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Abstract
Objective
The purpose of this retrospective cross-sectional study was to investigate whether changes in
white matter integrity are related to slower processing speed in sickle cell anemia.

Methods
Thirty-seven patients with silent cerebral infarction, 46 patients with normal MRI, and 32
sibling controls (age range 8–37 years) underwent cognitive assessment using the Wechsler
scales and 3-tesla MRI. Tract-based spatial statistics analyses of diffusion tensor imaging (DTI)
and neurite orientation dispersion and density imaging (NODDI) parameters were performed.

Results
Processing speed index (PSI) was lower in patients than controls by 9.34 points (95% confi-
dence interval: 4.635–14.855, p = 0.0003). Full Scale IQ was lower by 4.14 scaled points (95%
confidence interval: −1.066 to 9.551, p = 0.1), but this difference was abolished when PSI was
included as a covariate (p = 0.18). There were no differences in cognition between patients with
and without silent cerebral infarction, and both groups had lower PSI than controls (both
p < 0.001). In patients, arterial oxygen content, socioeconomic status, age, and male sex were
identified as predictors of PSI, and correlations were found between PSI and DTI scalars
(fractional anisotropy r = 0.614, p < 0.00001; r = −0.457, p < 0.00001; mean diffusivity
r = −0.341, p = 0.0016; radial diffusivity r = −0.457, p < 0.00001) and NODDI parameters
(intracellular volume fraction r = 0.364, p = 0.0007) in widespread regions.

Conclusion
Our results extend previous reports of impairment that is independent of presence of infarction
and may worsen with age. We identify processing speed as a vulnerable domain, with deficits
potentially mediating difficulties across other domains, and provide evidence that reduced
processing speed is related to the integrity of normal-appearing white matter using micro-
structure parameters from DTI and NODDI.
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Even in the absence of silent cerebral infarction (SCI),
patients with sickle cell anemia (SCA) are at risk of cognitive
impairment that may worsen with age1,2 and affect quality of
life.3 Reduced processing speed is the most prominent
impairment4 and may mediate difficulties across other
domains,5 but the etiology is not well understood, and there
are no models of risk factors.

MRI studies have revealed hemodynamic6–11 and structural
abnormalities12–14 that may underlie cognitive impairment.
Diffusion tensor imaging (DTI) studies have reported wide-
spread reductions in fractional anisotropy (FA) and increases
in radial diffusivity (RD).15–17 Diffusion changes have been
associated with oxygen desaturation and anemia15 and may
relate to reduced processing speed, but functional con-
sequences have yet to be investigated.

A limitation of DTI is that the parameters are not specific to
particular microstructural elements of white matter. Neurite
orientation dispersion and density imaging (NODDI)18 may
offer more sensitivity and specificity as it models changes in
fiber dispersion (orientation dispersion index [ODI]) as well
as density of the tissue microstructure (intracellular volume
fraction [ICVF]). NODDI has been successfully applied in
studies of typical development19,20 and clinical populations21

but not yet in SCA.

In the present study, we aimed to (1) investigate differences in
processing speed between patients with SCA, grouped by
presence of SCI, and controls; (2) explore the effect of pro-
cessing speed on general intelligence and potential risk factors
for deficits; and (3) examine the relationship between DTI
and NODDI-derived indices of white matter microstructure
and processing speed.

Methods
Patients
Patients were aged 8 to 38 years and enrolled in 2 studies at
University College London: the Sleep and Asthma Cohort
follow-up study (SAC-III)22 and Prevention of Morbidity in
SCA 2b (POMS)23 baseline investigation. Controls were
healthy siblings of patients recruited to either study with no
history of neurologic or psychiatric conditions. Participants
were recruited and assessed between 2015 and 2016. Patients

were ineligible for SAC and POMS study participation if they
were receiving nocturnal respiratory support at the time of
enrollment, participating in a clinical trial evaluating blood
transfusion or oxygen therapy, or had chronic lung disease
(other than asthma) or existing respiratory failure. Additional
exclusion criteria for the POMS study were hospital admis-
sions for acute sickle complications within 1 month of en-
rollment, more than 6 hospital admissions for acute sickle
complications within 12 months of enrollment, overnight
oximetry showing mean overnight saturation of less than 90%
for more than 30% of total sleep time, severe sleep apnea
defined by 4% oxygen desaturation index >15/h, and chronic
blood transfusion or transfusion within 3 months of enroll-
ment. For the SAC study, patients were enrolled without
regard to past sickle- or sleep-related morbidity or transfusion
status.

