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Abstract 

Animal studies have demonstrated that unilateral hearing loss can induce changes in neural 

response amplitude of the mature central auditory system (CAS). However, there is limited 

physiological evidence of these neural gain changes in the auditory cortex of human adults. 

The present study investigated the impact of chronic, unilateral conductive hearing 

impairment on cortical auditory evoked potentials (CAEPs) recorded from 15 adults (21-65 

years old) in response to a 1 kHz tone (80 ms duration) presented to the impaired ear via a 

bone conduction transducer. The amplitude and latency of the main CAEP components were 

compared to those obtained from normal hearing age-matched control participants. Both P1-

N1 and N1-P2 amplitudes were significantly larger in the hearing impaired relative to the 

control participants. Differences between groups in the mean latencies of P1, N1, and P2 were 

not statistically significant. These results are the first to provide direct evidence of increased 

neural response amplitude in the adult human auditory cortex in the presence of unilateral 

conductive hearing loss. Importantly, the study shows that central gain changes are a direct 

result of deprivation of sound rather than cochlear or neural pathology. 
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1. Introduction 

To understand the functional consequences of hearing loss, we not only need to 

understand its effects on processing at the level of the cochlea and auditory nerve, but also 

how it affects the central auditory system (CAS). Since hearing loss reduces the overall 

sound-evoked activity of the auditory nerve and thus the input signal to the brain, one would 

expect to find a subsequent reduction in neural activity within the CAS. However, increases 

in spontaneous and stimulus-evoked neural firing have been observed in the auditory system 

of adult animals following a cochlear lesion (for review see Roberts et al., 2010; Schaette et 

al., 2014; Brotherton et al., 2015). It is thought that these changes in neural activity may be 

due to homeostatic plasticity, a mechanism thought to regulate neural excitability and 

synaptic efficiency in order to stabilize cortical activity (Turrigiano, 1999). Increases in 

spontaneous neuronal activity were found in the dorsal cochlear nucleus (Dehmel et al., 2012; 

Kaltenbach et al., 2002; Manzoor et al., 2013), the inferior colliculus (Manzoor et al., 2013; 

Mulders and Robertson, 2009; Hesse et al., 2016) and the auditory cortex (Ahlf et al., 2012; 

Norena and Eggermont, 2003) following cochlear trauma. Similarly, studies investigating 

stimulus-evoked activity have found an increase in neural responsiveness within subcortical 

pathways (Cai et al., 2008; Dehmel et al., 2012; Hickox and Liberman, 2014) and the auditory 

cortex (Chambers et al., 2016). These animal studies have all involved introduction of a 

cochlear lesion either through acoustic trauma or the administration of ototoxic drugs. Both of 

these interventions typically cause loss of cochlear hair cells (Dallos and Harris, 1978; 

Kaltenbach et al., 2002; Chen and Fechter, 2003) and degeneration of auditory nerve fibres 

(Webster and Webster, 1981; Kujawa and Liberman, 2009; Chambers et al., 2016). Therefore, 

it is difficult to disentangle whether the observed changes in neural activity in the auditory 

brain are provoked by sensory deprivation or sensorineural pathology. 

An alternative model to assess changes in central auditory processing is to investigate the 

effects of a conductive hearing impairment. Conductive impairments typically result in a 

reduction of sound energy reaching the cochlea, with the cochlea and the CAS remaining 

largely intact (Moore et al., 1989). As such, this model of sensory deprivation allows us to 

remove sensorineural damage as a confounding factor. A number of studies have used 

conductive hearing impairments to investigate neural gain changes. Decker and Howe (1981) 

assessed the ipsilateral acoustic reflex threshold (ART) following unilateral earplugging to 

investigate central gain changes in adult humans. Following 30 hours of plugging, a non-

significant reduction in ART of the deprived ear was recorded following unplugging. More 

recent studies have revisited the ART in adults after longer periods of auditory deprivation. A 

significant reduction in ART of the deprived ear has been recorded after 7 days of unilateral 



 

 

earplugging (Munro and Blount, 2009; Maslin et al., 2013; Munro et al., 2014). These studies 

are indirect evidence of a change in neuronal processing in the CAS, and the results are 

consistent with an increase in neuronal response gain in subcortical auditory pathways after 

sensory deprivation. 

Animal studies have shown that conductive hearing impairment induces reversible 

synaptic changes in auditory subcortical pathways. Whiting et al. (2009) used earplugging to 

induce a unilateral conductive hearing impairment in normal-hearing rats. They reported 

altered expression of glycine and glutamate receptor subunits within the ventral and dorsal 

cochlear nucleus after 24 hours of earplug use, an effect that was fully reversible following 

removal of the earplug. Furthermore, Tucci et al., (1999) found reduced uptake of 2-

Deoxyglucose in brainstem auditory nuclei in the auditory pathway of an ear with conductive 

hearing impairment, indicative of increased neural firing in the subcortical pathways of the 

impaired ear.  It would be expected that any change in subcortical pathways would influence 

stimulus-evoked activity in the auditory cortex; however, this was not evident on functional 

magnetic resonance imaging (fMRI) of adult humans following a period of unilateral 

earplugging, despite evidence of subcortical changes on acoustic reflex threshold (ART) 

testing (Maslin et al., 2013). 

