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Abstract 

Tuberculosis (TB) is an important communicable disease affecting the human 

population world-wide. Despite the efforts of the scientific community, 

national governments and WHO in controlling the disease, TB still remains a 

major killer in resource poor settings. New rapid assays and techniques that 

are simple and cost-effective are urgently needed to identify, treat and 

understand pathogenesis including the geographical distribution of the 

disease. The aim of the thesis is to develop a novel genomic mapping tool 

using Insertion Element, IS6110 that could aid in epidemiological studies of 

Mycobacterium tuberculosis complex (MTBC) in low and middle income 

countries.  

IS6110, a bacterial transposon, plays an essential role in changing the 

physical and biochemical traits of MTBC. Due to their transposition in TB 

genomes, they are used as epidemiological markers for differentiation of TB 

organisms and the mapping of these elements could also shed light on the 

putative altered function of adjacent genes. In the era of Whole Genome 

Sequencing (WGS) where repeat elements are difficult to sequence with 

short read technologies, a rapid and simple method of insertion site mapping 

using IS6110 FAFLP PCR was developed. This work is aimed at developing 

a rapid, cost-effective and robust genomic tool box exploiting the IS6110 

FAFLP PCR assay that can both identify and characterise the TB genotypes / 

genetic lineages in any geographical location. 

For the first time using the assay above, TB samples from Nepal were 

categorised into different genetic lineages. Fifty-five percent of the samples 
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analysed belong to Principal Genetic Group 1 (PGG1), Beijing and Central 

Asian strains.  Also, new primers were designed targeting the Beijing and the 

T- groups using the FAFLP derived data that gave rise to the development of 

rapid lineage specific PCR assays. In addition, it was noticed that 3.9% of the 

Nepalese strains tested in this research work were likely multi-drug resistant 

(MDR-TB) using PCR targeting the Rifampicin-resistance-determining region 

(RRDR) of the rpoB region. 

It is demonstrated here that IS6110 FAFLP methodology could easily 

characterise the TB samples into different genetic lineages provided they 

have more than four IS6110 copies. In addition, lineage specific PCR does 

not need any expensive instruments or reagents except for PCR blocks and 

gel visualisers, and could be very effective in the rapid identification of 

different TB genotypes within hours. These data also add to knowledge about 

the circulating strains of TB in Nepal, currently a poorly characterised region 

of the world in this regard, and could help in contact tracing studies by 

epidemiologists. The IS6110 FAFLP technique thus can be employed in any 

geographical location to map TB genetic lineages where there is little or no 

information available on the prevailing TB strains. 
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Outline of the thesis 

This research work is divided into chapters that explain the development of 

an IS6110 FAFLP genomic tool box that could be used in resource poor 

settings.  

Chapter 1 sets the scene for this thesis by reviewing the literature 

extensively. It gives a brief introduction about tuberculosis infection including 

diagnostics, treatment and TB epidemiology. Then an extensive review of the 

available molecular epidemiological markers is discussed including the 

IS6110 marker. The chapter ends with the overview of the study setting 

(Nepal), leading to aims and objectives of this research work. 

Chapter 2 discusses the general methods that were used to achieve the 

objectives of this project. 

Chapter 3 describes in detail how the IS6110 FAFLP PCR assay was 

developed and standardised. 

Chapter 4 shows for the first time how the standardised method was tested 

by mapping the IS6110 insertion sites in the reference genome H37Rv and 

by showing the development of rapid detection PCR targeting specific 

lineages. 

Chapter 5 describes characterisation of TB samples from Nepal, a resource 

poor setting, into different TB genetic lineages for the first time using IS6110 

FAFLP PCR. 
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Chapter 6 describes rifampicin sensitivity in the Nepalese TB samples using 

RIF resistant PCR assay. 

Chapter 8 finally summarises all the above chapters and concludes by 

putting the results into context. 
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Chapter 1 Introduction  
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Tuberculosis (TB) caused by the Mycobacterium tuberculosis complex 

(MTBC), is ranked as one of the top ten causes of death worldwide (WHO 

2015) with an estimated 10.4 million people falling ill with TB and 1.3 million 

TB deaths in 2016, exacerbated by HIV co-infection and the development of 

drug resistance (1). 

1.1 Mycobacterium tuberculosis complex (MTBC)  

Mycobacterium tuberculosis belongs to the genus Mycobacterium in the 

family Mycobacteriaceae, order Corynebacteriales and phylum 

Actinobacteria (2). 

TB caused by the MTBC encompasses the following members including 

proposed new members that affect mongooses and meerkats (3–6). 

