
Physics in Medicine and Biology
     

ACCEPTED MANUSCRIPT • OPEN ACCESS

4D-PET reconstruction using a spline-residue model with spatial and
temporal roughness penalties
To cite this article before publication: George P Ralli et al 2018 Phys. Med. Biol. in press https://doi.org/10.1088/1361-6560/aabb62

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2018 Institute of Physics and Engineering in Medicine.

 

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted
Manuscript is available for reuse under a CC BY 3.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence
https://creativecommons.org/licences/by/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is
specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 128.41.39.44 on 11/04/2018 at 10:45

https://doi.org/10.1088/1361-6560/aabb62
https://creativecommons.org/licences/by/3.0
https://doi.org/10.1088/1361-6560/aabb62


1 
 

 

4D-PET Reconstruction using a Spline-Residue 

Model with Spatial and Temporal Roughness 

Penalties 
 

 
George P. Ralli1*, Michael A. Chappell2, Daniel R. McGowan1,3, Ricky A. Sharma4, Geoff S. Higgins1 

and John D. Fenwick5  

  

1Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt 

Drive, Oxford, OX3 7DQ  

2Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, 

Roosevelt Drive, Oxford, OX3 7DQ 

3Radiation Physics and Protection, Oxford University Hospitals NHS Foundation Trust, Churchill 

Hospital, Oxford, OX3 7LE 

4NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, 

University College London, 72 Huntley Street, London WC1E 6DD 

5Institute of Translational Medicine, University of Liverpool, UCD Block, Royal Liverpool University 

Hospital, Daulby Street, Liverpool L69 3GA 

 

*Corresponding author.  

Corresponding author email: george.ralli@oncology.ox.ac.uk 

 

  

Page 1 of 42 AUTHOR SUBMITTED MANUSCRIPT - PMB-106734.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

mailto:george.ralli@oncology.ox.ac.uk


2 
 

Abstract 

 
4D reconstruction of dynamic positron emission tomography (dPET) data can improve the 

signal-to-noise ratio in reconstructed image sequences by fitting smooth temporal functions to the voxel 

time-activity-curves (TACs) during the reconstruction, though the optimal choice of function remains 

an open question. We propose a spline-residue model, which describes TACs as weighted sums of 

convolutions of the arterial input function with cubic B-spline basis functions. Convolution with the 

input function constrains the spline-residue model at early time-points, potentially enhancing noise 

suppression in early time-frames, while still allowing a wide range of TAC descriptions over the entire 

imaged time-course, thus limiting bias.  

Spline-residue based 4D-reconstruction is compared to that of a conventional (non-4D) 

maximum a posteriori (MAP) algorithm, and to 4D-reconstructions based on adaptive-knot cubic B-

splines, the spectral model and an irreversible two-tissue compartment (‘2C3K’) model. 4D 

reconstructions were carried out using a nested-MAP algorithm including spatial and temporal 

roughness penalties. The algorithms were tested using Monte-Carlo simulated scanner data, generated 

for a digital thoracic phantom with uptake kinetics based on a dynamic [18F]-Fluromisonidazole scan of 

a non-small cell lung cancer patient. For every algorithm, parametric maps were calculated by fitting 

each voxel TAC within a sub-region of the reconstructed images with the 2C3K model.  

Compared to conventional MAP reconstruction, spline-residue-based 4D reconstruction 

achieved >50% improvements for 5 of the 8 combinations of the 4 kinetics parameters for which 

parametric maps were created with the bias and noise measures used to analyse them, and produced 

better results for 5/8 combinations than any of the other reconstruction algorithms studied, while 

spectral model-based 4D reconstruction produced the best results for 2/8. 2C3K model-based 4D 

reconstruction generated the most biased parametric maps. Inclusion of a temporal roughness penalty 

function improved the performance of 4D reconstruction based on the cubic B-spline, spectral and 

spline-residue models. 
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1. Introduction 

The uptake of an intravenously injected radiotracer within a patient can be imaged over an 

extended time-course using dynamic positron emission tomography (dPET). Quantitative data 

concerning tracer uptake kinetics can be obtained by fitting kinetic models to time-activity curves 

(TACs) describing the temporal variation of activity within regions of interest (ROIs) drawn on dPET 

image sequences. These sequences are typically generated by splitting the projection data collected by 

the scanner into time-frames and reconstructing each frame as an individual image, using either 

analytical or iterative 2D- or 3D-PET reconstruction algorithms. Image sequences acquired in this way 

suffer from high levels of noise, due to the limited number of photon counts present in each time-frame 

and to noise amplification during image reconstruction. This in turn introduces noise and bias into 

parameter values obtained by fitting kinetic models to the resulting TAC data. 

Iterative 4D-PET reconstruction is an alternative methodology, in which images are 

reconstructed simultaneously for all time-frames, and at each iteration the TAC of every voxel is 

replaced by the fit to it of a temporally smooth function. While many studies have demonstrated that 

4D-PET reconstruction improves the signal-to-noise ratio (SNR) both of reconstructed image sequences 

and of fitted kinetic parameters, the optimal choice of temporal function remains an open question 

(Reader and Verhaeghe 2014). A common approach is to use the kinetic model of interest as the 

temporal function, allowing its kinetic parameter values to be obtained directly from the 4D-PET 

reconstruction rather than from an additional model fitting step post-reconstruction. This is known as 

‘direct’ 4D-PET reconstruction and has been carried out using the spectral model (Matthews et. al. 

1997, Meikle et. al. 1998, Reader et. al. 2007) and graphical analysis methods such as the Patlak and 

Logan plots (Tsoumpas et. al. 2008, Wang et. al. 2008, Cheng et. al. 2014, Karakatsanis et. al. 2016), 

as well as non-linear compartment models (Kamasak et. al. 2005, Wang and Qi 2012a, Cheng et. al. 

2015). 

 In cancer imaging studies, diverse tissues are often present within the scanner field of view 

(FOV) and so a wide range of TAC shapes may need to be fitted. Kotasidis et. al. (2014) showed that 
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bias from poorly-fitted regions spatially propagates to well-modelled regions during 4D-PET 

reconstruction, making it advantageous to use highly flexible functions which can adequately fit TACs 

in all regions. Non-linear compartment models make specific assumptions about the behaviour of the 

radiotracer in the tissue being modelled and therefore can only describe a limited range of TAC shapes. 

Thus a non-linear model designed to accurately describe the uptake kinetics within a tumour may 

perform poorly in other imaged regions, introducing bias into kinetic parameter estimates even in the 

well described regions.  

Linear kinetic models, which represent each TAC as a weighted sum of pre-defined temporal 

basis functions, offer considerably more flexibility if the basis functions are well chosen. In situations 

with diverse kinetics, the spectral model of Cunningham and Jones (1993) and spline functions are often 

used. Due to their flexibility, spline functions can describe a wide range of TAC shapes well, potentially 

reducing image noise and bias (Nichols et. al. 2002, Verhaeghe et. al. 2006, Li et. al. 2007, Ralli et. al. 

2017), but the fitted parameters of the spline functions themselves do not directly represent 

physiological information. Furthermore, while fits of the spectral model provide direct estimates of 

macro-parameters such as the volume of distribution, the micro-parameter values obtained from non-

linear compartment model fits are conceptually more directly linked to specific biological processes. 

Therefore, it may be advantageous to use spline or spectral model-based 4D-PET reconstruction to limit 

the noise in dPET image sequences, and subsequently analyse the resulting images using the more 

physiologically-motivated non-linear compartment models. 

 The temporal basis functions of the spectral model are exponential decays convolved with the 

arterial input function (AIF), which describes the time-course of radiotracer activity concentration in 

the arterial blood flowing into a region. TACs vary most rapidly early on during imaging, and so short 

time-frames are used for the early time-points, making them particularly noisy. Due to their convolution 

with the AIF, the shapes of spectral basis functions are much more constrained at these early time-

points than those of B-splines; but for the same reason they can still describe the early parts of TACs 

well. Consequently the spectral model may have an advantage at early time-points. On the other hand, 

B-spline basis functions can describe a wider range of TAC shapes than spectral basis functions, and 

thus may introduce less bias than the spectral model into the reconstruction process. However, the more 
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flexible splines can also over-fit the data, potentially limiting the degree of noise suppression achievable 

compared to the spectral model (Ralli et. al. 2017). A temporal model that combines the noise 

suppressing capabilities of the spectral model, particularly in early time-frames, with the greater 

flexibility of spline functions might therefore be advantageous.  

