two measures characterizing the per-
formance of individual participants: 1) the ensemble coding advantage,
and 2) the number of samples that best accounted for the participant's
actual performance in ensemble emotion discrimination.

Furthermore, our computational modeling aimed to contrast the
performance of different groups in ensemble emotion discrimination
(Task 1) given their baseline emotion discrimination abilities (Task 2,
control). This was akin to the modeling approach in Karaminis et al.
(2016), who assessed the amount of central tendency in temporal in-
terval reproduction in autistic and typical children and adults (mea-
sured with a time interval reproduction task), taking into account their
temporal resolution abilities (measured with a time discrimination
task). This study showed that the patterns of performance of autistic
children in time interval reproduction/discrimination were closer to the
predictions of a computational model employed attenuated (compared

to typical children and adults) prior knowledge representations of a
mean interval. Here, the modeling aimed to assess whether the patterns
of performance of autistic children are suggestive of less reliance on
ensemble coding or of the integration of fewer items.

To address these issues, we developed an ideal observer model that
simulated the performance of each participant in the ensemble emotion
discrimination task if s/he gave her/his responses after subsampling
one, two, or three randomly chosen faces or after sampling all four
faces. In all four conditions for the sample size (N= 1, 2, 3 or 4), the
ideal observer model for a given participant considered the same test
trials as those presented to the participant. The model assumed noisy
perception of the emotionality of the sampled faces, and noise was
constrained by the performance of the participant in baseline emotion
discrimination. We performed 500 Monte Carlo repetitions for each test
trial. On each repetition, the emotionality values of faces were replaced
with noise-perturbed values drawn from normal distributions centered
on the actual emotionality values of the faces and with standard de-
viations equal to the precision of the participant in baseline emotion
discrimination. Arguably, the inclusion of additional integration noise
in the model would result in noisier estimates of the ensemble emotion.
In that sense, the model is optimal or upper-bound. Therefore the model
with a sample size parameter of N yielded the following estimate for an
ensemble emotion expression:

∑
= =

perceived ensemble facial expression

perceived emotion of sampled expression i

N
i

N

1

The perceived ensemble facial expression was then categorised as
happy if it was higher than the point of subjective equality (PSE) in the
fitted psychometric curve for this participant in baseline emotion dis-
crimination and as sad otherwise.

The ideal observer model assumed no noise in the integration pro-
cess per se. The integration of the noise-perturbed emotionality values
for faces in the sample was therefore perfect, implying that the simu-
lated precision of participants in average emotion discrimination was a
lower-bound estimate, corresponding to optimal performance.

We used the results from the model simulations in two ways. First,
we used the precision of the ideal observer model with N=1 to cal-
culate an ensemble encoding advantage for each participant – a measure
of the extent to which a given participant benefited from ensemble
coding strategies. It was calculated as the difference between the pre-
cision of the participant in average emotion discrimination and that of
the ideal observer model with N=1, normalised by the precision of the
participant in baseline emotion discrimination:

=
− =

Ensemble Coding Advantage
Precision in Task Precision of Ideal Observer Model with N

Precision in Task
1 1

2

The ensemble coding advantage essentially contrasted the precision
of a given participant in average emotion discrimination with the pre-
cision that the same participant would exhibit in this task if s/he re-
sponded after randomly sampling a single face from the test sets (si-
milar to the behavioural simulation in Sweeny et al., 2014).

Second, and in a complementary analysis, we used the simulated
precision values in all four ideal observer models (N=1, 2, 3, and 4)
for a given participant to estimate the number of samples that best
accounted for the participant's actual performance in average emotion
discrimination. This was done by fitting an exponential curve to the
precision values obtained from the ideal observer models with N=1, 2,
3 and 4, and then identifying the value of N (non-integer) that corre-
sponded to the precision of the participant in average emotion dis-
crimination in that curve.
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3. Results

3.1. Ensemble (Task 1) and baseline (Task 2) emotion discrimination

Individual data from participants were well fit by cumulative
Gaussian functions (autistic group: R2= 0. 89 ± 0.07; typical group:
R2= 0.89 ± 0.06; adults: R2= 0.93 ± 0.03). A preliminary analysis
showed no effect of gender on performance in any task so data were
collapsed across stimulus gender.