Stimulus-evoked neural activity can be assessed directly in humans by measuring 

auditory evoked potentials. Decker and Howe (1981) used auditory brainstem responses 

(ABR) to measure subcortical activity on stimulation of a previously deprived ear after 30 

hours of earplugging, recording a non-significant trend for reduced latency of wave I. Unlike 

ART measures, this finding was not supported in a study of long-term unilateral deprivation 

(Ferguson et al., 1998). 

To date, no animal or human studies have reported a change in stimulus-evoked activity 

in the mature auditory cortex on stimulation of an ear with an intact cochlea that has been 

subjected to auditory deprivation. The aim of the present study was to investigate cortical 

auditory evoked potentials (CAEPs) in adults with late-onset, unilateral conductive hearing 

impairment on stimulation of the impaired ear. Chronic impairments were studied in order to 

ensure sufficient length of sensory deprivation. It was hypothesised that stimulation of the 

impaired ear would result in greater neural activity compared to normal-hearing controls, 

evidenced by higher amplitudes and shorter latencies of the CAEP components.  

 
 

2. Methods 
 
2.1. Participants 



 

 

 

This was a case-control study with two groups of 15 participants. The aetiology of 

hearing impairment for the experimental group are summarised in Table 1. Pure tone 

audiogram thresholds are detailed in Table 2. The experimental group was matched with 

controls by age, sex and hearing in the intact ear. We were unable to use the normal hearing 

ear of the unilaterally impaired participants as a control, as the high level of masking required 

to mask the impaired 'non-test' ear would risk crossing to the normal hearing test ear and 

reduce validity of any findings. Ethics approval was obtained from Camberwell St Giles REC 

(reference: 14/LO/1223). 

 

Insert Table 1 here. 

Insert Table 2 here. 

 

2.2. Stimuli and Procedures 

 

A Bio-logic NavPro system was used to record the CAEPs. The stimulus used was a 1 

kHz tone (80 ms duration) with a repetition rate of 1.1/s. A 1 kHz stimulus was used as lower 

frequency tonal stimuli produce larger CAEP amplitudes than higher frequency stimuli 

(Jacobson et al., 1992). A 1 kHz CAEP is therefore likely to be maximally sensitive to 

neuroplasticity. A high pass filter of 1 Hz and a low pass filter of 15 Hz were used. The 

artefact rejection level was 20 μV. A total of 500 accepted sweeps was recorded from each 

participant. The stimulus was presented to the test ear mastoid via a bone conduction 

transducer, at a comfortable supra-threshold level of 20 dB above the bone conduction 

threshold determined by Pure Tone Audiogram (PTA). 

 A bone conduction transducer was used in order to prevent introduction of error by 

correcting for the conductive element of hearing impairment when providing a stimulus via 

air conduction. Masking was required to isolate the test ear and ensure there was no cross-

hearing of stimulus. The CAEP is generated at a level above where binaural interaction 

occurs. It is thought that contralateral broadband masking alters peak amplitudes but has no 

overall effect on peak to trough amplitudes and peak latencies of the CAEP (Salo et al., 

2003). Continuous pink noise masking was provided to the unaffected ear via a supra-aural 

headphone. Broadband masking is thought to be equally effective to narrow band noise 

(although perceived as louder), and was chosen in this case due to availability (Tate, 2013). 

The masking level was 30 dB above the stimulus level. This level was chosen as it was 



 

 

sufficient to provide effective masking of the non-test ear with a low risk of cross-masking 

(Munro and Agnew, 1999). 

Participants were seated in a reclining chair in a sound-attenuating booth. Participants 

were seated in a reclining chair in a sound-attenuating booth. The booth complied with British 

Standards (British Standards Institution, 2010) for maximum permitted ambient noise levels 

for audiometry and therefore the findings are not likely to have been influenced by ambient 

noise. No active responses were required from the participants but general alertness was 

maintained by watching a movie with subtitles and the sound disabled. Three gold-plated 

surface electrodes were used; the negative was placed on the mastoid of the test ear, the 

positive at Cz and a common electrode on the mastoid of the non-test ear. The measurement 

lasted approximately 10 minutes. 

Peaks and troughs were identified as the first three waves of the averaged trace where P1 

was the most positive peak occurring closest to 50 ms, N1 was the most negative occurring 

closest to 100 ms and P2 was the most positive peak closest to 180 ms. Latency was measured 

as the absolute latency at the peak of the wave. Peak-to-trough amplitude was measured as the 

difference in amplitude (μV) between peaks (P1-N1, N1-P2). Peaks were determined by an 

experienced clinical scientist who was blinded to test ear and group, and checked by an 

independent second tester. 

 

2.3. Statistical Analysis 

 

The main analysis involved a comparison of difference in grand average means between 

groups for absolute latencies and peak-to-trough amplitudes. The data were normally 

distributed so the analysis consisted primarily of independent samples t-tests. Because there 

were multiple pair comparisons (2 for amplitude and 3 for latency), the more conservative 

significance level of 0.01 was used. Residual noise was calculated with the ± reference 

method (Schimmel, 1967). 