Standard protocol approvals, registrations,
and patient consents
Ethical approval was granted by West London and South
Yorkshire research ethics committees, respectively. Full in-
formed consent and assent according to the Declaration of
Helsinki were obtained from participants and for children
from their parent/guardian.

Cognitive variables
Full Scale IQ (FSIQ) was measured using the Wechsler Ab-
breviated Scale of Intelligence (WASI-II subscale IQ; POMS
patients), Wechsler Intelligence Scale for Children (WISC-
IV; SAC patients and controls younger than 16 years), or the
Wechsler Adult Intelligence Scale (WAIS-IV; SAC patients
and controls 16 years or older). Processing speed index (PSI)
was derived from the WISC-IV or the WAIS-IV using the
coding and symbol search subtests. Strong correlations have
been demonstrated between editions (WASI/WAIS/WISC)
and between the child and adult versions (WISC/WAIS),
justifying their inclusion in the same analyses.24,25 Assess-
ments were double-scored by trained assessors (J.M.K., M.K.,
H.S., P.B.) that were blinded to disease status. In the event of
disagreement or ambiguity, the opinion of a third assessor was
sought.

Socioeconomic variables
Education decile was obtained from UK postcode to provide
an index of socioeconomic status (SES).26 This scale captures
attainment and skills in local areas based on several indicators:

Glossary
Cao2 = arterial oxygen content;DTI = diffusion tensor imaging; FA = fractional anisotropy; FLAIR = fluid-attenuated inversion
recovery; FSIQ = Full Scale IQ; FSL = FMRIB’s Software Library; ICVF = intracellular volume fraction;MD =mean diffusivity;
NODDI = neurite orientation dispersion and density imaging; ODI = orientation dispersion index; POMS = Prevention of
Morbidity in Sickle Cell Disease; PSI = processing speed index;RD = radial diffusivity; SAC = Sleep and Asthma Cohort follow-
up study; SCA = sickle cell anemia; SCI = silent cerebral infarction; SES = socioeconomic status; SpO2 = daytime oxygen
saturation; TE = echo time; TR = repetition time;WAIS = Wechsler Adult Intelligence Scale;WASI = Wechsler Abbreviated
Scale of Intelligence; WISC = Wechsler Intelligence Scale for Children.
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average scores for pupils in state-funded schools at ages 7–11
and 14–16 years, absence from state-funded secondary
schools, proportion of people staying on in education/
training post 16 years, entry to higher education, proportion
of working adults with no/low qualifications and language
proficiency. Total scores are ranked from 1 to 10, with 1
representing the most deprived.

Hematologic variables
Steady-state hemoglobin was recorded from patient medical
records using the closest available full blood within 6 months
of the day of cognitive testing. Arterial oxygen content (CaO2)
was calculated using:

CaO2 = 1:34 × Hemoglobin × Oxygen saturation + :003 × pO2

where oxygen saturation (SpO2) was estimated by pulse oxi-
metry on the day of cognitive testing (SAC) or the baseline
clinic visit (POMS), and pO2, the partial pressure of oxygen,
was assumed to be 100 torr in room air.

