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Abstract

Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest

prevalence after Alzheimer’s disease, equally distributed in men and women. It includes

several variants, generally characterized by behavioural instability and language impair-

ments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to

the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively

small effect size. To date, there are no comprehensive studies describing FTD at molecular

level, highlighting possible genetic interactions and signalling pathways at the origin FTD-

associated neurodegeneration. In this study, we designed a broad FTD genetic interaction

map of the Italian population, through a novel network-based approach modelled on the con-

cepts of disease-relevance and interaction perturbation, combining Steiner tree search and

Structural Equation Model (SEM) analysis. Our results show a strong connection between

Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation,

and postsynaptic membrane potentiation, suggesting a possible combination of neuronal

damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP

homeostasis and energetic metabolism impairments are primary causes of loss of neuropro-

tection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane

potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neu-

rodegeneration. Our study investigates the molecular underpinnings of these processes,

evidencing key genes and gene interactions that may account for a significant fraction of
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unexplained FTD aetiology. We emphasized the key molecular actors in these processes,

proposing them as novel FTD biomarkers that could be crucial for further epidemiological

and molecular studies.

Introduction

Frontotemporal Dementia (FTD), also known as Frontotemporal Lobar Degeneration

(FTLD), is a neurodegenerative disorder characterised by deficit of executive functions, lan-

guage impairment and behavioural disturbances [1,2]. FTD is considered the most common

neurodegenerative dementia in the young adulthood along with Alzheimer Disease, and it is

often familial (25–50%), usually with an autosomal dominant pattern of inheritance [3]. How-

ever, even though mendelian genetic determinants have been identified, such as microtubule

associated protein tau (MAPT), Granulin (GRN) or C9orf72, in most of the cases no causative

genes are recognized. For such cases, multiple loci and genes appear to influence FTD risk

with rather small effect size [4].

Genome-wide association study (GWAS) is a powerful approach to evaluate the genetic

components of human complex disorders including FTD [5–7]. The GWAS filtering strategy

involves the evaluation of individual markers with the use of a genome-wide significance

threshold p-value of 5�10−8 under the assumption of independence among markers. This

approach minimizes false discoveries and was effective in uncovering multiple Single Nucleo-

tide Polymorphisms (SNPs) associated with complex diseases and traits. However, the pub-

lished GWASs for FTD relied on analyses at the SNP level with few reproducible and genome-

wide significant findings, in independent samples [8]. To overcome SNP-based analysis limita-

tions, gene-set analysis [9] has been proposed to examine groups of functionally related SNPs,

grouped according to the corresponding gene locus. Gene-based tests range from the simple

computation of overrepresentation of associated loci in annotation databases, including Gene

Ontology (GO) biological processes (GO:BP) [10], KEGG [11] and Reactome [12] pathways

up to the use of interaction networks and searches for subnetworks (modules) enriched with

the associated genes [13–27].

Network-based models are more powerful than other methods, since they can simulta-

neously include different biological interactions, enabling a topology-aware gene prioritization

and testing at different complexity scales, including single connections, pathways, and com-

munities [13–18]. Moreover, mapping genetic data onto a reference interactome provides a

straightforward and meaningful way to model gene context [28,29]. Typically, in network-

based approaches, the context of a gene is thought to determine at least part of its properties.

According to the so-called guilt-by-association rule, genes with a related function tend to be

proximal in the interactome topology and share common profile patterns (e.g. gene expression

levels). However, this may lead to misleading conclusions, especially for GWAS data, in which

genetic variability may have subtle and unpredictable functional effects, close to statistical

“noise” [8,19,29]. Three main reasons can be addressed through guilt-by-association under-

performance: (i) the presence of hubs, being over-represented because attracting a large frac-

tion of network interactions, (ii) the substantial topological difference between interaction

networks and the directed acyclic graphs used to represent functional information in bio-

ontologies, and (iii) compositional interactome biases due to well-studied groups of genes that

may cause artificial over-representation of their associated terms. By contrast, a recent study

[29] suggests that few biologically-critical interactions may account for a large fraction of the

functional information content of the entire network, that do not necessarily involve hubs.
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In the present work, we applied a novel network-based method that combines the principles

of connectivity significance [13–17], through the concept of node and edge perturbation [18].

Genetic information encoded in the GWAS data was used to select seeds and weight the differ-

ential gene-gene co-variation, to reduce the network to its essential parts, removing non-infor-

mative noise and misleading nodes. To this end, we performed Steiner tree search [30–33],

combined to Structural Equation Model (SEM) analysis [34–36]. Furthermore, we know that

complex disorders tend to form specific sub-network structures, corresponding to groups of

perturbed disease-associated genes [13–18,28,29]. We considered module sub-structure to

characterize disease local perturbation, based on significant genetic differences between cases

and controls. Through this molecular network framework, we built a metabolism-based FTD

pathogenesis theory that can be summarized in two main steps: (i) oxidative damage accompa-

nied by loss of neuroprotection, and (ii) abnormal neuronal activity and neurodegeneration.

In the following discussion, we will examine the molecular bases of both processes, proposing

a root for further molecular investigations in FTD aetiology. The goal of our pipeline, shown

in Fig 1, was to extend the list of FTD risk genes uncovering the functional network underlying

sporadic (i.e., non-mendelian) variability associated with this complex disorder.

Materials and methods

Ethics statement

Case data. Investigators at every site obtained written informed consent from patients

and control individuals [4,6]. Every participating group provided consent to use the samples

Fig 1. Data analysis workflow. Our network-based data analysis method includes three inputs: (i) a

reference interactome that is used as a gene-gene interaction space; (ii) a set of seed nodes representing

terminals (sources and targets) of information spreading through the interactome; and (iii) quantitative data

used to build network weights. Weights are then used to generate a Steiner tree connecting seed genes

through paths maximizing edge perturbation, using a weighted heuristic shortest path algorithm. The resulting

Steiner tree is then converted into a Structural Equation Model (SEM) and fitted, to assess its validity. During

SEM-based procedure, covariance between pairs of leaf genes (i.e., ancestral bow-free nodes) are tested

and fitted using a latent variable (LV) model. The group variable C = {0, 1} influences a LV, modelling the

unobserved cause(s) acting on the two target genes. Significant covariances are retained in the extended

network, representing the final disease-network.

https://doi.org/10.1371/journal.pone.0185797.g001
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for the purposes of this study. Each study site obtained approval from a local ethics committee

(UK ethics committee number 10/H0716/3) or institutional research ethics board.

Control data. Control data [37] presented in this work are part of the HYPERGENES

Project (European Network for Genetic-Epidemiological Studies; www.hypergenes.eu). Insti-

tutional review boards at each collection site approved the study and all individuals gave their

informed consent. A further Ethical Revision of the University of Milano and of the HYPER-

GENES Internal Ethical Steering Board approved the entire process.

Input data

Our network-based analysis relies on three inputs: (i) quantitative data, (ii) a set of seed genes,

and (iii) a reference interactome.

The GWAS data used as input in the current work were generated in [4]. There the features

of the study population were described in detail. For the cases, genotyping data of DNA sam-

ples diagnosed with FTD were available from the International FTD-GWAS data set for 634

samples obtained from 8 Italian research centers. After quality check (QC) steps 530 patients

diagnosed with bvFTD (n = 418), semantic variant PPA (n = 27), agrammatic variant PPA

(n = 61), and FTD-MND (n = 23) survived. All cases were diagnosed according to the Neary

criteria [38] and/or the more recent Rascovsky and Gorno-Tempini criteria [1,2]. Age of onset

was 64.1 ± 20.7 years (Mean ± SD); range: 29.0–87.0), including 287 (54.2%) women. The

cases were collected and genotyped at the University College London by means of Illumina

human 660K-Quad Beadchips assayed on the Illumina Infinium platform (Illumina, San

Diego, CA, USA).