 

3. Results 

 

3.1. Audiometry 

 

Figure 1 shows the mean pure tone audiogram for hearing impaired participants and 

control group. Hearing impairment generally produced a flat conductive hearing loss from 

0.25 to 8 kHz. Table 1 shows 1 kHz audiometric data and median values for the hearing 



 

 

impaired and control group. Pure tone average (0.5 - 4 kHz mean) was <20 dB HL for the 

normal ear of hearing impaired participants and for both ears of control participants. Mean 

air-bone gap at 1 kHz for the hearing-impaired ears was 37 ±2.22 dB HL (range: 25-55 dB 

HL). Interestingly, there does appear to be a 'Carhart's notch' at 2 kHz for the hearing 

impaired group. 2 participants had been diagnosed with otosclerosis which may have 

contributed partly to this finding. Although a Carhart's notch is considered to be a 

characteristic finding in those with otosclerosis, it has been documented that other middle ear 

disorders  may also present with a 2 kHz notch on bone conduction testing, for example otitis 

media (Kumar et al., 2003). Therefore, it was anticipated that a 2 kHz notch in bone 

conduction threshold might appear for the hearing impaired group. 

 

Insert Figure 1 here. 

 

Mean bone conduction thresholds at 1 kHz for the hearing-impaired ears did not differ 

significantly from either bone conduction (p = 0.66, independent samples t-test) or air 

conduction (p = 0.48, independent samples t-test) thresholds of the control group at 1 kHz, 

demonstrating normal inner ear sensitivity of the hearing-impaired group despite the 

conductive loss. 

 

3.2 Waveform comparison 

 

Grand average waveforms for each group are displayed in Figure 2. No difference in 

peak values was found when comparing manual measurement to measurement using an 

automated peak detection algorithm. Figure 3 shows grand average of residual noise for each 

group. There was no significant difference between groups in RMS signal-to-noise across the 

waveform (p = 0.13). 

 

Insert Figure 2 here. 

 

3.3 CAEP amplitudes 

 

Figure 4 shows boxplots for the CAEP peak-to-trough amplitude data, obtained for responses 

to 1 kHz tones delivered via bone conduction at 20 dB SL. The mean peak-to-trough 

amplitudes of P1-N1 and N1-P2 were significantly greater in response to stimulation of the 

impaired ears than the control ears (see Table 3). 



 

 

 

Insert Figure 4 here. 

Insert Table 3 here. 

 

3.4. CAEP latencies 

 

Figure 5 shows boxplots for the absolute latencies of the CAEPs. Latencies of all three 

peaks were shorter for the impaired ears relative to the controls,  but the mean difference 

reached p < 0.05 only for P1 (p = 0.03, see Table 3). This finding cannot be considered 

significant in light of the conservative significance level of p <0.01 to account for multiple 

comparisons. 

 

Insert Figure 5 here. 

Insert Table 4 here. 

 

4. Discussion 

 

This study investigated the impact of chronic, unilateral conductive hearing impairment 

on the neural response amplitude of the auditory cortex. CAEPs recorded from bone 

stimulation of the deprived ear of adults with chronic, unilateral conductive hearing 

impairment were compared to those of a normal hearing control group provided with 

equivalent stimulation. The hearing-impaired group had significantly larger mean P1-N1-P2 

amplitudes than the control group. Shorter mean latencies of these waves were also observed. 

These findings support the hypothesis that unilateral auditory deprivation causes an increase 

in neural responsiveness of the CAS. 

The difference in CAEP amplitude between the two groups cannot be explained by 

differences in stimulus or masker levels. Stimulation was provided to all participants via a 

bone conduction transducer at 20 dB SL, together with contralateral masking at 30 dB above 

stimulus level. Peak-to-trough amplitudes for the control participants were comparable to 

unpublished normative data from our lab. Based on our normative data, we estimate that a 

difference in stimulus level of at least 20 dB for P1-N1, and at least 40 dB for N1-P2, would 

be required to cause CAEP amplitude differences of the same magnitude as we observed 

between study and control groups. As there was no significant difference in stimulus level 

between groups in our study, the larger amplitudes measured in the hearing-impaired group 



 

 

cannot be attributed a higher stimulus level.  There was a small, non-significant difference 

between groups in the 1 kHz air conduction threshold of the non-test ear. As the same 

masking paradigm was used for all participants, this finding cannot be attributed to cross-

masking (Munro and Agnew, 1999). 

The underlying reason for the change in neural response observed may be a neural 

adaptation mechanism known as ‘homeostatic plasticity’ (Turrigano, 1999). It is thought that 

homeostatic mechanisms regulate neuronal excitability and synaptic efficiency in order to 

stabilize cortical activity. This is achieved by scaling the strength of excitatory and inhibitory 

synapses, and by modifying intrinsic neuronal excitability, to keep the firing rates within a 

functional boundary. Thus, homeostatic plasticity acts as a compensatory gain regulation 

mechanism that might also be involved in adjustment to persistent changes in sensory input. 