First, we looked at participants' precision in ensemble and baseline
emotion discrimination in autistic and typical children and adults.
Fig. 2 shows precision thresholds, given by the standard deviation of
the fitted cumulative Gaussian functions, for the three groups in the
average and baseline emotion discrimination tasks. We conducted a
mixed-design ANOVA with condition (ensemble and baseline emotion
discrimination) as a repeated measures factor, and group (autistic, ty-
pical children, and adults) as a between-participants factor. There were
significant effects of condition, F(1, 87)= 32.55, p < 0.001,
np2= 0.27, and group, F(2, 87)= 6.28, p=0.003, np2= 0.13, but no
condition x group interaction, F(2, 87)= 1.75, p=0.18, np2= 0.04.
The analysis therefore suggested that, unlike Haberman and Whitney
(2007), precision in ensemble emotion discrimination was worse than
precision in individual emotion discrimination. This pattern was iden-
tical across groups. Planned contrasts suggested significant differences
in precision between adults and typical children, t(87)= 0.95,
p < 0.001, consistent with Sweeny et al. (2014). Contrary to ex-
pectations, there were no significant differences in precision between
autistic and typical children (p=0.79).

Next, we investigated within-group variability in ensemble emotion
discrimination in autistic and typical children (Fig. 3). An examination
of age-related improvements revealed no significant correlations be-
tween precision thresholds and ensemble emotion discrimination in
typical [r(30)= –0.45, p=0.11] and autistic children [r(35)= –0.21,
p=0.93]. However, autistic children's precision thresholds in en-
semble emotion discrimination were highly correlated with their WASI-
II Performance IQ scores [r(35)= –0.53, p=0.01], a relationship not
found in typical children [r(30)= –0.12, p=1.00]. Fisher z-transfor-
mation tests suggested that the correlations between ensemble per-
ception thresholds and age did not differ significantly in the two groups
of children (z= 1.04, p= 0.30, two-tailed), while the correlations be-
tween the ensemble perception threshold and Performance IQ was not
different in the two groups of children (z= 1.08, p=0.07, two-tailed).
No systematic relationships between precision thresholds in baseline
emotion discrimination and chronological age or Performance IQ were
found in either typical or autistic children (all ps > 0.28).

We also examined correlations between precision thresholds in

ensemble and baseline emotion discrimination. These precision mea-
sures were strongly and positively correlated within the autistic group
[r(35)= 0.48, p=0.04], but not for typical children [r(30)= 0.33,
p=0.74] or adults [r(25)= 0.24, p= 0.25]. However, these correla-
tions were not significantly different in autistic and typical children
(z= 1.15, p=0.25, two-tailed).

Finally, within the autistic group, there were no significant corre-
lations between autistic symptomatology, as measured by the ADOS-2
and SCQ, and precision thresholds in baseline and ensemble emotion
discrimination (all ps > 0.52).

3.2. Facial expression identification task (Task 3)

Similar to Haberman and Whitney (2007), we evaluated children
and adults' accuracy in identifying morphs previously presented to
them for the three conditions for the target-distractor emotional dis-
tance (3, 15 and 17). Accuracy rates for the three groups are shown in
Fig. 4. As expected, and consistent with Haberman and Whitney (2007),
accuracy was at chance for test stimuli with a target-distractor distance
of 3 emotional units for all three groups [autistic: t(34)= 0.53,
p=0.60; typical: t(29)= 0.43, p=0.67; adults: t(24)= 1.00,
p=0.33]. Unexpectedly, however, performance was above chance for
test stimuli with distances of 15 or 17 (ps < 0.001).

We examined group differences in accuracy in the three conditions
of the face-identification task by conducting a mixed-design ANOVA.
There were significant effects of condition [Linear: F(1, 87)= 155.42,
p < 0.001, np2= 0.64; Quadratic: F(1, 87)= 25.97, p < 0.001,
np2= 0.23], group, F(2, 87)= 9.89, p < 0.001, n2= 018, but no
condition x group interaction [Linear: F(2, 87)= 2.51, p=0.09,
n2= 0.06; Quadratic: F(1, 87)= 0.31, p= 0.74, np2= 0.01]. Planned
comparisons suggested significant differences in accuracy between
adults and typical children, t(74)= 0.06, p=0.001, but, crucially, no
differences were found between autistic and typical children
(p= 0.99).