For the controls, genotyping data were obtained from the HYPERGENES project (European

Network for Genetic-Epidemiological Studies; www.hypergenes.eu) [37]. All participants in the

sample set (n = 1327; 926 after QC) had no abnormal findings on physical and neurological

examination, were unrelated, collected in Italy, and of Caucasian ancestry. Age was 58.2 ± 6.1

years mean (±SD); range, 50.0–97.0), including 349 (37.7%) women. The control samples were

genotyped at the University of Milan, using the Illumina 1M-duo array.

Quantitative data was generated by applying supervised Principal Component Analysis

(sPCA) [39] over additive-encoded genotypes (0 for the frequent homozygote genotype, 1 for

the heterozygote, and 2 for the rare homozygote genotype), and taking the first principal-com-

ponent score (PC1) for each gene, as reported in our previous study [4]. Briefly, polymor-

phisms were grouped by gene membership, where the gene region is defined by its locus

coordinates ±5000 base pairs. A single gene was then represented as a continuous score by tak-

ing the first supervised PC1 on a subset of SNPs selected using outcome (case-control) infor-

mation, i.e. supervised PC1 was a weighted sum of the SNPs within the gene region that

maximize the variance of the gene score, which then varies with the outcome.

Seeds are genes of interest, that can arbitrarily be chosen using existing knowledge (e.g.

from databases such as OMIM, DisGeNET, or by text mining), and/or experimental data anal-

ysis (e.g. GWAS, expression data, or DNA-binding data). We used the list of FTD-associated

genes from our previous SNP-to gene approach [4], applying an FDR threshold < 10%, yield-

ing 280 putatively FTD-associated genes. These genes were referred to as the FTD-seeds.

An interactome is defined as the ensemble of known interactions among biological entities

(e.g, genes, proteins, or metabolites) in a given organism, usually represented as a network.

The interactome can be retrieved from many different sources, including KEGG [11], Reac-

tome [12], STRING [40], GeneMANIA [41], MINT [42], IntAct [43], BioGRID [44]. We

selected KEGG, for different biological and computational reasons, including annotation cura-

tion and completeness, and GO biological process mappability for functional annotation.
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Furthermore, KEGG is a directed interactome, thus causality can be easily interpreted in terms

of biological signalling, and can be used for the FTD model validation and extension. How-

ever, edge direction is not a necessary requirement in our method. We retrieved KEGG signal-

ling pathways and merged them to obtain a unique network using graphite [45] R software

package.

Network edge weighting

The input interactome was converted into a weighted network, endowed with node and edge

weights reflecting their perturbation status. Genes (nodes) were weighted as being FTD-seed

(weight = 1) and non-seed (weight = 0). Gene-gene interactions (edges) were weighted based

on the case/control statistical difference. In our notation, j and k represented any two con-

nected nodes of the network, with j->k being the edge direction. In general, we tested if the

total difference between case vs. control groups for gene k through gene j was significant, given

data. This implied testing the group change at the same time on gene j, gene k and their direct

link j->k. The p-value was yielded by a t-test on the combined difference of the group over the

node j, the node k, and their direct connection j->k, fitting a trivariate (X = j-th gene, Y = k-th

gene, C = {0, 1}) Structural Equation Model (SEM) via lavaan R package [46].

Then, the edge weights were defined as inverse of negative logarithm of the p-values,

w = 1/-log(p-value). In this way, edges with lower p-values had lower weights, on a positive

continuous range. Intuitively, this weight can be assumed as the perturbance acting on the

relationship between two connected genes in the interactome, due to the genotype difference

between groups. The lower the p-value (i.e. the weight), the higher the perturbance. In general,

we defined the perturbance over a node k, due to the action of a node j, as the altered status

of j and k genes, and their j->k interaction in the diseased sample, comparatively to healthy

controls.

The Steiner tree problem

The FTD seeds were mapped to the weighted interactome, and a FTD-related sub-network

was constructed by adding new genes to connect FTD genes solving a Steiner tree problem

[30–33], minimizing the sum of weights of every edge in the sub-graph. We applied a modified

shortest path heuristic (SPH) distance algorithm, from Kou et al. solution [33], implemented

in our subnet() R function. Our algorithm selected outgoing shortest paths combing the edge

weights by Fisher’s method and testing the statistical significance (p< 0.05) with multiple

comparison Bonferroni correction. The resulting Steiner tree, corresponding to the maxi-

mum-perturbance sub-graph, preserves the original directed edges. Therefore, we distinguish

three types of nodes: “sources” (emitting perturbance) with no incoming connections, “targets”
(absorbing perturbance) with no outgoing connections, and “connectors” (transmitting pertur-

bance) with incoming and outgoing connections. We referred to a perturbation route, as a

perturbed path originating from a source node, traversing a number of connectors, and termi-

nating in a target node. This tree was used as a backbone for the subsequent augmenting SEM

step.

Structural Equation Model (SEM) analysis

The sub-graph obtained as a Steiner tree was converted into a SEM [34–36], such that every

node in the sub-network corresponds to a variable of the SEM, and every edge is a relationship

between variables. In summary, a group node (C = {0, 1}) connected to each gene was added

inside the Steiner tree, and the overall sub-graph was converted into a system of linear equa-

tions, and then fitted using PC1-trasformed SNP genotype data. The system of linear equations
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has the form:

Yj ¼ bjCC þ Uj; j 2 VðxÞ

Yj ¼ bjCC þ
X

k2paðjÞ

bjkYk þ Uj; j 2 VðyÞ

with a covariance structure:

covðUj;UkÞ ¼

(
cjk if j ¼ k or j 2 sibðjÞ

0 otherwise

where V(x) and V(y) are, respectively, the sets of the exogenous variables (i.e. source genes)

and endogenous variables (i.e, connector plus target genes) in the sub-network. The linear

equations define the relationships between the variable Yj with the group variable C and vari-

ables Yk in the “parents” set, pa (j), quantified by path coefficients βjC and βjk, respectively.

Unobserved variables Uj represent the variation of each Yj not explained by its parent nodes.

The covariance structure describes the bi-directed relationships between variables in the “sib-

lings” set, sib (j), quantified by covariances ψjk, and interpreted as unmeasured common causes

for pairs of variables.

SEM analysis allowed to evaluate: (i) the overall goodness of fit of alternative constrains in

the models, (ii) the significance of the group difference on every gene, and (iii) how significant

the covariance between target nodes (i.e., genes that are not connected by a directed path) was,

added to improved SEM goodness of fit. The significant new edges added in (iii), called “ances-

tral bow-free” covariances in SEM literature closed the directed paths into circuits character-

ized by the presence of signaling sources and targets.

Minimun AIC (Akaike Information Criterion) score, and a standardized root mean

squared residual (SRMR) less than 0.05 were considered for model selection and overall good

model fitting, respectively [34]. The statistical significance of the SEM parameters (the regres-

sion coefficients and the ancestral bow-free covariances) were estimated by Maximum Likeli-

hood Estimation (MLE) and the beta coefficients were evaluated through t-test with bootstrap

standard error (SE) with B = 1000 resamplings, and the significance level established at

p< 0.05, two-sided.