This would have the effect of increasing amplitudes and reducing latencies of auditory evoked 

activity of the deprived ear, as seen in the present study. This may be the same type of 

mechanism proposed in animal studies to regulate experience-dependent gain control (also 

called stimulus-specific adaptation) in the auditory midbrain and thalamus on faster time 

scales (Dean et al., 2005; Malmierca et al., 2015). Interestingly, that mechanism has recently 

been found to be influenced by cortical activity over longer time scales, a phenomenon 

termed meta-adaptation (Robinson et al., 2016). 

An alternative explanation may lie in binaural interaction. Long-latency binaural 

interaction has been observed from 90 ms, covering the duration of the N1 and P2 

components of the CAEP. These interactions are all inhibitory in form (McPherson and Starr, 

1993). It is known that contralateral masking has an inhibitory effect, reducing the amplitude 

of CAEP components (Connelly, 1993). A reduction in binaural interaction would reduce the 

inhibitory effect of contralateral masking and result in increased amplitude of P1-N1 and N1-

P2, as seen in the present study. Other data have shown that binaural interaction, as measured 

by binaural unmasking, is reduced in cases of chronic unilateral hearing loss (Ferguson et al., 

1998). Measures of the auditory brainstem response showed prolonged latency of wave V, 

suggesting a midbrain origin for the effect. However, these data are inconsistent with the 

general trend for reduced peak latencies found here. It is therefore unlikely that the findings 

of the present study can be attributed solely to plasticity of sub-cortical binaural interaction. 

One limitation of the present study was the inability to obtain baseline data before the 

conductive hearing loss occurred. As a result, any correlation between the change in CAEP 

and other variables could not be determined. Longitudinal studies could identify a correlation 

between CAEP amplitude and length of deprivation period or age at onset, which would help 



 

 

our understanding of neural mechanisms for adaptation. This is one benefit of mimicking a 

conductive hearing loss with earplugging. However, it would not be possible to provide long-

term deprivation with this method, and a study involving earplugging for one week produced 

only minimal behavioural adaptation (McPartland et al., 1997). 

Another limitation of the study is that testing was limited to one frequency, one stimulus 

level and, in particular, one recording channel. This testing paradigm does not allow for 

analysis of the distribution of response across the cephalic surface and therefore limits 

interpretation of findings. Therefore, future studies may wish to go beyond replication to 

explore multi-channel recording with multiple stimuli. 

To date, no other human study has directly measured a change in neural activity of the 

mature auditory cortex on stimulation of an ear that has been deprived of sensory stimulation. 

There is, however, indirect evidence of adaptation at a subcortical level. A number of studies 

have found a reduction in ART following a period of unilateral earplugging (Decker and 

Howe, 1981; Munro and Blount, 2009; Maslin et al., 2013; Munro et al., 2014). This suggests 

that short-term, partial, auditory deprivation is sufficient to induce a change in the auditory 

pathways at a subcortical level, specifically a reduction in threshold of neuronal excitability. 

The present study supports this finding, evidencing a change in neural activity at a cortical 

level. 

This study is the first to demonstrate a change in cortical response amplitude in adults 

with unilateral conductive hearing impairment. There are a number of methodological 

differences between the present and previous studies which may have led to the contrast in 

findings. Firstly, it is known that cortical adaptations can occur over at least a 12-month 

period (Jones, 2000). As such, a significantly shorter period of deprivation of 7 days 

(McPartland et al., 1997; Maslin et al., 2013) may be insufficient to induce cortical 

adaptations. Secondly, Maslin et al. (2013) indirectly recorded neural activity by measuring 

changes in blood oxygen level with fMRI; a method which may not detect small, intrinsic 

neuronal changes (Hall and Wild, 2012). This method has the additional challenge of loud 

ambient noise from the scanner, which may have partly provided a masking effect, even with 

the use of sparse sampling test paradigms. Thirdly, the stimulus intensity used by Maslin et al. 

(2013) was at 90 dB SPL, significantly higher than the level used in the present study. The 

high intensity of stimulus may have saturated neuronal activity and obscured differences 

between groups. 

Animal studies have shown that a deprivation of input to the central auditory system 

through cochlear damage results in an increased spontaneous neural firing at all levels of the 



 

 

CAS (dorsal cochlear nucleus: Dehmel et al., 2012; Kaltenbach et al., 2002; Manzoor et al., 

2013; inferior colliculus: Manzoor et al., 2013; Jastreboff and Sasakia, 1986; auditory cortex - 

Ahlf et al., 2012; Norena and Eggermont, 2003). Furthermore, animal studies have 

demonstrated changes in stimulus-evoked neural responsiveness at a subcortical level 

following cochlear damage (Cai et al., 2008; Dehmel et al., 2012). It is thought that the 

mechanisms responsible for this change reside within the dorsal cochlear nucleus, and these 

changes are then relayed to the midbrain and the auditory cortex (Manzoor et al., 2013). 

