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Abstract 

     The photosensitizing activity of two multiply charged porphyrazine derivatives, ie. the ZnII  

species [(CH3)8LZn]8+ and the ZnII/PtII heterobimetallic complex [(PtCl2)(CH3)6LZn]6+ (neutralized 

by I- ions; L = tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazinatodianion) has been examined 

in the water medium in the presence of SDS under experimental conditions in which the two 

species are present exclusively in their monomeric form. The determined quantum yield values 

() for both complexes, of interest in photodynamic therapy (PDT), are 2.3-2.5 higher than that 

of the aluminium compound PcAlSmix (Photosens®) used as the reference standard, an encouraging 

result for the application of the two cationic species as anticancer curative drugs in PDT. 

Investigation was also extended to explore  the cellular effects on the melanoma C8161 and the 

oral squamous carcinoma CA-1 cell lines like viability, cellular uptake, cell death modality and 

cell cycle distribution experiments. The IC50 values for the ZnII and ZnII/PtII cations are 

consistently lower than those of the reference standard, thus the degree of efficiency as anticancer 

agents being in the order octacation >> hexacation > PcAlSmix. A large prevalence of apoptosis 

with respect to necrosis is observed for both charged complexes. Thus, all achieved information 
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from photoactivity and in vitro tests in water solution further enhance perspectives for the 

application of the two ZnII cation [(CH3)8LZn]8+ and the related ZnII/PtII analog  

[(PtCl2)(CH3)6LZn]6+  as potential bi-multimodal anticancer drugs. 

Introduction 

As previously reported,1 the tetrapyrazinoporphyrazine octacationic macrocycle [(CH3)8LZn]8+ 

(Scheme 1A) and the related dimetallic hexacation [(PtCl2)(CH3)6LZn]6+ (both neutralized by I- 

ions), this latter peripherally bearing one cis-platin-like functionality (Scheme 1B),  are able to act 

as photosensitizers for the generation of singlet oxygen, 1O2, the main cytotoxic agent in 

photodynamic therapy (PDT), a well known anticancer curative modality.2 Measurements of 1O2 

quantum yields (ΦΔ) were carried out prevalently in dimethylformamide (DMF) solution as in this 

low-donor non-aqueous solvent the compounds are present in their monomeric form, thus in the 

nearly complete absence of aggregation. The achieved ΦΔ values (0.39-0.46) obtained in 

preacidified DMF ([HCl]: 110-4 M)1b closely approach those reported in the literature (0.4-0.6) in 

the same solvent on ZnII phthalocyanine3 or porphyrazine4 analogues which are among the most 

investigated photosensitizers because of their metal closed-shell electronic configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

     Water solubility of the two charged complexes as the iodide salts [(CH3)8LZn](I8) and 

[(PtCl2)(CH3)6LZn](I6) (isolated as hydrated species) allowed to examine, in K+ rich water 
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Scheme 1: Schematic representation of the octacation [(CH3)8LZn]8+ (A) and the hexacation 

[(PtCl2)(CH3)6LZn]6+ (B) (L = tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazinatodianion). 
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solutions, the interaction of the two cations [(CH3)8LZn]8+ and [(PtCl2)(CH3)6LZn]6+ with a 

telomeric G-quadruplex structure (G4).5 For both species it could be established that, although in 

the presence of aggregation (equilibrium monomer/dimer), interaction of the monomeric form 

with G4 occurs, with formation of a very stable sandwich-type structure complex/G4 with 2:1 

stoichiometry with stabilization of the G4 structure in its “parallel” form. A more complex type of 

interaction occurs for the ZnII/PtII hexacation with a double strand model of a B-DNA structure.6       

      Based on the available information on the two species [(CH3)8LZn](I8) and 

[(PtCl2)(CH3)6LZn](I6) it was believed useful to study their photoactivity in water in the absence 

of disturbing aggregation, which, as well known,2d,3c,7 reduces the singlet and triplet excited state 

lifetimes of the macrocycles and hence 1O2 production. Moreover, it was also required to provide 

qualified support to the potentialities in terms of multimodal anticancer activity by performing 

experiments on the cellular effects of the two multicharged species.  