After Fisher’s normalizing t-transformation of the covariance, ancestral bow-free covari-

ances, with abs(t) > 2 were selected. Successively, the selected covariances were tested by a

SEM with Latent Variables (LVs) [47] using a model in which two target genes are connected

through a LV modelling the underlying common unknown cause(s) acting on them. Every LV

is subjected to group (C = {case, control}) effect. In this context, a LV is a variable not present

in the initial Steiner tree, introduced to capture the differential case/control co-variance

between two disconnected target nodes. The goodness of fit of each LV model was evaluated

through a Likelihood Ratio Test (LRT), where a good fit corresponds to a p-value > 0.05 (i.e.,

there is no significant difference between sample and model covariance matrices). The influ-

ence of the group C over each LV was evaluated by a t-test (= MLE/bootstrap SE) with p-

value < 0.05, two sided. Every step of the SEM analysis was performed calling the lavaan
[46] and igraph [48] R packages in our sem2group()R function.

Functional analysis

After model building SEM assessment and model extension with LVs underling covariances

between pairs of leaf genes, we proceeded with the biological evaluation. To improve the FTD

model interpretation, we initially focused on nodes with specific topological properties (e.g.,
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those connecting different portions of the gene network). We computed various topological

indices, including in/out degree, i.e. the number of incoming/outgoing connections for a

node, and weighted node betweenness [28], i.e. the number of weighted shortest paths travel-

ling through a node in the network, by means of perturbance. Using these topological indices,

we identified four types of nodes: (i) “springs”, i.e. source nodes with high out-degree. (ii)

“sinks”, i.e. target nodes with high in-degree; (iii) “hubs”, i.e. connector nodes with high in/

out-degree, and (iv) “bottlenecks”, i.e. nodes with high weighted betweenness. We also defined

as secondary sources many direct targets of proper sources, with in-degree 1 and out-degree 1,

representing ligand-receptor interactions.

We focused on the concept of “essential” node, by combining definitions (iii) and (iv) as

critical nodes for the FTD-network integrity, and part of the network backbone. These nodes

carry the majority of perturbed information flow through the FTD network, and therefore we

expect them to be assumed as suitable novel FTD risk factors.

Annotation enrichment over the main biomedical ontologies was used to functionally vali-

date and extend our biological interpretation of the FTD model. Enrichment analysis was per-

formed using a hypergeometric test with Bonferroni correction (adjusted p-value < 0.05), over

GO:BP [10], KEGG [11], Reactome [12], and Disease Ontology (DO) [49]. Network indices

and Enrichment analysis were calculated calling the igraph [48], clusterProfiler [50]

and DOSE R packages [51].

Results

The FTD sub-network

We first generated the SNPs-to-Genes data set, taking the first principal-component score

(PC1) for each gene obtained by applying supervised Principal Component Analysis over

additive-encoded genotypes (see Materials and Methods). We then used the 280 FTD-associ-

ated genes from our previous study [4] as seed list, applying a False Discovery Rate (FDR)

threshold < 10%. We also compiled the reference human interactome by merging KEGG sig-

nalling pathways [11]. After mapping PC1 quantitative data (13971 genes) over the KEGG

database, our interactome was made of 4073 nodes and 34606 weighted edges (23075 directed

and 11530 bidirected), with a median vertex degree of 4 and average directed shortest path dis-

tance equal to 5.464. Finally, gene-gene interactions (i.e. edges) were weighted by combining

the effects of the group variable (i.e. C = {0, 1}, representing controls and cases, respectively)

over pairs of nodes, and their direct connection (see Materials and Methods).

The interactome contained 83 out of 280 FTD seeds, with a median vertex degree of 7 and

average directed shortest path distance equal to 4.396. Notably, a higher vertex degree in com-

bination with a shorter weighted shortest path for the mapped FTD seeds showed that FTD-

associated genes are more clustered than the rest of the interactome. To assess the significance

of this finding we tested if the mapped FTD-seeds were more connected than a random selec-

tion of 83 genes from the interactome (B = 1000 samples) or a node permutation of the inter-

actome (B = 1000 permutations). Results showed that there was a significantly higher degree

(p = 0.034 and p = 0.029 for randomization and permutation tests, respectively) and a signifi-

cantly shorter average shortest path (p< 0.001 for both tests) for the FTD genes.

We applied the Steiner tree algorithm to the mapped FTD seeds, detecting an initial set of

3854 shortest paths between the 83 seeds. The final FTD Steiner tree (Fig 2), including only

connector genes traversed by perturbed paths, contained 167 nodes (77 out of 83 FTD seeds)

and 166 edges (117 of which significantly perturbed, p< 0.05). The Steiner’s tree topology

revealed the presence of: (i) 43 sources, of which 33 FTD seeds; (ii) 49 (38 FTD seeds) targets;

and (iii) 75 (6 FTD seeds) connectors. The Steiner’s tree backbone, defining the mainstream
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perturbation route, was defined by the genes CAMK2A-EP300-TCF7L2, bifurcating to EGFR-

CTNNB1 andMAPK8-JUN (Fig 2).

SEM analysis of the Steiner tree was performed by fitting various models with different con-

straints on their parameters; the selected model, with fixed beta coefficients, equal variances,

and bow-free covariances, yielded the lowest AIC score (AIC = -9324) and good fitting

(SRMR = 0.026; see Table 1).

Non-parametric bootstrap estimate of the SEM beta coefficients (B = 1000 samples with

replacement) detected 98 significantly perturbed genes (bootstrapping p-values < 0.05), of

which 74 FTD seeds, indicative of association with the disease (S1 Table). After Fisher’s nor-

malizing t-transformation of the covariance, 43 ancestral bow-free covariances, connecting 43

(35 seeds) target genes (S2 Table) with abs(t) > 2 were selected. Adding the latent variables

(LVs) underlying covariances between pairs of target genes, we obtained a sub-network of 210

(167 genes + 43 LVs) nodes and 252 (166 + 2�43) edges (S1 Fig). Among the 43 LVs, 20 yielded

a good LV-model fit and resulted as significantly perturbed (i.e., LV average values are differ-

ent in cases respect to controls), having bootstrapping p(C->LV) < 0.05 and p(LRT) > 0.05

(S2 Table).

Fig 2. Steiner tree. Steiner tree obtained applying a Shortest Path Heuristic (SPH) algorithm. The tree has

167 nodes and 166 edges. The size of each node (i.e. gene) is proportional to its degree (i.e. the number of

incoming and outgoing connections). Node colours indicate: perturbed seeds (green), non-perturbed seeds

(red), perturbed connectors (blue), and non-perturbed connectors (yellow). Red edges correspond to

perturbed interactions, while edge thickness is proportional to their weight (i.e. their perturbance level). A

perturbed interaction has a weight w < 0.33 (i.e. p < 0.05 threshold over the nominal p-value). The entire

network is characterized by a backbone CAMK2A-TCF7L2- CTNNB1-JUN-MAK8-PRKACG, where CAMK2A

and MAPK8-PRKACG are the main perturbed hubs, CTNNB1 and JUN represent the sinks of the entire

system, and TCF7L2 is the bottleneck connecting them.

https://doi.org/10.1371/journal.pone.0185797.g002
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Topological analysis and essential nodes

To drive and improve our biological interpretation of the FTD network, we initially focused

on nodes with specific topological properties, their function, and their possible implication in

neurodegeneration. In particular, we searched for those genes in the FTD model that connect

different perturbed routes throughout the network. Hereafter, we will use “essential nodes” to

designate a class of genes that share a high number of perturbed connections (especially outgo-

ing ones), thus bearing the largest amount of perturbed information spreading through the

FTD network. This definition differs from the usual definition of hub, since it takes into ac-

count both the number of perturbed connections and perturbed shortest paths traversing a

given node (Fig 2 and S1 Fig). Many of these are terminal seed-genes (i.e. peripheral nodes),

designed as FTD-associated in our previous analysis [4] and confirmed as perturbed in the

present study (i.e. green nodes in Fig 2 and S1 Fig). Besides seeds, we also identified additional

FTD-associated genes (blue and red nodes in Fig 2 and S1 Fig), using SEM testing. However,

also non-perturbed genes (i.e. not carrying FTD-associated variants) are functionally altered if

they are significantly influenced by genes carrying disease-associated variants (i.e. they have

perturbed incoming connections). Based on the perturbation routes, we could define topologi-

cally-critical FTD-associated genes.