Changes in subcortical activity may be recorded within the auditory cortex, possibly with 

amplification or some other modulation. These subsequent changes in cortical activity have 

been demonstrated in mice following near-complete cochlear denervation (Chambers et al., 

2016). Although similar subcortical changes have been observed in animals (Whiting et al., 

2009) and humans (Maslin et al., 2013) following late-onset conductive hearing impairment 

alone, no other study has robustly measured these changes in the mature, ipsilateral auditory 

cortex in the absence of cochlear damage. 

 

 

5. Conclusion 

 

The present study is the first to demonstrate significant changes in activity within the 

cortex of adult humans with unilateral conductive hearing impairment. The finding supports 

other observations of neural gain changes in the CAS occurring in response to changes in 

auditory experience rather than cochlear or neural pathology. 



 

 

Funding 

 

KJM and DRM were supported by the NIHR Manchester Biomedical Research Centre. 

The views expressed are those of the author(s) and not necessarily those of the NHS, the 

NIHR or the Department of Health.  

 

Author Declaration 

 

The authors declare that there are no conflicts of interest. 

 

Acknowledgement 

 

The authors would like to thank Christopher Brockbank and his team in Audiology at 

Lancashire Teaching Hospitals NHS Trust for their help with data collection.  



 

 

References 

 

Ahlf, S., Tziridis, K., Korn, S., Strohmeyer, I., Schulze, H., 2012. Predisposition for and 

prevention of subjective tinnitus development. PLoS ONE. 7:e44519. 

British Standards Institution, 2010. Acoustics. Audiometric test methods. Pure-tone air and 

bone conduction audiometry. London, England: BSI. 

Brotherton, H., Plack, C.J., Maslin, M., Schaette, R., Munro, K.J., 2015. Pump up the 

volume: could excessive neural gain explain tinnitus and hyperacusis? Audiol 

Neurootol. 20, 273-282. 

Cai, S., Ma, W.L.D., Young, E.D., 2008. Encoding intensity in ventral cochlear nucleus 

following acoustic trauma: implications for loudness recruitment. J Assoc Res 

Otolaaryngol. 10, 5-22. 

Chambers, A.R., Resnik, J., Yuan, Y., Whitton, J.P., Edge, A.S., Liberman, M.C., Polley, 

D.B., 2016. Central gain restores auditory processing following near-complete cochlear 

denervation. Neuron. 89, 867-879. 

Chen, G.D., Fechter, L.D., 2003. The relationship between noise-induced hearing loss and 

hair cell loss in rats. Hear Res. 177, 81-90. 

Connelly, J.F., 1993. The influence of stimulus intensity, contralateral masking and 

handedness on the temporal N1 and the T complex components of the auditory N1 

wave. Electroencephalogr Clin Neurophysiol. 86, 58-68. 

Dallos, P., Harris, D., 1978. Properties of auditory nerve responses in absence of outer hair 

cells. J Neurophysiol. 41, 365-383. 

Dean, I., Harper, N.S., McAlpine, D., 2005. Neural population coding of sound level adapts 

to stimulus statistics. Nat Neurosci. 8, 1684-1689. 

Decker, T.N., Howe, S.W., 1981. Short term auditory deprivation: effect on brainstem 

electrical response. Hear Res. 4, 251-263. 

Dehmel, S., Pradhan, S., Koehler, S., Bledsoe, S., Shore, S., 2012. Noise overexposure alters 

long-term somatosensory-auditory processing in the dorsal cochlear nucleus – possible 

basis for tinnitus related hyperactivity? J Neurosci. 32, 1660-1671. 

Ferguson, M.O., Cook, R.D., Hall, J.W., 1998. Chronic conductive hearing loss in adults: 

effects on the auditory brainstem response and masking-level difference. Arch 

Otolaryngol Head Neck Surg. 124 (6), 678-685. 



 

 

Hall, D.A., Wild, D.C., 2012. Fundamental principles underlying MRI and functional MRI. 

In: Tremblay, K.B.R. (ed.) Translational perspectives in auditory neuroscience: hearing 

across the lifespan - assessment and disorders. San Diego: Plural Publishing Inc. 

Hesse, L.L., Bakay, W.H., Anderson, L., Ong, H-C., Ashmore, J., McAlpine, D., Linden, J.F., 

Schaette R., 2016. Non-Monotonic Relation between Noise Exposure Severity and 

Neuronal Hyperactivity in the Auditory Midbrain. Front Neurol. 25 (7), 133. 

Hickox, A.E., Lieberman, M.C., 2014. Is noise-induced cochlear neuropathy key to the 

generation of hyperacusis or tinnitus? J Neurophysiol. 111, 552-564. 

Jacobson, G.P., 1992. The effects of stimulus frequency and recording site on the amplitude 

and latency of multichannel cortical auditory evoked potential (CAEP) component N1. 

Ear Hear. 13, 300-306. 

Jastreboff, P.J., Sasaki, C.T., 1986. Salicylate-induced changes in spontaneous activity of 

single units in the inferior colliculus of the guinea pig. J Acoust Soc Am. 80, 1384-

1391. 

Jones, E., 2000. Cortical and subcortical contributions to activity-dependent plasticity in 

primate somatosensory cortex. Annu Rev Neurosci. 23, 1-37. 

