
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/264557153

Ferritin	Nanocages:	A	Novel	Platform	for
Biomedical	Applications

Article		in		Journal	of	Biomedical	Nanotechnology	·	October	2014

DOI:	10.1166/jbn.2014.1980

CITATIONS

17

READS

496

6	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Friction	and	durability	of	virgin	and	damaged	skin	with	and	without	skin	cream	treatment	using

atomic	force	microscopy	View	project

Nanomedicine	View	project

Bharat	Bhushan

The	Ohio	State	University

1,135	PUBLICATIONS			40,575	CITATIONS			

SEE	PROFILE

Uday	Kumar

Indian	Institute	of	Technology	Roorkee

23	PUBLICATIONS			318	CITATIONS			

SEE	PROFILE

Ishita	Matai

Indian	Institute	of	Technology	Roorkee

20	PUBLICATIONS			393	CITATIONS			

SEE	PROFILE

Abhay	Sachdev

Indian	Institute	of	Technology	Roorkee

23	PUBLICATIONS			428	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Gopinath	Packirisamy	on	27	January	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/264557153_Ferritin_Nanocages_A_Novel_Platform_for_Biomedical_Applications?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/264557153_Ferritin_Nanocages_A_Novel_Platform_for_Biomedical_Applications?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Friction-and-durability-of-virgin-and-damaged-skin-with-and-without-skin-cream-treatment-using-atomic-force-microscopy?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Nanomedicine-32?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bharat_Bhushan11?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bharat_Bhushan11?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Ohio_State_University?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bharat_Bhushan11?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Uday_Kumar72?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Uday_Kumar72?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Technology_Roorkee?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Uday_Kumar72?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ishita_Matai?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ishita_Matai?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Technology_Roorkee?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ishita_Matai?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abhay_Sachdev?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abhay_Sachdev?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Indian_Institute_of_Technology_Roorkee?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abhay_Sachdev?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gopinath_Packirisamy2?enrichId=rgreq-9cc35a51e06257bdc088662ac301496a-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU1NzE1MztBUzozMjI0NjM2ODUxMjAwMDJAMTQ1Mzg5Mjc0MTc1NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Copyright © 2014 American Scientific Publishers
All rights reserved
Printed in the United States of America

Review
Journal of

Biomedical Nanotechnology
Vol. 10, 2950–2976, 2014

www.aspbs.com/jbn

Ferritin Nanocages: A Novel Platform for
Biomedical Applications

Bharat Bhushan1, S. Uday Kumar1, Ishita Matai1, Abhay Sachdev1,
Poornima Dubey1, and P. Gopinath1�2�∗
1Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
2Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India

Ferritin is a ubiquitous iron storage protein responsible for maintaining the iron homeostasis in living organism and thereby
protects the cell from oxidative damage. The ferritin protein cages have been used as a reaction vessel for the synthesis
of various non-native metallic nanoparticles inside its core and also used as a nanocarrier for various applications. Lack
of suitable non-viral carrier for targeted delivery of anticancer drugs and imaging agents is the major problem in cancer
therapy and diagnosis. The pH dependent reversible assembling and disassembling property of ferritin renders it as
a suitable candidate for encapsulating a variety of anticancer drugs and imaging probes. Ferritins external surface is
chemically and genetically modifiable which can serve as attachment site for tumor specific targeting peptides or moieties.
Recent studies, further establishes ferritin as a multifunctional nanocarrier for targeted cancer diagnosis and therapy.
Moreover, the biological origin of these protein cages makes it a biocompatible nanocarrier that stabilizes and protects
the enclosed particles from the external environment without provoking any toxic or immunogenic responses. This review
mainly focuses on the application of ferritin nanocages as a novel non-viral nanocarrier for cancer therapy and it also
highlights various biomedical applications of ferritin nanocages.

KEYWORDS: Apoferritin, Protein Cages, Nanoparticles Synthesis, Biomedical Applications, Cancer Therapy, Cancer Imaging.
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INTRODUCTION
Nanoscale materials play a vital role during the course of
evolution of life in the form of nanosized biomolecules
such as nucleic acids, lipids, carbohydrates and peptides.
In the 20th century, nanotechnology and nanoscience has
emerged as a fascinating area of research where many
nanosized structures have proven their role in the specific
field particularly in their biomedical aspects.1 Physical and
chemical properties of nanoparticles such as size, shape,
composition and surface chemistry determine the suitabil-
ity of these particles for such applications.2�3

A variety of nanoscale materials, such as metal
based nanoparticles,4–7 polymeric nanoparticles,8�9 mag-
netic nanoparticles,10�11 fluorescent nanoparticles,12–14 and
nanocomposites,15�16 has been extensively synthesized and
studied for their diagnosis and therapeutic roles. With
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increase in knowledge in this field, effective techniques
are emerging against dreadful human diseases, particularly
cancer in which conventional methods are not efficient.17�18

These nanostructures have comes out as blessing with dis-
guise for human being as certain nanoparticles itself gen-
erate toxicity and become a major concern for human
health.19 This provokes the researchers to search for more
biocompatible nanostructured materials for therapeutic and
diagnostic procedures.20�21
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In this regard, biologically derived protein cage nano-
structures emerge as potential nanoplatform in the
development of theranostic (therapeutic and diagnostic)
nanocarrier for the simultaneous delivery of anticancer and
imaging agents. Protein cages get self-assembled from lim-
ited number of subunits to form a spherical nanocage hav-
ing an interior cavity that is utilized for the storage of
various therapeutic materials while exterior surface can
be functionalized with tumor specific targeting moieties.

J. Biomed. Nanotechnol. 10, 2950–2976, 2014 2951
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These nanoparticles overcome various limitations of con-
ventional therapy such as non-specific distribution and tar-
geting of drug, poor solubility of drug, poor bioavailability
and therapeutic efficacy of drug.
The most commonly used protein nanocarrier includes

ferritin, heat shock protein (Hsp), and viral nanoparticles
such as cowpea chlorotic mottle virus (CCMV) and cow-
pea mosaic virus (CPMV), as discussed in the Table I.
These protein nanocarriers have more advantages over
other micrometer and sub-micrometer size delivery sys-
tems, such as liposome because the protein nanocarriers
have high surface area to volume ratio which increases
their drug holding capacity, enhance the solubility of drug,
increases their bioavailability by controlled release of drug,
biocompatible and do not produce any toxic effect due to
its biological origin.41

Among the protein nanocarriers, viral nanoparticles are
the most extensively studied protein cages. Several draw-
backs have been coupled with the use of viral delivery
vectors, which includes evoking immune response, prob-
ability of integrating with the host chromosome to pro-
duce a replication-competent infectious virus, rapid renal
clearance from the body, difficulties in the modification
of viral capsids for tumor specific targeted delivery and
high cost of production.42 Thus more attention is given
to non-viral protein cages as they offer advantages, such
as less immunogenicity, larger drug/DNA holding capac-
ity, not removed by the complement system, repeatedly
administered without generating adverse effects, cheap,
easily modifiable for targeted delivery and have negligible

safety issues due to the non-viral nature of the delivery
system. However, one disadvantage coupled with these
nanocarriers is low transfection efficiency. So, most of
the recent research has been focused on the development
of novel non-viral nanoscale delivery system by utilizing
the biologically originated protein cages having genetically
controlled ordered structural symmetries and modifiable
surface chemistries. Thus, by inducing genetic alterations
various novel functionalities, such as multiple ligands, pep-
tides and small chemical entities can be anchored to these
nanocaged structures to make them competent for cancer
theranostics and other biomedical applications.
In last few decades, the uses of biological nanopar-

ticles, as nanocarriers become an emerging approach
for the development of theranostic nanoparticles. Among
these supramolecular assemblies of protein subunits, fer-
ritins form a synthetic biomimetic platform for the size-
constrained synthesis of nanomaterials. Thus this review
summarizes the role of ferritin nanocages in the nanopar-
ticles synthesis and also highlights their potential biomed-
ical applications.

FERRITIN AND ITS BIOLOGICAL ROLE
In 1937, ferritin was first isolated from horse spleen43

and later its crystal structure was elucidated in 1991.44

The ferritin superfamily has been divided into two main
groups depending on their size namely: maxi-ferritin and
mini-ferritin as described in Table II. Ferritin performs
two major functions in the body. Firstly, they act as an

2952 J. Biomed. Nanotechnol. 10, 2950–2976, 2014
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Table I. Various types of protein cages, their structure and applications.