 In this work we propose an alternative linear model, termed the spline-residue model, whose 

basis functions are B-spline basis functions convolved with the AIF. Like the spectral model, 

convolution with the input function constrains the spline-residue basis function shapes in early time-

frames, potentially enhancing the noise suppression achieved in the early frames by 4D reconstruction. 

But by using B-splines instead of exponential functions, the spline-residue model can describe a wider 

range of TAC shapes across the whole imaged time-course than can the spectral model, potentially 

reducing bias. O’Sullivan et. al. (2009) developed a similar spline-residue model for post-reconstruction 

non-parametric analysis of radiotracer uptake kinetics in dPET images. To our knowledge, however, 

use of the model for 4D image reconstruction has not previously been proposed or evaluated. 

 The spline-residue 4D-PET reconstruction algorithm developed here includes both spatial and 

temporal roughness penalties. Algorithm performance is evaluated using Monte-Carlo simulated PET 

detector data collected for a digital phantom, built using TACs obtained from images of a stage IV non-

small cell lung cancer (NSCLC) patient injected with the [18F]-Fluromisonidazole (FMISO) hypoxia 

tracer.  

Many 4D-PET reconstruction algorithms based on specific linear models have been proposed, 

but few published studies have inter-compared the performance of different linear models. Furthermore, 

to our knowledge the performance of direct 4D-PET reconstruction based on a non-linear model has 

not been compared to that of linear model-based 4D-PET reconstruction followed by kinetics analysis 

using the same non-linear model. In this study the performance of spline-residue-based 4D-PET 

reconstruction is compared to that of a conventional (non-4D) MAP reconstruction algorithm, and to 

4D-PET reconstruction based on the spectral model, adaptive-knot cubic B-splines and an irreversible 

two-tissue compartment model commonly used to analyse FMISO dPET data (Wang et. al. 2009, 

McGowan et. al. 2017). Performance is measured using bias and noise metrics of the reconstructed 

images, and parametric maps describing voxel-by-voxel compartment model fits to the image data.  
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2. Methods 

2.1 Nonparametric spline-residue description of dPET TACs  

 
A TAC can quite generally be modelled as the convolution of the AIF with a residue function,  

  𝑓(𝑡) =  𝐾 ∫ 𝐶𝐼(𝑠)𝑅(𝑡 − 𝑠)𝑑𝑠
𝑡

0
,                       (1) 

where 𝐶𝐼(𝑡) is the AIF, 𝐾 is a proportionality constant interpreted as overall flow and 𝑅(𝑡) is the residue 

function, which describes the fraction of tracer remaining in the region at time t after entering it, and so 

provides information about the kinetics of radiotracer transport and metabolism processes (Gunn et. al. 

2001).  

 The spline-residue model represents the residue function as a weighted sum of 𝑁𝑆 cubic B-

spline functions, 휁𝑘(𝑡),  with a Dirac delta function added to account for the finite blood volume in the 

region:  

𝑅(𝑡) =  𝜇0𝛿(𝑡) + ∑ 𝜇𝑘
𝑁𝑆
𝑘=1 휁𝑘(𝑡),                (2) 

where 𝜇𝑘 is the coefficient of the kth B-spline function 휁𝑘(𝑡), the coefficient 𝜇0 equals 𝑉𝑏 𝐾⁄ , and 𝑉𝑏 is 

the fractional blood volume. Thus from (1) the TAC is given by a weighted sum of spline-residue basis 

functions 휂𝑙(𝑡): 

𝑓(𝜽, 𝑡) =  ∑ 휃𝑙휂𝑙(𝑡)
𝑁𝑆
𝑙=0 ,                (3) 

where 

휂𝑙(𝑡) =  {
𝐶𝐼(𝑡),                       𝑙 = 0

𝐶𝐼(𝑡) ⊗ 휁𝑙(𝑡),       𝑙 > 0
 ,               (4) 

⊗ denotes a convolution, and the coefficients 휃𝑙 are given by 

휃𝑙 = {
𝑉𝑏,               𝑙 = 0
𝐾𝜇𝑙−1,        𝑙 > 1

 .                            (5) 

Spline-residue, cubic B-spline and spectral model basis functions are compared in Figure 1. 

The early spectral and spline-residue model basis function are very similar, while the later basis 

functions are rather different.  

2.2 Temporally regularized nested-MAP 4D reconstruction algorithm for linear kinetic models   

 Linear kinetic models represent the number of positron annihilation events in a given voxel j at 
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time-frame m, 𝑥𝑗𝑚, as a linear combination of pre-defined basis functions: 

𝑥𝑗𝑚(𝜽𝑗) = ∑ 𝐵𝑘𝑚휃𝑗𝑘
𝑁𝐵
𝑘=1 ,    (6) 

where 𝑁𝐵 is the total number of basis functions, 휃𝑗𝑘 is the weighting factor of the kth basis function 

𝐵𝑘(𝑡) in voxel j, and 𝐵𝑘𝑚 is given by 

𝐵𝑘𝑚 =  ∫ 𝐵𝑘(𝑡) exp(−𝑡) 𝑑𝑡
𝑡𝑚𝑓

𝑡𝑚𝑠
,    (7)  

where 𝑡𝑚𝑠 and 𝑡𝑚𝑓 are respectively the start and end times of time-frame m, and  is the radiotracer 

decay constant. The basis functions are pre-defined and therefore only the weighting factors 𝜽𝑗 need to 

be calculated when fitting the models. 

 The expected number of photon counts on detector pair i in time-frame m, 〈𝑦𝑖𝑚〉, can be 

estimated as a function of the model parameters using  

〈𝑦𝑖𝑚(𝜽)〉 = ∑ 𝑃𝑖𝑗 𝑥𝑗𝑚(𝜽𝑗) +  휀𝑖𝑚
𝑁𝑉
𝑗=1 ,    (8) 

where 𝑁𝑉 is the total number of voxels, 휀𝑖𝑚 represents the erroneous counts measured by detector pair 

i in time-frame m (random coincidences and scattered photons), 𝑃𝑖𝑗 are the elements of the 𝑁𝐷 × 𝑁𝑉 

system matrix P, and 𝑁𝐷 is the number of detector pairs. The element 𝑃𝑖𝑗 represents the probability of 

a pair of photons originating in voxel j being detected by detector pair i. The system matrix used here 

is independent of time, though time-dependent effects such as detector dead-time can be and sometimes 

are included in the system matrix calculation (Qi et. al. 1998).   

Modelling the measured counts 𝑦𝑖𝑚 as independent Poisson-distributed variables, the log-

likelihood function of the measured scanner data 𝐿(𝒚|𝜽) (with a constant term omitted) is 

𝐿(𝒚|𝜽) = ∑ ∑ (𝑦𝑖𝑚 ln(〈𝑦𝑖𝑚(𝜽)〉) − 〈𝑦𝑖𝑚(𝜽)〉) 
𝑁𝐷
𝑖=1

𝑁𝑇
𝑚=1 ,    (9)  

where 𝑁𝑇 is the number of time-frames. The most likely parameter values are obtained by iteratively 

maximizing 𝐿(𝒚|𝜽) with respect to 𝜽. Many basis functions can be included in linear kinetic models, 

potentially leading to overfitting of the data, and so we modify the objective function to include a 

temporal regularization term: 

Φ(𝜽) =  𝐿(𝜽|𝒚) − 𝛾𝛤(𝜽),     (10)  
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where 𝛾 is a parameter controlling the trade-off between temporal smoothness and accurate TAC 

description, and 𝛤(𝜽) is a temporal roughness penalty defined as 

𝛤(𝜽) = ∑ 𝛬(𝜽𝑗)
𝑁𝑉
𝑗=1 ,                 (11) 

with 𝛬(𝜽𝑗) being the penalty function for voxel j.  