Kaltenbach, J.A., Rachel, J.D., Mathog, T.A., Zhang, J., Falzarano, P.R., Lewandowski, M., 

2002. Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to 

outer hair cell loss: relevance to tinnitus. J Neurophysiol. 88, 699-714. 

Kujawa, S.G., Liberman, M.C., 2009. Adding insult to injury: cochlear nerve degeneration 

after 'temporary' noise-induced hearing loss. J Neurosci. 29, 14077-14085. 

Kumar, M., Maheshwar, A., Mahendran, S., Oluwasamni, A., Clayton, M.I., 2003. Could the 

presence of a Carhart notch predict the presence of glue at myringotomy? Clin 

Otolaryngol. 28(3), 183-186. 

Malmierca, M.S., Anderson, L.A., Antunes, F., 2015. The cortical modulation of stimulus-

specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate 

for predictive coding. Front Syst Neurosci. 9(19), 1-14. 

Manzoor, N.F., Gao, Y., Licari, F., Kaltenbach, J.A., 2013. Comparison and contrast of noise-

induced hyperactivity in the dorsal cochlear nucleus and inferior colliculus. Hear Res. 

295, 114-123. 



 

 

Maslin, M., Munro, K., Lim, V., Purdy, S., Hall, D., 2013. Investigation of cortical and 

subcortical plasticity following short-term unilateral auditory deprivation in normal 

hearing adults. Neuroreport. 24, 287-291. 

McPartland, J.L., Culling, J.F., Moore, D.R., 1997. Changes in lateralization and loudness 

judgements during one week of unilateral ear plugging. Hear Res, 113, 165-172. 

Mcpherson, D.L., Starr, A., 1993. Binaural interaction in auditory evoked potentials: 

brainstem, middle- and long-latency components. Hear Res. 66, 91-98. 

Moore, B.J., 2012. An introduction to the psychology of hearing. England, Cambridge: 

Emerald Group Publishing Ltd. 6th Ed. 

Moore, D.R., Hutchings, M.E., King, A.J., Kowalchuk, N.E., 1989. Auditory brainstem of the 

ferret some effects of rearing with a unilateral ear plug on the cochlea, cochlear nucleus, 

and projections to the inferior colliculus. J Neurosci. 9, 1213-1222. 

Morita, T., Naito, Y., Nagamine, T., Fujiki, N., Shibasaki, H., Ito, J., 2003. Enhanced 

activation of the auditory cortex in patients with inner-ear hearing impairment: a 

magnetoencephalographic study. Clin Neurophys. 114, 851-859. 

Mulders, W.H., Robertson, D., 2009. Hyperactivity in the auditory midbrain after acoustic 

trauma: dependence on cochlear activity. Neuroscience. 164, 733-746. 

Munro, K., Agnew, N., 1999. A comparison of inter-aural attenuation with the Etymotic ER-

3A insert earphone and the Telephonics TDH-39 supra-aural earphone. Br J Audiol. 33, 

259-262. 

Munro, K., Blount, J., 2009. Adaptive plasticity in brainstem of adult listeners following 

earplug-induced deprivation. J Acoust Soc Am. 126, 568-571. 

Munro, K.J., Turtle, C., Schaette, R., 2014. Sub-cortical plasticity and modified loudness 

following short-term unilateral deprivation: evidence of multiple neural gain 

mechanisms within the auditory system. J Acoust Soc Am. 135, 315-322. 

Norena, A.J., Eggermont, J.J., 2003. Changes in spontaneous neural activity immediately 

after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res. 183, 

137-153. 

Roberts, L.E., Eggermont, J.J., Caspary, D.M., Shore, S.E., Melcher, J.R., Kaltenbach, J.A., 

2010. Ringing ears: the neuroscience of tinnitus. J Neurosci. 30, 14972-14979. 

Robinson, B.L., Harper, N.S., McAlpine, D., 2016. Meta-adaptation in the auditory midbrain 

under cortical influence. Nat Commun. 24, 13442. 



 

 

Salo, S.K., Lang, A.H., Salmivalli, A.J., Johansson, R.K., Peltola, M.S., 2003. Contralateral 

white noise masking affects auditory N1 and P2 waves differently. J Psychophysiol. 17, 

189-194. 

Schaette, R., 2014. Tinnitus in men, mice (as well as other rodents), and machines. Hear Res. 

311, 63-71. 

Schaette, R., Turtle, C., Munro, K., 2012. Reversible induction of phantom auditory 

sensations through simulated unilateral hearing loss. PloS One. 7, e35238.  

Schimmel, H., 1967. The (±) Reference: accuracy of estimated mean components in average 

response studies science. 157 (3784), 92-94. 

Tate, M., 2013. Principles of hearing aid audiology. Springer: ISBN 978-1-4899-7152-4. 

Tucci, D.L., Cant, N.B., Durham, D., 1999. Conductive hearing loss results in a decrease in 

central auditory system activity in the young gerbil. Laryngoscope. 109, 1359-1371. 

Turrigiano, G., 1999. Homeostatic plasticity in neuronal networks: the more things change, 

the more they stay the same. Trends Neurosci. 22 (5), 221-227. 