Protein Interior Exterior
cages diameter diameter Structure Properties and function Applications Refs.

HSA 8 12 Spherical shell composed of
24-subunits, giving them octahedral
(4:3:2) symmetry.

Disassemble at low pH
and reassemble at
high pH.

Easily modifiable structure
used in cell targeting
and MRI imaging.

[22]

Dps 4.5 9 Spherical shell composed of 12 subunits
with 23 point group symmetry, along
with two type of 3 fold symmetry
channel having size 0.7–0.9 nm.

Protect cell from oxidative
stress

Template for synthesis of
variety of NPs.

[23, 24]

CCMV 24 28 Capsid is composed of 180 copies of 20
kDa coat protein, which assemble into
a T = 3 capsid with three positive
sense RNA molecules packaged
inside making a 28 nm virus and 2 nm
pores exist at the quasi 3-fold axis.

Capsids swell at pH
greater than 6.5.

Easily modified by genetic
and chemical
modification and used in
MRI imaging, cell
targeting and imaging.

[25–27]

Mj sHsp 6.5 12 Composed of 24 subunits, which forms a
cage with cubic (4:3:2) symmetry and
with eight 3 nm pores located at the 3
fold axes. Six smaller (1.7 nm) pores
also exist at the 4-fold axis.

Extremely stable protein,
function as molecular
chaperones and over
expressed during stress.

Easily modified, used to
deliver variety of
molecules such as MRI
contrasting agents etc.

[28–30]

LS 8 15 Hollow icosahedral shell with negatively
charged protein cavity, composed of
60 beta subunit and 3 alpha subunit.

Enzyme involved in the
synthesis of lumazine,
a precursor of riboflavin

Biomimetic packing of
GFP and HIV protease.

[31–33]

TMV 4 18 Contain ssRNA surrounded by 300
nm×18 nm hollow protein tube,
composed of 2130 capsomer subunits
having both positively and negatively
charged amino acids on both surfaces
that act as the nucleation centres.

Rod shaped and having
distinct amino acid
composition in interior
and exterior.

pH dependent synthesis of
NPs. Used in synthesis
of nanotubes and other
nanoelectronic devices.

[34, 35]

P22 54 60 The mature phage form composed of
415 copies of 46.6 kDa coat protein
assemble into a spherical T = 7
structure with as many as 300 of 33
kDa scaffold protein.10 nm pores are
present in the P22 capsid.

P22 naturally infects
Salmonella typhimurium

Easily modified by
attaching functional
moieties such as biotin
to encapsulate variety of
particles.

[36, 37]

MS2 23 27 Self assembled structure composed of
180 subunit having 32 pores of
diameter 1.8 nm.

Infect E.coli Easily modifiable, used to
deliver variety of
molecules, such as
imaging agent for PET
and MRI.

[38–40]

Notes: HSA-Horse spleen apoferritin; Dps-DNA-binding protein from starved cells; CCMV-Cowpea chlorotic mottle virus; Mj sHsp-Heat shock protein from
Methanococcus jannaschii; LS-Lumazine synthase from Bacillus subtilis; TMV-Tobacco mosaic virus; P22-P22-Bacteriophage; MS2–MS2 Bacteriophage.

iron storage component and thereby maintain the availabil-
ity of iron during biological synthesis of various proteins,
which comprise iron as co-factor (such as heme protein,
iron sulfur protein (Fe–porphyrin, Fe–S, and Fe)). These
iron-containing proteins constitute a crucial component in
various biological processes, such as respiration, photosyn-
thesis and play an important role in hydroxylation reac-
tions and oxygen sensing.57�58 Secondly, ferritins play a
vital role in the iron metabolism and protect the cells from
oxidative damage.22�59

STRUCTURE OF FERRITIN
The primary amino acid sequences of the ferritins does
not have any homological similarities however a clear
structural homology were found at the 2�, 3�, and 4� levels,

indicating that the structure of ferritins remain conserved
during the evolution. The structure of ferritin is shown in
Figure 1 having 24 identical subunits with octahedral sym-
metry. These subunits possess a four-helix bundle along
with a fifth E helix which is found at 60� to the four-
helix bundle axis.44�61�62 Ferritin is a spherical hollow pro-
tein cage with internal and external diameter of about
120 Å and 75 Å, respectively.63 It can accumulate and
store approximately 4500 iron atoms.
The apoferritin protein cage is composed of 80–90%

of L-chain (light chain) and 10–20% of H-chain (heavy
chain) subunits with 55% sequence homology. The differ-
ence between these two subunits lies in their outer surface,
cavity, and hydrophobic channel sequences whereas the
hydrophilic channel sequence found to be identical.64�65

The negatively charged L chain subunit found inside the

J. Biomed. Nanotechnol. 10, 2950–2976, 2014 2953
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Table II. Difference between maxi-ferritin and mini-ferritin.

Characteristics Maxi-ferritin Mini-ferritin References

Size 8–12 nm 4.5–9 nm [23]

Structure • 24 subunits (∼ 20 kDa), four-helix bundle fold,
with octahedral symmetry (432 point group
symmetry) forming a larger spherical cavity that
accumulate 4500 Fe atoms.

• Monomer is made up of a four-helix bundle
(A, B, C and D helices) with a short fifth helix
(E helix) at the C-terminus.

• Each subunit interacts with six adjacent
monomers through three types of
symmetry-related interfaces.

• There are twelve dimerization interaction
interfaces at the two-fold axes, eight
trimerization interaction interfaces at the
three-fold axes and six tetramerization
interfaces at the four-fold axes.

• 12 subunits, four-helix bundle fold with 32
(tetrahedral) point group symmetry forming a
smaller cavity that accumulate 500 Fe atoms and is
a structural analogue of the maxi-ferritins.

• Monomer folds into a four-helix bundle (A, B, C and
D helices), with no E helix

• Each subunit interacts with five surrounding
monomers through two types of symmetry-related
protein-protein interfaces.

• Six dimer interactions are at two-fold symmetry
axes, and four trimerization interactions are
centered at the three-fold axes. Two types of
nonequivalent three-fold interfaces exist in the
mini-ferritin tetrahedral dodecamer.

[23, 44–46]

Occurrence Bacteria, archaea, and eukaryotes Bacteria and archaea

Examples Human ferritin, HSA, bacterioferritins Dps

Function Store excess iron and protect from oxidative
stress by removing iron and oxygen,
predominantly dioxygen.

Protecting bacteria from oxidative damage by
removing iron and oxygen, predominantly hydrogen
peroxide.

[47]

Ferrioxidase
site/active site

• Located in the middle of the monomeric
four-helix bundle.

• 24 active sites are saturated with 48 Fe(II).

• Situated at the interface between two-fold
axis-related monomers.

• 12 active sites are saturated with 12 Fe(II) atoms.
Except in proteins that can use dioxygen as the
substrate, where 24 Fe(II) bind/cage.

[23, 48, 49]

Stability Highly resistant to chemical denaturation, pH
changes and heat. Stable in dimer form in
solution and assembly proceed from dimers to
tetramers and octamers.

The protein was found to be extremely pH stable,
Dps dissociated reversibly into dimers at conditions
above pH 7.5 and below 6.0. Furthermore, dimers
dissociate to monomers at pH 4.0.

[50–53]

Self assembly 6 amino acids at the end of the C-terminal tip of
the D helix are essential for self-assembly.

26 residues of the C-terminus are essential for
self-assembly.

[54]

Iron entry The channel carboxylates in 24 subunit ferritins
selectively control Fe2+ entry.

The channel carboxylate groups control both Fe2+
entry and Fe2+ exit.