1. M. tuberculosis  

2.  M. africanum (phylogenetic variant of M. tuberculosis). 

3. M. bovis  

4. M. caprae  

5. M. microti  

6. M. pinnipedii  

7. “M. mungi” 

8. “M. orygis”  
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9. “M. suricattae”  

10. “M. canetti” 

1.2  TB Timeline 

Before Robert Koch, two French physicians Rene Theophile Hyacinthe 

Laennec and Jean-Antoine Villemin reported in 1821 and 1868 respectively 

the first accounts of tuberculosis, even though the causative organism was 

unidentified at that time (7,8). However, Robert Koch’s enormous body of 

work from identification of the microorganism, developing the staining 

technique and culture methods for Mycobacterium tuberculosis, illustrating 

the mode of transmission to recommending isolation of the patients with 

active TB has to be considered as the greatest achievement in the science of 

TB and has now paved the way for various studies. Koch’s failed study to 

treat tuberculosis by using supernatants from M.tuberculosis culture which is 

now known as ‘tuberculin’ when injected in the skin gave rise to cell-mediated 

immune responses which are responsible for the clinical manifestations of 

the disease (9,10). Subsequently in the years that followed, various scientists 

and physicians were able to relate that the host immune responses 

especially cell-mediated immune responses played a major role in the 

pathogenesis of TB (9). The important discoveries and outcomes in relation 

to the TB timeline is given in the table 1.1 (adapted from (11)). 
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Table 1-1 TB timeline showcasing the important discoveries and events from the 19th 
century to the 21st century 

 

(BCG- Bacille Calmette Guerin, UNICEF- United Nations Children’s fund, WHO- World 
Health Organisation, DOTS- Directly Observed treatment short-course) 

 

Koch's discovery

BCG vaccine

Streptomycin (S)

Randomised Control Trials (RCT)

Isoniazid's (H) use in treatment

Pyrazinamide (Z)

Rifampicin (R)

Ethambutol [E]

S+H+R+E therapy and drug resistance

UNICEF vaccination programme

H+R+Z+E

HIV impact

Global Impact

DOTS implementation

TB genome

WHO initiative for TB elimination

STOP TB framework

Post 2015 global TB strategy

TB elimination

1
8

8
2

1
9

2
1

1
9

4
3

1
9

4
8

1
9

5
2

1
9

5
4

1
9

5
7

1
9

6
1

1
9

7
0

-
1

9
7

4
1

9
8

0
-

1
9

8
9

1
9

9
1

1
9

9
5

1
9

9
9

2
0

1
4

2
0

1
5

2
0

2
0

2
0

5
0

Rober Koch discovers the causative organism of tuberculosis, M. 

tuberculosis

An attenuated vaccine from  M.bovis  developed by French scientists 

Albert Calmette and Camille Guerin was put into use in humans

Streptomycin discovered in 1943 by american scientists, Selman 

Waksman, Albert Schatz, and Elizabeth Bugie, was found to be 

exhibiting antibacterial properties along with para- amino salicylic acid 

(PAS) 

First successful use of streptomycin in trials in humans

Combination therapy of S+PAS+H for 24 months

Pyrazinamide discovery

Rifampicin discovery

Ethambutol discovery and replaces PAS in combination therapy for 18 

months

Rifampicin included in combination therapy for 9-12 months and first 

outbreak of drug resistant TB in US

BCG vaccination included in UNICEF's expanded immunisation 

programme

Short term course for 6-8 months was introduced

First meeting by WHO to discuss TB-HIV coinfection

WHO declares TB as major public health issue as the TB related 

mortality was higher than previous years

Anti-TB drug resistance survey and a new framework for TB control 

including DOTS

First genome sequencing of Mycobacterium tuberculosis

WHO framework to completely eliminate TB by 2050 by adopting 

STOP TB strategy globally
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According to WHO in 2016, the Millennium Development Goal (MDG) by the 

United Nations to stop the spread of TB by 2015 has already been achieved 

in all six WHO regions, and in sixteen of the 22 high burden countries that 

collectively accounts for more than 80% of the TB cases worldwide. TB 

incidence has dropped to a level by 1.5 % every year since 2000 and 

consequently, it is 18% lower than the levels of 2000. However, it is still a 

major global health problem of the developing world in heavily populated 

countries like India and China which account for more than a quarter of new 

TB cases in addition to sub- Saharan Africa. The number of incident TB 

cases varies from country to country and it is predominantly lower in high-

income countries. (fig.1.1) (12). The MDGs have now been replaced by 

Sustainable Development Goals (SDGs) and the Stop TB strategy to the End 

TB strategy as shown in the figure 1-2 

 

Figure 1-1 Estimated rates of incidence of new TB cases world-wide, 2015  

(Taken from WHO’s global tuberculosis report 2016). 
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Figure 1-2 Milestones set by WHO to control TB by adopting End TB strategy  

(Taken from http://www.who.int/tb/strategy/end-tb/en/) 

1.3 Morphology of Mycobacterium tuberculosis 

M. tuberculosis is a rod-shaped non-spore forming aerobic acid-fast 

bacterium (see figure 1-3) having a unique cell wall structure that supports 

their survival (13). 