 To efficiently maximize Φ(𝜽) we propose a methodology based on optimization transfer 

(Lange et. al. 2000), in which determination of 𝜽  at iteration n is transferred to a surrogate function 

𝑄(𝜽|𝜽𝑛) which minorizes the original log-likelihood function: 

𝑄(𝜽|𝜽𝑛) ≤  Φ(𝜽),     (12) 

with equality if and only if 𝜽 = 𝜽𝑛. By choosing 𝜽𝑛+1 as the 𝜽 value maximizing 𝑄(𝜽|𝜽𝑛), Lange et. 

al. (2000) showed that Φ(𝒚|𝜽𝑛+1) ≥  Φ(𝒚|𝜽𝑛).  

We obtain the surrogate objective function by subtracting 𝛾𝛤(𝜽𝑗) from the surrogate function 

proposed by Wang and Qi (2010) for the minorization of 𝐿(𝒚|𝜽𝑛) (with a constant term omitted). Doing 

so gives: 

𝑄(𝜽|𝜽𝑛) = ∑ (∑ 𝑃𝑖𝑗𝑖 ) ([∑ (𝑥𝑗𝑚
𝑛+1 ln (𝑥𝑗𝑚(𝜽𝑗)) − 𝑥𝑗𝑚(𝜽𝑗))𝑚 ] − 𝛾′𝛬(𝜽𝑗))𝑗 ,           (13) 

where 𝛾′ =
𝛾

(∑ 𝑃𝑖𝑗𝑖 )
, n is the current iteration number and 𝑥𝑗𝑚

𝑛+1 is the image obtained when updating the 

current image estimates using the MLEM algorithm (Shepp and Vardi 1982): 

𝑥𝑗𝑚
𝑛+1 =

𝑥𝑗𝑚(𝜽𝑗
𝑛)

∑ 𝑃𝑖𝑗𝑖
∑ 𝑃𝑖𝑗

 𝑦𝑖𝑚

〈𝑦𝑖𝑚(𝜽𝑛)〉
 𝑖 .                  (14) 

 Because 𝑄(𝜽|𝜽𝑛) is separable in voxels the parameter values 𝜽𝑗
𝑛+1 can be obtained using  

𝜽𝑗
𝑛+1 = max

𝜽𝑗

[∑ 𝑥𝑗𝑚
𝑛+1 ln (𝑥𝑗𝑚(𝜽𝑗)) − 𝑥𝑗𝑚(𝜽𝑗) − 𝛾′𝛬(𝜽𝑗)𝑚 ].              (15) 

 Instead of maximizing (15), we adapt a method proposed by Matthews et. al. (2010) for the un-

regularized case, which uses a weighted least squares approach to calculate 𝜽𝑗
𝑛+1.  For the temporally 

regularized case, 𝜽𝑗
𝑛+1 is obtained by minimizing the penalized weighted least square error 

𝜽𝑗
𝑛+1 = min

𝜽𝑗

[∑ 𝑤𝑗𝑚 (𝑥𝑗𝑚
𝑛+1 − 𝑥𝑗𝑚(𝜽𝑗))

2
+ 𝛾′𝛬(𝜽𝑗)𝑚 ],                           (16) 

with weighting factors  
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𝑤𝑗𝑚 =
1

𝑥𝑗𝑚(𝜽𝑗
𝑛)

.                  (17) 

Wang and Qi (2012a) have noted that monotonic convergence to the maximum-likelihood 

solution is not guaranteed when the model fitting step is modified to a weighted least squares problem, 

however convergence has been observed in practice (Matthews et. al. 2010).  

Temporal roughness penalties have been used in previous 4D-PET reconstruction studies, but 

there is no consensus on what form 𝛬(𝜽𝑗) should take. Two penalty functions are explored in this work, 

the first being  

          𝛬(𝜽𝑗) = |𝜽𝑗|
2
,                 (18) 

which corresponds to L2 regularization, and the second 

           𝛬(𝜽𝑗) = ∫ (
𝜕2𝑓(𝜽𝑗,𝑡)

𝜕𝑡2 )
2

𝑑𝑡
𝑇𝑠𝑐𝑎𝑛

0
,                (19) 

where 𝑇𝑠𝑐𝑎𝑛 is the dPET scan duration. The second penalty function is often used to fit splines to noisy 

data and has been applied to spline-based 4D-PET reconstruction (Nichols et. al. 2002, Li et. al. 2007), 

though not in an optimization transfer framework.  

Both penalty functions can be expressed as  

    𝛬(𝜽𝑗) =  𝜽𝑗
𝑇𝜴 𝜽𝑗,                 (20) 

where the superscript T indicates a matrix transpose. For penalty function (18) 𝜴 is the identity matrix 

I, while for (19) the elements of 𝜴, 𝛺𝑎𝑏, are 

       𝛺𝑎𝑏 = ∫ 𝐵�̈�(𝑡) 𝐵𝑏
̈ (𝑡)𝑑𝑡

𝑇𝑠𝑐𝑎𝑛

0
,                (21) 

where 𝐵�̈�(𝑡) is the second-order time-derivative of basis function k. Using this notation the cost function 

in equation (16) can be re-expressed as a Tikhonov regularization problem 

𝜽𝑗
𝑛+1 = min

𝜽𝑗

[∑ 𝑤𝑗𝑚 (𝑥𝑗𝑚
𝑛+1 − 𝑥𝑗𝑚(𝜽𝑗))

2
+ 𝛾′𝜽𝑗

𝑇𝜴𝜽𝑗𝑚 ],                           (22) 

and solved using the equation (Tikhonov et. al. 1995) 

  𝜽𝑗
𝑛+1 = (𝑩𝑇𝑾𝑩 +  𝛾′𝜴)−1𝑩𝑇𝑾�̂�𝑗

𝑛+1,                            (23) 

where 𝑩 has the 𝐵𝑘𝑚 elements defined in equation (7), 𝑾 is the diagonal matrix 

𝑑𝑖𝑎𝑔(𝑤𝑗1, 𝑤𝑗2, … , 𝑤𝑗𝑁𝑇
) and  �̂�𝑗

𝑛+1 is an 𝑁𝑇 × 1 vector with mth element 𝑥𝑗𝑚
𝑛+1. 
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To determine the best 𝛾′ to use in (22) for voxel j, 𝛾𝑗′, a range of 𝛾′ values can be defined in 

advance, and the one producing the fit with the lowest generalized cross validation (GCV) score (Wahba 

1990) taken as optimal for this voxel:  

𝛾′𝑗 = min
𝛾′

[𝐺𝐶𝑉(𝛾′)] = min
𝛾′

[
∑ 𝑤𝑚𝑗(𝑥𝑗𝑚

𝑛+1−𝑥𝑗𝑚(𝜽𝑗
𝑛+1))

2

𝑚

(Tr(𝑰−𝑩(𝑩𝑇𝑾𝑩+ 𝛾′𝜴)−1𝑩𝑇𝑾))2],              (24) 

where Tr(…) denotes the matrix trace, and the denominator of (24) corresponds to the effective degrees 

of freedom. The model fitting step is much faster than the image update step, and so selection of the 𝛾′ 

value for each voxel TAC in this semi-automatic manner does not greatly slow down the reconstruction.  