[55, 56]

inner cavity of assembled protein cage has clusters of
acidic residues (Glu and Asp) which form the mineral
nucleation site. This site mainly performs the function of
delivery of iron and help in the nucleation of ferrihydrite
core.61�66 So, these chains were found in the extra cellular
ferritin as they act as an iron carrier for different cells.67

The heavy chain which catalyzed the oxidation of Fe+2 is

Figure 1. (a)–(c) Ribbon diagrams of L-ferritin taken from
PDB entry 1DAT: (a) the 24-subunit assembled cage; (b) the
inner cavity; (c) the 3-fold axis channel. Reprinted with per-
mission from [60], S. Abe, et al., Polymerization of pheny-
lacetylene by rhodium complexes within a discrete space of
apo-ferritin. J. Am. Chem. Soc. 131, 6958 (2009). © 2009,
American Chemical Society.

responsible for the iron mineralization and the formation
of iron crystal.65 The nucleation site of H chain subunit
found in close proximity with the ferroxidase site shar-
ing one glutamate residue between them.61 Recent studies
on different ferritin further strengthened that iron storing
capability of ferritin is related to the number of L sub-
units. Moreover, presence of small number of H subunit
in ferritin obtained from iron storage organ reveal the
importance of oxidative process in iron storage.68 The fer-
roxidase activity of the apoferritin gets affected in the
presence of metal nanoparticles as it has been found to
get increased in the presence of platinum, gold and silver
nanoparticles.69�70

There are 14 channels having a diameter of 0.3–0.4 nm
each, which are present at the junction of these sub-
units. Out of these 14 channels, eight channels are
hydrophilic in nature and posses four-fold symmetry, while
the remaining six are hydrophobic and possess three-fold
symmetry.71 The aperture size of these hydrophilic chan-
nels are adjusted according to the particles as demonstrated
that in presence of urea, these eight hydrophilic channels
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attain sufficient flexibility and allow larger size molecules
to penetrate inside the apoferritin cavity.72

The molecular species enter into the protein cavity
through these channels by charge selective process. More-
over, flow of ion through the pore is regulated by the
local folding and unfolding of the ion channel pore.
The four highly conserved residues, such as arginine 72,
aspartate 122, leucine110 and leucine 134 are respon-
sible for the stability of pore and form the pore gate.
These pores are less stable compared to the overall sta-
bility of ferritin nanocages, even at low temperature and
low concentration of denaturants, such as urea and guani-
dine, pores show instability. It has been suggested that
biological regulators are present in vivo, which recog-
nize the pore gates and hold it in either open or close
conformation to maintain the iron homeostasis.73 Ferritin
cage without the ferrihydrite mineral core is called as
apoferritin.

ROUTES OF LOADING
There are two major ways of loading materials inside apo-
ferritin as shown in Scheme 1: First, by directly incubating
the materials with the apoferritin in which the smaller par-
ticles comparable to the size of channels move directly and
get accumulated inside the inner cavity. This process mim-
ics the natural biomineralization process. Second way is
applicable for the larger particles which cannot efficiently
pass through the channels. In this route, the apoferritin
protein cage undergoes pH dependent assembly at higher
pH and disassembly at lower pH.

BIOMINERALIZATION
Ferritin protein cages have been used as nanosized con-
tainers for the controlled synthesis of a variety of nanopar-
ticles by biomimetic process. So, in order to synthesize
nanoparticles inside its cavity it becomes important to
understand, how the process of biomineralization of iron
naturally occurs in ferritin (Scheme 2).
Iron biomineralization in ferritin is a multistep process

that includes:
1. Entry and binding of iron ions inside the ferritin cage
cavity.

Scheme 1. Schematic representation of different routes of
loading in ferritin nanocage.

Scheme 2. Schematic representation of naturally occurring
biomineralization process inside ferritin nanocage.

2. Oxidation of iron ions followed by nucleation and
growth of ferrihydrite core.
3. Release of iron ions from ferritin.

Step 1. Entry and binding of iron ions inside the ferritin
cage cavity. The iron enters into the ferritin through the
15 Å long channels which are gated by extensions of the
four-helix bundle subunits. These metal ions were guided
inside the cavity by charged gradient of the channel cre-
ated by the presence of conserved carboxylate residues:
Glu130, Asp127, Ala26, Val42, Thr149.47�56 Moreover
there are two basic types of functional channels present in
ferritin:

(1) Iron ion entry channels formed by three subunits
around the 3-fold cage axes which allows the passage of
Fe2+ substrate to oxidoreductase sites (Asp127, Glu130).
(2) Iron ion nucleation channels, which are present at

the other side of the 4-helix bundles subunit around the
4-fold cage axes (Ala26, Val42, Thr 149).

The Fe(II) ions reacts with O2 after binding to the active
site and produce diferric oxo products in eukaryotes. The
diferric peroxo intermediate (DFP) is first detectable inter-
mediate which forms and decays in seconds or less into
the di-Fe(III)O product, a mineral precursor which is later
released into protein nucleation channels.48

Step 2. Oxidation of iron ions followed by nucleation and
growth of ferrihydrite core. Two Fe2+ ions get oxidized
to Fe3+ in the presence of oxygen after binding to the
ferroxidase center. The Fe3+ ions then migrate to the fer-
ritin inner cavity and finally a mineral core formation take
places at the nucleation sites of the L-chain ferritin. This
is the initial process when no iron is present in ferritin,
but as soon as the iron mineral core is formed, the iron
gets oxidized directly on the mineral core surface after
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passing through the 3-fold channels.74 This oxidation pro-
cess on mineral core is found to be more rapid than that
at the ferroxidase center, which remains functional after
a core is formed and with no significant contribution in
Fe2+ oxidation.75

It has been shown by various in vitro studies using vari-
ous mutant ferritin cage, which lack nucleation site or fer-
roxidase activity or both, directly affect the encapsulation
or mineralization process or both.76 This indicates the role
of nucleation site in aggregating the ions at the highly nega-
tively charged protein interface and in facilitating oxidative
mineralization and ferroxidase centre in converting the sol-
uble Fe2+ to insoluble Fe3+, absence of which leads to the
uncontrolled growth and precipitation.76�77 Thus suggests
that the ferritin biomineralization is highly specific for iron.
Step 3. Release of iron from ferritin. In vitro removal of
iron from ferritin is a two-step process, which includes
reduction of Fe3+ mineral followed by the chelation of
Fe2+ from the mineral core. Four iron release reduction
and chelation model namely subunit displacement, diffu-
sion of molecules through the 3-fold channels, gated pores
and electron transfer through the protein shell, has been
briefly discussed in a review by Watt et al.78 Considering
all the possible ways of iron release mechanism and their
transportation through the protein cage, the 3-fold chan-
nels are currently accepted route for the passage of iron to
enter and exit the protein cage.78 Moreover, the redox reac-
tions occur during the iron mineralization and release are
accompanied by the simultaneous release of ion in order to
balance the charge on both sides of the cage. For example,
the entries of electron during the reduction of iron in the
mineral core are accompanied by concomitant release of
negative charge from the core. Some of the important ions
involved during this process are chloride and hydroxide
ions, moving throughout the protein cage and phosphate
ion release during the reduction process.78

Iron releasing occurs on exposure of ferritin to UV light
or ionizing radiation, the iron mineral core acts as photore-
ceptor and result in the reduction of Fe (III). In the absence
of oxygen, redox reaction results in the iron mobilization
from ferritin catalyzed by the hydrated electron, which acts
as a reducing agent. In the presence of oxygen superox-
ide radical anion (O•−

2 ) is responsible for the iron release
process. This suggests the requirement of an iron chela-
tor for Fe(II) mobilization from ferritin, in the absence of
which ferritin act as a electron-storage molecule.79 More-
over, the reversal of process of biomineralization is very
slow, as shown in the in vitro study by removing the excess
iron in sickle cell disease and thalassemia with the help of
chelators.80�81

FERRITIN AS A TEMPLATE FOR
NANOPARTICLES (NPs) SYNTHESIS
Metal nanoparticles can be fabricated inside the apoferritin
cavity, which act as a reaction vessel. Protein cage like

structure of apoferritin can be used for the size dependent
encapsulation of various materials by serving as template
to restrain the NPs growth and prevent aggregation. These
self assembled protein shell form a reaction chamber for
the synthesis of non-native materials of controlled dimen-
sions, while exterior surface can be easily modified with
various functional moieties through genetic and chemical
modification. A variety of different precursor ions have
been formed by nucleation and subsequent mineral growth
suggesting that other non-native metals could also be min-
eralized within the ferritin core. Due to the sharper density
of these NPs as compared to higher-dimensional struc-
tures, these NPs offer superior quality that can be used in
biosensors, nanoelectronic devices, bioimaging and vari-
ous other biomedical applications.
Artificial synthesis of ferromagnetic iron oxide nanopar-

ticles inside the apoferritin cavity has been reported by
Mann and co workers.82�83 They mimicked the natural
biomineralization process and opened the way to utilize
apoferritin for the synthesis of various inorganic nanoparti-
cles. Similarly, mini-ferritin (Dps) used for the synthesis of
NPs includes Co(O)OH and Co3O4 (dia 4�34±0�55 nm),84

�-Fe2O3,
85�86 CdS87 and Pt.88

After loading, these NPs were undergoing various inter-
mediate stages before leading to the final mineralized
nanoparticles. Metal ions were reduced inside the cavity by
using a reducing agent for example H2, NaBH4, or light,
then the encapsulated NPs were separated from the unen-
capsulated ones by the implications of additional purifi-
cation steps.89 Moreover the ferrihydrite core undergoes
in situ reactions and gets modified to other iron products
such as FeO,90 iron sulfide91 and semiconducting hematite
(�-Fe2O3).