Examination of age-related improvements or improvements with
Performance IQ revealed no significant correlations in emotional ex-
pression identification (all ps > 0.28). There were also no significant
correlations between autistic symptomatology and accuracy in emo-
tional expression identification (all ps > 0.86).

3.3. Computational modelling

Fig. 5 shows the calculated ensemble coding advantages for the
three groups [autistic: M=0.53, SD=0.47; typical: M=0.56,
SD=0.68; adults: M=0.81, SD=0.70]. Ensemble perception ad-
vantages were significant for all three groups [autistic: t(34)= 6.74,

Fig. 2. Mean precision for emotion discrimination (mean of standard
deviations of the fitted psychometric curves) in the ensemble (Task 1)
and individual emotion (Task 2) discrimination tasks for autistic
children, typical children and typical adults. The orange bands cor-
respond to± 1 SEM. Points superimposed on bars show individual
variability, while blue lines connect data from the same participant.
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p < 0.001; typical: t(29)= 4.52, p < 0.001; adults: t(24)= 5.98,
p < 0.001]. Unexpectedly, there was no main effect of group, F(2,
87)= 1.79, p= 0.17. Planned contrasts suggested that adults did not
present a greater ensemble coding advantage compared with typical
children, t(87)= 1.50, p=0.13, and, importantly, there was no sig-
nificant difference between the two groups of children, t(87)= 0.13,
p=0.90.

Fig. 6 presents precision in average emotion discrimination of the
three groups (grey bars) along with the simulated precision obtained
from the ideal observer models with N=1, 2, 3, 4 (blue bars). The red
lines connect model-predicted precision based on the data of individual
participants. Fitting of an exponential curve (not shown in graph) to the
model data yielded a non-integer N value representing the mean

number of different emotional expressions sampled by a given partici-
pant in the average emotion discrimination task, according to the ideal
observer model. Fig. 7 shows this measurement for the three groups.
These were all significantly greater than 1 [autistic: t(34)= 6.93,
p < 0.001; typical: t(25)= 5.40, p < 0.001; adults: t(24)= 3.54,
p=0.002]. A one-way ANOVA revealed no significant effect of group,
F(2, 88)= 0.65, p=0.52, suggesting that the model predicted no dif-
ference between the three groups in terms of the faces sampled in en-
semble emotion discrimination.

Thus, the two model-based measures of ensemble perception did not
present between-group differences as those found for precision in
average emotion discrimination. However, the two model-based mea-
sures presented different patterns of within-group individual variability

Fig. 3. Within group individual variability. First row: Precision in ensemble emotion discrimination (Task 1), precision in baseline emotion discrimination (Task 2), and ensemble coding
advantage plotted against chronological age. Second row: The same measures plotted against Performance IQ scores, obtained from the WASI-II (Wechsler, 2011). Third row: Precision in
ensemble emotion discrimination (Task 1) plotted against precision in baseline emotion discrimination (Task 2) and model-based prediction for the number of samples plotted against
Performance IQ scores. Dots correspond to individual data (cyan: typical children/adolescents; magenta: autistic children/adolescents; blue: adults). The continuous lines show fitted
linear regressions. “Stat. sign.” indicates that the difference in the correlations between model-based measures and Performance IQ in autistic and typical children is statistically
significant.

Fig. 4. Mean accuracy in face identification task (Task 3) for three values of distance in emotional units between the two faces of the panel for autistic children, typical children and
typical adults. Orange bands correspond to± 1 SEM. Points superimposed on bars show individual variability, while blue lines connect data from the same participant.
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in autistic and typical participants, which were, importantly, largely
consistent with patterns found in the empirical data for precision in
average emotion discrimination (see Fig. 3). Ensemble coding ad-
vantage was highly correlated with age in typical children [r
(30)= 0.56, p=0.02], but not in autistic children [r(35)= 0.21,
p=1.00], though such a contrast was not present for the number of
sampled faces [typical: r(30)= 0.32, p= 0.75; autistic: r(35)= 0.14,
p=1.00]. The two model-based measures were also highly correlated
with Performance IQ within the autistic group [ensemble coding ad-
vantage: r(35)= 0.56, p=0.01, mean number of sampled faces: r
(36)= 0.52, p=0.02], but not in the typical group [ensemble coding
advantage: r(30)= –0.21, p=0.87, mean number of sampled faces: r
(36)= –0.18, p=0.89]. Although Fisher tests suggested that there was
no difference in the correlations between chronological age and en-
semble coding advantage in the two groups of children (z= 1.61;
p=0.11, two-tailed), importantly, they showed that the correlations
between Performance IQ and the two modelled based measures were
significantly different between the groups (ensemble coding advantage:
z= 3.24, p= 0.001, two-tailed; number of samples: z= 2.9,
p=0.004, two-tailed; adjusted α=0.008). These correlations are
shown in Fig. 3 (rightmost column, middle and lower plots). The be-
tween-group difference in the correlations between Performance IQ and
ensemble coding advantage retained its significance within the adjusted
alpha level when the outlying ensemble coding advantage of a typical
participant was trimmed to 2 SD from the mean, (z= 2.82, p= 0.005,
two-tailed).