In the present contribution studies on the photoactivity of the cations [(CH3)8LZn]8+ and 

[(PtCl2)(CH3)6LZn]6+ were conducted in water solution in the presence of sodium dodecyl 

sulphate (SDS), under experimental conditions which determine the occurrence of the species 

exclusively in their monomeric form. The obtained results are discussed for the two cations   in 

strict relationship with data known from the literature for the widely studied Al-phthalocyanine 

photosensitizer PcAlSmix (Photosens®).7 Besides, in order to test the therapeutic potential of the 

two multicharged species in an appropriate biological setting, in vitro experiments were carried 

out on two cancer cell lines, C8161 (malignant melanoma) and CA-1 (oral squamous cell 

carcinoma). The experiments were aimed at characterizing the two cations in terms of a) IC50, b) 

cellular uptake, c) cell death modality and d) cell cycle phase distribution.  The obtained results 

are also presented and illustrated in detail. 

 

Experimental Section 

Solvents and Reagents. Reagents (Phthalocyanine aluminium chloride, PcAlCl; 9,10-

Anthracenediyl-bis(methylene)malonicacid; sodium dodecyl sulphate, SDS) and non aqueous 

solvents (pyridine; dimethylsulfoxide, DMSO; dimethylformammide, DMF) were purchased from 

Sigma Aldrich. H2O Millipore was used as solvent. PcAlSmix was prepared locally and its 
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behaviour was compared with a sample kindly provided by Prof. E. I. Lukyanets.8 The present 

salt-like species [(CH3)8LZn](I)8 and [(PtCl2)(CH3)6LZn](I)6 were prepared as previously 

reported.9,1a 

Physical Measurements. UV-visible solution spectra were recorded with a Varian Cary 50 Scan 

spectrometer by using 1-cm quartz cuvettes. Elemental analyses for C, H, and N were provided by 

the “Servizio di Microanalisi” at the Dipartimento di Chimica, Università “Sapienza” (Rome) on 

an EA 1110 CHNS-O instrument. The ICP-PLASMA analysis of Al, Na and S was performed on a 

Varian Vista MPX CCD simultaneous ICP-OES. 

Singlet Oxygen Photoproduction. Measurements on the efficacy of [(CH3)8LZn]8+ and 

[(PtCl2)(CH3)6LZn]6+ in the production of 1O2 were performed in aqueoussolution using PcAlSmix 

as reference standard (Pc: phthalocyaninato dianion, [C32H16N8]
=). The alternative use of the ZnII 

analog, PcZnSmix, as reference standard was discouraged by the fact that it might show3c a higher 

degree of aggregation in water solution, as was directly verified by us. PcAlSmix is a mixture of 

compounds with different sulfonation degree and different isomers having formula 

PcAlOH(SO3Na)n with <n> ~ 3. As reported,10 PcAlSmix was prepared by us from PcAlCl as 

follows:  

PcAlCl (210 mg; dye content ~85%) was mixed with oleum (1.6 mL containing 20% SO3) and the 

mixture was heated at 110 °C under stirring for 30’. After cooling, the mixture was poured on 

ground ice  (~20 g), brought to neutrality by a solution of NaOH  (colour change from green to 

blue). After evaporation of solvent in air, the solid residue was kept under vacuum and then 

Soxhlet extracted with methanol for 12 h. After cooling and centrifugation, the solution was 

evaporated in air and the solid residue was dried under vacuum (192 mg, yield 50%). Calcd for the 

formula PcAlOH(SO3Na)3.8∙16H2O: C, 31.18; H, 3.70; Al, 2.19; N, 9.09; Na, 7.09; S, 9.88%.  

Found: C, 30.62; H, 3.17; Al, 1.98; N, 8.80; Na, 6.77; S, 9.82%. UV-visible spectral data in H2O 

are listed in Table 1. A sample of PcAlSmix with <n> ~ 3, received kindly by Prof. E. A. Lukyanets 

(University of Moscow) showed identical UV-visible spectra and photochemical efficacy in the 

production of singlet oxygen. These findings confirm that small differences of sulfonation degree 

and sample composition do not affect the spectral properties and the singlet oxygen quantum yield 
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(ФΔ) of the mixture.11 Both our and Lukyanets’ samples were used in this work as reference 

standards.   

The efficacy as photosensitizers of the two cations [(CH3)8LZn]8+ and [(PtCl2)(CH3)6LZn]6+in 

the production of 1O2 was examined by analysing the decomposition of the scavenger ADMA 

(tetrasodium-9,10-anthracenediyl-bis(methylene)malonate), obtained from the corresponding acid 

salted with NaOH up to pH ~ 7.0) which has been suggested as a specific and very reactive probe 

for1O2 detection in aqueous media.11,12A profile of the procedure used for the studied species, 

including PcAlSmix, is as follows. 