92 Similarly, high temperature synthesis was
carried out using ferritin from thermophilic archaeon Pyro-
cocus furious, which retains its cage-like structure even
at 120 �C.93 This can be further used as a template for
synthesis of magnetite94 and other metallic NPs such as
gold, silver, lead, copper, nickel and semiconductors NPs
such as CdS. The outer surface of ferritin modified with
PEG prevents the bulk precipitation and improves the yield
of NPs in ferritin cavity.95 The noble metals ions (Au3+,
Ag+) bind to the exterior surface of the protein. In order
to facilitate internalization of these metal ions, reactive
cysteine and histidine residues are removed from the exte-
rior surface of ferritin and soft cysteine ligands are intro-
duced in the interior surface.96 The metals ions bind to
the specific binding site present on the protein shell, both
interior and exterior surfaces of the protein cage that pro-
mote the growth of NPs both inside and outside the cage.
Moreover, modification on the surface of ferritin leads to
change in their properties. For instance, the alkylation of
the ferritin protein using a monoamine-terminated alkane
oligomer (dodecylamine) changes the charge of the protein
and type of interactions by converting the primary car-
boxylic acid groups on the ferritin surface into hydropho-
bic groups.97 Recently, reported recombinant apoferritin
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having gold-binding peptide and titanium-binding peptide
at the C- and N-terminus, respectively that specifically
catch gold NPs and deliver them to the silicon dioxide sur-
face under specific conditions.98 List of various moieties
encapsulated inside the ferritin protein cage is discussed
in Table III.

APPLICATIONS OF FERRITIN
PROTEIN CAGES
Ferritin nanocages have been widely used in various bio-
logical and biomedical applications as discussed below
(Scheme 3).

Tumor Therapy
Apoferritin can encapsulate a variety of therapeutic agents,
which can be utilized in different strategies for tumor treat-
ment. Some of the strategies include:

Neutron Capture Therapy
Neutron capture therapy is a promising methodology for
the treatment of cancer. Boron and uranium are the basic
elements used in this technique. They are localized to the
targeted tumor cell and irradiated with slow neutron, which
leads to the disintegration of nuclei into smaller fragments

Scheme 3. Schematic representation of various applications of ferritin nanocages.

along with ionizing particles that kill the cell. In early
90’s, Hainfeld first described a method to deliver 235U by
encapsulating it in apoferritin cage which minimize the
immune response and heavy metal toxicity. Antibody Fab-
fragments were chemically coupled to the protein cage for
tumor specific targeting. The isotope was then fissioned by
neutron beam that produced the required localized lethal
radiation for the tumor therapy.208

Radioimmunoimaging and Radioimmunotherapy
Lutetium-177 is a radionuclide having a physical half-
life of 6.7 days and other radiological properties such
as emission of low energy beta particles and gamma
radiation have been utilized for targeting small tumors
for radioimmunoimaging and radioimmunotherapy of
cancer.210 A radionuclide nanoparticles (NPs) have been
synthesized by conjugating apoferritin with lutetium
phosphate (LuPO4) or yttrium phosphate (YPO4) and
functionalized them with biotin. The pretargeting capa-
bilities of these nanoparticle conjugates were studied
using biotin-modified LuPO4 or YPO4-apoferritin with
streptavidin-modified magnetic beads and in addition with
the aid of streptavidin-modified fluorescein isothiocyanate
(FITC) tracer. This method can be further exploited
for the preparation of radioactive LuPO4 or YPO4

2960 J. Biomed. Nanotechnol. 10, 2950–2976, 2014
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conjugates that can be utilized in radioimmunotherapy of
cancer.172�205

Photodynamic Therapy
Photodynamic therapy (PDT) has emerged as an important
tool in the field of tumor therapy and has been utilized
for the treatment of both oncological (e.g., tumors and
dysplasias) and non-oncological (e.g., age-related macular
degeneration, localized infection and non-malignant skin
conditions) applications.211 In this strategy, photosensitiz-
ing agents, light, and oxygen take part in photochemi-
cal reaction. A photosensitizing agent, methylene blue has
been successfully encapsulated inside apoferritin cage, that
can be internalized by the tumor cells and on irradiation
with a light of suitable wavelength (i.e., 633 nm) generates
a cytotoxic agent, a singlet oxygen intracellularly for pho-
todynamic therapy (PDT) which induced cytotoxic effects
on the human breast adenocarcinoma cells (MCF-7).178�179

Recently, a RGD4C-modified ferritin encapsulated with
Zinc hexadecafluorophthalocyanine (ZnF16Pc), an effec-
tive photosensitizer showed a high tumor accumulation
rate, less toxicity toward major organs and effective tumor
inhibition on light irradiation by inducing phototoxicity in
U87MG subcutaneous tumor models.212

Anticancer Drug Carrier
Toxicity and drug resistance of platinum based anticancer
drug limited their use for cancer therapy. Apoferritin can
be exploited as a drug delivery system to these plat-
inum based drugs (cisplatin, carboplatin and oxaliplatin)
to overcome these drawbacks and to enhance the cellu-
lar uptake of anticancer drugs.182 Cisplatin and carboplatin
loaded apoferritin showed a primary toxicity against rat
pheochromocytoma PC12 cells.183 Recently, a novel nano-
sized construct of cisplatin core-apo pig pancreas ferritin
(NCC-PPF) has been developed and its anticancer activity
on gastric cancer cells BGC823 (GCC) were studied.184

Daunomycin (anticancer drug) used for the treatment of
acute myeloid leukemia and lymphocytic leukemia have
been successfully encapsulated into apoferritin which is
modified by incorporating a negatively charged polypep-
tide poly-L aspartic acid (PLAA) to improve their drug
holding capacity.196 Similarly, apoferritin has been utilized
for the encapsulation of anticancer drug doxorubicin.197�198

A simple and easy method for preparation of thin meso-
porous protein films has been developed for efficient load-
ing and releasing of dye or doxorubicin by controlling the
pH. It loaded at lower pH and released the drug at higher
pH than the isoelectric point of protein.195

The differential effect of near-infrared apoferritin-PbS
(AFt-PbS) nanocomposites on cell cycle progression in
normal and cancerous human cells has been recently
reported. The nanocomposite did not alter the cell cycle in
normal cell at concentration up to 1 mg mL−1 whereas in
human breast cancer cell line it triggered apoptosis at con-
centration > 0.2 mg mL−1. These nanocomposites entered

the cell through endocytosis and further could be used for
the in vivo imaging studies.170 Another anticancer com-
pound Ru complex has also been successfully immobilized
to the ferritin cages by His residue present on the ferritin
surface.204

A bio-inspired nanoconstruct have recently been devel-
oped using an apoferritin-gold nanoconstruct loaded
with anticancer drug 5-fluorouracil (5-FU) that exhib-
ited a high selectivity towards cancerous cells and also
increased the cellular uptake of 5-FU via receptor-
mediated endocytosis.153 Moreover, a genetically modified
ferritin (RFRTs) nanocages having a tumor targeting pep-
tide Cys-Asp-Cys-Arg-Gly-Asp-Cys-Phe-Cys (RGD4C)
attached on its surface has been used for the delivery
of anticancer drug doxorubicin as shown in Figure 2.
Such nanoconstruct showed high drug loading efficiency
in presence of Cu(II) as a helper agent. This nanoconstruct
have improved tumor suppression ability and reduced car-
diotoxicity, when studied on U87MG subcutaneous tumor
models.199

Other Therapeutic Applications
Iron is one of the essential elements for all the living
beings, but if present in excess becomes toxic. Human
body is incapable to remove this excess iron, which leads
to their accumulation in the liver and other organs lead-
ing to serious health complications and eventually death.213

To remove this excess of iron, Desferrioxamine B (DFO)
drug produced by Streptomyces pylosus is used for iron
chelation therapy by encapsulating it inside the apoferritin
cage, which upon further reaction with Fe III gives rise to
encapsulated [DFOFe] complex within the apoferritin.142