Finally, autistic symptomatology did not correlate significantly with
the model-based measures of ensemble perception [ps≥ 0.97].

3.4. Eye-movement variables

Fig. 8 demonstrates the average number of different faces (morphs
presented in different regions of interest) that the participants looked at
in trials of the three tasks, for the three groups. A mixed-design ANOVA
showed a significant quadratic effect of task on the number of faces
sampled, F(1, 57)=51.17, p < 0.001, np2=0.4, but no significant ef-
fect of group, F (2, 57)=1.81, p=0.17, np2=0.06, and no significant
interaction between group and task [Linear: F(2, 57)=2.17, p=0.12,
np2=0.07; Quadratic: F(2, 57)=0.91, p=0.41, np2=0.03]. There-
fore, the three groups were indistinguishable in terms of the number of
different morphs they sampled across the trials of the three tasks. They
also presented a common pattern in which the number of different faces
sampled was slightly higher in the average emotion discrimination than
in the baseline emotion discrimination and the face-identification task.

Finally, we examined individual variability within the two groups of
children with respect to eye-tracking variables. This analysis showed no
systematic relationships between the way autistic or typical children
attended to the stimuli and age or Performance-IQ and no significant
correlations with autistic symptomatology in the autistic group (all
ps > 0.65).

Fig. 5. Ensemble coding advantage in the three groups of participants. Orange bands
correspond to± 1 SEM, while points superimposed on bars show individual variability.

Fig. 6. Precision in ensemble emotion discrimination: Empirical data and computational modelling. Orange bands correspond to±1 SEM. Points superimposed on bars show individual
variability, while blue lines connect empirical and simulation data for a given participant.

Fig. 7. Predicted number of samples for the three groups of participants in the ensemble
emotion discrimination task. Orange bands correspond to± 1 SEM, while points super-
imposed on bars show individual variability.
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4. Discussion

A large body of empirical research has demonstrated the abilities of
human perception to rapidly and automatically extract the summary or
the gist of large amounts of information presented in visual scenes, also
referred to as ensemble perception. We hypothesised that this funda-
mental ability for ensemble perception might be compromised in au-
tistic children, who are held to present limitations in forming, accessing
and/or using efficiently summary statistics representations for the re-
cent history of their sensory input (Pellicano and Burr, 2012). Our
hypothesis yielded two testable predictions: that (1) autistic children
should present worse precision than typical children in a task involving
ensemble perception of emotional morphed faces; and (2) autistic
children might be more accurate than typical children in tasks that
involve identification of individual faces (rather than encoding a sum-
mary emotion).

In direct contrast, we found no differences between autistic and
typical children in terms of their precision in ensemble and baseline
emotion discrimination, and in their accuracy in face identification. Our
results showed that, relative to typical children, autistic children pre-
sented neither a limitation in ensemble perception nor an advantage in
face identification. The two groups also did not differ in ensemble
coding advantage and the number of samples integrated in each task, as
suggested by the computational model. Eye-movement data further
corroborated these findings: autistic and typical children looked at the
same number of faces per trial on each task. Our analysis therefore
showed that, on average, autistic and typical children performed largely
similarly on our paradigm.

