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ABSTRACT
Much contemporary evidence underscores the pathophysiological importance of Ca2C handling by
acidic organelles such as lysosomes. Whereas our knowledge of how Ca2C is released from these
acidic Ca2C stores (the ‘outs’) is advancing, we know relatively little about how Ca2C uptake is
effected (the ‘ins’). Here I highlight new work identifying animal Ca2C/HC (CAX) exchangers that
localize to acidic organelles, mediate Ca2C uptake and regulate cell migration in vivo. Continued
molecular definition of the acidic Ca2C store toolkit provides new insight into Ca2C-dependent
function.
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The so called ‘acidic Ca2C stores’ are a morphologically
eclectic cohort of Ca2C- and HC-replete organelles that,
in addition to fulfilling their canonical functions, also
serve as mobilizable stores of Ca2C.1,2 A well-studied
example is the lysosome, acting as both a macronutrient
recycling center and as a target Ca2C store for the second
messenger NAADP.3 The list of Ca2C-permeable chan-
nels expressed on lysosomes—the ‘outs’—is steadily
increasing. It includes the archetypal TRP mucolipins,4

NAADP-regulated two-pore channels (TPCs)5 and other
ion channels thought generally to reside on the plasma
membrane (TRPM2,6 P2X4,7 Cav2.18 and TRPA19).
These channels mediate a range of cellular processes
including triggering of global Ca2C changes and various
trafficking events centered around endolysosomal
fusion/fission.1,2,10,11 Given emerging links to disease,12,13

molecular and functional interest in Ca2C release from
acidic organelles is growing. But lagging behind (at least
for the animal kingdom) is our understanding of the ‘ins’
i.e. how Ca2C is taken up by acidic Ca2C stores and its
physiologic relevance.

Vacuoles are key acidic Ca2C stores in plants, yeast
and protists that are often likened to lysosomes of animal
cells.1 Vacuolar Ca2C uptake is mediated by molecularly
defined Ca2C/HC exchangers (CAXs) and P-type Ca2C

ATPases.14 CAXs use the substantial proton gradient to
drive the antiport of Ca2C at high capacity in to the

lumen. Knockout of CAX genes, for example in Arabi-
dopsis, leads to a significant reduction in vacuolar Ca2C

loading, an associated increase in apoplastic (cell wall)
Ca2C concentration and reduced gas exchange, growth
and fitness.15,16 The existence of analogous CAXs have
been proposed in animals based on early biochemical
work in sea urchin eggs.17 This study showed blockade
of Ca2C uptake into target NAADP-sensitive stores by
agents that collapsed proton gradients such as bafilomy-
cin A1(a V-type HC ATPase inhibitor), but not by vana-
date (a P-type Ca2C ATPase inhibitor)17 consistent with
secondary active transport of Ca2C. Indeed, such a pro-
posal has received widespread support where Ca2C

release by NAADP or NAADP-forming agonists is con-
sistently blocked by bafilomycin A1 across a multitude of
cells.18-20 However, the molecular identity of animal
CAXs has been somewhat of a mystery.

Recent work identified several putative animal CAXs
through searches of the ever-increasing genomic sequen-
ces now at our disposal.21 These genes were found in
protostomes such as gastropods and polychaetes, and
deuterostomes from basal animal species (reassuringly
including the sea urchin, an echinoderm) through to
amphibians and non-placental mammals. CAXs were
cloned from the purple sea urchin and the African
clawed frog. The latter was heterologously expressed in
yeast where it was shown to possess Ca2C-HC activity
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dependent upon on a conserved acidic residue within the
transport core and the N-terminal 316 amino acids. Frog
CAX localized to lysosomes when expressed in mamma-
lian cells and tempered receptor-mediated Ca2C signals21

consistent with an analogous role for CAX in clearing
Ca2C elevations in response to osmotic stress in yeast.22

In both frog21 and zebrafish23 embryos, transcripts for
endogenous CAX were enriched in the neural crest.
Within these highly migratory embryonic cells, CAX
localized to yolk granules and small acidic vesicles (likely
lysosomes).21 The former finding is interesting as it was
these very same lysosome-like organelles that were origi-
nally identified as NAADP-sensitive Ca2C stores in sea
urchin eggs.17 Live cell imaging indicated that the smaller
CAX-positive vesicles were highly mobile, often populat-
ing the leading edge of migrating neural crest cells.21

Indeed, knockdown of CAX disrupted multiple cell
migration processes in neural crest explants including
focal adhesion formation, cell spreading and chemotaxis.
Importantly, migration of the neural crest was also dis-
rupted in vivo. Thus, this study21 significantly furthers
our understanding of how Ca2C uptake by acidic Ca2C

stores impacts cellular function in animals and offers
new opportunities for probing organellar Ca2C/HC

exchange by molecular means (Fig. 1).
But what about Ca2C uptake into acidic Ca2C stores

in human cells given the apparent lack of CAX homo-
logues in placental mammals? It is formally possible
(although in my opinion unlikely) that CAXs within
our lineage have substantially diverged in sequence to
make them invisible to current homology searches.
Alternatively, Ca2C uptake could be mediated through
a novel protein with Ca2C-HC exchange activity,24 or
even through combinations of proteins (eg coupled
NaC/HC and NaC/Ca2C exchange).25 A recent study
has suggested that lysosomal Ca2C filling is achieved
by neighboring IP3-sensitive Ca2C release channels on

the ER but via a route that does not require a proton
gradient.26 Certainly, identified membrane contact
sites between the ER and lysosomes would facilitate
this27,28 similar to their proposed role in amplifying
lysosomal Ca2C signals by the ER.29 But the reported
insensitivity of lysosomal Ca2C uptake to bafilomycin
A1 (assessed by monitoring Ca2C signals evoked by
the TRP mucolipin activator MLSA1),26 is difficult to
reconcile with previous studies; the findings are at
odds not only with the aforementioned bafilomycin
A1-sensitivity of NAADP action but also work by the
same authors30 and others31 showing inhibition of
MLSA1-evoked Ca2C signals upon V-type HC ATPase
blockade. Clearly further work is required to clarify
the mechanisms mediating lysosomal Ca2C uptake in
mammalian cells, the importance of which is under-
scored by functional evidence linking signaling
through acidic Ca2C stores to cell migration.32,33

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

I thank Len Dahl, Bethan S. Kilpatrick and Christopher J.
Penny for useful discussion.

Funding

Supported by BBSRC grants BB/K000942/1 and BB/N01524X/1.

References

[1] Patel S, Docampo R. Acidic calcium stores open for busi-
ness: expanding the potential for intracellular Ca2C

signaling. Trends Cell Biol 2010; 20:277-86;
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