MRI acquisition
Imaging was conducted within 2 weeks of cognitive assess-
ment on a 3T Siemens Prisma (Erlangen, Germany) with
80 mT/m gradients and a 64-channel receive head coil. The
MRI protocol included axial T2-weighted (repetition time
[TR] = 8,420 milliseconds [ms], echo time [TE] = 68 ms,
voxel size = 0.51 × 0.51 × 5.6 mm), fluid-attenuated in-
version recovery (FLAIR) (TR = 5,000 ms, TE = 395 ms,
voxel size = 0.65 × 1 × 0.65 mm), and diffusion-weighted
(TR = 3,050 ms, TE = 60 ms, 2 shells at b = 1,000 s/mm2 and
b = 2,200 s/mm2 with 13 interleaved b = 0 images, voxel size =
2 × 2 × 2 mm) sequences. A neuroradiologist (D.S.), blinded to
disease status, read each participant’s MRI and classified SCI
according to the criteria of a hyperintensity on FLAIR of more
than 3 mm in diameter and present on 2 planes, as for the Silent
Infarction Transfusion trial.27

MRI processing
The diffusion images were preprocessed using TractoR
3.0.728 and FSL 5.0.1.29 Images were visually screened for
motion and corrected for susceptibility-induced distortions
and eddy current artifact using FSL. Maps for each of the DTI
parameters were generated in FSL by fitting a diffusion tensor
model to each voxel using a weighted least-squares method.
ODI and ICVF maps were generated using the NODDI
MATLAB Toolbox.18 DTI and NODDI parameters were
analyzed using whole-brain, voxel-wise tract-base spatial sta-
tistics. The specifics of this approach have been described
elsewhere.30 Briefly, each participant’s FA map was aligned
with every other FA map, and the most representative map
was used as the target. The target was affine-aligned to
Montreal Neurological Institute standard space. All FA maps
underwent nonlinear transformation to the target and affine
transformation to standard space. FA maps were merged, and
voxels with the highest FA at the core of main white matter
tracts (threshold: FA = 0.2) were used to create a mean FA
skeleton. Each participant’s FA map was projected onto the

mean FA skeleton, enabling voxel-wise statistical analyses.
The maps for the remaining parameters were similarly pro-
jected onto the skeleton for analyses. Reference was made to
the JHU (Johns Hopkins University) DTI white matter atlas
to describe the locations of significant voxels.31

Statistical analysis
Analyses were performed in RStudio Desktop 1.0.153 using the
companion to applied regression32 and global validation of
linear models33 packages. Prior to statistical analysis, neuro-
cognitive variables were assessed for normality and equality of
variance using the Shapiro-Wilk and Levene tests, respectively.
For all analyses, results were considered significant at p < 0.05.
FSIQ and PSI were compared between patient and sibling
control groups using type II analyses of covariance including
education deciles as covariates. The effect of PSI on other
domains of cognition was explored by including PSI as a cova-
riate in comparisons between patients and controls in FSIQ. An
exploratorymultiple linear regression analysis was performed to
predict PSI from previously implicated and potentially con-
founding variables: presence of SCI (SCI+/−), CaO2, education
decile, age, sex, hydroxyurea use, and transfusion status. In-
fluential measures were assessed by calculating the standardized
difference of the β for each model variable, difference in fits,
covariance ratios, Cook distances, and the diagonal elements of
the hat matrix. For all patients, intersubject voxel-wise corre-
lation was performed between DTI and NODDI parameters
and PSI, while treating age, sex, and postcode-based education
deciles as covariates. Threshold-free cluster enhancement was
used to correct for multiple comparisons.

Data availability
Full anonymized data will be shared at the request from any
qualified investigator. Interactive maps from imaging analyses
will be uploaded on neurovault where results can be explored
and downloaded (neurovault.org/collections/3510/).

Results
Patient characteristics
There were no differences between groups in age or sex
(table 1). Of 83 patients (82 sickle cell hemoglobin, 1 he-
moglobin S/β0-thalassemia), 37 (45%) without neurologic
signs were identified with SCI (SCI+). Lesions were right-
sided in 8 patients, left-sided in 6, and bilateral in 23. Thirteen
patients had lesions in more than one region; 35 had frontal
lesions, 12 had parietal lesions, 2 had temporal lesions, and 3
had occipital lesions. Lesions were most frequently located in
the border zones between arterial distributions in the deep
frontal white matter. Twenty-nine patients were on hydroxy-
urea (16 SCI−), 5 were on chronic transfusions (3 SCI−), and
9 had undergone a transfusion within 6 months of assessment
(6 SCI−). Mean hemoglobin, SpO2, and CaO2 were lower than
reference norms (table 1). Eighteen patients (22%, 8 SCI−)
were desaturated with SpO2 ≤96%. Mean hemoglobin and
CaO2 were lower in patients with SCI, but there were no
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differences in saturation (figure 1). This pattern remained
when transfused patients were excluded.