A set of connectors bind sources to targets. These genes can both receive and send per-

turbed interactions. Steiner’s connectors are genes with generally high centrality. They may

have high degree (i.e. hubs, with degree > 3), such asMAPK8, and/or high betweenness (i.e.

they are important for connecting network modules), such as TCF7L2. Connectors are key

genes revealing the set of critical trait-specific molecular processes for the cell. Among all

nodes in the FTD-module, the most central ones are designed as essential. Essential nodes are

those genes that cannot be removed without a deep impact on network connectivity. Consider-

ing that the FTD network has been generated based on phenotype-associated genotypic vari-

ability, essential nodes should be also functionally critical for the FTD phenotype. To point out

the most central connectors, we extracted an essential high weighted-betweenness sub-net-

work (Fig 3). Essentiality combines the concepts of biological process perturbation with the

importance for network structural integrity. The essential sub-network defines the FTD-net-

work backbone, characterizing the most perturbed interactions. They include: (i) the EGFR-

PLCB3 interaction, (ii) the CAMK2A-EP300-TCF7L2 perturbed path, and (iii) the PRKACG-

MAPK8 interaction. The essential backbone highlight the presence of nodes with exceptionally

Table 1. SEM goodness of fit. Goodness of fit measures for different models, fitted to multivariate data of the extracted Steiner tree. The selected model,

indicated by (*), has the lowest Akaike Information Criterion (AIC = -9324.98).

MODEL t LRT df AIC BIC SRMR Elapsed Time

Beta = ADE, equal variances, zero covariances

169 22172.34 14027 -5881.66 -80011.8 0.028 5.73473 sec

Beta = ADE, equal variances, bow-free covariances (*) 1444 16179.02 12752 -9324.98 -76717 0.026 25.6701 min

Beta = ADE, unequal variances, bow-free covariances 1610 16178.6 12586 -8993.4 -75508.2 0.026 26.3120 min

Beta = {a, b}, equal variances, bow-free covariances 2334 15588.33 11862 -8135.67 -70824.2 0.027 21.8453 min

Beta = {0.1, -0.1}, equal variances, bow-free covariances 2332 17595.51 11864 -6132.49 -68831.6 0.028 33.4079 min

Beta = {0.1, -0.1}, unequal variances, bow-free covariances 2492 17583.6 11704 -5824.4 -67677.9 0.029 22.0544 min

Estimated Beta, equal variances, bow-free covariances 1610 15988.02 12586 -9183.99 -75698.7 0.026 23.8375 min

ADE = Average Direct Effect of the k-th node on the j-th node, weighted by group frequencies; t = number of model parameters; LRT = model likelihood ratio

test; df = model degrees of freedom; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; SRMR = Standardized Root Mean Squared

Residual; Elapsed Time is calculated as CPU running time using an HP workstation with 24GB of memory and dual CPU (8 core) Intel Xeon X5570–3

https://doi.org/10.1371/journal.pone.0185797.t001
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high outgoing connectivity (hubs), includingMAPK8 and PRKACG, and exceptionally high

incoming connectivity (i.e., sink nodes), including CTNNB1 and JUN. Sinks of perturbation

represent nodes with no outgoing perturbed interactions, that ideally encompass the model

terminal functions, including (post)synaptic plasticity and cell death (see Discussion).

Special attention must be given to unobserved variability, represented by LV-mediated

interactions (Figs 4 and 5 and S1 Fig). Although latent (i.e. not explicit in the model), LV-asso-

ciated variability may evidence common causes of perturbation. Considering LVs only,

PLCB3, a phospholipase C (PLC) controlled by EGFR in our model, is the sink node with the

Fig 3. Essential node sub-network. Node essentiality is determined by considering nodes having both degree centrality and weighted betweenness

centrality over the upper-quartile. Essential nodes are placed in non-redundant portions of the network and thus cannot be removed without a deep impact on

network connectivity. These genes intercept the network backbone, represented by the axis TCF7L2-JUN-MAK8-PRKACG, carrying the top perturbation

levels, especially in proximity of the sources. Nodes and edges are labelled according to the conventions followed in Fig 2.

https://doi.org/10.1371/journal.pone.0185797.g003
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highest incoming perturbance level (Fig 4). This is particularly interesting as this gene might

be responsible of Ca+2 homeostasis impairments in FTD (see Discussion). Remarkably,

PLCB3-specific LVs (LV6-9) connect this gene to four FTD-relevant targets: (i) GABRG3, a

perturbed/seed GABA receptor, the major inhibitory neurotransmitter in mammalian brain;

(ii) IL12B, an osmotic stress-induced cytokine, targeted byMAPK8; (iii) DGKI, a DAG-kinase

interacting with the phospholipase PLCB2; and (iv) ARHGAP10, a GTPase activator involved

in apoptosis. Other perturbed LVs connections (Figs 4 and 5) include: CRK,AGK, ATP2A3
(LV1-2); IL1R1, CPT1B (L18); and PPP3CC, VCAM1, PRKD3 (LV14 and LV35). S1 Fig reports

the whole gene and LVs connectivity in the FTD-network.

Enrichment analysis

The enrichment analysis was performed on the whole set of nodes of the FTD-network.

Enrichment analysis over GO:BP, KEGG, and Reactome showed significant involvement of

response to oxygen-containing compounds (ROCC), immune response, and homeostatic pro-

cesses (S2 Fig), several signaling pathways, including MAPK, RAS, cAMP/cGMP, the WNT

pathway, and long-term potentiation (LTP) (S3 Fig), and synaptic transmission-related pro-

cesses (S4 Fig), including EGFR/FGFR signaling, transmission across chemical synapses,

NMDA receptor-associated postsynaptic activation, phospholipase C-mediated cascades, and

Fig 4. ncWNT sub-network. This sub-network focuses on the module characterized by a series of receptors and

enzymes regulating Calcium/cAMP homeostasis and involved in the non-canonical Ca+2/WNT signaling pathway.

Among them, the most perturbed are the EGFR receptor and its target phospholipase PLCB3, and the routes

ITPR1-CAMK2A-CALM2-PPP3CC and ITPR1-CAMK2A-EP300-TCF7L2. JUN is a large sink between this module

and the MAPK-JNK one. Nodes and edges are labelled according to the conventions followed in Fig 2.

https://doi.org/10.1371/journal.pone.0185797.g004
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Calcium pathway. Furthermore, Disease Ontology (DO) data showed enrichment for nervous

system and mental health-related terms, including: central nervous system disease, cognitive

disorder, psychotic disorder, and neurodegenerative disease (S5 Fig).

