UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging

Bouts, MJRJ; Möller, C; Hafkemeijer, A; van Swieten, JC; Dopper, E; van der Flier, WM; Vrenken, H; ... Rombouts, SARB; + view all (2018) Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging. Journal of Alzheimer's Disease , 62 (4) pp. 1827-1839. 10.3233/JAD-170893. Green open access

[thumbnail of Barkhof_class_scx_final_reflink.pdf]
Preview
Text
Barkhof_class_scx_final_reflink.pdf - Accepted Version

Download (937kB) | Preview

Abstract

BACKGROUND/OBJECTIVE: Overlapping clinical symptoms often complicate differential diagnosis between patients with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific structural and functional differences that aid in differentiating AD from bvFTD patients. However, the benefit of combining structural and functional connectivity measures to-on a subject-basis-differentiate these dementia-types is not yet known. METHODS: Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected and used to calculate measures of structural and functional tissue status. All measures were used separately or selectively combined as predictors for training an elastic net regression classifier. Each classifier's ability to accurately distinguish dementia-types was quantified by calculating the area under the receiver operating characteristic curves (AUC). RESULTS: Highest AUC values for AD and bvFTD discrimination were obtained when mean diffusivity, full correlations between rs-fMRI-derived independent components, and fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for control and bvFTD classifications. This, however, was not observed for control and AD differentiations. Classifications with GMD (0.940) and a GMD and DTI combination (0.941) resulted in similar AUC values (p = 0.41). CONCLUSION: Combining functional and structural connectivity measures improve dementia-type differentiations and may contribute to more accurate and substantiated differential diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis may benefit from also including DTI and rs-fMRI.

Type: Article
Title: Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging
Location: Netherlands
Open access status: An open access version is available from UCL Discovery
DOI: 10.3233/JAD-170893
Publisher version: http://doi.org/10.3233/JAD-170893
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
Keywords: Alzheimer’s disease, behavioral variant frontotemporal dementia, classification, differential diagnosis, diffusion tensor imaging, functional MRI, machine learning
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Brain Repair and Rehabilitation
URI: https://discovery.ucl.ac.uk/id/eprint/10047196
Downloads since deposit
338Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item