 Spatial regularization can be built into the reconstruction by replacing the image update step in 

equation (14) with a corresponding step from an iterative 2D- or 3D-maximum a posteriori (MAP) 

algorithm. These image updates are designed to maximize objective functions of the form 𝐿(𝒙|𝒚) −

𝛽𝑈(𝒙) with respect to the image 𝒙, where 𝛽 is a tunable parameter controlling the trade-off between 

resolution and noise, and 𝑈(𝒙) is a concave function designed to penalize rough images, 

𝑈(𝒙) =
1

4
∑ ∑ 𝑧𝑗𝑘𝜓(𝑥𝑗 − 𝑥𝑘)𝑘∈𝒩𝑗𝑗 ,                         (25) 

where 𝒩𝑗 is the set of nearest neighbours of voxel j and  𝑧𝑗𝑘  is a weighting factor equal to the normalized 

inverse distance between voxels j and k (Wang and Qi 2012b). Here we use the Lange function (Lange 

1990) 

𝜓(𝜉) = (
|𝜉|

𝛿
− ln (1 +

|𝜉|

𝛿
) ) 𝛿,                                      (26) 

which contains a further smoothing parameter 𝛿, and achieves good noise suppression in fairly uniform 

regions, while preserving edges better than the more widely used quadratic function, 𝜓(𝜉) = 𝜉2 (Lange 

1990). 

 The proposed temporally regularized 4D-PET reconstruction algorithm for linear kinetic 

models, subsequently referred to as nested-MAP reconstruction, can be summarized as follows.  

1. Start with an initial dPET image sequence estimate, in this work a sequence of uniform images 

with the radioactivity concentration in each voxel set to 100 Bq/cc. 
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2. Update each image with one iteration of the MAP algorithm. Here MAP updates were 

performed via algorithm 1 of Wang and Qi (2012b) using their pixel-based rather than patch-

based approach. Values of 𝛽 and 𝛿 are pre-selected. 

3.  Fit a temporal model to each voxel TAC via (23), using either a fixed value of 𝛾 or a range of 

𝛾 values and subsequently selecting the best value via GCV. 

4. Return to step 2 using the image voxel values predicted by the fitted model, 𝑥𝑗𝑚(𝜽𝑗
𝑛+1), as the 

seed for next MAP update, and continue for either a fixed number of iterations or until the 

images have converged.   

2.3 Digital phantom simulations 

The 4D-XCAT2 digital phantom package (Segars et. al. 2010) was used to simulate a single 

slice of an NSCLC patient injected with the FMISO hypoxia tracer. Tracer activity concentrations in 

different regions and time-frames were chosen to match smoothed TACs taken from a clinical FMISO-

dPET image of a patient with stage IV NSCLC. Specifically, lung and bone TACs were obtained from 

spherical ROIs of 3 cm diameter placed in healthy lung and spine regions in the real patient image, and 

an AIF TAC was taken from a cylindrical ROI of diameter 10 mm located in the centre of the 

descending aorta on five consecutive PET axial slices. Tumour TACs were obtained from irregularly-

shaped ROIs considered to contain hypoxic and normoxic tumour tissue. The ROIs were drawn by an 

experienced radiologist and checked by a second radiologist.   

 For smoothing, each TAC except the AIF was fitted with cubic splines, adaptively placing the 

knots according to the algorithm proposed by Ralli et. al. (2017), and with irreversible two- and three-

tissue compartment models having 3 and 5 rate-constants respectively. These compartment models are 

schematically drawn in Figure 2 and subsequently referred to as 2C3K and 3C5K. The AIF TAC was 

fitted with the phenomenological three-exponential model of Feng et. al. (1993) alone. Weighted least 

squares was used for all fitting, with the weighting factors  

     𝑤𝑚 =  
∆𝑇𝑚𝑒−𝜆𝑇𝑚

𝑎𝑚
,                 (27) 

where 𝑎𝑚 is the decay-corrected average activity concentration within the region during frame m, ∆𝑇𝑚 

is the frame duration, and Tm is the mid-point of the mth frame (Chen et. al. 1991). Compartment model 
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fitting was carried out using the Levenberg-Marquart algorithm, available in the MATLAB 

optimization toolbox (Mathworks). 

Model fit quality was assessed for each TAC using leave-one-out cross-validation, calculating 

the weighted residual sum of squares (RSS) error of the fit ith the weighting factors defined in (27). The 

Wald-Wolfowitz runs test was used to check whether any significant structure remained in the residuals 

of each model fit at the 5% significance level. Of the models that passed the runs test for a given patient 

TAC, the best model fit was taken to be the one with the lowest weighted RSS value. 

Two patient phantoms were created with identical spatial geometries and voxel dimensions of 

3.1×3.1×2.0 mm3. Lung, bone, blood, normoxic and hypoxic tumour regions were filled with noise-

free ground-truth activity concentrations that varied with time according to model fits to the TACs 

obtained from the corresponding regions in the patient image. For the first ‘realistic’ phantom the best 

model fits to the different TACs were used, while for the second ‘simplified’ phantom, 2C3K model 

fits were used instead. The fitted curves were binned into a [1×30 s, 6×5 s, 6×20 s, 7×60 s, 10×120 s, 

3×300 s] time-frame sequence followed by two additional 600 s frames at 2 and 4 hours post-injection. 

This frame sequence matches the dynamic imaging protocol of the clinical dPET scan from which the 

phantom TACs were derived: following this protocol, the patients were injected with the FMISO tracer 

30 s into scanning.  

 To illustrate the phantom geometry, an image of the final time-frame of the realistic phantom 

is shown in Figure 3 (a). We have used the phantoms to study the performance of linear model-based 

versus 2C3K-based 4D-PET reconstruction when all the underlying TACs take realistic shapes (realistic 

phantom), and when they are all described by fits of the 2C3K model (simplified phantom). 

 dPET sinograms representative of those produced by an mMR PET-MR scanner (Siemens 

Healthcare, Erlangen, Germany) were generated for both phantoms using the PET-SORTEO Monte-

Carlo simulation package (Reilhac et. al. 2004), which has been validated for the Siemens mMR scanner 

(Reilhac et. al. 2016). Fifty noise realizations of dynamic-PET sinogram data were generated for each 

phantom, including effects of scattered photons, random co-incidences and attenuation. No patient 

motion was simulated, the focus of the current study being to evaluate the effectiveness of noise 
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suppression using 4D-PET reconstruction. On average, the total number of counts in each noise 

realization was approximately 3.5 million for both single-slice phantoms studied.  

2.4 Image reconstruction 

Attenuation and normalization correction sinograms were obtained respectively from an 

attenuation map of the patient phantom, and from simulated detector counts generated using PET-

SORTEO for a 20 minute scan of a cylindrical phantom containing a uniform activity concentration. 

The attenuation and normalization corrections were then modelled as part of the system matrix. 

Numbers of scattered photons and random coincidences were estimated using the single-scatter 

simulation algorithm (Watson 2000) and a delayed co-incidence window respectively.   

 From each simulated realization of FMISO patient phantom PET scanner data, dPET image 

sequences were reconstructed in 3.13.12.0 mm3 voxels using both conventional MAP and 4D nested-

MAP algorithms, running each algorithm for 30 iterations. Nested-MAP 4D reconstructions were 

performed using the non-linear 2C3K model, and the linear adaptive-knot cubic B-spline, spectral and 

spline-residue models. For each linear model, reconstructions were carried out using the temporal 

regularisation penalties of equations (18) and (19), and with no temporal regularisation. For 2C3K 

model-based reconstructions no temporal regularization was used because this model is much more 

constrained than the linear ones. For nested-MAP reconstruction based on the 2C3K model, the non-

linear model fitting step was performed using the Levenberg-Marquardt algorithm instead of (23). 

Spectral, spline-residue and 2C3K model-based 4D reconstructions require image-derived or blood-

sampled AIFs, which were obtained here by fitting the three-exponential model of Feng et. al. (1993) 

to TACs obtained from conventionally (not 4D) reconstructed MAP images, for ROIs placed in the left 

ventricle. 

 Spectral model-based reconstructions were carried out using 100 basis functions with 

exponential decay constants spaced logarithmically between 1.1×10-4 s-1 (the decay constant of 18F) and 

0.01 s-1. For spline-based reconstructions, voxel-specific knot locations were selected using the 

adaptive-knot placement algorithm proposed by Ralli et. al. (2017), which for cubic splines places knots 

along equal segments of the integral of the 4th root of the 4th derivative of a TAC according to theorem 
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XII.5 of De Boor (1978). For each voxel 11 free knots were positioned by applying the algorithm to the 

TAC obtained for that voxel from conventional MAP-reconstructed images.  