A water solution (2.00 mL; pH = 6.5-7.0) of the monomeric photosensitizer (c ~ 4·10-6 M; 

absorbance ~0.4 at the wavelength of irradiation) containing the anionic surfactant SDS 

(H2O/SDS;  [SDS] = 0.020 M; as to the role of SDS see the later discussion) and the scavenger 

ADMA (c ~ 1·10-4 M) was irradiated in a 1.00 cm-quartz cell by a laser source (Premier LC 

Lasers/HG Lens, Global Laser) in the region of the Q band (λirr = 670 nm). Illumination was 

directed normally both to the surface of the solution and to the spectrophotometric radiation. 

During the experiment, continuous magnetic stirring ensured homogeneity of the solution while a 

circulating water system kept the temperature constant at 30°C. The power of irradiation (W), 

accurately measured by a radiometer (ILT 1400A/SEL100/F/QNDS2, International Light 

Technologies), was fixed at ca. 5 mW. For each experiment the pH of the solution was measured 

before and after irradiation and no changes of its value (range 6.5 - 7.0) were observed. 

The decay of trap’s absorption at 380 nm was monitored as a function of the time, and 

sensitizer stability was also checked under irradiation.Because of the fast decay of 1O2 in aqueous 

solution, the photo-oxidation of the scavenger ADMA, under the experimental conditions 

described above, follows a first-order kinetic equation.13 The relative photosensitizing activity of 

the present ZnII and ZnII/PtII cationic species in the production of singlet oxygen with respect to the 

reference PcAlSmix was determined on the basis of the following equation: 

 

 

where kI and kI
R are the ADMA bleaching first-order rate constants of octa- or the hexacation and 
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examined cation and the reference, respectively, calculated considering an optical path length of 

2.1 cm (total volume of solution and magnet in the cuvette = 2.1 mL; Wabs = W (1-10-2.1A).14 

Fluorescence measurements. Fluorescence measurements for the present multicationic species 

were performed in water solution containing 0.020 M SDS using a Cary Eclipse-Varian 

spectrofluorometer and a 1-cm quartz cell. The fluorescence quantum yields (ФF) of the ZnII and 

ZnII/PtII cations were determined by a comparative method with chlorophyll-a as the reference 

standard (ΦF= 0.32, ether solution), according to the following equation: 

 

 

where G is the integrated emission area, n is the refractive index of the solvent, A is the 

absorbance at the excitation wavelength, and S and R indicate the sample (octa- or hexacation) and 

the reference. The addition of SDS 0.020 M does not change the refractive index of water in a 

significant way.15 In all cases the absorbance of the solution was below 0.1 at and above the 

excitation wavelength (λexc = 600 nm).  

Cell lines and treatments. All chemicals used for this type of experiments on the two cations 

[(CH3)8LZn]8+ and [(PtCl2)(CH3)6LZn]6+ and on PcAlSmix were from Sigma unless otherwise 

specified. The melanoma C8161 and oral squamous carcinoma CA-1 cell lines were a kind gift of 

Prof. Mike Philpott and Prof. Ian McKenzie, Queen Mary University, London. They were cultured 

in Roswell Park Memorial Institute (RPMI) medium  supplemented with 10% fetal bovine serum 

(FBS) and Rheinwald’s medium (RM+) (Dulbecco’s modified Eagle’s medium-F12 

(DMEM/F12)) with supplements, respectively.16 

For the irradiation dose response experiment, cells were seeded at a density of 104 cells/cm2 in 

12-well plates and treated 24 hours later with 5.0·10-7 M of complexes in medium, following 

which cells were allowed to incubate for 5 hours. The medium was then replaced with fresh 

medium and the cells were irradiated with red light (120 LED 660 nm handheld unit, The LED 

Man, USA), centered at 660 nm (spectral line full width at half-maximum, Δλ = 20 nm) and 50 

mW/cm2 radiant power for a range time from 0 to 900 seconds (0 to 45 J/cm2). The upper limit of 

this range (45 J/cm2) was then selected as the light dose for all further experiments.  
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For the complex stability experiment, solutions of each complex (1.0·10-6 M) were prepared in 

12-well plates and irradiated with red light (900 s, 45 J/cm2) after which medium was recovered 

and analyzed by spectrophotometry.  

For cell viability, cells were treated as for the irradiation dose response experiments above with 

various complex concentrations (0-250 nM for the octa- and hexacations, 0-500 nM for PcAlSmix), 

and after 5 hours the medium was replaced with fresh one just prior to irradiation (900 s, 45 

J/cm2). After 24 hours of incubation, cells were supplemented with 10% Alamar Blue®  (ABD 

Serotec) reagent dissolved in culture medium and further incubated for 2.5 hours, at the end of 

which period supernatants were read for fluorescence in a plate reader (excitation 530 nm, 

emission 590 nm). 