 

Figure 1-3 Acid fast Ziehl Neelsen staining showing rod-shaped Mycobacterium 
tuberculosis bacteria  

(https://s-media-cacheak0.pinimg.com/originals/94/40/2d/94402db464e9849cd5aeb723cb90c91c.jpg) 

http://www.who.int/tb/strategy/end-tb/en/
https://s-media-cacheak0.pinimg.com/originals/94/40/2d/94402db464e9849cd5aeb723cb90c91c.jpg
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The cell wall consists of mycolic acid covalently attached to the underlying 

peptidoglycan bound polysaccharide arabinogalactan providing a protective 

barrier against host defence mechanisms (fig 1-4) thus enabling the 

bacterium to be resistant to the action of antibiotics. In addition, the cell wall 

also contains lipoarabinomannan, a carbohydrate structural antigen on the 

outside of the organism that is immunogenic and facilitates the survival of 

mycobacteria within macrophages (14,15). 

 

Figure 1-4 Unique Cell wall structure of Mycobacterium tuberculosis  

(Taken from http://www.cell.com/cms/attachment/607349/4834477/gr1.jpg)  

 

1.4 Immunopathogenesis of Tuberculosis 

M. tuberculosis infection is caused by aerosols generated from a person 

infected with pulmonary or laryngeal tuberculosis. These droplets containing 

two to three M. tuberculosis organisms can stay airborne for minutes to hours 

after expectoration (16). The size (1-5 µm in range) and concentration of the 

http://www.cell.com/cms/attachment/607349/4834477/gr1.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3988623_idrt-6-2013-039f1.jpg
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aerosols also have been suggested to increase the TB transmission risk in 

patients with intra thoracic disease (17). The number of bacilli in the droplets, 

the virulence of the bacilli, exposure of the bacilli to the UV light, degree of 

ventilation and occasions for aerosolisation all influence transmission (fig. 1-

5). M. tuberculosis not only affects the respiratory system when it enters the 

lungs but can also affect the lymphatic system, pleura, bones/joints, or 

meninges and thus cause extra pulmonary tuberculosis (14). 

 

Figure 1-5 Pathophysiology of Tuberculosis infection  

A) Inhalation of bacilli, B) Formation of granulomas containing Macrophages and T-
lymphocytes and C) Collapse of granuloma and release of alveoli to other alveoli or other 
organs (Adapted from CDCP).  
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1.5 Clinical signs and symptoms 

The active lung tuberculosis is characterised by cough with sputum (blood at 

times), chest pains, loss of appetite, general weakness, weight loss, fever, 

and night sweats.  

The various stages of disease presentation in TB are as follows (13) as 

shown in figure 1-5: 

 In early infection or primary disease, the hosts’ immune system 

combats the infection and the patients present with fever, paratracheal 

lymphadenopathy or dyspnoea. Infection may not progress to active 

disease and could be subclinical 

 There are two stages in the active disease presentation. In early 

primary progressive stage or active disease, the immune system fails 

to prevent the onset of infection and the inflammation of tissues 

follows. As the patients have nonspecific signs like fatigue, weight loss 

and fever followed by the development of non-productive cough, the 

diagnosis could be difficult: It is because the findings on chest 

radiographs might be normal and the sputum smear microscopy might 

not contain any mycobacteria (‘negative’ result). 

 In late primary progressive/ active disease or active tuberculosis, the 

symptoms seen are productive cough leading to purulent sputum, 

progressive weight loss, chills, night sweats, respiratory crackles and 

anaemia. This state is an infectious state harbouring more bacilli than 

latent infection (18). Due to the excessive loss of both fat and lean 

tissue, this disease is also called wasting disease. Diagnosis is carried 
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out by sputum cultures as sometimes the chest radiographs appear 

normal. 

 In latent infections or latent tuberculosis infection (LTBI), mycobacteria 

persist in the body without any clinical signs or symptoms and the 

disease could be reactivated when the immune system fails to 

counteract the infection or if immunosuppressed. Also, calcification 

and fibrosis of the granulomatous lesions are noticed in radiological 

findings. The formation of granulomas for persons with intact cell-

mediated immunity is an accumulation of activated T-lymphocytes and 

macrophages. This micro-environment destroys the macrophages and 

produces early solid necrosis at the centre of the lesion but the 

bacteria survive this condition by modifying its phenotypic expression  

as suggested by Li et al. (19), by altering its expression to changes to 

pH and anaerobic growth conditions. By two or three weeks, the 

necrotic environment resembles soft cheese called caseous necrosis 

characterised by low pH, low oxygen levels and limited nutrients which 

leads to latency. Persons with adequate immunity develop fibrosis and 

calcification which contains the bacilli in these lesions whereas in 

those with impaired immunity develop primary progressive TB (20). 

The necrotic material undergoes liquefaction and the fibrous wall loses 

structural integrity in less immunocompetent persons which can then 

drain into the bronchus or a nearby blood vessel. Unique 

histopathological features of the lungs (granulomas of multinuclear 

cells, giant cells and caseation) in pulmonary tuberculosis are seen in 

figure 1-6. If the infected person coughs, droplet infection can occur 
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and also if discharged into the blood vessel it leads to extra pulmonary 

tuberculosis (fig 1.5). 