 Basis functions for the spline-residue model were obtained by placing 4 knots at the beginning 

and end of each TAC, as well as the point where the TAC starts to rise, to handle discontinuities, and 

positioning an additional 6 uniformly spaced knots between the initial rise and end points of the TAC. 

The B-splines associated with these knots were convolved with the AIF to calculate the spline-residue 

basis functions. Preliminary work fitting the spline-residue model to synthetic noisy FMISO TACs led 

to the choice of 6 additional knots, this number generating fits that best matched the ground-truth. 

Uniformly spaced knots performed well, perhaps because the residue function for a given TAC varies 

considerably less than the TAC itself.  

 The spatial regularization parameters 𝛽 and 𝛿, defined in (26), were both set to 0.1, a choice 

that produced the best contrast-to-noise ratio in images of digital phantom similar to the NEMA image 

quality phantom (National Electrical Manufacturers Association 2013) reconstructed using the MAP 

algorithm from simulated PET detector data generated with PET-SORTEO.  

For each linear model and temporal roughness penalty used in the 4D reconstruction algorithms, 

the range of 𝛾′ values {𝛾′ = 0.001, 0.002, …, 0.01} all produced good fits to TACs from conventional 

MAP-reconstructed patient phantom images. At each iteration of the temporally regularized nested-

MAP reconstructions, therefore, the 𝛾′ value used for each voxel was individually selected from those 

ten as the one that minimized the GCV score of the model fit to that voxel’s TAC, as described in 

section 2.2.  

2.5 Image analysis 

2.5.1 Image quality metrics 

 
To characterize the accuracy of the reconstructed images, the average absolute bias of imaged 

activity concentrations over the scan time-course was calculated for every voxel j: 

    [Image Bias]j  =  
1

𝑇𝑠𝑐𝑎𝑛
∑ ∆𝑇𝑚|�̅�𝑗𝑚 − 𝑎𝑗𝑚

𝑡𝑟𝑢𝑒|𝑚 ,                    (28) 
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where �̅�𝑗𝑚 is the mean activity concentration in voxel j at time-frame m in all 50 repeat image sequences, 

and 𝑎𝑗𝑚
𝑡𝑟𝑢𝑒 is the true activity concentration. 

The noise in each voxel j at every time-frame m was calculated using the weighted standard 

deviation 𝜎𝑤,𝑗𝑚  

𝜎𝑤,𝑗𝑚 =  (
𝜎𝑗𝑚,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2  ∆𝑇𝑚

𝑎𝑗𝑚
𝑡𝑟𝑢𝑒 )

1

2

,                       (29) 

where 𝜎𝑗𝑚,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
2  is the variance amongst the 50 repeat 𝑎𝑗𝑚 values, and the weighting factors 

𝑎𝑗𝑚
𝑡𝑟𝑢𝑒 ∆𝑇𝑚⁄  are based on the dynamic-PET noise model of Chen et. al. (1991) and nominally account 

for intrinsic variations in noise between frames. Then the average noise for a given voxel j was 

calculated across all 𝑁𝑇 time-frames 

[Image Noise]j  =  𝜎𝑤𝑗 =
1

𝑁𝑇
∑ 𝜎𝑤,𝑗𝑚

𝑁𝑇
𝑚=1    (30) 

Overall bias and noise were characterised as mean absolute bias and mean image noise (〈𝜎𝑤〉) 

averaged over all voxels within the patient (the whole patient region). The same measures were also 

averaged over the tumour region alone, usually the primary focus of oncological dPET studies. 

Normalised mean absolute bias and 〈𝜎𝑤〉 values were expressed as percentages of the mean ground-

truth activity averaged over all time-frames and all voxels in the whole patient or tumour regions. To 

facilitate algorithm inter-comparison, normalised mean image noise and absolute bias values were 

computed at every iteration of all 4D reconstructions. Corresponding values were also calculated for 

just the first 120 s of the scans, to assess algorithm performance at early time-points. 

To assess the convergence of the reconstruction process, the mean square error (MSE) was 

calculated for each image voxel j at time-frame m and iteration n of the nested-MAP reconstructions 

𝑀𝑆𝐸𝑗𝑚
𝑛 =

1

𝑁𝑟
∑ (𝑎𝑗𝑚

𝑡𝑟𝑢𝑒 − 𝑎𝑗𝑚,𝑘
𝑛 )

2𝑁𝑟
𝑘=1 ,    (31) 

where 𝑁𝑟 is the number of noise realizations. At each iteration, a weighted sum of 𝑀𝑆𝐸𝑗𝑚
𝑛  over all time-

frames was calculated for every individual voxel, and these values were summed over all image voxels 

to create a single total MSE measure, TMSE: 

𝑇𝑀𝑆𝐸𝑛 = ∑ ∑
∆𝑇𝑚𝑀𝑆𝐸𝑗𝑚

𝑛

𝑎𝑗𝑚
𝑡𝑟𝑢𝑒  

𝑁𝑇
𝑚=1

𝑁𝑉
𝑗=1 ,    (32) 
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where 𝑁𝑉 is the number of image voxels. To check that the images did not change substantially after 

the first 30 reconstruction iterations explored throughout most of this study, each nested-MAP 

reconstruction was run for a further 10 iterations. Fractional changes in TMSE from one iteration n to 

the next n + 1 were calculated as 

[fractional TMSE change at iteration n] =
𝑇𝑀𝑆𝐸𝑛−𝑇𝑀𝑆𝐸𝑛+1

𝑇𝑀𝑆𝐸𝑛 ,  (33)  

and plotted as a function of iteration number for n = 1 to n = 39, positive TMSE changes corresponding 

to reductions in the total error, and negative changes to increases. Additionally, the fractional change 

between iterations 30 and 40 was calculated as 

    [fractional TMSE change at iteration 30/40] =
𝑇𝑀𝑆𝐸30−𝑇𝑀𝑆𝐸40

𝑇𝑀𝑆𝐸30 .  (34) 

2.5.2 Parametric map quality metrics 

 
 FMISO uptake kinetics are often determined using the 2C3K model (Wang et. al. 2009, 

McGowan et. al. 2017). Following this approach, we have fitted the 2C3K model to voxel TACs 

obtained from all the image sequences reconstructed using the different algorithms. The voxels studied 

were those lying within the phantom sub-volume shown in Figure 3 (b), which  contains the tumour-

like region and surrounding lung and is therefore of the greatest interest. Then we determined the 

accuracy and precision of uptake kinetics as characterised by the 2C3K model fits to the reconstructed 

images versus fits of the same model to the ground-truth phantom TACs, studying the 2C3K model 

rate-constants shown in Figure 2(a) together with the flux constant 

𝑘𝑓𝑙𝑢𝑥 =
𝐾1𝑘3

𝑘2+𝑘3
.               (35) 

 The bias and noise in fitted values of each parameter q = K1, k2, k3, kflux were calculated for each 

voxel j lying within the image sub-volume: 

 [Parameter Bias]j    =   �̅�𝑗 − 𝑞𝑗
𝑡𝑟𝑢𝑒,     (36) 

 [Parameter Noise]j  =   𝜎𝑞𝑗
,     (37) 

where 𝑞𝑗
𝑡𝑟𝑢𝑒 is the ground-truth value of kinetic parameter q in voxel j, �̅�𝑗 is the mean of the qj values 

obtained for voxel j from each of the 50 reconstructed image sequences, and 𝜎𝑞𝑗
 is the standard deviation 

of these 50 qj values. Then the [Parameter Bias]j and [Parameter noise]j measures were averaged over 
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all the voxels within the analysed phantom sub-volume to characterize the overall performance of each 

reconstruction algorithm. These metrics were also averaged over a region containing hypoxic tumour 

alone, to assess the performance of the algorithms specifically within the tumour region.  