For apoptosis measurement, cells were treated as above specified with 1.0·10-7 M complex, 

irradiated with red light (900 s, 45 J/cm2) and after the 24 hour incubation period, the cells were 

detached from the wells with 0.025% trypsin/PBS (Thermo Fisher, UK). Cells were then 

resuspended in 150 L growth medium, added with 150 L of Guava Nexin reagent (Millipore 

Inc) and incubated in the dark for 20 min prior to analysis on a Muse flow cytometry machine 

(Millipore Inc). 

For the cell uptake experiment, cells were treated as indicated above with 1.0·10-6 M 

complexes and, after the initial 5 hours of incubation, the wells were rinsed twice with phosphate 

buffered saline (PBS) and lysed in RIPA buffer (10 mM Tris-Cl (pH 8.0, 1 mM EDTA, 1% Triton 

X-100, 0.1% sodium deoxycholate,  0.1% SDS, 140 mM NaCl)). Lysates were clarified by 

centrifugation and examined by emission fluorescence (360 nm excitation, 680-685 nm emission) 

using a Fluoro MAX 3 fluorimeter (Horiba). Standard solutions of each complex were used for 

calibration. Total protein content of the lysates was carried out by the DC Protein Assay (BioRad 

Laboratories, Inc) according to manufacturer’s protocol. 

For cell cycle analysis, cells were treated as for the apoptosis measurement experiment until the 

irradiation step (900 s, 45 J/cm2) after which they were incubated for a further 2 hours at 37 °C and 

then collected with 0.025% trypsin/PBS, spun at 300 rpm for 10 min and fixed in 70% 

ethanol/water  at 4 °C overnight. Cells were then centrifuged again and resuspended in Propidium 

Iodide/RNAse solution (10 mM sodium phosphate, 137 mM NaCl, 2.7 mM KCl, 40 g/mL 
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propidium iodide, 100 g/mL RNAse A, pH 7). Following a 2 hour incubation at room 

temperature, cells were analysed on a BD LSR II flow cytometer (BD Biosciences). 

 

Results and Discussion 

UV-visible Spectra in non Aqueous Solvents, H2O and H2O/SDS Solutions 

The cations [(CH3)8LZn]8+ and [(PtCl2)(CH3)6LZn]6+ (Scheme 1) exhibit in non aqueous low-

donor solvents (pyridine, DMSO, DMF) a UV-visible spectrum characterized by a narrow and 

sharp Q band (peak maximum in the range 665-670 nm), in line with expectation for a monomeric 

species.1a,9 Both charged species (as iodide salts) exhibit moderate solubility in H2O, in which they 

show two intense absorptions in the Q-band region (Figure 2), with maxima of comparable 

intensity at 625 and 655 nm, attributable, as was widely illustrated,6,9 to the presence of a dimer-

monomer equilibrium, with the peak at lower energy (655 nm) assigned to the monomeric species. 

As also shown in Figure 1, addition of SDS (0.020 M, Critical Micelle Concentration, CMC = 

8.2·10-3 M)  to the aqueous solutions of the two charged macrocycles determines the shift of the 

dimer-monomer equilibrium completely towards the formation of the monomer (sharp Q-band 

maximum at 661 nm), supposedly due to association of both macrocycles to the negatively 

charged micelle surface. As the absorption spectrum of the monomeric species is crucial to 

estimate the 1O2 photoproduction of the sensitizer (dimeric forms are not photoactive),2d,3c,7 all the 

experiments were conducted after addition of SDS 0.020 M and complete monomerization of the 

complex (24 h). Addition of the surfactant SDS 0.020 M to a water solution of the reference 

PcAlSmix does not cause any noticeable change in shape and intensity of the spectra, which 

confirms that PcAlSmix is present in H2O in its monomeric form. Table 1 shows the UV-visible 

spectral data of the present species in aqueous solution. 
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 Solvent Soret-band region     Q-band  region        Ref.a 

                         λ, nm (logε) 

[(CH3)8LZn]8+ H2Ob 360 (4.89)  626 (4.49)    654 (4.70) 9 

 H2O/SDS 372 (4.94)  597 (4.35)    661 (5.27)c tw 

     

[(PtCl2)(CH3)6LZn]6+ H2O
d 360 (4.82)  625 (4.64)    650 (4.59) 

17 

 H2O/SDS                       661 (5.15) 6 

PcAlSmix H2O 351 (4.91) 609 (4.55)     678 (5.27) tw 

 

 

Singlet Oxygen Production in Water Solution 

The experiments on the photosensitizing activity for the generation of singlet oxygen, 1O2, of 

the cations [(CH3)8LZn]8+and [(PtCl2)(CH3)6LZn]6+ were performed in H2O/SDS solution, where 

Table 1. UV-visible Spectral Data (, nm) of [(CH3)8LZn]8+, [(PtCl2)(CH3)6LZn]6+ and 

PcAlSmix in H2O and H2O/SDS. 