Webster, M., Webster., D.B., 1981. Spiral ganglion neuron loss following organ of corti loss: 

a quantitative study. Brain Res. 212, 17-30. 

Whiting, B., Moiseff, A., Rubio, M.E., 2009. Cochlear nucleus neurons redistribute synaptic 

AMPA and glycine receptors in response to monaural conductive hearing loss. 

Neuroscience. 163, 1264-1276. 



 

 

Tables 

Table 1. Participant demographics, aetiologies and pure tone audiogram data. Data for the 

control group are in brackets. Control participants were matched for age and sex. The choice 

of 'test ear' for the control group was determined by the impaired ear of the experimental 

group. 

 1 kHz  threshold (dB HL) 

No. Sex Age 
(years) 

Aetiology Duration of  
impairment 
(years) 

Impaired 
ear 

Bone 
conduction 

Air conduction 

1 Female 65 [63] Mastoidectomy 6 Left 0 [-5] 35 [0] 

2 Female 21 [27] Perforation 2 Left 10 [5] 40 [0] 

3 Male 51 [48] Chronic supportive 
otitis media 

10 Left 10 [0] 60 [0] 

4 Male 26 [22] Unknown 10 Left 5 [0] 30 [0] 

5 Female 55 [52] Perforation 21 Left -5 [10] 35 [15] 

6 Male 60 [55] Ossicular chain 
discontinuity 

5 Left 10 [-5] 40 [0] 

7 Male 32 [27] Perforation 10 Left -10 [10] 30 [10] 

8 Female 21 [24] Perforation 10 Right 5 [5] 40 [-5] 

9 Female 57 [52] Mastoidectomy 7 Right 10 [10] 60 [10] 

10 Male 33 [24] Mastoidectomy 9 Right 5 [0] 60 [0] 

11 Male 49 [46] Ossicular chain 
discontinuity 

1 Right 5 [5] 40 [5] 

12 Female 54 [50] Perforation 20 Right 20 [5] 65 [5] 

13 Male 27 [24] Cholesteatoma 1 Right 5 [5] 35 [5] 

14 Male 48 [45] Eustachian tube 
dysfunction 

1 Right -5 [15] 35 [5] 

15 Female 28 [28] Otosclerosis 5 Left 10 [-5] 45 [0] 

 Median 48 [45]  7  5 [5] 40 [5] 



 

 

 



 

 

Table 2. Participant pure tone audiogram thresholds (dB HL). Data for the control group are 

in brackets. 

 

 Air Conduction Bone Conduction  

Test Ear Frequency (kHz) Non-test Ear Frequency (kHz) Test Ear Frequency 
(kHz) 

Non-test Ear 
Frequency (kHz) 

Participant 
No. 

0.25 0.5 1 2 4 8 0.25 0.5 1 2 4 8 0.5 1 2 4 0.5 1 2 4 

1 25 
[5] 

35 
[5] 

35 
[5] 

25 
[-10] 

25 
[5] 

50 
[0] 

10 
[5] 

0 
[5] 

5 
[0] 

5 
[5] 

5 
[-5] 

15 
[0] 

-5 -5 
[-5] 

5 10 -10 -5 5 0 

2 50 
[0] 

55 
[5] 

40 
[5] 

40 
[5] 

50 
[0] 

50 
[10] 

10 
[-5] 

10 
[0] 

5 
[0] 

25 
[5] 

20 
[5] 

30 
[5] 

5 10 
[5] 

30 20 5 5 25 20 

3 40 
[5] 

50 
[10] 

60 
[5] 

55 
[10] 

45 
[15] 

65 
[10] 

5 
[10] 

15 
[0] 

15 
[0] 

5 
[0] 

25 
[10] 

20 
[10] 

20 20 
[0] 

25 15 15 10 25 15 

4 60 
[5] 

55 
[5] 

30 
[0] 

25 
[10] 

30 
[10] 

30 
[5] 

10 
[10] 

15 
[5] 

10 
[10] 

15 
[10] 

0 
[10] 

20 
[10] 

10 5 
[0] 

10 15 0 5 5 5 

5 25 
[15] 

35 
[10] 

35 
[10] 

25 
[15] 

30 
[15] 

45 
[35] 

-5 
[20] 

10 
[15] 

10 
[15] 

5 
[10] 

15 
[5] 

10 
[55] 

5 0 
[10] 

15 10 0 -5 10 10 

6 20 
[-5] 

30 
[-5] 

40 
[-5] 

30 
[-5] 

50 
[-5] 

80 
[10] 

10 
[-5] 

20 
[0] 

20 
[0] 

20 
[-10] 

15 
[10] 

20 
[0] 

10 10 
[-5] 

25 25 10 10 20 15 

7 5 
[10] 

20 
[15] 

30 
[10] 

30 
[10] 

50 
[15] 

15 
[15] 

0 
[10] 

10 
[10] 

10 
[10] 

5 
[15] 

15 
[10] 

25 
[5] 

5 -10 
[10] 

15 0 5 -10 5 -5 

8 60 
[-5] 

50 
[0] 

40 
[-5] 

25 
[-5] 