 In extra pulmonary tuberculosis, if it affects the central nervous system 

it leads to meningitis which left untreated results in deaths. If it affects 

the circulatory system causing infection of the blood stream, it leads to 

disseminated or miliary tuberculosis. When it affects the lymphatic 

system, it is called lymphatic tuberculosis and the most common 

presentation is cervical lymphadenopathy. In some cases, it is also 

shown to affect the joints, bones, pleura and the urogenital system 

(13). 

 

 

Figure 1-6 Histopathological features of lung infected by pulmonary tuberculosis 
showing caseation and formation of granulomas  

(Accessed from http://intellectualventureslab.com/assets_uploads/pulmonary_diagram_inflammation.jpg) 

 

http://intellectualventureslab.com/assets_uploads/pulmonary_diagram_inflammation.jpg
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1.6 Diagnosis of active tuberculosis 

For TB treatment to be effective, a rapid and accurate diagnosis of drug 

resistant TB is important in ensuring the timely clinical intervention and 

controlling the rise in drug resistant TB (21,22). According to the WHO Global 

Tuberculosis report 2014, only 64% of the estimated nine million people were 

reported for newly diagnosed TB cases and more than three million cases 

went unnoticed by the health authorities either because they were not 

diagnosed or not reported to National TB Programs (NTP) (23). The 

notification rate increased from 2013-2015 according to the recent report by 

WHO due to the increase in notification rate (34%) by India. In 2015, 6.1 

million new TB cases were notified out of 10.4 million incident cases (12). 

Even though TB diagnosis still depends on both the smear microscopy and 

sputum culture for identification in many countries, modern techniques are 

rapidly shifting the diagnostic landscape of tuberculosis.  

The diagnosis of TB disease generally is based on a combination of clinical 

symptoms, chest X-ray examination and laboratory tests. In a TB dedicated 

laboratory clinical setting, diagnosis of active tuberculosis involves sputum 

smear microscopy, identification of the TB bacillus using culture techniques, 

phenotypic drug susceptibility tests and molecular tests. If infection is 

suspected then tuberculin skin test (TST), the interferon gamma release 

assays (IGRA) and acid fast staining of the sputum smear are conducted. 

(21). 
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1.6.1 Chest radiographs 

Chest radiographs are important in the diagnosing of active tuberculosis with 

prominent features including upper lobe consolidation, cavitation and pleural 

effusions. Additional tests like computed tomography (CT) scanning are 

needed along with the other tests for the diagnosis of progressive primary 

tuberculosis or post primary tuberculosis which occurs at the first or second 

year after an initial infection (24,25). 

Following chest radiographs or the initial diagnosis by the clinical symptoms, 

the common tests used as initial screening tests to differentiate the TB 

infection from disease are the tuberculin skin test, interferon-gamma release 

assays (IGRA) and Acid Fast Bacilli (AFB) smear staining (26). 

1.6.2 Tuberculin Skin test (TST) or Mantoux test 

TST is a preliminary test to identify people who are suspected to have TB 

infection. A sterile concoction of antigens from seven strains of M. 

tuberculosis called purified protein derivative (PPD) or tuberculin is injected 

intradermally to test the sensitivity of the skin to the PPD after 48 and 72 

hours and the test is interpreted based on the size of induration. A positive 

reaction should be considered with caution as it does not exclude previous 

BCG vaccination, Mycobacteria other than tuberculosis (MOTT) infection and 

latent TB. Also due to the increased frequency of false negatives, a negative 

reaction does not exclude active or latent TB infection and it warrants extra 

tests. 
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1.6.3 Interferon- Gamma release assay (IGRA) 

The IGRA test is used in diagnosing TB infections and has been reported to 

be more sensitive than TST for both active and latent pulmonary TB 

infections. It quantifies the T-cell response especially the interferon-gamma 

(IFNƔ) by either directly measuring the concentration of IFNƔ in the serum 

(Commercial kit: Quantiferon TB Gold) or by counting the number of T-cells 

that releases IFNƔ (Commercial kit: TSPOT.TB)(26).  

1.6.4 Sputum microscopy 

Sputum smear microscopy is preceded by acid-fast staining (Ziehl-Neelsen 

or Auramine fluorochrome stains are currently used) of clinical material and is 

the most important test for the diagnosis and screening of active tuberculosis 

in poor and low-income countries (27). WHO describes the presence of at 

least one acid fast bacillus (AFB) in at least one sputum sample as a smear 

positive pulmonary TB case. The guidance for interpreting smear results by 

WHO (a similar but slightly different classification is followed by Centers for 

Disease Control and Prevention in the USA) is given in table 1-2. It is widely 

used and effective in countries where TB is endemic and the sensitivity of 

microscopy has been reported to be higher than 80% (28,29) but a recent 

report by WHO states that it is around 20% (30). Sensitivity of the test 

decreases in HIV positive patients than in HIV negative cases and thus been 

associated with poor prognosis including death (31,32). 
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Table 1-2 Acid Fast Bacilli (AFB) Smear classification  

(Adapted from WHO TB microscopy handbook)  

 

Number of AFB seen per stated field 

(100x objective) 

Smear Interpretation (Grade) 