This nanocontainer can also be utilized for the treatment
of other infectious disease. As in a newly developed strat-
egy in which silver (I) ions were loaded into apoferritin
to function as an antimicrobial agent.157 Recently, a novel
theranostic agent has been constructed utilizing the apofer-
ritin cage to simultaneously deliver the therapeutic agent
(curcumin) and imaging agent (GdHPDO3A) to hepato-
cyte in mice. This nanoconstruct can be used to prevent
hepatocellular damage in the thioacetamide-induced hep-
atitis and can simultaneously evaluate the drug delivery
efficiency via Magnetic resonance imaging (MRI), as apo-
ferritin cage is efficiently taken up by hepatocyte scav-
enger receptor class A type 5 from blood via the ferritin
transporting route.161

Tumor Imaging
In order to improve the quality and accuracy of dis-
ease management, a fused technique has been developed
by coupling the multiple imaging techniques as shown
in Figure 3. Near-infrared fluorescence (NIRF) imaging
and positron emission tomography (PET) are combined
in order to minimize the chances of misdiagnosis and
used for in vivo imaging. A chimeric ferritin nanocage
has been developed by introducing RGD4C and Cy5.5 on
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Figure 2. (a) Schematic illustration of D-RFRTs. Dox was precomplexed with Cu, and then encapsulated into RFRTs. (b) Gel-
filtration chromatography analysis of RFRTs and D-RFRTs. The same peak at around 27.4 min was observed for both RFRTs and
D-RFRTs. (c) Cumulative drug release curves of D-RFRTs in PBS (pH 7.4) and FBS. (d) Therapy studies performed on U87MG
tumor-bearing nude mice (n = 5/group). On day 18, significant difference in tumor growth was found between D-RFRT treated
mice and those treated with PBS, RFRTs and free Dox (P < 0�05). Eighteen days after the onset of the treatment, a TGI rate of
89.6% was observed for D-RFRTs, in comparison to that of 74.0% for free Dox. Reprinted with permission from [199], Z. Zhen,
et al., RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 7, 4830 (2013). © 2013, American
Chemical Society.

the exterior surfaces of hybrid ferritin cage via genetic
and chemical means. These nanocages loaded with 64Cu
onto heavy chain of ferritins have a potential as mul-
tifunctional loading and multimodality imaging probes.
This hybrid nanoprobe has both PET and NIRF func-
tionalities for tumor imaging in conjugation to integrin
specific targeting, when injected intravenously into tumor-
bearing mice.103 Similarly, it has been demonstrated that
the engineered human ferritin protein cages conjugated
with either fluorescent Cy5.5 molecule or encapsulating
magnetite nanoparticles, can serve as a nano-platform to
image vascular inflammation in vivo. They can be success-
fully taken up by the macrophages in murine atheroscle-
rotic carotid arteries and thus served as a novel platform as
MR or Near-infrared (NIR) contrast agents for detecting

macrophage infiltration within atherosclerotic plaques to
detect high-risk atherosclerotic plaques.130

In a recent study, a multifunctional ferritin cage-based
nanostructure has been developed for the fluorescence and
MR imaging and for detection of �v�3 integrin upregula-
tion in tumor cells by attaching green fluorescent protein
(GFP) and Arg–Gly–Asp (RGD) peptide on the exterior
surface of the ferritin cages and ferrimagnetic iron oxide
nanoparticles to the interior cavity.132 Paired gold clusters
have been synthesized within the interior cavity of apofer-
ritin cage with tunable fluorescent emissions, suggesting
the occurrence of fluorescence resonance energy transfer
(FRET) effects between the clusters and use of these novel
biomolecule-metal complexes for in vivo kidney targeting
and biomedical imaging.145
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Figure 3. (a) Schematic illustration of the process of triple-loading. First, we introduced RGD4C and Cy5.5 onto the surfaces
of two sets of ferritins, via genetic and chemical means. These two ferritins were then mixed and broken down into subunits at
pH = 2 and incubated with 64CuCl2 to achieve radiolabeling. The pH was then adjusted back to 7.4 to facilitate the reformation
of nanostructures. The reconstituted chimeric ferritin nanocages have both RGD4C and Cy5.5 on their surfaces and 64Cu loaded
in their cavities. In vivo (b) PET and (c) NIRF images after the administration of ferritin probes. In the comparison group, a
blocking dose of c (RGDyK) was injected 30 min prior to the ferritin probe administration. Reprinted with permission from [103],
X. Lin, et al., Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 11, 814 (2011). © 2011,
American Chemical Society.

In a similar way, gadolinium 1,4,7-tris(carboxymethyl)-
10-(2′-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (Gd-
HP-DO3A) loaded apoferritin probe has been used for MR
visualization of tumor blood vessels (tumor angiogenesis)
in a mouse model by utilizing biotin-streptavidin affinity
and targeting neural cell adhesion molecules.165 Recently, a
artificial luminescent protein has been developed by encap-
sulating a strongly luminescent Eu3+ complex, N ,N ,N1,
N1-[40-(1-naphthyl)-2,20:60,200-terpyridine-6,60 0-diyl]
bis(methylenenitrilo) tetrakis(acetic acid) (NTTA–Eu3+�
into cavity of apoferritin which act as a bioprobe for
time-gated luminescence bioimaging. This bioprobe can
be used to understand the distribution and function of
apoferritin inside complex living systems.203

Tumor Targeting
Protein based NP systems are the promising tool for the
targeted delivery of imaging and therapeutic agents. The
advantage of these NPs over other conventional systems
lies in their ease to undergo cage modification and extends
to the wide possibility for loading a variety of moieties

for diagnostic and therapeutic purposes. These functional
moieties include targeting agents that can effectively rec-
ognize the receptor, over expressed by specific cells and
tissues.
Magnetic nanoparticles loaded apoferritin conjugated

with fluorescently labeled RGD-4C peptide can be taken
up by macrophages more efficiently due to their spe-
cific affinity with amelanotic melanoma cells and THP-1
monocyte cells, which are known to overexpress integrin
�v�3.

214 Similarly, a multifunctional NPs have been for-
mulated for cell specific targeting by encapsulating iron
oxide (magnetite) NPs within the interior cavity of genet-
ically engineered human H-chain ferritin (HFn) and a flu-
orescent dye, Fluorescein- 5-maleimide along with cell
specific targeting peptide, RGD-4C as shown in Figure 4.
RGD-4C were attached on its exterior surface which
enabled specific binding to �v�3 integrins upregulated on
tumor vasculature and C32 melanoma cells in vitro.122

Recently, multifunctional nanoparticles have been devel-
oped by genetically and chemically modifying the heavy
chain of the human protein ferritin (HFt), stabilizing and
masking them with polyethylene glycol (PEG) molecules,
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Figure 4. TEM images (left) and DLS analysis (right; insets are the corresponding correlation functions) of empty HFn and
RGD4C-Fn. Both HFn and RGD4C-Fn show 12–14 nm in diameter. Reprinted with permission from [122], M. Uchida, et al., Tar-
geting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J. Am. Chem. Soc. 128, 16629 (2006). © 2006, American
Chemical Society.

rhodamine fluorophores and magnetic resonance imag-
ing contrasting agents for selective melanoma-targeting
both in vitro and in vivo. These constructs were specifi-
cally targeted to the melanoma cell by attaching selective
targeting moiety, such as �-melanocyte stimulating hor-
mone (�-MSH) peptide on the surface of protein, which
binds to the receptors expressed only by melanoma cells
and to some extend by melanocytes. In this study, there
was considerable reduction in non-specific recognition
and uptake by the reticuloendothelial and mononuclear
phagocytic systems as HFt-MSH-PEG were easily recog-
nized and taken by the melanoma cells and not by other
human cancer cells or mouse tissues (expect by dedicated
phagocytes).128

Cellular Uptake
Ferritin in natural conditions enters into cell though recep-
tor mediated endocytosis due to the presence of endoge-
nous ferritin receptors and for site specific targeting of
ferritin their exterior surface could be modified. The recep-
tor for ferritin varies with the type of cell and tissue and
on their developmental stages. The ferritin receptors were
found on different types of cells including lymphocytes,215

placental microvilli,216 and erythroid precursors.217 These
are also found on various cell lines, such as giant HeLa
cells,218 K562 cells,219 and human intestinal carcinoma

Caco-2 cells, which can even internalize plant ferritin.220

In absence of transferrin receptors, ferritin L-chain recep-
tors (scara 5) have been found on developing kidney for
the iron uptake.221