Neurocognitive variables
The data met the analyses of covariance and multiple linear
regression assumptions. After controlling for the effect of
education deciles, mean PSI was lower in patients than con-
trols by 9.34 scaled points (95% confidence interval:
4.635–14.855, p = 0.0003). FSIQ was lower by 4.14 scaled
points (95% confidence interval: −1.066 to 9.551, p = 0.1), but
this difference was abolished when PSI was included as
a covariate (p = 0.18). There were no differences in cognition
between patients with and without SCI, and both groups had
lower PSI (table 1; p < 0.001) but not FSIQ, compared to
controls (figure 1). This pattern remained when analyses were
repeated in children and adults separately (p < 0.05).

Multiple linear regression was conducted to predict PSI from
previously implicated variables. Of all the predictors, only
male sex, CaO2, and education decile (SES) had zero-order
correlations with PSI (figure 2). However, in the full model,
all predictors apart from SCI and chronic transfusion had
partial effects (table 2). The 7-predictor model was able to
account for 25% of the variance in PSI (F8,74 = 3.042, p =
0.005, multiple R2 = 0.25). All predictors remained when 11
influential cases, including all 5 patients on chronic trans-
fusion, were removed from the analysis (F7,64 = 3.404, p =
0.004, multiple R2 = 0.27).

Neuroimaging metrics
In patients, PSI was correlated with FA, MD, RD, and ICVF
(figure 3). Specifically, decreases in PSI were associated with
decreases in FA across the internal capsule and corpus cal-
losum (r81 = 0.614, p < 0.00001, 30,492 voxels), and with
decreases in ICVF in more widespread regions covering
much of the white matter skeleton, with clusters extending

throughout the corpus callosum, corona radiata, and superior
and inferior longitudinal fasciculi (r81 = 0.364, p = 0.0007,
70,659 voxels). In addition, decreases in PSI were associated
with increases in MD (r81 = −0.341, p = 0.0016, 82,663
voxels) and RD, also in widespread regions, with many clus-
ters located posteriorly, including the posterior corona radiata
and splenium of the corpus callosum, respectively (r81 =
−0.457, p < 0.00001, 67,296 voxels). Statistical maps can be
viewed and explored interactively at neurovault.org/collec-
tions/3510/. These correlations remained when examined in
SCI+ and SCI− groups separately. There were no relation-
ships between PSI and axial diffusivity or ODI.

Discussion
This study provides evidence for a relationship between reduc-
tions in processing speed and changes in DTI and NODDI
parameters in SCA and models risk factors. Patients with SCA
showed processing speed deficits, irrespective of presence of
SCI. The results suggest that the degree of slower processing
speed is related to loss of white matter integrity, and that lower
CaO2 and SES may be independent risk factors for deficit.

PSI was lower in patients than controls by 9 scaled points.
FSIQ was numerically lower by 4 scaled points, but this dif-
ference did not reach significance. Differences in PSI were
greater than the often-cited 7-point (one-half of an SD)
threshold for clinically meaningful differences.34 Moreover,
although mean PSI in the patient group fell in the low-average
range, 28% of patients had PSI scores that fell in the bor-
derline to extremely low ranges (i.e., scores of <80) compared
to 6% of controls. Taken together, these results suggest that
although there is variability within the SCA population,
patients with SCA are at risk of clinically significant cognitive
difficulties. Controlling for PSI abolished a numerical