Figure 1. A)  UV-visible spectra in water solution of A) [(CH3)8LZn]8+ (c = 4.6 x 10-6 M) 

and B) [(PtCl2)CH3)6LZn]6+ (c = 3.3 · 10-6 M) before (black line) and after (red line) 

addition of 0.020 M SDS (CMC = 8.2 ·10-3 M). 
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as above noticed, they are present fully in their monomeric form. The photochemical study was 

carried out by the comparative method described in the Experimental Section, with ADMA used 

as the scavenger. The photodynamic potential was evaluated by comparing the ADMA bleaching 

first-order rate constants obtained for each one of the two species with that of the standard 

PcAlSmix determined under the same experimental conditions ([SDS] = 0.020 M). PcAlSmix is a 

well-known singlet oxygen sensitizer, commercially known as Photosens® presently in clinical use 

in Russia; it is monomeric in water solution and gives reproducible experiments and, on this basis, 

it can be used for comparison purposes in singlet oxygen quantum yield measurements in H2O on 

phthalocyanine or porphyrazine macrocycles.11,18 

Figure 2 exemplifies the results of a typical experiment performed on the ZnII octacation 

[(CH3)8LZn]8+. Figure 2A shows the initial UV-visible spectrum of the solution containing the 

sensitizer (blue line, Q band at 661 nm) and the peaks of ADMA in the region 300-400 nm 

superimposed with the Soret band of the complex. Irradiation of the solution causes a complete 

disappearance of the ADMA peaks within 10 minutes, leaving the spectrum of the ZnII complex 

unmodified. Figure 2B shows the ADMA-absorbance time decay at 380 nm which can be fitted 

according to a first-order law, thus allowing determination of the related k value. As can be seen, 

the absorbance of the Q band of the sensitizer, also checked during irradiation, remains constant 

during the experiment, indicating that the sensitizer is not undergoing photobleaching at all. The k 

values measured for coupled experiments, conducted strictly under the same experimental  

conditions on the ZnII (or ZnII/PtII) species and the reference PcAlSmix were used in equation 1 

reported in the Experimental Section to evaluate the relative photosensitizing activity of the 

studied cationic species. 
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The ФΔ values of PcAlSmix reported in the literature fall in the range (0.34 ÷ 0.42) ± 0.0619 and 

refer to different experimental conditions (in terms of medium composition, surfactant, irradiation 

range) than those required for the present comparative study. For this reason and in the attempt to 

evaluate properly the photosensitizing efficacy in 1O2 production of the monomeric ZnII and 

ZnII/PtII complexes in water solution, it was considered more reliable to express their activity as 

“relative photosensitizing activity” compared to that shown by the reference standard PcAlSmix 

under strictly identical experimental conditions (H2O, [SDS] = 0.020 M, λirr = 670 nm). 

     Table 2 lists the relative photosensitizing activity values for 1O2 production and also the 

fluorescence quantum yields (ΦF) measured for the present two cationic complexes in H2O/SDS 

solutions. Noticeably, experimental data clearly indicate that both cationic species in their 

monomeric form exhibit an efficiency for the production of 1O2 in water solution 2.3-2.5 times 

higher than that of the reference standard PcAlSmix arbitrarily fixed as 1. Thus, these data clearly 

propose the two multicharged cations[(CH3)8LZn]8+and [(PtCl2)(CH3)6LZn]6+as highly promising 

photosensitizers in PDT,  deserving special attention in the context of the literature data reported 

on water soluble porphyrazine and phthalocyanine macrocyclic species.3b,c,18,20 Accordingly, the 

observed ΦF values obtained for the same cationic complexes are lower than that of PcAlSmix, in 

line with expectation. 