3. Results 

3.1 Selection of fitted TACs for the realistic digital phantom 

Figure 4 shows fits of the 2C3K, 3C5K and cubic spline models to the real TAC data obtained 

from normoxic and hypoxic tumour and healthy lung and spine regions of the imaged NSCLC patient. 

Runs test results and leave-one-out cross-validation weighted RSS scores are listed in Table 1.  

 Fits of the adaptive-knot spline and 3C5K models had the lowest cross-validation scores for the 

healthy tissue and tumour regions respectively, and were therefore used to represent the ground-truth 

TACs for these regions in the realistic phantom. All the model fits used in the realistic phantom passed 

the runs test. The worst leave-one-out cross-validation scores were obtained for the 2C3K model fits, 

which only passed the runs test for the hypoxic tumour region. 

3.2 Image quality metrics 

Iteration-by-iteration plots of image bias versus noise, averaged over all time-frames and 

patient voxels, are shown in Figure 5 for realistic and simplified phantom image sequences 

reconstructed using temporally regularized nested-MAP 4D algorithms based on the cubic spline, 

spectral and spline-residue linear models. Each plot compares results obtained for one phantom and one 

reconstruction algorithm using either no temporal roughness penalty or the penalty functions of 

equations (20) or (21).  

For spectral and spline-residue-based 4D reconstructions, the |𝜽|2 temporal roughness penalty 

of equation (18) produced substantially less noisy images than the other penalty options, at similar 

levels of bias, and was therefore considered the best penalty function for these algorithms. For cubic 

spline-based 4D reconstructions, however, the integrated square derivative penalty function of equation 

(19) was viewed as the best penalty function, since it produced the least biased images at noise-levels 

only slightly higher than obtained using the |𝜽|2 penalty.   
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In Figure 6, noise is plotted against bias for images of the realistic phantom reconstructed using 

each linear model-based 4D algorithm and its associated optimal temporal roughness penalty, and using 

with the 2C3K-based 4D algorithm. Separate plots are shown for noise and bias measures averaged 

over the whole patient or the tumour regions, and averaged over the whole scan time or just the first 

120 s. Image quality curves for reconstructions based on the spline-residue model were substantially 

better than those obtained for reconstructions based on cubic splines or the 2C3K model. And at early 

time-points and within the tumour region, the image quality curves for the spline-residue-based 

algorithm were also better than those for reconstructions based on the spectral model. However, the 

spectral model had a slight edge when the image quality metrics were averaged across the whole 

phantom and scan duration.  

Corresponding data are shown in Figure 7 for reconstructions of the simplified phantom. For 

this phantom the spline-residue model produced slightly better results than the spectral model when 

considered across the whole phantom and scan duration; but 4D reconstructions based on the 2C3K 

model achieved the lowest bias values, unsurprisingly since the phantom kinetics are 2C3K-based.  

Figure 8 shows fractional changes in TMSE as a function of iteration number for the 2C3K- 

and linear model-based reconstructions of the realistic phantom, using the optimal temporal roughness 

penalties for the linear models. After 30 iterations the fractional change in TMSE per iteration was very 

small for reconstructions based on the spectral, spline-residue and 2C3K models. Total fractional 

changes in TMSE between iterations 30 and 40, calculated with (34), were 0.013 for the spectral model, 

0.017 for the spline-residue model, 0.007 for the 2C3K model and -0.030 for cubic splines. Thus 

continuing reconstruction beyond 30 iterations led to small improvements at best, and in the case of the 

spline-based reconstruction a 3% worsening in TMSE, most likely due to noise amplification at the later 

iterations. 

3.3 Parametric maps 

Figure 9 shows voxel-by-voxel spatial plots of absolute bias and noise in kflux parametric maps 

of the realistic phantom sub-region shown in Figure 3b, obtained from image sequences reconstructed 

using the conventional (non-4D) MAP algorithm and nested-MAP 4D algorithms based on the 2C3K 
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model and linear models used with their optimal temporal roughness penalties. The voxel-by-voxel 

noise and bias plots calculated for the simplified phantom were similar. The results in Figure 9 are 

summarized in table 2, which lists the signed bias and noise in the kflux parametric maps averaged over 

the entire phantom sub-region. In both Figure 9 and table 2 the bias and noise are expressed as 

percentages of the ground-truth kflux value, averaged over the entire sub-region. Of all the algorithms 

compared, spline-residue model-based reconstruction achieved the lowest average bias and second 

lowest noise levels in the kflux parametric maps, the spectral model-based algorithm achieving lower 

noise but greater bias.   

 The average normalised bias and noise (standard deviation) in 2C3K model parameters, for fits 

to the TACs of every voxel of the realistic phantom sub-region of Figure 3b in images reconstructed 

using the different algorithms, is shown in figure 10 for the individual 2C3K rate constants and the 

composite kflux parameter. For each parameter, these values are normalised as fractions of the values 

achieved by conventional (non-4D) MAP reconstruction for the same parameter, thus showing the 

extent to which each nested-MAP reconstruction improves on the conventional MAP reconstruction for 

each kinetic parameter.  Equivalent plots for the simplified phantom are shown in Figure 11. Bias and 

noise values averaged over the smaller hypoxic tumour sub-volume alone are shown in Figure 12 for 

the realistic and simplified phantoms.  

For the realistic phantom it can be seen from Figure 10 that for 5 of the 8 combinations of 

bias/noise and kinetic parameters analysed, bias or noise averaged across the whole phantom was 

reduced more than 50% by using 4D reconstruction based on the spline-residue model rather than 

conventional (non-4D) MAP-reconstruction. Furthermore, for 5/8 combinations spline-residue 4D 

reconstruction produced better results than any of the other reconstruction algorithms studied, while 

spectral-based 4D reconstruction produced the best results for 2/8. Compared to conventional 

reconstruction, spline-residue-based 4D reconstruction did not notably increase bias or noise for any of 

the 8 combinations, whereas the bias and noise in fitted K1 parameter values rose substantially above 

the conventional MAP levels when 4D reconstruction was carried out using the other temporal models. 

4D reconstruction based on the 2C3K model generated the most biased kinetic parameters, and higher 

levels of noise than spline-residue-based reconstruction. From Figure 12 it can be seen that for the 
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hypoxic tumour region alone, the spline-residue- and spectral-based 4D reconstructions each achieved 

the best results for 3/8 of the bias/noise and kinetic parameter combinations analysed, and cubic spline-

based 4D reconstruction the best results for 2/8. 

For the simplified phantom, whose kinetics entirely follow the 2C3K model, 4D reconstruction 

based on the 2C3K model unsurprisingly achieved the lowest levels of bias for fitted 2C3K model 

kinetics parameters (see Figures 11 and 12). This algorithm also achieved useful reductions in average 

noise levels for 2C3K parameter values throughout the simplified phantom compared to conventional 

MAP reconstruction, although not within the hypoxic tumour region. 4D reconstruction based on the 

spline-residue and spectral models achieved the greatest reductions in noise, but outside of the hypoxic 

tumour region the bias in fitted K1 and k2 values was larger for these algorithms than for conventional 

MAP reconstruction, particularly so for the spline-residue model.  

4. Discussion 

We hypothesized that 4D-PET reconstruction based on the linear spline-residue model might 

offer advantages for dynamic PET scanning of regions in which not all TACs are accurately described 

by the simple ‘2C3K’ irreversible two-tissue compartment model. In this study, we have compared 

results obtained using this proposed algorithm to those achieved using conventional (non-4D) MAP 

reconstruction, and 4D reconstruction based on adaptive-knot cubic splines and the spectral and 2C3K 

models. Working with a geometry based on thoracic anatomy, we calculated results for a ‘realistic 

phantom’ in which noise-free ground-truth TACs were represented by statistically acceptable fits of 

cubic splines and a ‘3C5K’ compartment model to TAC data obtained from a patient with stage IV 

NSCLC. We obtained further results for a ‘simplified phantom’ in which ground-truth TACs were 

represented by fits of the simple ‘2C3K’ compartment model, which did not describe the real data well. 