Table 1 Sample demographics and cognitive performance

Controls (n = 32) SCI2 (n = 46) SCI+ (n = 37) Inferential statistics Post hoc

Median age, y 15.26 (8–30) 14.62 (8–37) 16.34 (8–36) — —

Sex, males, n (%) 14 (43) 23 (50) 20 (54) — —

Socioeconomic status 4.94 (2.26) 5.370 (2.26) 5.11 (1.97) F2,112 = 0.398, p = 0.6723 NS

Full Scale IQ 96.50 (11.62) 93.72 (12.99) 90.68 (13.52) F2,111 = 1.799, p = 0.1702 NS

Processing speed index 97.81 (11.32) 90.07 (14.28) 86.49 (11.26) F2,111 = 7.876, p = 0.0006c —a,b

Hemoglobin, g/L — 90.96 (13.66) 84.54 (12.92) t78.839 = 2.192, p = 0.0313c —

Oxygen saturation — 97.37 (1.95) 96.46 (3.08) t58.096 = 1.564, p = 0.1233 —

Oxygen content, mL/dL — 12.17 (1.79) 11.25 (1.87) t78.839 = 2.192, p = 0.03134c —

Abbreviations: NS = not significant; SCI− = patients without silent cerebral infarction; SCI+ = patients with cerebral infarction.
Values are summary and test statistics.
a Controls > SCI+.
b Controls > SCI−.
c Statistically significant.
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difference between patients and controls in FSIQ. These
findings extend those of studies with adults5 to children with
SCA and are consistent with the notion that slower processing
may contribute to other cognitive difficulties. Research on
aging in the general population has similarly highlighted that
fast and efficient information processing may be a prerequisite
for higher-order cognitive abilities.35

Although cognitive performance was scaled for age, age was
a negative predictor of PSI in our regression model. PSI has yet
to be examined longitudinally in SCA, but this finding is in

agreement with previous reports and may suggest worsening
cognitive function with age in SCA.1,4,36 While processing speed
has been shown to predict academic attainment in typical de-
velopment,37 further work is required to examine the de-
velopmental trajectory of PSI in SCA and to investigate the effect
of deficits on abilities potentially important for life outcomes.

In patients, after correcting for the effects of age and sex,
strong correlations were found between PSI and multiple
diffusion-derived indices of white matter microstructure.
Correlated regions were widespread, and only partially

Figure 1 Neurocognitive and hematologic variables

(A) Differences in hemoglobin (Hgb; left), arterial oxygen content (CaO2;middle), and oxygen saturation (SpO2), between patients with (SCI+) andwithout (SCI−)
silent cerebral infarction. (B) Differences in processing speed index (PSI) between healthy controls (HCs) and patients (SCI−, SCI+). *p < 0.05; **p < 0.01 (after
Bonferroni correction for multiple comparisons). Horizontal line represents mean PSI in the normative population. NS = not significant.
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overlapped with lesions, suggesting that slower processing
speed is related to the integrity of normal-appearing white
matter in SCA. These results provide evidence that cognitive
impairment in SCA is related to white matter integrity using
quantitative microstructure parameters from multishell dif-
fusion MRI, and highlight the utility of novel diffusion

imaging methods in identifying functionally relevant white
matter changes that may not be visible on conventional
clinical MRI. The results are in agreement with the notion that
processing speed is a domain-general cognitive ability and
may suggest that fast and efficient neural processing is de-
pendent on the integrity of many tracts simultaneously.

Our findings extend previous reports of white matter injury in
SCA16,17 by highlighting possible functional consequences of
such injury, and may reflect links between widespread axonal
damage, demyelination, and/or disorganization of fibers and
slower processing speed. It has been suggested that de-
myelination can be represented in DTI parameters by
decreases in FA and increases in RD with no change in axial
diffusivity,38 and in NODDI parameters by decreases in ICVF
with no change in ODI.18,39,40 Our findings are consistent
with this pattern. However, MD appeared to be the most
sensitive metric, with more than double the number of voxels
correlating with PSI than FA. In this sample, therefore,
NODDI did not appear to offer improved sensitivity to
functionally relevant microstructural changes. Rather,
NODDI and DTI metrics were similarly sensitive.