It has been previously reported that ferritin bind to the
membrane of HeLa cells and is internalized through fer-
ritin receptors via endocytosis.218 For example, in embryo
Tim2 is reported as the receptor for H-ferritin,222 whereas
in many other cell lines such as HeLa cells and immuno-
genic cells such as mitogen-activated T- and B-cells, cel-
lular uptake is facilitated via human transferrin receptor-1
(TfR1).223

Apoferritin nanocage can act as a natural and bio-
compatible carrier for the cellular delivery of bioac-
tive molecules through receptor-mediated endocytosis and
provide a non-destructive (to the cell membrane) and
switchable control of their cellular uptake by inhibition
of endocytosis which make them a highly flexible and
practical nanocarrier for drug delivery. The control of the
delivery system was tested on human intestinal epithelial
Caco-2 cells, as they exhibit ferritin receptors.143

Bioassays
In the modern era of nanotechnology, use of nanoparticles
has emerged as an important tool in the field of biomedical
applications because of their simplicity, high surface area
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and unique physiochemical properties at the nanoscale.
They have been widely utilized in development of highly
sensitive bioassays for biomolecular diagnosis. Apoferritin
in combination with other metal NPs have been extensively
studied for molecular diagnosis, bioimaging, targeted drug
delivery and therapeutics.
A fluorescence marker (fluorescein anion) and a redox

marker [hexacyanoferrate (III)] loaded apoferritin has
been synthesized that can be used as bioassay labels for

Figure 5. (A) Magnetic beads and electrochemical sandwich
immunoassay protocol based on biotin-functionalized hexa-
cyanoferrate MLAN labels. (B) Typical square wave voltam-
mograms of electrochemical immunoassay with increasing
concentration of the IgG (from a to e, 0.1, 0.5, 2, 10, and
20 ng mL−1 IgG, respectively). A baseline correction of the
resulting voltammogram was performed using the “linear
baseline correction” mode of the CHI 660 (CH Instruments)
software. Also shown (insets), (top) the resulting calibration
plot and (bottom) the square wave voltammograms (with-
out baseline correction) of 0.1 and 0 ng mL−1 (control) IgG.
After the sandwich hybridization assay, the magnetic bead-
hexacyanoferrate loaded apoferritin hybrid was dispersed in
50 �L of 0.1 M HCl/KCl to release the captured hexacyano-
ferrate. Following a magnetic separation, the solution was
transferred to a SPE surface for SWV scanning. Reprinted
with permission from [180], G. Liu, et al., Versatile apoferritin
nanoparticle labels for assay of protein. Anal. Chem. 78, 7423
(2006). © 2006, American Chemical Society.

microscopic fluorescence immunoassay and electrochem-
ical immunoassay, respectively as shown in Figure 5. Its
detection limits were estimated to be of 0.06 (0.39 pM)
and 0.08 ng mL−1 (0.52 pM) IgG with fluorescein and
hexacyanoferrate, respectively.180�181 The biologically pro-
duced functionalized NPs were also used as labeling
agents in bioaffinity assay. In this study, Eu3+ ions were
used as labeling agent and were loaded inside the fer-
ritin, while a binding moiety i.e., single chain Fv fragment
(scFv) of an antibody was attached on its surface in order
to aid their specific binding to the thyroid stimulating hor-
mone (TSH).202

A new highly sensitive and selective magnetic parti-
cle (MP)-based electrochemical immunoassay has been
demonstrated, having a detection limit of 0.01 ng/mL
using carbon nanospheres (NS) and lead phosphate loaded
protein cage nanoparticles (PCN) for signal amplification.
This system has been used to analyze the phosphorylated
protein human phospho-p5315, a potential biomarker of
gamma-radiation exposure.167

In a similar way, a co-reactant based highly sensitive
electro chemiluminescence (ECL) immunoassay approach
has been devised based on PEI loaded apoferritin NPs,
probes for the specific quantification of human chorionic
gonadotrophin (HCG) by enhancing the ECL of ruthe-
nium (II) tris(2,2′-bipyridyl) (Ru(bpy)+3

2 ).201 Moreover, for
rapid, sensitive, selective and inexpensive quantification of
organophosphorylated acetylcholinesterase (OP-AChE), an
exposure biomarker of organophosphate based pesticides.
A new sandwich type electrochemical immunoassay has
been developed using apoferritin templated lead phosphate
label for quantification of OP-AChE, having a detection
limit of 0.02 nM.168 These new apoferritin based nanopar-
ticle labels hold great promise in the field of biomolecule
detection and in enhancing the sensitivity of various other
bioassays.

Biosensors
The metal encapsulated apoferritin NPs can be used in
variety of nanodevices, such as single electron transistor,
catalysis and floating gate memory. In similar way, semi-
conductor NPs such as CdSe, ZnSe, and CdS encapsulated
apoferritin can be used as quantum dots and photofluores-
cence markers. ZnSe is a n-type semiconductor that could
be used as fluorescent labels for biological applications as
their fluorescent light does not quench easily.
Ferritin molecules have redox property which remains

unchangeable until their electrochemical surrounding is
fixed.224 In recent years, protein electrochemistry has
emerged as an interesting area in the development of
biosensors and bioreactors. Various electron transfer reac-
tion studies of ferritin have been conducted, such as
electron transfer of ferritin on bare gold electrode.225

The electrochemical behavior of ferritin adsorbed on
indium–tin oxide (ITO) glass and single wall nano-
tubes (SWNT)/ferritin composite on glassy carbon (GC)
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disk electrode had been studied for nanoelectronic
applications.226�227 Moreover, electrochemical studies on
ferritin immobilized onto a self-assembled monolayer-
modified gold electrode have been already reported.228 The
direct electron transfer of ferritin in Dihexadecyl phos-
phate (DHP) on Au film electrode was also evaluated.229

A ferritin/DNA complex was successfully constructed
by chemically attaching maleimide modified DNA
(M-DNA) to the exterior surface of a ferritin mutant pro-
tein, which can be sterically attached to the complementary
DNA-functionalized GNPs. This complex can be utilized
in photo electrochemical biosensor fabrication as it can
serve as a mediator between the DNA/RNA responsible
for disease and dye-labeled photo reporter probe.137

A highly sensitive electrochemical approach have been
reported having a linear range from 2�0× 10−16 to 1�0×
10−14 M and the detection limit was 5�1×10−17 M under
optimum condition, based on signal dual-amplification
with Au NPs and marker-loaded apoferritin NPs for the
sequence-specific DNA detection. The concentration of
target DNA is quantified by electrochemical stripping anal-
ysis of the electroactive cadmium markers released from
apoferritin NPs in acidic buffers. This proposed DNA
biosensor has high sensitivity, good reproducibility and
selectivity even against two-base mismatched DNA.176

Recently, a direct electron transfer has been investigated
between cobalt NPs loaded apoferritin and a glassy carbon
electrode in thin film of dihexadecyl phosphate (DHP) by
cyclic voltammetry (CV) in order to design a biosensing
device that can be used in detection of various chemical
and biological analytes.112

In addition to this, an electrochemical approach has been
developed using metal phosphate nanoparticles loaded
monobase-conjugated apoferritin probe for the detection of
individual single nucleotide polymorphisms (SNPs). The
biotinylated DNA probes get hybridized with mutant and
complementary DNA and the duplex DNA helix form
were captured on the surface magnetic beads by biotin-
streptavidin based affinity binding. Signals were gener-
ated and detected by electrochemical stripping analyses,
when the probes get coupled to the mutant sites of formed
duplex DNA by DNA polymerase, as each mutation cap-
tures different nucleotide-conjugated apoferritin probe and
generates distinct potential voltammogram peaks relative
to mismatch.156

An array of charged storage nodes in floating gate mem-
ory had been developed using ferritin encapsulated NPs.230

Apoferritin loaded with Ni atoms catalyzed the fabrication
of high quality polycrystalline silicon (Si) thin film from
an amorphous Si thin film.231

In general, electrochemical biosensors utilize the
potentiometric and amperometric transducers that con-
vert the biosensing information into the measurable
signal. Recently, apoferritin encapsulated gold nanoparti-
cles have been utilized to perform electrochemical DNA
biosensing having a sensitivity up to 51 aM.176 Apoferritin

bionanomaterial also enhances electron transfer reactions
of hemoglobin in a wide pH range. Since, the Hb exhibit
catalytic activity toward H2O2, the construct can be used
for the development of H2O2 biosensor.232