 

Figure 2. A)  UV-visible spectra of [(CH3)8LZn]8+and ADMAin H2O+SDS ([SDS] = 

0.020 M) before (blue line) and after (red line) laser irradiation; B) Absorbance values 

indicating ADMA photo-oxidation (red plot) and sensitizer Q-band maximum (blue dots) 

during irradiation;  the related first-order exponential fit (black line) is also shown. 
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Photosensitizer Solvent Singlet Oxygen Production  
(λirr = 670 nm) 

Fluorescence Emission 
(λexc = 600 nm) 

  λmax 

(nm) 

Relative  

photoactivitya 

λem 

(nm) 

ΦF 
a 

[(CH3)8LZn]8+ H2O/SDS 661 2.5 666 0.23 

[(PtCl2)(CH3)6LZn]6+ H2O/SDS 661 2.3 666 0.15 

PcAlSmix
b H2O/SDS 678 1 683 0.31 

 

 

General Behaviour of the Photosensitizers in Culture Medium 

     Based on the just described results obtained in water solution on the two multicharged species 

and aware that dynamics of a sensitizer may be different moving to a biological 

environment,21further in vitro studies were planned. Solutions of the octacation, [(CH3)8LZn]8+, 

hexacation, [(PtCl2)(CH3)6LZn]6+ and the standard reference compound, PcAlSmix, at 1.0·10-6 M 

concentration were prepared in RPMI media/10% FBS used for cellular culture and their UV-

visible spectra were run to ascertain the influence of the medium on the species. Subsequently, 

spectra were also taken of the species in medium upon irradiation for 900 s (45 J/cm2)with red 

light under the same experimental conditions as the cell viability experiments, to determine 

stability of the complexes. The spectra observed for the two cationic species in the region 550-700 

nm (Figure 3-A,B) closely recall those reported in the same region in pure water (Figure 1-A,B), 

displaying two peaks at 625 and 654 nm reflecting a similar monomer/dimer equilibrium for the 

cationic species as the peaks simplify to a single one following SDS supplementation (data not 

shown). The wavelength chosen for the irradiation (660 nm) is close to the position of the Q-band 

maxima for the photoactive monomeric forms of both cationic species. Taking into account the 

emission spectrum of the 660 nm LED source and the water solution absorption spectra of the 

monomeric [(CH3)8LZn]8+, [(PtCl2)(CH3)6LZn]6+ and PcAlSmix, it was resulted that all the 

compared species were investigated under similar irradiation conditions.  

Table 2. Photophysical and Photochemical Data for [(CH3)8LZn]8+, [(PtCl2)(CH3)6LZn]6+, and 

PcAlSmix in H2O/SDS. 

 

 

a Mean value of at least three measurements.  
b The singlet oxygen quantum yield for PcAlSmix in posphate buffer has been reported to be in the range (0.34 ÷ 0.42) ± 

0.06.19 
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     As can be seen in Figure 3-A,B, irradiation with red light dramatically reduces the 

concentration of both cationic photosensitizers (see right Y axis) reasonably by photobleaching, 

which is practically absent for PcAlSmix (Figure 3-C). It is instead observed that irradiation of the 

octacation minimally influences the ratio between the monomer and the aggregated form (Figure 

3-A), whereas a small change of the relative intensity of the Q-band maxima of the type dimer → 

monomer is observed for the hexacation (Figure 3-B).  

Irradiation dose response of complex treated cells. The effect of increasing doses of light 

irradiation (0 → 900 s or 0 → 45 J/cm2) was investigated on both cell lines (C8161 and CA-1)  at a 

constant complex concentration of 5.0·10-7 M, and it is reported in Figure 4. The dose light of 45 

Figure 3. Absorption spectra in culture medium of the two cationic species (A,B) and the 

reference PcAlSmix (C) before (not irr, black) and after (irr, orange) irradiation with red light 

(900 s, 45 J/cm2). 
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J/cm2 was selected as the dose to use in all cellular experiments, as it maximizes the observable 

phototoxicity while still exerting negligible effects on untreated cells. 

 

 

 

 

Cellular uptake. The cellular uptake of the complexes was measured to assess whether the 

different charge of the molecules would result in differential cellular penetration. Quantification 

via fluorescence of cell lysates normalized to protein content for C8161 cell line (Figure 5), shows 

indeed a much higher (around 10-fold) uptake of the two cationic species with respect to PcAlSmix.  