Of note, the histopathologic processes that drive changes in
imaging parameters are not well established, and although
NODDI overcomes certain specificity issues in DTI, regions
with crossing fibers remain problematic. Moreover, NODDI
fixes intrinsic diffusivity to an a priori value, and there is scope
to further optimize the choice of this value in the model.
Before diffusion changes can confidently be referred to as
markers of specific microstructural changes, further work
comparing diffusionmetrics not only to each other, but also to
histology measures, is required.

In this sample, 44% of patients were identified with SCI.
Lesions were most frequently bilateral and located in the
border zones between arterial distributions in the frontal
white matter. These findings are consistent with previous
studies using similar MRI protocols and criteria for SCI.41

Hemoglobin was lower in patients with SCI than in patients
reported radiologically as normal, but SpO2 was not. Differ-
ences in hemoglobin remained after patients on transfusion
were removed from the analysis, suggesting more severe
anemia in patients with SCI.

However, there were no differences in FSIQ or PSI as
a function of SCI, irrespective of age. Similarly, there were no
differences between patients with and without SCI in rela-
tionships between white matter microstructure parameters
and processing speed, and correlated regions only partially
overlapped with lesions, confirming the contribution of loss of
integrity in normal-appearing white matter to reduced pro-
cessing speed. These findings accord with recent studies4,15

and, taken together, suggest that neither white matter ab-
normalities nor cognitive deficits are explicable solely by the
presence of SCI; other factors, whether psychosocial or
disease-related, are likely to be involved.

Figure 2 Correlations between predictors of processing
speed

Correlogram visualizing relationships between variables included in the
exploratory regression analysis. Values are zero-order Pearson correlation
coefficients. Shaded areas represent significant relationships. Blue colors
represent positive relationships, whereas red colors represent negative
relationships. Intensity signifies the strength of relationships. PSI = pro-
cessing speed index; SCI = silent cerebral infarction; SES = socioeconomic
status.

Table 2 Regression coefficients for variables predicting
processing speed index

Variable β b

SCI −0.009 −0.229

Age −0.301a,d −0.649

Male sex −0.278a,d −7.228

CaO2 0.311a,d 2.172

SES 0.283b,d 1.734

Hydroxyurea −0.211c −5.760

Tx crisis −0.190c −7.955

Tx chronic −0.020 −1.092

Abbreviations: CaO2 = arterial oxygen content; SCI = silent cerebral in-
farction; SES = socioeconomic status; Tx = transfusion.
Values are standardized regression coefficients (β) and unstandardized re-
gression coefficients (b) from the exploratory multiple linear regression
analysis.
a p < 0.01.
b p < 0.5.
c p ≤ 0.1.
d Stastically significant at p < 0.05.
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In patients, education decile was associated with PSI, an in-
dication that this postcode-based index was able to capture
some of the variance in SES that may affect cognition. Previous
research has similarly highlighted that lower maternal educa-
tion may be a risk factor for slower processing speed in SCA.36

Moreover, in our regression model, education decile was
identified as an independent predictor of PSI, further sug-
gesting that socioeconomic and educational deprivationmay be
risk factors for slower processing speed in patients with SCA.

However, any effects of education decile were controlled for
in our comparisons between patients and controls in cogni-
tion, and the control participants in this sample were siblings
to patients; therefore, SES differences are unlikely to have had
a major effect on the difference in PSI reported in the present
study. Moreover, in our exploratory model, CaO2, age, and
male sex were also identified as predictors of PSI, suggesting
that there may be multiple causal pathways to cognitive

deficits in SCA, in which disease and socioeconomic factors
may interact.