For the realistic phantom, 4D reconstruction based on spline-residues generated less bias or 

noise in parameter maps of fitted kinetic values than did any of the other algorithms studied, in 5/8 of 

the combinations of bias/noise and kinetic parameters we analysed. Additionally, the spline-residue 

algorithm reduced bias or noise by over 50% compared to conventional (non-4D) MAP reconstruction 

in 5/8 combinations, and notably increased bias or noise in none. 4D reconstructions based on the 2C3K 
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model generated the most biased kinetic parameters, and also generated higher levels of noise than did 

spline-residue-based reconstruction.  

If anything, our analysis should favour 4D reconstruction based on the simple 2C3K 

compartment model. This is the model most commonly used in the literature to characterise FMISO 

kinetics (Wang et. al. 2009, McGowan et. al. 2017), and consequently the one we fitted voxel-by-voxel 

to TACs obtained from reconstructed images when characterising the accuracy and precision of the 

tracer kinetics in the images. Despite this, the parametric map results obtained from 4D reconstructions 

based on the 2C3K model were poorer than those from spline-residue- and spectral-based 4D 

reconstructions. Results obtained from cubic spline-based 4D reconstructions were also generally worse 

than those from the spectral and spline-residue-based reconstructions. 

For the simplified phantom 4D reconstruction based on the 2C3K model performed much 

better, achieving lower levels of bias in fitted kinetic parameter maps than any of the other 

reconstruction algorithms studied, and useful noise reductions compared to the conventional MAP 

algorithm. Thus, the 2C3K-based 4D algorithm might be expected to provide good results in situations 

where the radiotracer kinetics are accurately described by the 2C3K model throughout the imaged field-

of-view. 

The results obtained for parametric maps largely concord with those of our more direct analysis 

of the accuracy and precision of reconstructed images (Figures 6 and 7). For the realistic phantom, 4D 

reconstructions based on the spline-residue and spectral models produced higher quality images than 

reconstructions based on the 2C3K model or cubic splines. Across all time-frames and phantom regions, 

the quality of images reconstructed using the spectral model-based 4D algorithm was slightly better 

than that of images reconstructed using the spline-residue-based algorithm. However the spine-residue-

based algorithm generated much higher quality images at early time-points, perhaps because it 

comprises far fewer basis functions and is therefore less likely to overfit data; and presumably this gain 

at early time-points led to the K1 and k2 parametric maps generated from spline-residue-based 

reconstructions being of a higher quality overall than those obtained from spectral-based 

reconstructions.   
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Images produced by linear model-based 4D reconstruction algorithms were much noisier when 

temporal roughness was not penalised (see Figure 5). For the phantoms we studied, linear model-based 

4D reconstructions produced less biased results than 2C3K-based 4D reconstructions at comparable or 

lower noise levels. However, it should be noted that this advantage only became apparent when 

temporal roughness penalties were built into the linear model-based reconstructions. Most linear model-

based 4D-PET algorithms described in the literature do not incorporate such penalties, possibly because 

this makes the algorithms more complex. However, this may put them at a disadvantage when compared 

to 4D algorithms based on less highly parametrised non-linear kinetic models. 

Algorithm convergence is not guaranteed when model fitting step (15) is instead accomplished 

via the penalized weighted least squares approach taken here. However, the results in figure 8 show that 

the nested-MAP reconstructions did approach convergence within 30 reconstruction iterations, 

consistent with observations of convergence reported by Matthews et. al. (2010) for 4D reconstruction 

algorithms using weighted least squares.  

Allowing the 𝛾𝑗
′ values, and thereby the objective function, to vary at each iteration could also 

affect convergence. To check this, for each linear model we re-ran each temporally regularized 

reconstruction (using the optimal penalty function for each model) with fixed 𝛾𝑗
′ values, taken as those 

obtained in the final iteration of the corresponding reconstruction where 𝛾𝑗
′ was free to vary. The results, 

plotted in supplementary Figure S1, show that beyond 5 iterations the convergence of reconstructions 

obtained with fixed and varying 𝛾𝑗
′ was identical.  

L1 regularization (𝛬(𝜽) = |𝜽|) has been proposed for post-reconstruction fitting of the spectral 

model (Gunn et. al. 2002), with the aim of producing sparse solutions. This is useful if one intends to 

calculate physiologically relevant kinetic parameters directly from the 𝜽 values. However, we use linear 

models simply to produce smooth descriptions of the reconstructed TACs during 4D reconstruction, the 

resulting reconstructed images subsequently being analysed with a compartment model. Consequently, 

our priority was to use regularization to limit overfitting, and therefore we explored L2 regularization 

(𝛬(𝜽) = |𝜽|2), which is specifically designed for this purpose and is more computationally efficient 

than L1 regularization.  
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The value of the spatial regularization parameter, β, was fixed at 0.1 in this study. This value 

was optimal for static reconstructions of a NEMA-like digital phantom using the conventional MAP 

algorithm, but might not be best for the nested-MAP reconstructions of the phantoms studied in this 

work. We therefore repeated the linear model-based nested-MAP reconstructions of the realistic patient 

phantom, using β values of 0.01 and 1. Figure S2 in the supplementary material shows the resulting 

iteration-by-iteration plots of image bias versus noise: for all the reconstructions β = 0.01 produced 

substantially noisier images, while β = 1 led to slightly less noisy but slightly more biased images than 

those produced with β = 0.1. Thus there appears to be little to gain, and much to lose, by using β values 

other than 0.1 for the algorithms and phantoms studied here.   

We have focused on a phantom with kinetics taken from an FMISO dPET scan of an NSCLC 

patient, FMISO being of interest in oncology as a tracer of tumour hypoxia (Wang et. al. 2009, Cheng 

et. al. 2014, McGowan et. al. 2017). However most dPET studies use other tracers, particularly FDG. 

Examples of patient tissue TACs that were poorly described by non-linear kinetic models have been 

reported in the literature for tracers other than FMISO (O’Sullivan et. al. 2009, Matthews et. al. 2012), 

and so 4D-PET reconstruction based on the more flexible linear spline-residue and spectral models may 

be useful for a wider range of tracers than FMISO alone. 

In another 4D-PET reconstruction algorithm proposed by Kotasidis et. al. (2014) for fields-of-

view containing tissues with diverse kinetics, a 'primary' kinetic model of interest is initially fitted to 

voxel TACs, and then a more flexible 'secondary' model is fitted to the residuals in regions where the 

primary model fit is poor, thus limiting bias propagation from these regions. An open question, 

however, is what form the secondary model should take. The results of our study suggest that the spline-

residue model would make a good secondary model in Kotasidis’ algorithm, since it is able to fit a wide 

range of TAC shapes while still suppressing noise. 

Finally, O’Sullivan et. al. (2009) have shown that fits of a residue model based on splines 

provided better descriptions of TACs taken from previously reconstructed FDG-dPET brain image 

sequences than did fits of the 2C3K model, allowing more robust estimation of kinetic parameters such 

as K1, kflux, median radiotracer transit time and fractional blood. Thus spline-residue-based 4D-PET 

reconstruction may prove useful for direct determination of some physiologically relevant kinetic 
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parameters, as well as being a means to limit noise amplification during reconstruction before kinetic 

analysis of the resulting smoother images using a compartment model. 

5. Conclusion 

Of all the reconstruction algorithms studied in this work, the proposed spline-residue-based 4D-

PET reconstruction algorithm overall produced the highest quality (least biased or noisy) parametric 

maps of FMISO uptake kinetics for a phantom with a thoracic geometry and realistic FMISO uptake 

kinetics derived from those in a dynamic scan of an NSCLC patient. Specifically, reconstruction of 

images using this algorithm rather than the conventional (non-4D) MAP algorithm led to reductions of 

50% or more in bias or noise for a majority of the combinations of kinetics parameters and bias/noise 

measures we analysed, and did not generate notably worse results for any combination. 4D 

reconstruction based on the simple irreversible two-tissue compartment model 2C3K produced the most 

biased parametric maps for this phantom overall, and generated notably higher levels of bias and noise 

in the K1 kinetics parameter than those obtained from conventional image reconstruction. 