The most significant term in GO:BP is the response to oxygen-containing compound (ROCC;

GO:1901700; p< 1E-9), involving the majority of source nodes and their targets, suggested

that oxygen compounds and reactive oxygen species (ROS) may trigger the whole network

perturbation. Particularly, in the FTD-network (Fig 2 and S1 Fig) oxidative stress was im-

pacted due to impaired energetic metabolism [52,53] eliciting the activation of stress-respon-

sive receptors, including Frizzled-4 (FDZ4) and EGFR [54–64], and oxidative stress-inducible

Serine/Threonine kinases CAMK2A, PRKACG, PRKACB, and PRKG1 [54–83]. Collaterally,

these effectors may further induce neuron membrane potentiation, leading to apoptosis

through activation of the MAPK-JNK signaling pathway [73–77] and Ca2+/cAMP metabolism

Fig 5. MAPK-JNK sub-network. This sub-network focuses on the module characterized by a series Serine/

Threonine kinases involved in the MAPK-JNK signaling pathway. Among them, MAPK8 is the one having the highest

outgoing connectivity of the entire network, and the most perturber incoming interaction carried by PRKACG,

another FTD-network hub. Other deeply perturbed interactions include MAPK8-TNF, MAPK8-CRK. JUN is a large

sink within this module and the non-canonical WNT pathway (ncWNT) one. Nodes and edges are labelled according

to the conventions followed in Fig 2.

https://doi.org/10.1371/journal.pone.0185797.g005
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deregulation [84–91]. Aberrant Ca2+/cAMP metabolism might lead to anomalous neuron

potentials and further deficits in neuroprotection, neuron functioning, and survival [69,70,80–

100].

More specifically, the significant KEGG-enriched (S3 Fig) and Reactome-enriched (S4 Fig)

functions sustained by the FTD-network, included:MAKP signaling (KEGG:map04010), RAS
signaling (KEGG:map04014), cAMP signaling (KEGG:map04024), cGMP-PKG signaling
(KEGG:map04022), Gap Junction (KEGG:map04540),WNT signaling (KEGG:map04310),

Insulin signaling (KEGG:04910), Long-Term Potentiation (KEGG:map04720), and FoxO signal-
ing (KEGG:map04068), Signaling by EGFR (Reactome: R-HSA-177929), DAP12 signaling
(Reactome: R-HSA-2424491), Transmission across chemical synapses (Reactome: R-HSA-

112315), Neurotransmitter receptor binding and downstream transmission in the postsynaptic cell
(Reactome: R-HSA-112314), G protein mediated events (Reactome: R-HSA-112040), PLC beta
mediated events (Reactome: R-HSA-112043), Ca2+ pathway (Reactome: R-HSA-4086398), and

Activation of NMDA receptor upon glutamate binding and postsynaptic events (Reactome:

R-HSA-442755).

These processes were supported by oxidative stress-related sources and hubs, including

FDZ4, EGFR, THRB, EP300,CAMK2A, PRKACG, PRKACB, and PRKG1. Literature cites their

involvement in both Calcium homeostasis [54–61,92–95], LTP [69,70,80,81,91–96], and

ROCC [68–83]. Essential sink nodes involved in both ROCC and cell death through

MAPK-JNK signaling include JUN, PPP3CC, and theMAPK8 targets TNF, CRK, TP53, and

MAPK11 [70,74–78]. Another remarkable perturbed sink is the EGFR [72,73] target phospho-

lipase PLCB3, carrying one of the mostly perturbed receptor-target interactions. This is inter-

esting since the well-known involvement of PLCs in the non-canonical WNT/Ca2+ signalling

pathway [54]. Topologically, the entire FTD-network can be divided into 2 main modules: the

non-canonical WNT/Ca2+ (Fig 4), and the PRKACG-MAPK8-JUN (Fig 5) sub-networks. Both

have a specific role in neuroprotection and neuron survival, respectively, with a critical inter-

face interaction represented by TCF7L2-JUN-MAPK8 (Fig 2).

In our model perturbance is a measure of edge perturbation significance deriving from a

synthesis of genetic variability (PC1) and phenotype (group) effects, considering the whole

network architecture (through SEM). To assess the association between perturbance and FTD-

related term enrichment, we used existing annotations to map our network onto FTD-associ-

ated KEGG and DO annotations. The KEGG database reports 6 pathways related to FTD

(KEGG ID: H00078), including: hsa04010 (MAPK signaling pathway), hsa04141 (Protein pro-
cessing in the endoplasmic reticulum), hsa04144 (Endocytosis), hsa04310 (WNT signaling path-
way), hsa04330 (NOTCH signaling pathway), and hsa04722 (Neurotrophin signaling pathway).
As shown in S6 Fig, these pathways encompass the fully-perturbed backbone of our network,

suggesting that our method can capture the core FTD-associated variability and extend it

through the data-driven concept of edge perturbation. Notably, the FTD-network backbone

contains the top-perturbed connections. To have a precise measure of the perturbance content

we measured the proportion of perturbed connections in the KEGG FTD-specific sub-network

comparing it to the total FTD-network, excluding LVs (i.e. the basal perturbance). The basal

perturbance proportion is expected to be already high, since the whole disease-network is asso-

ciated with FTD: 117/166 (= 70%) significantly perturbed edges. In the KEGG FTD-specific

sub-network this percentage is even higher: 40/46 (= 87%). We repeated this measure using

DO terms included in the Nervous System Disease (DOID:863) and Disease of Mental Health
(DOID:150) ontology roots, obtaining the DO Nervous System-specific sub-network (S7 Fig).

Also in this case, the sub-network perturbance proportion is higher than the basal one: 40/52

(= 77%).
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Discussion

Biological relevance of the FTD model

In the present study, we investigated whether FTD-associated genetic variability drives the

identification of perturbed functional sub-networks, indicating likely impacted biological pro-

cesses in frontotemporal lobar degeneration. The core structure of the essential FTD-network

(Fig 3) highlights the central role of four biological processes in FTD: (i) WNT/Ca2+ signaling,

(ii) response to oxygen-containing compounds (ROCC), (iii) postsynaptic plasticity and Long

Term Potentiation (LTP), and (iv) MAPK-JNK signaling. These functions encompass the

entire set of genes and processes defining our theory. As a follow-up to our previous GO-

based gene-set analysis [4], several processes appeared replicated, these being neurodevelop-

ment-related processes, Ca2+/K+ channel regulation and LTP. In addition, in the current study

we also found evidence for an implication of oxidative stress and DNA damage, coupled with

impairments in the energetic and Ca2+/cAMP metabolism, involved in synaptic plasticity and

neuroprotection. Particularly, the notion of DNA damage, which is associated with neuronal

homeostasis and longevity, appears to gain momentum in the landscape of FTD pathogenesis

[81,82,101,102].