0 AFB in 100 fields Negative 

1-9 AFB in 100 fields Record exact number of bacilli 

10-99 AFB in 100 fields 1+ 

1-10 AFB / field, check 50 fields 2+ 

>10 AFB / field, check 20 fields 3+ 

1.6.5 Sputum culture 

Culturing of mycobacteria follows the staining protocols either in a solid or a 

liquid medium after decontamination of the specimen. The recommended 

solid media by the European Respiratory Society, WHO, the American 

Thoracic Society and the International Union Against Tuberculosis (IUAT) are 

Lowenstein- Jensen (LJ) and Middlebrook 7H10 and 7H11 (MB) media (see 

fig 1-7 and 1-8). WHO has offered guidelines for the use of liquid media like 

Mycobacterium Growth Indicator Tube (MGIT) since they offer a more 

sensitive and quicker turnaround time than solid media (33,34). 
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Figure 1-7 LJ medium showing dry, rough, raised creamy white or yellow colour 
colonies, characteristic of M. tuberculosis 

(Taken from https://microbeonline.com/preparation-uses-lowenstein-jensen-lj-medium/) 

 

 

 

 

 

 

 

Figure 1-8 Bactec MGIT system for detection of M. tuberculosis drug resistance 

(Picture adapted from www.bd.com) 
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1.6.6 Molecular identification test and drug susceptibility tests 

As drug resistance is a major problem in controlling tuberculosis especially 

with the rise in multidrug resistant (MDR) and extensively drug resistant 

(XDR) TB, drug susceptibility tests are carried out before starting treatment 

for tuberculosis. These tests are either phenotypic tests involving culture 

techniques or by adopting molecular tests. Phenotypic methods are based on 

testing sensitivity to first line anti-TB drugs and the most common being 

rifampicin, isoniazid, ethambutol and pyrazinamide. As these tests are time-

consuming and may be ineffective in detecting low-level drug resistance, 

molecular tests are widely used. Commercial kits are available on the market 

based on the PCR amplification of specific genes including drug resistance 

genes and these molecular assays are grouped as either Nucleic Acid 

Amplification Tests (NAATs) or Line Probe Assays (LPA). The GeneXpert 

assay, a fully automated RT-PCR NAAT assay,  is most suitable for patients 

with suspected pulmonary tuberculosis and for specific forms of 

extrapulmonary tuberculosis as in the case of meningitis in people with HIV 

and lymphadenitis, but not pleural, pericardial, or abdominal tuberculosis (34) 

and also determine the resistance to one of the most common TB drugs, 

Rifampicin (34). In countries like Tanzania which is a TB endemic country, 

the GeneXpert assay has been cost effective in determining the rifampicin-

resistant status in the patient population (35). A second generation cartridge, 

the Xpert MTB/RIF Ultra (Ultra) is due to be launched on world TB day in 

2017 by Cepheid and Rutgers and assessed in the TB centres globally using 

the current GeneXpert instruments (12).  
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1.6.6.1 Line Probe assays (LPA) 

Line Probe Assays are based on the PCR amplification of specific fragments 

of the M. tuberculosis genome followed by hybridisation of PCR products to 

the oligonucleotide probes immobilised on membranes. The commercial kits 

that are available in the current market are INNO-LiPa Rif.Tb (Innogenetics, 

Belgium), GenoType MTBDR/ MTBDRplus (Hain Lifescience, Germany) and 

Genotype MTBDRsl (Hain Lifescience, Germany). GenoType MDRTBplus is 

the only kit that could detect isoniazid resistance and GenoType MTBDRsl 

detects resistance to fluoroquinolones and ethambutol , the second-line 

drugs that are used in MDR-TB and XDR-TB cases (36–40). There are 

several next generation technologies including GeneXpert cartridges and 

Hain MTBDRsl assays or rapid next generation whole genome sequencing 

methods, are in the advanced stages of development (41,42). 

1.6.7 Diagnosis of Latent tuberculosis 

Diagnosis of LTBI depends upon two factors: a. Likelihood of infection with 

M. tuberculosis and b. Likelihood of progression to TB disease (43). The 

treatment strategy for LTBI is shown below in table 1.3. 
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Table 1-3 Summary of recommendations for testing for latent tuberculosis infection 
(LTBI)  

(taken from 43). 

 

Though conventional technologies still play a major role in the diagnosis of 

TB, the recent availability of new rapid tests has the potential to improve TB 

care. For example, the introduction of GeneXpert MTB/RIF assay using the 

GeneXpert instruments has enabled the rapid detection of tuberculosis in 

hours, in countries participating in the STOP TB campaign. In addition this 

system, by detecting rifampicin resistance more rapidly,  has helped in the 

treatment of MDR-TB cases much more efficiently and also has been 

recommended for HIV-coinfected cases where smear microscopy tests could 

be less sensitive as described earlier (31,44). In the year 2015 alone, 6.2 

million test cartridges were procured in 122 of the 145 countries eligible to 

purchase them at concessional prices showing a shift in the diagnosis 

landscape of tuberculosis (12). There is still a requirement for newer 

technologies which are much more affordable than the currently available 

strategies (45). 
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The advancement in new diagnostics and drugs that has been progressing 

over the last decade would help in combatting tuberculosis by improving the 

diagnosis of the disease and also early detection of drug resistant 

tuberculosis (37,46). As per the review by Drobniewski et al., it is important to 

identify TB cases including the drug resistant strains, early and accurately 

(37) and to arrest TB transmission by providing appropriate therapy and 

curing patients. 