To examine further performance in ensemble emotional expression
discrimination in isolation from baseline emotion discrimination, our
study used computational modelling. Computational modelling sug-
gested significant ensemble coding advantages for all three groups and
that all groups integrated more than one face to determine the average
emotion of a set. However, the three groups did not differ in these
model-based measures. It is important to note that our modelling ap-
proach was conservative and the estimates of the participants' ensemble
coding advantages and the number of faces they integrated in average
emotion discrimination was lower-bound. While the model simulated
baseline emotion discrimination taking into account estimates of noise
(due to attention, motivation or decision-making) derived from the
baseline emotion discrimination task, it did not include any late-stage
noise in the integration process, like in other ideal-observer simulations
of ensemble coding (Myczek and Simons, 2008). This late-stage noise
would arguably increase the estimates of the precision of integration:

that is, the model would predict higher levels of ensemble perception
for a given value of precision in the average emotional expression
discrimination task. In the absence of relevant empirical data, espe-
cially for differences between autistic and typical children, we opted to
include no arbitrary constraints for late-stage noise in our model.

Eye-movement data on the other hand provided an upper-bound
estimate of the number of faces that each participant integrated when
completing each task (for example, looking at a face could not ne-
cessarily imply its integration with other test faces). Our eye-movement
data did not suggest that differences in the way the three groups at-
tended to the stimuli, in particular in the number of different faces
scanned across trials.

We also investigated within-group individual variability in en-
semble perception. This analysis revealed an interesting difference in
the development of ensemble perception in autistic and typical chil-
dren. In the group of autistic children, ensemble perception was closely
related to their non-verbal reasoning ability. This relationship was not
present in the group of typical children. This finding was supported by
the computational modelling results rather than the empirical results in
ensemble perception (Task 1). Computational modelling assessed per-
formance in ensemble emotion discrimination (Task 1) focusing on the
amount of information integrated by participants and ruling out dif-
ferences in baseline emotion discrimination. Our results therefore
suggest that ensemble perception per se presents an asymmetric re-
lationship with general perceptual and reasoning abilities in autistic
and typical children.

Indeed, our findings raise the possibility that ensemble perception
might be fundamentally different in autistic and typical children.
Ensemble coding in autistic children could be achieved through alter-
native cognitive strategies, possibly involving some kind of perceptual
reasoning over individual emotional expressions. By contrast, in typical
children, ensemble perception might involve domain-specific cognitive
mechanisms.

We also showed that typical (and autistic) children performed worse
than adults in all three tasks, presenting worse precision in baseline and
average emotion discrimination and worse accuracy in the face-iden-
tification task. Our data suggested that abilities for ensemble perception
of emotion, as well as the abilities for baseline emotion discrimination
and emotional expression identification, are available early in devel-
opment. These findings are consistent with the findings of Sweeny et al.
(2014) on ensemble perception of a non-social stimulus, namely size, in
younger children. However, our data could not demonstrate develop-
mental improvements as correlations between precision measures in
Tasks 1 and 2 or model-based measured of ensemble perception were

Fig. 8. Mean number of different faces scanned by the participants in the three groups across test trials for the three tasks separately. Orange bands correspond to± 1 SEM, while blue
lines connect data from the same participant.
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not significant. Arguably, this might reflect a power issue. Eye-move-
ment data too, showed no systematic correlations with age or perfor-
mance IQ. Thus, differences in performance between children and
adults in the three tasks, as well as individual variability in performance
within the two groups of children, were not related to looking differ-
ences.

Our findings that ensemble perception of emotional expression is,
on average, similar in autistic and typical children contrasts with those
of Rhodes et al. (2015), who reported ensemble coding limitations in
autistic individuals for face identity. One possibility is that this dis-
crepancy is due to different mechanisms underlying the extraction of
summary statistics for facial identity and emotions, consistent with
theoretical proposals for the involvement of different pathways in the
processing of invariant aspects of faces, such as identity, and change-
able aspects, such as expression (Haxby et al., 2000; see also Calder and
Young, 2005). However, we would also argue that the findings of
Rhodes et al. (2015) warrant replication, especially since the sample of
autistic individuals was very small (n= 9) and could not provide en-
ough statistical power for the consideration of within-group variability.