One explanation for this pattern of results may be that SCI is
associated with acute anemic events,42 where inadequate per-
fusion within the watershed distribution leads to infarction in
brain tissue. Acute anemic events are more common in patients
with lower steady-state hemoglobin,41 perhaps accounting for
the relationship between anemia severity and SCI observed
here. By contrast, white matter damage that is below the res-
olution of clinical MRI may be the result of less severe, but
sustained, exposure to hypoxia15 secondary to compensatory
increases in cerebral blood flow43 accompanied by reduced
cerebrovascular reserve9 and increased oxygen extraction
fraction.7,10,11 This damage may be more diffuse15,17 and
therefore more functionally significant, potentially explaining
the presence of relationships between PSI and diffusion met-
rics, the absence of relationships with SCI, and the links

Figure 3 Correlations between diffusion metrics and processing speed

(A) Blue voxels indicate areas in which fractional anisotropy (FA) correlated with processing speed index (PSI) (34,392 voxels, p < 0.05). Red voxels indicate
areas in which intracellular volume fraction (ICVF) correlated with PSI (70,659 voxels, p < 0.05). (B) Yellow voxels indicate areas in which radial diffusivity (RD)
correlated with PSI (67,296 voxels, p < 0.05). Purple voxels indicate areas in which mean diffusivity (MD) correlated with PSI (82,663 voxels, p < 0.05). Results
were age, sex, education decile (SES), and threshold-free cluster enhancement corrected and overlaid on the group white matter skeleton (green) and the
study-specific mean FA template. Adj. = adjusted; SCI = silent cerebral infarction; SES = socioeconomic status.
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between both types of damage and anemia severity. The ad-
ditional identified predictors of PSI are not inconsistent with
this explanation, as hydroxyurea use and recent crisis-related
transfusion both increase hemoglobin and SpO2 and are pre-
scribed more often in patients with greater disease burden, and
there is evidence thatmales havemore severe disease courses.41

These findings may explain previous discrepancies in the lit-
erature and underscore the need for researchers and clinicians
to consider the interplay among risk factors as well as potential
confounding effects of treatment.

The identification of CaO2 as an independent predictor of PSI
is consistent with previous reports of relationships between
lower SpO2 and cognitive impairment44 and white matter
damage in SCA,15 and with reports of processing speed def-
icits in the general pediatric population with iron-deficiency
anemia45 and sleep-disordered breathing46 as well as in those
living at high altitude.47 Taken together, these results may
suggest improvement of deficits following interventions that
target hypoxemic exposure. Overnight respiratory support
appears to be safe and viable in children with SCA and is
a treatment option that may hold promise.23

The study utilized medical records, and there was significant
between-patient variation, with time between steady-state full
blood count and SpO2 measurement to cognitive assessment
varying from 1 day to 6 months. There are few data on the
stability of these measures over time. Although low SpO2
predicts neurologic complications in SCA,48 in patients with
hemoglobinopathies, right shift of the oxygen dissociation
curve and the presence of carboxyhemoglobin and methe-
moglobin may lead to overestimation.49 Daytime and noc-
turnal SpO2 are not necessarily correlated in SCA, with
a greater proportion of patients experiencing desaturation at
night.50 Furthermore, we used postcode rather than direct
measures of SES, which were unavailable for the majority.
Because of these limitations, we were not able to compre-
hensively model specific disease and socioeconomic risk fac-
tors for slower processing speed.

Further work is required not only to determine risk factors for
and mechanisms of white matter injury and cognitive im-
pairment in SCA but also to establish whether the underlying
pathology is preventable or reversible. To this end, future
work will need to disentangle the effects of SCA pathology
and to separate them from the effects of psychosocial factors.
As this will require regression and potentially more advanced
statistical modeling, future quantitative MRI studies are
warranted.

This study provides evidence that reduced processing speed is
correlated with widespread white matter abnormalities using
quantitative microstructure parameters from multishell dif-
fusion MRI. Although lesion status is frequently used as
a proxy of disease severity, the results from this study indicate
cognitive difficulties in the absence of SCI and highlight the
consequences of possible damage to normal-appearing white

matter. Clinicians should therefore assess for cognitive diffi-
culties irrespective of presence of SCI, and future research
should utilize diffusion MRI as a tool to further investigate
potential mechanisms of cognitive impairment in SCA as well
as to monitor therapies designed to ameliorate cognitive
dysfunction. This study adds to a growing body of evidence
indicating imaging abnormalities and cognitive impairment
that may worsen with age in SCA, which together highlight
the need to investigate the effect of early treatment delivery.
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