1.7 TB treatment  

A minimum of six months’ treatment is recommended which is divided into 

two phases, the initial phase and the continuation phase (44). The standard 

treatment regimen according to WHO (47) for both pulmonary TB including 

HIV-coinfected individuals and for extra-pulmonary TB cases is as follows: 

a. Initial phase: Daily medication or therapy five days/week under directly 

observed therapy (DOTS) with isoniazid (INH), rifampicin (RIF), pyrazinamide 

(PZA) and ethambutol (EMB) for 2 months. A sputum smear test is taken and 

the next phase is only started if the test is negative. 

b. Continuation phase: Daily medication or therapy five days/ week under 

DOT with isoniazid and rifampicin for the next four months. 

According to the review by Fonseca et al., (48) multidrug resistant (MDR) and 

extensively drug resistant (XDR) TB strains pose a significant threat to the 

control of tuberculosis as they develop resistance to first line drugs 

mentioned above and work still needs to be done to understand the 

mechanism of resistance. If there is resistance to two of the first line drugs, 
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RIF and INH, then these strains are termed as MDR- TB strains. The 

treatment course for MDR-TB lasts for more than 2 years with second line TB 

drugs like fluoroquinolones and injectable aminoglycosides like streptomycin. 

Anti-TB drug resistance occurs due to the chromosomal mutations at a rate 

of 10-3 to 10-9 in genes encoding drug targets (49,50). If the treatment is not 

completed or if the proper regimen is not followed then it results in the poor 

treatment of MDR-TB patients thus amplifying the resistance of the first line 

drugs and leading to the development of XDR-TB (34). 

1.7.1 Rifampicin (RIF) 

Rifampicin inhibits RNA transcription and thereby protein synthesis by 

binding to the rpoB encoded subunit of RNA polymerase. Mono resistance to 

RIF is a rare occurrence as nearly 85-90% of RIF resistant strains are also 

resistant to INH. RIF resistance therefore acts as a surrogate marker for 

MDR-TB (51–53). A high percentage of mutations (90-95%) occurs in the 

81bp rifampicin resistance-determining region (RRDR) of the rpoB gene 

between codons 507-533 and a lower level of resistance (5-10%) is seen in 

the N-terminal or cluster II region of rpoB / other genes at codon V146 

(51,54). It has been suggested that higher frequency of mutation is seen in 

some strains at certain positions of the RRDR, especially at the codon 531 

where serine is replaced by leucine, due to the higher relative strain fitness 

than other strains (55).  

1.7.2 Isoniazid (INH) 

INH a bactericidal drug which targets the NADH- specific enoyl acyl carrier 

protein (ACP) reductase (inhA) and prevents the production of mycolic acid 
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which leads to the inhibition of dividing mycobacterial cells (51,56). INH 

resistance is commonly noticed due to mutations within the katG gene at 

codon 315 or low level resistance mutations are seen in the inhA regulatory 

region (51,56,57). However, oxidative stress does not seem to impair the 

mutation rates in Isoniazid resistant strains (58). 

1.7.3 Pyrazinamide (PZA) 

PZA, activated by pyrazinamidase (pncA), is effective against M. tuberculosis 

by inactivating the fatty acid synthesis pathway. In addition, it also prevents 

protein translation and the ribosome sparing process of translation by binding 

to ribosomal protein S1 (rpsA) in M. tuberculosis.  PZA resistance is seen in 

strains containing mutations in pncA or rpsA (51,59). 

1.7.4 Ethambutol (EMB) 

EMB prevents the formation of cell wall assembly by inhibiting the synthesis 

and polymerisation of cell wall arabinan leading to the accumulation of free 

mycolic acid. Resistance mutations are commonly seen in three emb genes 

at codons 306, 406 and 497(60). 

1.7.5 Second line drugs 

Some of the second-line drugs used in TB treatment, which include 

Streptomycin (SM), Kanamycin (KAN) and Amikacin (AMI) inhibit protein 

synthesis and are bactericidal drugs. Fluoroquinolones are also widely used 

as anti-TB drugs especially Oflaxacin (OFX), Levofloxacin (LFX) as 

bacteriostatics and Gatifloxacin (GFX) and Moxifloxacin (MFX) as 

bactericidals by inhibiting DNA gyrase leading to cell apoptosis by preventing 
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DNA replication and repair as shown by the Rapid Evaluation of Moxifloxacin 

in Tuberculosis (REMox TB) phase 3 study trial by Gillespie et al  (61,62). 