Similar results were also found for the CA-1 cell line. This points to a higher cell permeation of the 

 Figure 4. Irradiation dose response of cell viability in C8161 (A) and CA-1 (B) cells 

for the three macrocycles at 5·10-7 M concentration and untreated control. Data are 

the average values of N = 3 experiments.  
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cationic complexes which is in line with the established understanding that a positive charge on a 

molecule facilitates its penetration of the negatively charged cell membrane and also with the 

observation that sulfonation impedes cellular penetration of PcAlSmix.
22 

 

 

 

 

 

 

Cell viability following treatment with complexes and irradiation. Both cell lines (C8161 and 

CA-1) were treated with [(CH3)8LZn]8+, [(PtCl2)(CH3)6LZn]6+ (0 to 250 nM) and PcAlSmix (0 to 

500 nM), incubated for 5 hours and irradiated with red light (660 nm) for 900 s (45 J/cm2)                                              

as determined earlier. Viability results as measured by the Alamar Blue assay (N = 3 replicates) 

and fitted to a standard Hill dose-response curve, showed no significant toxicity of any of the 

examined species in the absence of red light irradiation within the concentration ranges used as 

shown in Figure 6 (black line). This Figure and Table 3 report the half-maximum inhibitory 

concentration (IC50) values for the complexes under irradiation which are significantly different for 

the examined species, with values in the order octacation < hexacation < reference PcAlSmix. It is 

apparent that, in spite of their generally lower IC50 values, the cationic photosensitizers have a 

lower maximal toxicity (20-30% residual viability) than PcAlSmix (10-15%). The reasons for this 

Figure 5. Cellular uptake values for the three macrocycles in C8161 cells. Data 

are the average values of N = 3 experiments. (**  p<0.01; *** p<0.001) 
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are presently unclear but may point to the existence of subpopulations of cells somehow resistant 

to the effects of the compounds. It would be interesting to determine the biological basis of this 

phenomenon.  

Noteworthy, the IC50 absolute values are in general lower for the C8161 than for CA-1 

highlighting a lower sensitivity of keratinocytes to this photodynamic treatment. In conclusion, 

these viability data identify the octacation as the most active photosensitizer among the examined 

species.   

 

 

 

 

 

 

 

 

 

 

 

 

Sensitizer IC50 (C8161) IC50 (CA-1) 

[(CH3)8LZn]8+ 30 ± 10** 55 ± 8*** 

[(PtCl2)(CH3)6LZn]6+ 75 ± 7* 105 ± 3* 

PcAlSmix 100 ± 18 130 ± 12 

Table 3. Best fit of IC50 values (nM) for [(CH3)8LZn]8+, [(PtCl2)(CH3)6LZn]6+ and PcAlSmix 

for the two cell lines. Data average and standard deviation on N = 3 experiments (* p<0.05; 

** p<0.01; *** p<0.001) 
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Figure 6. Cellular viability experiments on cells treated with the indicated concentrations of 

complexes and irradiated (45 J/cm2).A, C8161 cells; B, CA-1 cells. Dashed horizontal lines 

indicate maximal effect. 

A

A 

B 
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Cellular death modality. Cell death in general and PDT induced cell death in particular may 

happen via one of two main pathways: organized cell death (apoptosis) or disordered death 

(necrosis). Apoptosis has the potential clinical advantage of not causing inflammation, one of the 

known drawbacks of photodynamic therapy in general.23 The pathway to cellular death (apoptosis 

or necrosis) induced by the examined cationic species and PcAlSmix was therefore investigated by 

the Annexin V protocol, a simple and fast method which quantifies apoptosis indirectly via the 

amount of phosphatidylserine present on the outer side of cell membranes which correlates to 

apoptosis. This is labelled by the protein Annexin V and read by flow cytometry. As shown in 

Figure 7 flow cytometry analysis of the cell viability status in C8161 (A) and CA-1 (B) suggests 

that apoptosis is the main cellular death pathway for the all examined species, even those with a 

higher phototoxicity as the octa- and hexacations. This result supports the two cationic species as 

promising  molecules for medical use in anticancer therapy.  
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Figure 7. Flow cytometry analysis of cell viability status in C8161 (A) and CA-1 (B) 

cells for the three macrocycles (100 nM) without (not irr) and with (irr) light irradiation. 