Two patterns in our results, which characterized the performance of
all three groups, were inconsistent with the original study by Haberman
and Whitney (2007). First, we found that precision in ensemble emo-
tion discrimination was worse than precision in baseline emotion dis-
crimination. Haberman and Whitney (2007) found no difference be-
tween these two conditions for two of their three participants. Second,
we found that accuracy in face identification was at above-chance levels
for target-distractor emotional distances of 15 and 17. Haberman and
Whitney (2007) had found that accuracy was at chance for all condi-
tions of their face identification task. These discrepancies between our
findings and Haberman and Whitney (2007) are likely to reflect a
number of methodological differences (e.g., number of trials, number of
participants, stimuli, use of reference stimuli on screen), which were
introduced in our study to develop a child-appropriate version of the
original paradigm. Our findings that accuracy in face identification was
at above-chance levels (for some conditions) suggested that children,
adolescents and adults present abilities for ensemble perception, as well
as abilities to represent individual items. This pattern is consistent with
other studies on ensemble perception (Kramer et al., 2015; Neumann
et al., 2013).

Our results also suggested that autistic children/adolescents had no
problems in emotion perception, either in the baseline or the ensemble
discrimination tasks or even in the identification of facial expressions.
This finding is in line previous studies reporting no differences between
autistic and typical children in emotion discrimination and identifica-
tion tasks (Ozonoff et al., 1990; Tracy et al., 2011).

It is possible that our task was simply not sufficiently difficult to
detect differences between autistic and typical children in any of the
three tasks. However, this is unlikely, given the significant age-related
differences between children and adults. Another potential limitation is
that our results reflect sampling issues and that ensemble processing
abilities would be not as robust in a group of autistic children with
poorer baseline emotion discrimination abilities (as suggested by the
correlations between performance in the two tasks in our data).

Nevertheless, the different individual variability profiles of the two
groups of children in ensemble perception demonstrate that it is im-
portant for future studies on ensemble perception to consider individual
differences. Our results also demonstrate the need to refine prominent
theories of autistic perception, for example theories suggesting limita-
tions in global processing (Happé and Frith, 2006), the processing of
more complex stimuli (Mottron et al., 2006) and, of course, the hy-
pothesis of attenuated prior knowledge (Pellicano and Burr, 2012). To
account for our data, these theories need to accommodate mechanistic
accounts for how qualitatively different strategies might give rise to
similar overall performance in ensemble perception in typical devel-
opment and the autism spectrum.

Gaining knowledge of the temporal dynamics of ensemble

perception would be a valuable way to address this issue. For example,
our results suggest that ensemble perception could be less rapid as a
process in autistic children, due to its greater reliance on some kind of
perceptual reasoning. Our study, and the original study of Haberman
and Whitney (2007), obtained responses after the stimuli have re-
mained on screen for 2s, and therefore could not provide reliable
measures of reaction times. Studies with time-contingent designs, more
demanding stimuli, as well as electrophysiological approaches could be
used to assess the rapidity of ensemble perception in typical develop-
ment and autism.

Theories of autistic perception and ensemble perception also need to
consider the possibility of efficient compensation for ensemble per-
ception in autism. Developmental and other studies on ensemble per-
ception have argued that its early emergence and ubiquity reflect its
fundamental importance in perception and, in the case of social stimuli,
in the development of social behaviour and cognition (Haberman and
Whitney, 2012; Sweeny et al., 2014; Neumann et al., 2013; Rhodes
et al., 2015; Whitney et al., 2013). A number of previous studies have
also established that autistic individuals present atypical adaptation to
various dimensions of facial stimuli (e.g. Pellicano et al., 2007;
Pellicano et al., 2013), suggestive of limitations in their abilities to
extract norms for faces seen during the recent history of sensory input.
Such limitations might give rise to difficulties in ensemble perception,
with profound effects in their ability to adapt and respond to social
environments. It is possible that these difficulties are compensated in
autism through the use of domain-general perceptual reasoning over
individually perceived stimuli. If this is the case, adults on the autism
spectrum should also show a reliance of abilities for ensemble percep-
tion on perceptual reasoning abilities.

Finally, it is important to ask whether our findings are specific to
ensemble perception of facial attributes or whether they generalise to
low-level stimuli (Sweeny et al., 2014). An interesting possibility is that
qualitative differences in ensemble perception should manifest in do-
mains where autistic individuals present diminished perceptual adap-
tation (e.g., numerosity: Turi et al., 2015; audiovisual adaptation: Turi
et al., 2016), rather than domains where adaptation is similar to typical
development (e.g., perceptual causality: Karaminis et al., 2015).
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