1.7.6 Vaccination 

The BCG (Bacillus Calmette-Guerin) vaccine, designed to prevent 

tuberculosis is derived from continuous passaging of an M. bovis strain and 

has been in the public health domain for the last eighty years (63,64) This 

vaccine induces a strong T-cell response by activating the Th1 cells but it 

offers only limited protection in adults against pulmonary tuberculosis as the 

immune response is not prolonged enough to prevent M. tuberculosis 

infection developing in older individuals(65,66).(64), but is effective in infant 

TB meningitis (67). In the last decade there has been continuous research to 

develop an effective vaccine that could either complement the BCG vaccine 

or act independently to prevent TB infection and provide a long- term 

protective immunity. The Modified- Vaccinia – Ankara (MVA) 85A vaccine 

that was trialled in children, was found to be ineffective in children in offering 

protection against TB (68).  

1.8 Molecular markers in TB epidemiology 

Various molecular tools have been employed to study the epidemiology of 

tuberculosis based on the availability of the instruments and the ability to 

genotype clinical isolates. The molecular tools are broadly divided into non-

PCR based tools - Restriction Fragment Length Polymorphism (RFLP) and 

Polymorphic GC-rich Repetitive Sequences RFLP (PGRS-RFLP) and PCR 

based tools (Spoligotyping, Mycobacterial Interspersed Repetitive Unit – 
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Variable Number Tandem Repeat (MIRU-VNTR), Amplified Fragment Length 

Polymorphism (AFLP) and Whole Genome Sequencing (WGS) methods. 

1.8.1 IS6110 and IS6110 RFLP 

Bacterial transposons and Insertion Sequences (IS) are evolutionarily 

informative as they alter the genetic makeup of the host organisms during 

transposition (69). Insertion sequences are mobile genetic elements that 

code for transposases evolved to move the IS around the genome. A study in 

1991 (70) showed that the M. bovis BCG insertion element IS987 is virtually 

identical to the previously described IS elements IS986 (71) and IS6110 from 

M. tuberculosis. The only biologically significant difference is the presence, in 

IS987, of ORFa (Open Reading Frame) in one single ORF, whereas IS986 

and IS6110 contain ORFa, composed of two different ORFs (70,72) (see 

figure 1.9). 
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IS6110 ORFa1/a2: TAPACPETPVLGKDGVMSGGSSRRYPPELRERAVRMVAEIRGQHDSEWAAISEVARLLGVGCAETVRKWVRQAQVDAGARPGTTTEESAELKRLRRDNAELRRANAILKTASAFFAAELDRPAR 

 

IS986 ORFa1/a2 : TAPACPETPVLGKDGVMSGGSSRRYPPELRERAVRMVAEIRGQHDSEWAAISEIARLLGV- CAETVRKWVRQAQVDAGARPGTTTEESAEIKRLRRDNAELRRANAILKTASAFFAAELDRPAR 

IS987 ORFa:   TAPACPETPVLGKDGVMSGGSSRRYPPELRERAVRMVAEIRGQHDSEWAAISEVARLLGVGCAETVRKWVRQAQVDAGARPGTTTEESAELKRLRRDNAE 

     *********************************************************************   ********   ****************************************   ************ 

 

Figure 1-9 Translated sequence alignment of ORFa in IS6110 and IS986 both from M. tuberculosis and IS987 from M. bovis BCG  

(Asterisks denotes the matching amino acid residues in all three sequences) (Adapted from (70)). 

 

  

ORFa ORFa
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Tracing the movement of these elements in the host genomes is productive 

in the identification of different strains of microorganisms. IS can transpose 

within the genomes thereby altering the position and even function of the 

adjacent genes, for example insertion of an insertion element (IE), IS200-like 

element, into the genome of Yersinia pestis inactivates the invasin gene 

which enables the bacteria to invade the host organism (73). IS6110 

insertions have been found in some of the essential genes in drug resistant 

strains (74). These changes contribute to the evolution of microorganisms 

introducing genomic plasticity facilitating survival in different environmental 

conditions (75). 

IS elements have been used as taxonomic markers over the years in certain 

bacteria like Bordetella pertussis, Salmonella typhi etc. (76). An IS-like 

element IS6110, with inverted (28bp with 3 mismatched bases) and direct 

(3bp)repeats at its ends, was identified as a repeated sequence from an M. 

tuberculosis cosmid library constructed in pHC79 (77,78) by screening the 

library with labelled M. tuberculosis total DNA. This element is a 1.36kb 

insertion sequence found only in MTBC members and belongs to the 

enterobacterial Insertion Sequence 3 (IS3) family of insertion sequences. It 

contains an ORF encoding transposase of 1037bp length and has 28bp 

imperfect inverted repeats at both the ends of the sequence (78) (fig 1-10). 
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Figure 1-10 Pictorial representation of IS6110 sequence of M. tuberculosis genome showing Direct (DR in red colour) and inverted repeat (IR in 
green colour) sequences 
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The first instance of the use of IS6110 as a probe for the identification of 

MTBC was reported in 1990 (78). MTBC from uncultured specimens, were 

identified using primers designed from the IS6110 sequence in a PCR 

reaction and results were successfully correlated with other identification 

procedures (78). This element is still being used as a tool for DNA 

fingerprinting to the present day as it is conserved in the MTBC (79,80). 