Data shown are the average values of N = 3 experiments. (** p<0.01) 
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Cell cycle distribution investigation. To complete this preliminary investigation on the cellular 

effect of the investigated species, we decided to study the cell cycle distribution of the cells under 

study following drug treatment and light irradiation by means of propidium iodide (PI) flow 

cytometry. PI is a highly fluorescent nucleic acid specific stain imparting fluorescence to each cell 

in an amount proportional to its DNA content. Because all viable and resting (G1 phase) human 

diploid cells contain 46 chromosomes, their PI fluorescence is roughly the same. As a cell 

replicates its chromosome count gradually increases (S phase) up to 92 (G2 phase), only to return 

to 46 once the cell physically divides. Dying cells instead degrade their DNA, display a PI 

fluorescence below that of the G1 phase and are therefore labelled sub-G1. Thus, the PI 

fluorescence distribution of cells gives an indication of how many cells are undergoing each of the 

cell phases at any given time and how many are non viable and this in turn supplies information on 

any perturbations of the normal cycle, such as cell cycle arrests, due to cellular damage. Figure 8-

A shows an example distribution of PI fluorescence on untreated (healthy) cells. Panels B and C 

quantify the same distribution of variously treated cells in each phase, grouping S and G2 phase 

cells together for clarity. Results on both cell lines show that whereas the octacation complex 

[(CH3)8LZn]8+ simply causes an increase in the sub-G1 (dead cell) fraction, PcAlSmix increases the 

fraction of cells in S/G2 cell cycle (implying S phase arrest) of cells. This could be an indication of 

an altogether different death pathway provoked by the two species with PcAlSmix interfering with 

the DNA replication event and the octacation perhaps targeting other cell machinery components 

The hexacation does not seem to induce a particular disruption of the cell cycle distribution except 

for a minor increase in G1 phase cells in the CA-1 line. It would be interesting to confirm this and 

verify whether the complex is able to localize in the nucleus and interact with DNA in vitro as it 

was shown to do in solution as platinated alkylating drugs are associated with G1 phase arrest.  

       The data obtained in the present in vitro experiments point first of all to a better quantitative 

performance of the cationic complexes on the two cancer cell lines tested compared to the 

PcAlSmix control. This result is in spite of the lower observed stability of these complexes to 

irradiation in culture medium and can be attributed partly to their higher extent of cellular 

incorporation and partly to their higher photosensitizing activity for the production of singlet 
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oxygen in aqueous environment. The complexes elicit a higher amount of apoptotic cell death 

compared to the reference standard and appear to act along a different mechanism. 

 

Figure 8. Cell cycle flow cytometry results. A, sample instrumental plots for untreated normal 

C8161 cells; B, C summary of cell cycle distributions of C8161 and CA-1 cells treated with the 

three complexes. Data is the average of N = 3 experiments. (* p<0.05;** p<0.01; *** p<0.001) 
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Conclusion 

As previously verified, the cation [(CH3)8LZn]8+, and the related species [(PtCl2)(CH3)6LZn]6+ 

(both neutralized by I- ions) behave as excellent photosensitizers in a nonaqueous solvent (DMF), 

where they are present exclusively in their monomeric form and are able to interact in water 

solution, although in the presence of aggregation, with a G4 quadruplex telomeric structure and ds-

B-DNA, thus evidencing potentialities for multimodal anticancer curative applications. It was 

believed of great interest to obtain more precise information on the photosensitizing activity of the 

two porphyrazine positively charged complexes in water solution in the absence of aggregation, 

and experiments were conducted in water in the presence of SDS. UV-visible spectra in the 

medium H2O/SDS indicate that both species, due to interaction with SDS micelles, are present 

uniquely in their monomeric form. Data available on the relative activity for singlet oxygen 

production prove that both the octacation and the hexacation have photosensitizing properties 2.3-

2.5 times higher than the used reference standard PcAlSmix (Photosens®). The effects of both 

cationic species on the cell lines C-8161 (melanoma) and CA-1 (oral squamous cell carcinoma) by 

in vitro tests under appropriate experimental conditions were also examined. Although aggregation 

is occurring in the culture medium, the total data obtained in the cellular environment clearly 

indicate that the two cations behave more efficiently than the reference PcAlSmix in terms of 

cellular incorporation, photomediated toxicity, and cell death modality, which is indicative of a 

largely prevalent apoptosis versus necrosis. As a next step, the intrinsic fluorescence properties 

highlighted in water solution will allow us to investigate the different subcellular localization of 

the studied cationic complexes and their overall photochemistry following irradiation in vitro will 

be studied. Moreover, the cellular pathways triggered by photodynamic treatment with the 

complexes remain to be elucidated, and as a consequence whether these molecules could bring 

about selective benefits on some particular types of cancer either on their own or in combination 

with other agents. However, the preliminary observation that both the octacation and the 

hexacation display enhanced cellular incorporation and higher potency towards highly common 

(squamous cell carcinoma) and highly malignant (melanoma) skin cancers makes them interesting 

objects of study as well as potentially promising drugs. 
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