25 
[0] 

25 
[5] 

0 
[-5] 

0 
[-5] 

-5 
[-5] 

-10 
[-10] 

-10 
[-10] 

0 
[0] 

-5 5 
[5] 

10 -10 -5 -5 20 -10 

9 55 
[10] 

55 
[5] 

60 
[10] 

45 
[20] 

60 
[15] 

45 
[5] 

10 
[5] 

10 
[5] 

5 
[10] 

-5 
[20] 

15 
[25] 

0 
[10] 

10 10 
[10] 

10 0 0 0 5 0 

10 55 
[5] 

65 
[5] 

60 
[0] 

65 
[-5] 

65 
[-5] 

50 
[-5] 

5 
[5] 

5 
[5] 

5 
[0] 

15 
[-5] 

20 
[-5] 

10 
[0] 

0 5 
[0] 

15 5 0 5 15 5 

11 55 
[10] 

50 
[0] 

40 
[5] 

40 
[0] 

40 
[15] 

50 
[5] 

10 
[5] 

15 
[0] 

10 
[0] 

5 
[0] 

0 
[20] 

0 
[5] 

15 5 
[5] 

25 5 15 0 25 5 

12 60 
[5] 

65 
[10] 

65 
[5] 

60 
[10] 

30 
[5] 

25 
[5] 

10 
[5] 

20 
[10] 

5 
[5] 

10 
[5] 

0 
[5] 

45 
[0] 

15 20 
[5] 

25 10 5 10 20 5 

13 65 
[5] 

65 
[5] 

35 
[5] 

30 
[5] 

40 
[0] 

35 
[0] 

5 
[5] 

10 
[5] 

5 
[5] 

5 
[5] 

15 
[0] 

20 
[10] 

5 5 
[5] 

15 15 5 5 5 15 

14 40 
[0] 

40 
[5] 

35 
[15] 

30 
[15] 

50 
[-5] 

40 
[60] 

5 
[0] 

5 
[5] 

5 
[10] 

5 
[10] 

15 
[20] 

5 
[70] 

5 -5 
[15] 

10 15 -5 -5 0 15 

15 70 
[0] 

55 
[-5] 

45 
[5] 

50 
[-5] 

20 
[0] 

25 
[10] 

10 
[0] 

5 
[5] 

10 
[0] 

5 
[5] 

0 
[15] 

0 
[10] 

10 10 
[-5] 

20 -5 5 10 5 -5 



 

 

Table 3. Statistical analysis of peak-to-trough amplitudes (μV) of P1-N1 and N1-P2 

components of the CAEP on stimulation of the impaired ear of adults with unilateral 

conductive hearing impairment when compared with a control group of adults with normal 

hearing, with mean ± 1 standard deviation displayed. 

 

 P1-N1 N1-P2 

Mean Amplitude 
(μV ) 

Hearing 
Impaired 

3.6 ± 1.31 5.5 ± 1.88 

Control 1.9 ± 0.77 2.9 ± 1.54 

t (28) 4.32 4.24 

p value <0.001 <0.001 

 

 

 

Table 4. Statistical analysis of absolute peak latencies (ms) of P1, N1 and P2 components of 

the CAEP on stimulation of the impaired ear of adults with unilateral conductive hearing 

impairment when compared with a control group of adults with normal hearing, with mean ± 

1 standard deviation displayed. 

 P1 N1 P2 

Mean Peak 
Latency (ms) 

Hearing 
Impaired 

56.4 ± 12.58 109.9 ± 9.99 178.0 ± 14.71 

Control 69.5 ± 17.66 120.6 ± 21.74 191.3 ± 32.26 

t (28) 2.36 1.70 1.45 

p value 0.03 0.09 0.16 

 

 



 

 

Figure Legends 

Figure 1. Mean pure tone audiogram for both groups. Air conduction thresholds for the 

hearing impaired group are represented by the dashed black line, with masked bone 

conduction thresholds represented by the solid black line. Air conduction thresholds for the 

normal hearing group are represented by the grey line. 

 

Figure 2. Grand average CAEP waveform for both groups (n=14). The solid line represents 

the hearing impaired group data and the dashed line represents the control group data. 1 

participant per group was omitted due to inability to retrieve data from the data collection site. 

 

Figure 3. Grand average of residual noise for both groups (n=14). The solid line represents 

the hearing impaired group data and the dashed line represents the control group data. 1 

participant per group was omitted due to inability to retrieve data from the data collection site. 

 

Figure 4. Peak-to-trough amplitudes (μV) of P1-N1 and N1-P2 components of the CAEP on 

stimulation of the impaired ear of adults with unilateral conductive hearing impairment 

(n=15; white boxes) and a control group of adults with normal hearing (n=15; shaded boxes). 

Outliers are represented by a circle. 

 

Figure 5. Absolute peak latencies (ms) of P1, N1 and P2 components of the CAEP on 

stimulation of the impaired ear of adults with unilateral conductive hearing impairment 

(n=15; white boxes) and a control group of adults with normal hearing (n=15; shaded boxes). 

Outliers are represented by a circle and extreme outliers are represented by a star.  
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