Biocatalyst
Apoferritin loaded nanoparticles also found their role
in catalyzing various chemical reactions. As shown in
Figure 6, polymerization of phenylacetylene has been cat-
alyzed by the Rhodium (Rh(nbd)) complexes immobilized
within the discrete space of apoferritin that can be useful
in investigating the behavior of a single polymer chain iso-
lated within a nano-sized space.60 Similarly, they have also
demonstrated that the ferrocenes and Pd(allyl) complexes
were immobilized on the interior surface of apoferritin.
The Pd(allyl) complexes immobilized by forming a thiol-
bridged dinuclear complexes and catalyzed the redox and
Suzuki coupling reactions.101�233

Figure 6. Polymerization of phenylacetylene catalyzed
by Rh(nbd) · apo-Fr. (a) Solution of Rh(nbd) · apo-Fr prior
to addition of phenylacetylene (b) Reaction mixture
of Rh(nbd) ·apo-Fr and phenylacetylene after stirring for 3 h at
25 �C. (c) Reaction mixture of [Rh(nbd)Cl]2 and phenylacety-
lene under the same conditions. (d)–(f) Elution profiles from
size-exclusion chromatography of (d) Rh(nbd) · apo-Fr after
the reaction, (e) Rh(nbd) · apo-Fr, and (f) apo-Fr. Elution
was monitored at both 280 nm (black line) and 383 nm (red
line). Reprinted with permission from [60], S. Abe, et al.,
Polymerization of phenylacetylene by rhodium complexes
within a discrete space of apo-ferritin. J. Am. Chem. Soc. 131,
6959 (2009). © 2009, American Chemical Society.
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In a similar way, Pd has been encapsulated within the
core of a hyperthermophilic ferritin cages (from pyro-
coccus furiosus) to form a hybrid catalysts that can be
used for highly specific aerobic oxidation of alcohols in
water.99 In addition to this, it has been demonstrated that
the apoferritin encapsulated Pd nanocluster catalyzes the
size-selective olefin hydrogenation.100

The Fe(O)OH-mineralized iron storage protein fer-
ritin was used to catalyze the photoreduction of aque-
ous Cr-(VI) species to Cr(III), Cu(II) to form a stable,
air sensitive, colloidal dispersion of Cu(0) and reduction
of cytochrome c and viologens as well as the oxidation
of carboxylic acids, thiol compounds, and sulfite. Fer-
ritin act as photocatalyst in presence of UV/visible light
and can be utilized for future photocatalytic applications,
such as in environmental remediation chemistry.125�126�104

These NPs also acts as a catalyst for the growth of single-
walled carbon nanotubes.124 Similarly, it has been reported
that 1–2 nm and 3–5 nm diameter range discrete cat-
alytic nanoparticles synthesized in apoferritin cavity can
be used for the growth of SWNTs on substrate by chem-
ical vapor deposition (CVD) and diameter of nanotubes
was controlled by getting hold on the structure of catalytic
NPs in core.127 Moreover, apoferritin encapsulated Au
NPs exhibited catalytic synthesis of single-walled carbon
nanotubes (SWCNTs) on various substrates by chemical
vapor deposition.146 In another similar attempt, ferritin
cage loaded with catalytic Au NPs were immobilized to
a silicon substrate for the growth of silicon nanowire
(SiNW) by CVD.147

The apoferritin encapsulated homogeneous gold-silver
alloy NPs aid in the catalytic reduction of 4-nitrophenol
into 4-aminophenol in the presence of NaBH4.

152

A bimetallic nanoreactor is prepared by loading Au–Pd
NPs in apoferritin core that shows 2.5-fold higher catalytic
reactivity of olefin hydrogenation as compared to Pd0 NPs
in the cage.151

Enzyme Immobilization
Now a days, researchers are interested in stabilizing
enzymes and retaining their activity as they are promising
tools for wide range of applications including biocatalysis,
bioassay, bioenergy conversion and environmental reme-
diation. A large number of techniques are available for
the enzyme immobilization but most of them have certain
limitations, which include loss of enzymatic activity dur-
ing immobilization, stability and low efficiency. Therefore,
there is a need for development of new novel immobi-
lization technique. A large number of inorganic materi-
als are used for enzyme immobilization but they are not
biocompatible.
Apoferritin provide a biocompatible nanosized con-

tainer for the synthesis of biomaterials. It has been
recently shown that the apoferritin can also be used
in stabilizing enzymes and also to enhance their activ-
ity. Immobilization of glucose oxidase (GOx) has been

reported on the surface of apoferritin by green synthetic
approach. A glucose oxidase–biotin/streptavidin/biotin–
apoferritin conjugate (Apo–GOx) was formed by bridging
with streptavidin. The Apo-GOx formed shows enhanced
thermal and chemical stabilities.200

Artificial Antioxidant
A naturally occurring antioxidant enzyme includes the
endogenous superoxide dismutase (SOD), but it is found
to be incapable in protecting the cells from sudden oxida-
tive damage. Therefore, current research is now focus-
ing on the development of artificial antioxidant having
a high ROS-scavenging capability and low cytotoxicity.
Nanoceria (nano-CeO2) is now being studied because of
their SOD mimetic activity and other properties, such as
reversibility and auto regeneration.234�235

Recently, a nano-CeO2 has been constructed within
the cavity of apoferritin protein cage, which improves
biocompatibility and manipulate electron localization on
the surface of nanoparticles thereby improving the ROS-
scavenging activity of this nanocomposite. It was sug-
gested that the increase in redox activity of CeO2 is due
to change in the surface morphology/surface defect or
vacancies due to the charge transfer process that change
the electron localization on the surface of nano-CeO2,
which enhances its reducing activity. In vitro studies con-
ducted on HepG2 cells confirmed the ROS scavenging
activity of CeO2-apoferritin nanoparticles and internaliza-
tion of AFt–CeO2 by clathrin-mediated endocytosis, while
the internalization of the nano-CeO2 by a macropinocyto-
sis process.193 Moreover, a highly stable and catalytic Pt-
apoferritin nanoparticles were synthesized which enabled
the cellular uptake of NPs via ferritin-receptor-mediated
incorporation in human intestinal Caco-2 cells without any
harmful interaction with the biological systems, such as
lipid membranes or cell proteins as shown in Figure 7.
It was able to quench superoxide anions and thereby
reduced stress on cell191 and mimicked the activity of cata-
lase and SOD.
Similarly, Pt nanoparticles loaded apoferritin cages pos-

sesses the activities of both catalase and peroxidase
enzymes that play an important role in maintaining the
redox balance of the body by scavenging the ROS. These
Pt-apoferritin nanoparticles could decompose hydrogen
peroxide to generate oxygen gas which confirmed the cata-
lase activity of Pt-apoferritin. It produced distinctive colors
with the organic dyes and hydrogen peroxide that indicated
its peroxidase activity. The catalase activity increased with
the increment in pH and temperature.190

Magnetic Resonance Imaging (MRI)
Contrasting Agents
Much advancement has been made to understand the dis-
eases at molecular level by utilizing molecular imag-
ing techniques, which provide insight of the molecular
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Figure 7. (A) Effect of apoferritin (apo) and Pt-apoferritin (Pt-apo) on H2O2-induced intracellular reactive oxygen species (ROS)
generation in Caco-2 cells. After the H2O2-induction, the ROS levels of apo or Pt-apo treated cells are significantly lower than
that of the control cells. (B) Effects of treatment with apo and Pt-apo on the viability of Caco-2 cells stressed with 5 mM H2O2.
The viability was determined with the Cell Counting Kit-8. The viability of untreated (without both protein and H2O2� cells was set
100%. Values marked with an asterisk are significantly different from each other. The results are represented by the mean±SD.
Statistical analysis was done with the nonparametric two-tailed U-test, and a p-value of less than 0.05 was considered statistically
significant. Reprinted with permission from [191], L. Zhang, et al., Reducing stress on cells with apoferritin-encapsulated platinum
nanoparticles. Nano Lett. 10, 222 (2010). © 2010, American Chemical Society.

events occurring inside the body. Amidst of these, MRI
has emerged as a potential non-invasive tool in medical
diagnosis of disease, that is capable of generating three-
dimensional images of human soft tissue by placing them
in the long-wavelength radio waves and by acquiring relax-
ation times of excited nuclei mainly protons from water
in the tissue. The contrast of MRI image depends upon
many factors including the proton density of the tissues to
be examined, the relative relaxation times T1 (spin lattice
relaxation) and T2 (spin spin Relaxation), and instrumental
parameters.
Now a days, mostly paramagnetic metal ions, such as

high-spin Mn(II) and Fe(III) (five unpaired electrons) and
Gd(III) (seven unpaired electrons) are used as MRI con-
trasting agent. Due to its unpaired electrons, it decreases
the T1 and T2 relaxation times and enhances the sig-
nal observed. In order to nullify the toxic effect of some
of these metal ions, their chelates such as gadolinium
diethylenetriaminepentacetate (Gd-DTPA) have been used,
which are stable and can be easily removed from the body
through kidney. Moreover, ferritin level gets altered in
many diseases, suggesting the use endogenous ferritin as
a MRI reporter protein. It can assess the amount of iron
in different tissues, such as liver, spleen, and brain. Thus
it can be used to study lesions in the brains of Parkin-
son’s patients236 and can also detect the atherosclerotic
plaques of rabbits.237 Ferritins have also found to be used
in monitoring transgene expression via MRI.238�239 The
inherent property of ferritin comprising of a superparam-
agnetic ferrihydrite core makes it a suitable candidate as a
MRI contrasting agent66 but due to the lower relaxivity of
the endogenous ferritin, it has been restricted for clinical
use. Therefore, enormous methods have been devised to
enhance the relaxivity.