Topologically, the FTD-network can be divided into in two main modules: (i) the non-

canonical WNT/Ca2+ signaling (ncWNT)-associated module (Fig 4), and (ii) the MAPK/

JNK-associated module (Fig 5), including PRKACG-MAPK8, AKT3, and CREB3L2, and their

sink JUN. The interface between the two sub-modules is represented by the TCF7L2-JUN-

MAPK8 interaction (Figs 2 and 3), depicting an overall disruption of the DAG-IP3/Ca2

+/cAMP homeostasis and energetic metabolism, leading to the induction of several oxidative

stress-responsive Serine/Threonine (Ser/Thr) kinases and their related targets, including

members of the CREB family, protein phosphatases, junction proteins, K+ cannels, and mem-

bers of the FoxO signalling pathway. These critical Ser/Thr kinases include: (a) the Ca2

+-dependent CAMK2A, PRKCG, PRKACG, PRKACB, and PRKG1; (b) the MAP-kinases

MAPK8 andMAPK11; and (c) the AKT-kinase AKT3. Every Ser/Thr kinase has a specific

influence over a group of functionally-related nodes, converging towards common target

nodes. Specifically, we may define two high-degree sinks (Fig 3): CTNNB1 and JUN. Given

these premises, we hypothesized that oxidative stress and DNA damage generated in response

to energetic metabolism and Ca2+/K+ homeostasis impairments, could be among the major

potential molecular underpinnings of FTD pathogenesis.

The non-canonical WNT/Ca2+ module

A large portion of our model involves the ncWNT pathway, converging to the sink CTNNB1-

CREBBP, and targeted by a series of perturbed receptors: ITPR1-CAMK2A,WNT3-FZD4,

FGF11-EGFR, and THRB. In the landscape of WNT signalling, theWNT3-FZD4 interaction

might be a novel susceptible functional element in FTD. FZDs are G Protein-Coupled Receptors

(GPCRs), involved in downstream DAG-IP3/Ca2+/cAMP signalling. WNT/FZD-mediated

Phospholipases C (PLCs) activation leads to diacylglycerol (DAG) and inositol triphosphate

(IP3) production, stimulating intracellular Ca2+ release. Calcium release activates CAMK2A,

inhibiting the GSK3 kinase and causing nuclear accumulation of beta-catenin (CTNNB1) and

TCF-mediated gene regulation [54–92]. Our model suggests that the disruption of this mecha-

nism may involve CAMK2A directly, as a perturbed (i.e. disease-variant carrying) gene, and

through its interaction with EP300-TCF7L2-CTNNB1. Beta-catenin has been implicated in

many forms of neurological and cognitive impairments, including the Autism Spectrum Disor-

der, cell adhesion impairments, dendritic branching, and Long-Term Potentiation (LTP) [103].
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Therefore, mutations in the CTNNB1 gene could lead to altered transcriptional activity and

impaired synaptic plasticity that may result in brain malformation, intellectual disability, and

neuronal loss [104].

TCF7L2 (a perturbed/seed node) is a beta catenin-interacting transcription factor [63,92]

whose involvement in WNT signalling is well documented, although its physiological role in

adult brain is still unclear [63]. This supports previous reports about calcium-dependent acti-

vation of CAMK2A and its implication in neurodevelopment, transcriptional regulation, cell

fate determination [54,57,93–96], and neurodegeneration [70]. Furthermore, bothWNT3-

FZD4 and FGF11-EGFR interactions reveal a key role of the PLCs PLCB1, PLCB2, and PLCB3
within our FTD-network (Fig 4). FTD-associated variants in PLCs may lead to improper intra-

cellular Ca2+ levels and thus dysregulation of the Ser/Thr kinases controlling the downstream

MAPK-JNK signaling. Previous studies on PLCB1 showed an association between its depletion

and early-onset epileptic encephalopathy [88], suggesting its involvement in learning impair-

ments and neurodegeneration. PLCs activity was recently associated with the activation of the

repair factor PARP1. Neuronal DNA is constantly exposed to ROS due to the intense mito-

chondrial activity in response to the high energy demand required by the Central Nervous Sys-

tem (CNS). This massive exposure to ROS causes the accumulation of single-strand breaks

(SSBs) that remain unresolved, despite the presence of repair mechanisms [105]. In particular,

aged cerebral neurons showed a group of genes targeted of PARP1-bound SSBs that are impli-

cated in synaptic plasticity and long-term memory.

CAMK2A also controls other, peripheral, FTD-relevant targets. In our model, perturbance

propagates from CAMK2A to calcineurin catalytic subunit PPP3CC through calmodulin

CALM2 (Fig 2). Notably, reactive oxygen species (ROS) enhance LTP through calcineurin sup-

pression, inducing cellular and DNA damage, and leading to cell death in neurons [70,80],

with constitutively (as per genetic association) impaired metabolism. Together with active cell

damage, loss of neuroprotection may contribute to neural cell death. CAMK2A is connected to

three different perturbed routes, involving cAMP and fatty acids metabolism [84–91], and

including several mitochondrial proteins. The first route involves the adenylate cyclase

ADCY3, the phosphodiesterases PDE1A and PDE10A, and the GMP-deaminase GMPR (Fig 2).

Several studies highlighted the importance of intracellular levels of cAMP and cGMP for neu-

roprotection and neuron survival [84–91], and CAMK2-dependentADCY3 activation has

been documented in mouse and rat brain [87]. Specifically, neuron regeneration, survival and

synaptic plasticity seem to be enhanced by high intracellular levels of cAMP and cGMP [84–

87], and antagonized by phosphodiesterases (PDEs) and myelin-associated glycoproteins

(MAGs) [86–88]. In a recent study [88] PDE-dependent cAMP/cGMP control has been docu-

mented in Alzheimer’s disease (AD), depression and multiple sclerosis (MS), but not in FTD,

to date.

The second CAMK2-secific route includes EP300,CPT1B, and ACSBG1 (Fig 2). These

nodes are involved in fatty acid metabolism and all of them can be found in mitochondria

[106–108]. Moreover, CPT1B has been recently associated with behavioural disorders charac-

terizing post-traumatic stress both in human and rodent models [107], and ACSBG1 partici-

pate in myelinogenesis [108].

The third CAMK2-secific perturbed route is represented by the central network axis

CAMK2A-EP300-TCF7L2, showing a bifurcation through CTNNB1 and JUN (Fig 2). We also

identified several important junction proteins, such as Ca2+, IP3, and cAMP transporters,

highlighting the perturbed status of both ncWNT and MAPK signalling pathways. The interac-

tion PRKCG-GJD2-TJP1 is one of the perturbation sources acting on CTNNB1. PRKCG is a

Ca2+-activated Ser/Thr protein-kinase C (PKC), which mutations are known to be associated

with spinocerebellar ataxia, characterized by cognitive impairment, tremor, and sensory loss
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[109]. Enrichment analysis showed how this PKC is involved in ROCC and LTP. Our model

highlights GJD2 and TJP1 as possible perturbed PRKCG interactors. Former evidences demon-

strated a strong association of GJD2 and TJP1with schizophrenia [110].

Stress-induced Ser/Thr-kinases and neural cell death

The largest sink in our model is JUN, and its largest incoming hub isMAPK8 (aka JNK1). The

second module of our FTD-network is centred on these two components of the c-Jun N-termi-

nal kinase (JNK) pathway (Fig 5). The two mostly perturbed interactions acting on JUN in the

entire FTD-network are PRKG1-CREB3L2 (aka BBF2H7), and PRKACG-MAPK8; together

with the ncWNT-related route CAMK2A-EP300-TCF7L2.

The cGMP-activated Ser/Thr-kinase PRKG1 is a key mediator of the nitric oxide (NO)/

cGMP signalling pathway, involved in LTP and neuron branching [111]. CREB3L2, a PRKG1
target in the cGMP signalling pathway, is perturbed in our FTD-model. Remarkably, it has

been demonstrated that CREB3L2, whose expression is induced by endoplasmic reticulum

(ER) stress, is involved in preventing the accumulation of unfolded proteins in normal dam-

aged neurons, and protecting neuroblastoma cells from ER-stress induced cell death [112].