For a simplified phantom in which all ground-truth kinetics followed the poor descriptions of 

real data provided by fits of the 2C3K model, 4D reconstruction based on this model achieved the lowest 

levels of bias in fitted kinetic parameter maps. Thus, the 2C3K-based 4D algorithm can provide good 

results when the kinetics of radiotracer uptake throughout the field-of-view are described well by the 

2C3K model.  

When the underlying kinetics of tracer uptake in all imaged tissues are not well described by a 

simple compartment model, as for the FMISO kinetics studied in this work, it is advantageous to 

perform 4D-PET reconstruction using more flexible linear kinetic models, the spline-residue model 

proving the best of the models we studied. Temporal roughness penalties improve the performance of 

4D-PET reconstruction algorithms based on linear kinetic models, the optimal penalty function 

depending on the linear model being used.  
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Algorithm 
Kinetic Model Fitted During 

Reconstruction 
Bias (%) S.D. (%) 

MAP None 7.9 15.8 

Nested-MAP 2C3K -4.2 8.4 

Nested-MAP 
Adaptive-Knot Cubic B-Splines 

(∫[[𝑓(2)(𝑡)]
2

𝑑𝑡 Penalty) 
2.6 12.1 

Nested-MAP Spectral Model (|휃|2 Penalty) -3.2 5.7 

Nested-MAP 
Spline-Residue Model (|휃|2 

Penalty) 
-0.1 7.7 

Model 
Healthy 

Lung 

Healthy 

Spine 

Hypoxic 

Tumour 

Normoxic 

Tumour 

2C3K 6.64e+05 5.65e+05 4.57e+05 3.94e+05 

3C5K 4.53e+05 3.50e+05 1.84e+05 1.31e+05 

Adaptive-Knot Cubic B-Splines 3.63e+05 1.97e+05 1.87e+05 1.48e+05 

Table 1. Weighted RSS errors for model fits to patient TACs calculated using leave-one-out cross-

validation. The lowest RSS value for each tissue region is shown in bold. Fits that passed the Wald-

Wolfowitz runs test at the 5% significance level are underlined.  

Table 2. Mean signed parameter bias and standard deviation (S.D.) in kflux parametric maps of the 

realistic phantom, averaged over the sub-region shown in Figure 3(b). The maps were obtained 

from image sequences reconstructed using the conventional (non-4D) MAP algorithm, and the 

2C3K and linear model-based nested-MAP reconstructions (with their optimal temporal roughness 

penalties). Bias and S.D are expressed as percentages of the average ground-truth kflux value across 

the phantom sub-region. The lowest bias and S.D values are highlighted in bold and underlined.  
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Cubic B-Splines Spectral Model Spline-Residue Model 

Figure 1. Comparison of typical shapes of normalized (a) cubic B-spline, (b) spectral model and (c) 

spline-residue model basis functions.  

(a)   (b)   (c)   

Page 31 of 42 AUTHOR SUBMITTED MANUSCRIPT - PMB-106734.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



32 
 

 

 

 

 

 

 

 

 

 

  

 

Free tracer 

in arterial 

blood 

Compartment 1: 

free intra-tumour 
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Perfusion and diffusion Binding 
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bound intra-

tumour tracer 
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in arterial 

blood 
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bound intracellular 
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Figure 2. Schematic diagrams showing irreversible (a) two and (b) three tissue compartment models 

of FMISO uptake. Flows between compartments are defined by rate-constants (k values) and 

compartment tracer concentrations.  

 

(a)   

(b)   
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Figure 3. (a) Image of the final time-frame of the realistic phantom, the white box marking the sub-

region (b) of the phantom for which parametric maps were calculated.    

 

(a)   (b)   
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(a)   (b)   

(c)   (d)   

Figure 4. 2C3K, 3C5K and adaptive-knot cubic B-spline fits to the TACs obtained from (a) hypoxic 

tumour, (b) normoxic tumour, (c) healthy lung and (d) healthy spine ROIs in an FMISO dPET image 

sequence of a stage IV NSCLC patient.  
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Figure 5. Comparison of image reconstruction results obtained for the realistic (first column) and 

simplified (second column) phantoms using 4D algorithms based on the (a, b) cubic splines, (c, d) 

spectral and (e, f) spline-residue models with different temporal roughness penalties. The plots show 

image noise (weighted standard deviation, 𝜎𝑤) versus bias at each reconstruction iteration, and have 

different scales to allow clear visualisation of performance differences between the different penalty 

functions.  

(a)   (b)   

(c)   (d)   

(e)   (f)   
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(a)   (b)   

(c)   

Realistic Phantom 

(d)   

Figure 6. Comparison of image quality metrics for 4D reconstructions of the realistic phantom based 

on linear models (with their optimal temporal roughness penalty) and on the 2C3K model. The noise 

and bias metrics are averaged over the whole patient (a, b) and tumour (c, d) phantom regions, and 

over the entire scan time (a,c) and first 120 s (b,d).  
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Figure 7. Comparison of image quality metrics for 4D reconstructions of the simplified phantom based 

on linear models (with their optimal temporal roughness penalty) and on the 2C3K model. The noise 

and bias metrics are averaged over the whole patient (a, b) and tumour (c, d) phantom regions, and 

over the entire scan time (a,c) and first 120 s (b,d).   

 

 

Comparison of image quality metrics produced by the linear model (using the optimal temporal 

Simplified Phantom 

(a)   (b)   

(d)   (c)   
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(a)   (b)   

Figure 8. (a) Fractional iteration-to-iteration change in total mean square error (TMSE) versus iteration 

number, plotted for 2C3K and linear model-based nested-MAP reconstructions of the realistic 

phantom, the linear model-based reconstructions using the optimal temporal roughness. (b) A 

magnification of the rectangular region outlined in (a).  
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Figure 9. Voxel-by-voxel plots of (a) the absolute bias and (b) the noise (standard deviation) in the 

kflux parametric maps of the sub-region of the realistic phantom obtained from image sequences 

reconstructed using the conventional (non-4D) MAP algorithm, as well as using the 2C3K and linear 

model-based nested-MAP reconstructions (with their optimal temporal roughness penalties). Bias and 

standard deviation values are expressed as percentages of the average ground-truth kflux value across 

the phantom sub-region.  
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(a)  

(d)  

(b)  

(c)  

Figure 10. (a) Bias and (c) noise (standard deviation) of fitted parameter values in parametric maps 

derived from the 4D-PET reconstructed images of the realistic phantom, averaged over the entire 

parametric map of the image sub-region shown in Figure 3b. Values are plotted for each of the kinetic 

parameters as fractions of those obtained for the same parameter from analysis of conventional (non-

4D) MAP-reconstructed images. Results for the k3 parametric maps obtained from the 2C3K, spectral 

and spline-residue model based 4D reconstructions are re-plotted on larger scales in (b) and (d) to 

make them visible. 
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(a)  (b)  

(c)  (d)  

Figure 11. (a) Bias and (c) noise (standard deviation) of fitted parameter values in parametric maps 

derived from the 4D-PET reconstructed images of the simplified phantom, averaged over the entire 

parametric map of the image sub-region shown in Figure 3b. Values are plotted for each of the kinetic 

parameters as fractions of those obtained for the same parameter from analysis of conventional (non-

4D) MAP-reconstructed images. Results for the k3 parametric maps obtained from the 2C3K, spectral 

and spline-residue model based 4D reconstructions are re-plotted on larger scales in (b) and (d) to 

make them visible. 
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Simplified Phantom   Realistic Phantom   

(b)   (a)   

(d)   (c)   

Figure 12. (a, b) Bias and (c, d) noise (standard deviation) of fitted parameter values in parametric 

maps derived from the 4D-PET reconstructed images of the realistic phantom, averaged over the 

hypoxic tumour region alone. For each of the kinetic parameters, the values plotted are fractions of 

those obtained for the same parameters from analysis of conventional (non-4D) MAP-reconstructed 

images.  
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