A ferritin iron oxide nanocomposite has been
examined as an MRI contrasting agent for labeling
macrophages involved in inflammatory diseases such as
atherosclerosis,121 as these mineralized protein cages are
easily taken up by the macrophages in vitro. Moreover,
a T2 contrasting agent has been developed for MR imaging
using an engineered ferritin from Archaeoglobus fulgidus,
which showed higher relaxivity (R1 and R2 values) as
compared to previously reported human ferritin iron oxide
nanocomposites.129

A water-soluble gadolinium oxide nanoparticle has been
synthesized inside the protein cage that showed potential
as MRI contrasting agents. In general, apoferritin cage
helps in storing Gd complexes and avoids their consequent
toxicity.163�164 Similarly, a highly sensitive gadolinium
loaded apoferritin probe has been used in MR visualization
of human tumor–derived endothelial cells (TEC) trans-
planted into mice by targeting with a biotinylated pep-
tide that binds to the selective surface molecule neural
cell adhesion molecules (NCAM). Antiangiogenic ther-
apy can utilize this approach.165 Recently, a new cationic
gadolinium chelate (Gd-Me2DO2A) loaded apoferritin has
been developed, which exhibited enhanced T1 proton
relaxivity as much as 10-fold higher than gadolinium-
tetraazacyclododecane tetraacetic acid (Gd-DOTA). The
in vivo blood clearance time of apoferritin was enhanced
by its surface modification with the help of dextran and
has been utilized as contrasting agent in MR imaging of
tumor in mice model. Single-dose toxicity test showed no
side effects, indicating its biocompatibility.162

A highly ultrasensitive T2 contrasting agent has been
developed from paramagnetic manganese ions synthesized
inside the engineered apoferritin cages, these nanocom-
posites showed high T2 relaxivity and have the potential
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to be utilized in dual contrast MRI.189 The �-MnOOH
loaded apoferritin have been found to be more effective
than Gd-loaded apoferritin as it produces high relaxivity
as compare to Gd-loaded apoferritin.188 Recently, it has
been reported that Mn loaded apoferritin can be used as
an in vivo MRI sensor for a massive oxidative process,
such as melanin formation in melanoma cell. The Mn(III)
gets reduced to Mn(II) inside the apoferritin cavity by the
oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) to
melanin, along with the cleared relaxation increment of
water proton relaxation rate in both cultured melanoma
cells and tumor animal models. This could be used for the
early diagnosis of tumor.187

Recently, a tumor-environment-responsive nanocarrier
has been formed by modifying the ferritin nanocage. This
nanocarrier change its surface properties upon sensing
a tumor-associated protease, matrix metalloproteinase-2
(MMP-2) and start agglomerating, which lead to enhance-
ment of T2 relaxivity, suggesting its role to be used as
contrast agent in magnetic resonance imaging (MRI).240

Biocompatibility
Apoferritin, self-assembled protein shell enhances the bio-
compatibility of nanoparticles present inside the apofer-
ritin cage. In 1992, Hainfeld successfully encapsulated
the radioactive uranium nuclei inside the ferritin cage.208

Later, the encapsulation of CdSe NPs inside the protein
shell largely improved the water solubility and reduced the
potential cytotoxicity of these NPs.177 Similarly, the pres-
ence of the apoferritin coat makes these NPs more water
soluble and imparts stability.159 The water insoluble gold

Figure 8. Picking up an avidin-ferritin conjugate. (a) Schematic diagram for the picking-up process. (b) DNA sequences used
for the ferritin immobilization on a substrate. (c) Structure of the dendron molecule used for the tip and substrate modifications.
(d) TEM images of AFM tips after ferritin attachment. A dark spot at the apex of a tip is evident (inset scale bar: 10 nm).
(e) Specific force curves, corresponding to the rupture of the hybridized DNA complex, were observed during the picking-up
process. Reprinted with permissions from [241], D. Kim, et al., Ferritin-based new magnetic force microscopic probe detecting
10 nm sized magnetic nanoparticles. ACS Nano 6, 243 (2012). © 2012, American Chemical Society.

sulfide becomes soluble upon encapsulating in the protein
cage.149

A stable, water soluble and less toxic apoferritin-PbS
nanocomposite has been developed and studied for its tox-
icity by conducting in vitro studies on MRC-5, MCF-7,
MDA-468 cells.169 Moreover, the encapsulation of NPs
in protein cage gives them a bio-recognizable identity
and making them biocompatible. The encapsulation of
Pt nanoparticles in apoferritin not only improves their
biocompatibility but also change the internalization route
along with an increase in their internalization in HepG2
cells by three times, via receptor-mediated endocytosis.192

Other Applications
Apart from biomedical and biological applications, apo-
ferritin protein cages are also exploited for their use in
various other applications. A drastic change has been
observed in the property of particles after being encap-
sulated inside the apoferritin cage. Apoferritin encapsu-
lated non magnetic Pd NPs shows permanent magnetism
at room temperature.102 Moreover, the magnetic moment
and exchange bias in all oxide materials encapsulated with
ferritin cage can be tailored by adjusting their synthe-
sis conditions.139 The CoPt encapsulated apoferritin could
be used for data storage applications.117 Electrospraying
and in-flight heating of ferritin produces controlled size,
monodisperse aerosol particles that can be utilized as size
standards for instrument calibration.186

Recently, a ferritin-based magnetic force microscopic
probe has been developed that can be used for the
magnetic force microscopy (MFM) imaging capable of
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detecting magnetic nanoparticles of nearly 10 nm size and
can sense the magnetic force coming from the magnetic
materials and is also capable of detecting biomolecular
interaction force with DNA on the surface as shown in
Figure 8. In this process, a single ferritin molecule is
placed at the end of the AFM tip through the use of the
underlying dendron surface functionality.241

A flexible freestanding ultrathin protein films contain-
ing fluorescent CdSxSe1−x/ZnS nanocrystals has been pre-
pared by filtration technique, which can find numerous
suitable applications in the development of optoelectronic
devices.242 A ferritin based bionanoparticle stabilized
pickering emulsions have been used to prepare a bio-
inorganic composite capsules, such capsules would find
their application in medical, cosmetic preparations and
food technology.243 Apoferritin is also used as an ideal
internal standard for the easy and automatic magnification
determination of electron cryomicroscopy images which
is typically used in biological cryomicroscopy.244 More-
over, a conjugate of packaging RNA (pRNA) with fer-
ritin has been synthesized which could be used for the
studies of programmed self-assembly in multi-component
nanostructures.245

CONCLUSION AND FUTURE PERSPECTIVES
Protein based NPs have established nanosized delivery
platforms for cancer treatment due to its inherent prop-
erties to accumulate at the tumor site through enhanced
permeability and retention (EPR) effect and their ver-
satile structure extends scope for multifunctionalization.
Moreover, the extensive research in this field continuously
encourages researchers to engineer these protein cages
with diverse functionalities leading to the development
of protein based theranostic nanocarriers. Meanwhile, the
recent advances in this field have extended the use of these
nanocarrier beyond therapeutic potentials into other fields,
particularly biomedical applications such as MRI contrast-
ing agent, nano based assays, biosensing devices etc. Still
there is a long way ahead and numbers of challenges have
to be overcome in this area to utilize the full potential
of these protein-based architectures and implement their
use in development of advanced biomaterials for various
biomedical applications.
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