On the other hand, PRKACG andMAPK8 are the FTD-connectors with the largest per-

turbed outgoing connectivity, and sharing one of the mostly perturbed interaction, indicating

that they may play a critical role in FTD aetiology.MAPK8 is a key Ser/Thr kinase capable of

phosphorylating JUN and prompting stress-induced cell apoptosis by phosphorylating other

transcription factors, including TP53 [74–78], a directMAPK8 target. Moreover, our model

evidenced a large variety of potentially FTD-associated pro-apoptotic stress-responsive

MAPK8 perturbed interactions and targets. The main target is the disease-variant carrying

cytokine TNF, sharing withMAPK8 the second-largest perturbed interaction of the model

(afterMAPK8-PRKACG). Other important targets include: the Ser/Thr kinaseMAPK11, the

transcription factor FOXO1, the adapter protein CRK, the interleukin IL12B, the Ca2+-depen-

dent phospholipase PLA2G4B, and the cytidylyltransferase PCYT1A. Conversely,MAPK8 is

influenced by few perturbed interactions, among which the most important is PRKACG. The

latter is the most degree-central Ser/Thr kinase in the FTD-model afterMAPK8, and part of

the perturbed routeMAPK8-PRKACG-GRIN2B-PRKACB (Fig 5). PRKACG is a protein kinase

A (PKA) involved in lipid and glucose metabolism, immune system response, and G1-check-

point response during cell cycle. It can be dysregulated in response to different kind of stresses,

including metabolic stress, DNA damage and cancer [20,78,93,100]. Alongside PRKACG,

we found other protein kinases, NMDA receptors, and GPCRs that are involved in stress

response, (neuronal) apoptosis, and critical neurological functions, such as LTP, learning, and

behaviour [69,70,80,81,91–95,99,100]. They include: PRKACB, PRKCG, PRKG1, AKT3,

PIK3R1, PIK3CA,GRIN2B, together with the EGFR, CAMK2A, and FZD4. PRKACG and

PRKG1 also regulate the activity of the potassium channels KCNMB4 and KCNMA1, respec-

tively, through perturbed interactions. These channels are responsible for membrane excita-

tion and sensitivity to Ca
2+

levels [113].

MAPK and NMDA receptor signalling, oxidative stress, and

neurodegeneration in FTD

The roots of oxidative damage studies in biology date back to Harman’s free radical theory of

aging, in 1954 [68]. The response to oxidative damage involves several different pathways

regarding cell fate. We here found that the most ligand-receptors triggering perturbed interac-

tions, control members of the MAPK-JNK signalling pathway. Oxygen radicals, present in

ROS, induce phosphorylation of MAPK-related GPCRs or NMDA receptors (NMDARs),
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activating their coupled PLCs (i.e. PLCB1, PLCB2, and PLCB3), which in turn activate down-

stream cGMP-dependent kinases, such as PRKG1, the Ser/Thr kinases PKA (i.e. PRKACG,

PRKACB), PKC (i.e. PRKCG), PKII (i.e. CAMK2A), or members of the PI-3K family (i.e. AKT3
and PIK3CA) [57,70,76]. A crucial NMDAR that emerged from our FTD model is GRIN2B,

part of the NR2 subunit, and acting as glutamate agonist. It is the major excitatory receptor in

the mammalian brain. Information exchange through the post-synaptic excitatory CNS neu-

rons occurs mainly through the ionotropic glutamate NMDARs. Synaptic plasticity (i.e. the

modulation of the activity of glutamatergic synapses) may persist over long periods of time,

leading to the so called LTP. LTP leads to NMDARs activation and influx of Ca2+ ions in the

post-synaptic membrane. These processes deeply affect key cellular processes for learning and

memory [57,70,75].

According to our model, the oxidative stress-responsive Ser/Thr kinase PRKACG also influ-

encesMAPK8.MAPK8 interacts, in turn, withMAPK11 (aka p38-beta), a member of

p38-MAPK family [75], involved in neuro-inflammatory processes preluding neurodegenera-

tion. This is also supported by the highly perturbation of the osmotic stress-induced cytokine

TNF, target ofMAPK8 (Fig 5). Furthermore,MAPK8may elicit neuronal cell death through

activation of the perturbed target TP53 [73–76]. Another interestingMAPK8 target is FOXO1,

involved in oxidative stress response and neuronal cell death [77]. In this respect, our current

study supports previous work highlighting a role for oxidative damage and cell degeneration

neurological disorders [68–83], including FTD [52,53].

Notably, our findings support neurodegeneration-associated mechanisms, particularly in

astrocytes. Astrocytes are glial cells implicated in various neurodegenerative diseases, includ-

ing Amyotrophic Lateral Sclerosis (ALS), Alzheimer’s Disease (AD), Huntington’s Disease

(HD) and Parkinson’s Disease (PD), although not much is known to date in FTD [114]. In

general, Astrocyte-mediated onset and progression of these disorders seems to be a conse-

quence of loss of homeostatic functions (e.g., Ca2+/cAMP homeostasis, implicated in neuro-

protection), and gain of disruptive functions (e.g. abnormal LTP and ROS accumulation)

[115,116]. Interestingly, astroglial cells are known to modulate neuronal activity through gluta-

mate release, causing an NMDAR-mediated increase in Ca2+ [117,118]. An excess of neuronal

metabolic activity, accompanied by an impaired calcium homeostasis, due to astroglial-associ-

ated disorders, could make CNS synapses more sensitive to oxidative damage. As reported in

the results section, oxygen radicals present in ROS induce phosphorylation of MAPK-associ-

ated NMDARs, activating their coupled PLCs, and consequently cGMP-dependent oxygen-

responsive kinases (including PRKG1, PRKACG, PRKACB, PRKCG, and CAMK2A) [57,70,76].

The activity of these oxygen-responsive kinases could be the cause of abnormal LTP, neuroin-

flammatory response, and neuronal cell death [52,53,68–83].

Methodological and theoretical aspects

The core of our method consists in reducing the initial network to a minimum set nodes and

edges bearing the disease-associated information content of the interactome (KEGG, in this

case), filtered to exclude misleading interactions and noise. Although the initial interactome is

given, it is then transformed and cross-connected, respectively, by perturbance and covari-

ance-driven LVs inclusion. The last passage enables to also evaluate possible unobserved

sources of co-variation. Several disease-relevant aspects apply to our ‘seed-and-expand’

method.

First, our approach assumes that genetic variability influences both single genes and their

interaction. We expect that phenotype-associated genetic variants influence proteins’ chemi-

cal-physical properties and thus their functions as well as interactions. In this perspective,
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perturbance is a measure of deviation from the given (i.e. KEGG) interactome. Our super-

vised-PC1 scores of SNP-to-gene quantification reflects genetic variability at a given locus,

therefore the concept of perturbance can be explained in terms of phenotype-associated (i.e.

FTD-associated) genetic variation over gene-gene interactions. More in general, the key entity

comprised in the definition of perturbance is the information transmitted through such inter-

actions, from the source of perturbation to the final target. If the genotype is altered, also the

biochemical properties of the effectors are influenced. Therefore, the genetic alterations that

underlie edge perturbations are not limited to deep structural rearrangements, but my also

include mild phenotypes that cause small changes in protein functionality and connectivity,

resulting in functional impairments [18].

Second, given the scale-free nature of biological regulatory networks [28] one natural class

of relevant nodes is represented by hubs, many of which are not perturbed, including FZD4,

TJP1, EP300, JUN, and PRKACG (Figs 2, 3 and 4). This supports the hypothesis according to

which hubs are essential for embryonic development and thus are less likely to accumulate dis-

ease-related variants that usually turn to be lethal [28,29]. Nevertheless, their functional

involvement in the disease phenotype is critical since they send and receive most perturbed

connections. However, our method recovered also perturbed hubs, especially those connecting

different functional sub-modules, including TCF7L2 andMAPK8. Furthermore, seeds and

novel perturbed genes are not necessarily the closest to hubs, but rather those which are mostly

influenced by disease-related genetic variation. In our model this is shown through paths max-

imizing edge perturbation, allowing to avoid the classical and often misleading guilt-by-associ-

ation rule and favouring disease-relevant (or in general phenotype-relevant) variation. In this

scenario, the discovery of novel disease-associated genes is at the same time dependent on

gene perturbation, local gene context (i.e. edge perturbation), and the whole disease-network

topology, through the overall FTD-model fitting.

The final FTD-network revealed several useful notions: (i) the presence of significantly rele-

vant routes, sources, connectors (including hubs), and targets of perturbance; (ii) the presence

of latent “common cause(s)” underling hidden gene-circuits, which connect perturbed routes;

(iii) the detection of novel FTD-biomarkers based on functional perturbed connectors. Of

note, other than for effect of genetic data, the pipeline is also suited for assessing any kind of

quantitative data, including eQTL, expression microarrays, and RNA-seq, in the context of

complex disorders.

In conclusion, the current study allowed to expand our previous work [4], revealing the

potential functional impact of the genetic variation associated with FTD in the Italian popula-

tion, using a newly developed network model. Specifically, our study suggests that the genetics

underpinning (Italian) FTD is associated with metabolic stress involving possible oxygen com-

pound excess and Calcium/cAMP homeostasis deregulation. This happens through different

complex molecular mechanisms, including Adenylate Cyclases, PDEs, stress-induced Ser/Thr-

kinases, and WNT/EGFR and NMDA receptors malfunctioning. According to our hypothesis,

these impairments lead to neuronal damage, loss of neuroprotection, and eventually to cell

death. Moreover, by indicating these complex biological processes we also indicate their key

functional players, i.e. those genes that we called novel potential FTD-biomarkers, which

appear to be perturbed, and having synergic and small effect size.

Conclusions

We indicate oxidative stress as a major cause, not only of neurodegeneration in several forms

of dementias, but also sporadic FTD. Firstly, we showed as Calcium/cAMP homeostasis and

energetic metabolism impairments as the primary causes of loss of neuroprotection and neural
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cell damage, respectively. Secondly, we described how the altered postsynaptic membrane

potentiation due to the activation of stress-induced Serine/Threonine kinases leads to neuro-

degeneration. By studying the molecular underpinnings of these processes, our study evi-

dences key genes and gene interactions that may account for a significant fraction of

unexplained sporadic FTD aetiology.

To the best of our knowledge, this is the first functional network study that highlights

potentially impacted biological processes for FTD in the Italian population. In the future, we

foresee to apply this method to the entire FTD-GWAS and other population-specific FTD

datasets, as well as to the integration of gene expression analysis and genotyping data, to evalu-

ate and refine the impact and translation of disease-associated genetic variation into the func-

tional domain.

Supporting information

S1 Fig. FTD-network. Network obtained by merging the FTD Steiner tree with Structural

Equation Model (SEM) covariances, represented as latent variables (L1, L2, . . .) connecting

pairs of bow-free target nodes. The final extracted network is composed by 210 (167 genes

+ 43 latent variables) nodes and 252 (166 + 2�43) edges. Nodes and edges are labelled accord-

ing to the conventions followed in Fig 2.

(TIF)

S2 Fig. Gene Ontology Biological Process (GO:BP) enrichment dot plot. GO Biological Pro-

cess enrichment over the 167 FTD-network nodes, displaying the first 40 hits (Bonferroni cor-

rected; p< 1E-9). Every hit is ordered by gene ratio (#enriched_genes/167), and the dot area is

proportional to the total number of enriched genes. Coloured dots correspond to the p-value

scale, from the lowest (red) to the highest (blue) one.

(TIF)

S3 Fig. KEGG enrichment dot-plot. KEGG enrichment analysis over the 167 FTD-module

nodes, displaying the first 40 KEGG hits (Bonferroni corrected; p< 1e-5). Every hit is ordered

by gene ratio (#enriched_genes/167), and the dot area is proportional to the total number of

enriched genes. Coloured dots correspond to the p-value scale, from the lowest (red) to the

highest (blue) one.

(TIF)

S4 Fig. Reactome enrichment dot-plot. Reactome enrichment analysis over the 167 FTD-

module nodes, displaying the first 40 Reactome hits (Bonferroni corrected; p< 0.001). Every

hit is ordered by gene ratio (#enriched_genes/167), and the dot area is proportional to the total

number of enriched genes. Coloured dots correspond to the p-value scale, from the lowest

(red) to the highest (blue) one.

(TIF)

S5 Fig. Disease Ontology (DO) enrichment dot-plot. DO enrichment analysis over the 167

FTD-module nodes, displaying the first 23 DO hits (Bonferroni corrected p< 0.002). Every

hit is ordered by gene ratio (#enriched_genes/167), and the dot area is proportional to the total

number of enriched genes. Coloured dots correspond to the p-value scale, from the lowest

(red) to the highest (blue) one.

(TIF)

S6 Fig. KEGG FTD-specific sub-network. Sub-network extracted mapping genes annotated

with 6 FTD-associated KEGG pathways. It shows a very high density (87%) of perturbed inter-

actions, including the FTD-network backbone. Nodes and edges are labelled according to the
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conventions followed in Fig 2.

(TIF)

S7 Fig. Disease Ontology (DO) nervous system sub-network. Sub-network extracted map-

ping genes annotated with DO terms descending from Nervous System Disease (DOID:863)

and Disease of Mental Health (DOID:150) roots. It shows a high density (77%) of perturbed

interactions, including the FTD-network backbone. Nodes and edges are labelled according to

the conventions followed in Fig 2.

(TIF)

S1 Table. Maximum Likelihood Estimates (MLE) of the SEM regression parameters. SEM

parameter estimation is based on the mean difference between the group variable C (0 = con-

trol, 1 = case) for each node, adjusted by its parents in the extracted Steiner Tree. Standard

errors are calculated by bootstrap (B = 1000 resampling). Significant estimates (p-

value < 0.05) are reported in bold.

(DOCX)

S2 Table. Selected ancestral bow-free covariances (p < 0.05, values in bold) between pairs

of “target” (outgoing degree = 0) nodes of the extracted Steiner tree. Pairs of target genes

that do not share a directed path are called ancestral bow-free nodes. When these genes share

significant covariances, there may be an unobserved common cause perturbing their interac-

tion. This condition is evaluated using a latent variable (LV) model in which a LV, influenced

by the group variable C (0 = controls, 1 = cases), is connected to the two bow-free targets. A

LV is designed as a significant unknown cause acting on the targets, if the C->LV interaction

is significant (i.e., p-value(C->LV) < 0.05, in bold), and the LV model has a good fit (i.e., p-

value of the Likelihood Ratio Test (LRT)� 0.05, in bold).

(DOCX)
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