IS6110 copy numbers vary from strain to strain; one in M. bovis and >25 in 

M. tuberculosis (81). Also, three to four nucleotides of the genomic sequence 

are repeated at the extremities of some IS6110 copies or the site of insertion 

suggesting a role of transposition of these elements in MTBC genomes (82). 

An oligonucleotide ligation assay (OLA) using fluorescently labelled IS6110 

oligonucleotides was employed to detect MTBC (83) Since then the location 

of the IS6110 element has been used a powerful tool for the rapid 

fingerprinting of isolates of MTBC (84–86),  including isolates of M. bovis 

(87,88). As there is variation in the copy numbers of IS6110 in different 

strains and because IS6110 does not induce in vivo any major genomic 

rearrangements for approximately five to eight years (90,91). IS6110 

Restriction Fragment Length Polymorphism (RFLP) was the ‘gold standard’ 

typing method in strains with more than five copies  before being replaced by 

the MIRU-VNTR technique (92–94) (see section 1.8.4). In a study reported 

by Warren et al in 2002, it was found that the rate of transposition occurs at a 

rate of 18.6% for every 6.5 years i.e. 2.9% per year, thereby altering the 

genotype of the organism (91) It has been suggested that there might be 

differences between different lineages, one change every 3 years in Euro-
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American lineage and it might take ten times longer to observe one change in 

East Asian lineage (95). 

Also, comparison of the number and length of fragments generated due to 

IS6110 insertion in isolates proved to be discriminatory (96). Sun et al., in 

2004 showed that spoligotyping and Variable Number Tandem Repeats 

(VNTR) (see section 1.8.4) analysis can further support the resolution of 

IS6110-defined low copy number isolates. With these advantages put aside, 

IS6110 RFLP is however considered a laborious procedure involving steps 

from culturing the mycobacteria, extraction of DNA, restriction enzyme 

digestion, Southern Blotting and IS6110 probing.  

1.8.1.1 Role of IS6110 in the biology of M. tuberculosis 

The advantages that transposition of this element brings to the host either via 

gene disruption, gene excision or by enhanced gene expression suggests 

that they offer the selective advantage to strain fitness and may influence the 

genomic plasticity of these organisms. It can up-regulate downstream genes 

through an outward-directed promoter in its 3' end, thus adding to the 

significance of this element. The ability to activate genes during infection 

suggests that IS6110 might have the potential to influence growth 

characteristics of different strains, and indicate another mechanism by which 

IS6110 can impact M. tuberculosis evolution (97). Gene disruption or 

excision leads to loss of gene expression and enhanced gene expression 

leads to over - expression of genes as seen in the Proline Glutamate- 

polymorphic GC rich Sequences (PE-PGRS gene -Rv1468c). This effect of 

supplying an outward-directed promoter-like sequence is also seen in ctpD 
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gene (a cation transporting ATPase) of a Beijing genotype useful for ctpD 

transcription (97,98). It is reported that the M. tuberculosis ctpD orthologue 

resists cellular redox stress by controlling the effects of cobalt and nickel ions 

on the bacterial cell (99). Several studies have shown that IS6110 insertion 

does not affect the replication machinery or the growth patterns but suggest 

that it definitely helps the organisms to adapt to the host and the 

environment. Transposition of IS elements varies from element to element 

within the genome (100) as an element situated within a transcriptionally 

active site or downstream from an external promoter will be more mobile than 

the ones located in the non–coding regions. 

Transposition of IS6110 occurs at random, independent of IS preferential loci 

or hot-spots. However, sites of integration were not thought to be entirely 

random as different ‘hot-spot’ insertion sites have been identified previously 

that include  the DR locus (70), the ipl locus (Fang and Forbes, 1997; Fang et 

al., 1999), dnaA- dnaN intergenic region (103), the phospholipase region 

(104) and the region between Rv1754c and Rv1762c (105). The property of 

transposition rendering a distinct signature to the genomes acts as a suitable 

genetic marker for studying the divergence of MTBC from its common 

ancestor. Mapping this element in the genomes of MTBC found that it does 

not favour particular nucleotide sequences (82,106) for its insertion. Insertion 

at the DR locus is unique as it is found in a majority of the M. tuberculosis 

complex strains especially in M. bovis in that it is its only site of insertion. It is 

also considered to be the primordial insertion site in the common ancestor 

before the two species diverged with further copies appearing due to the 

transposition of the element outside the DR region (70). In low copy strains, 
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lack of mobility of the IS element due to a low transcriptional activity at the 

site of insertion could play a role in the lack of IS6110 RFLP pattern diversity 

(107). It has been shown that insertion favours regions with low GC content 

as observed in the case of insertion into the PE/PPE gene family where PE 

(75% GC) is less favoured than PPE (64%) which was also complimented by 

another study showing a mini-transposon Tn5370  favouring lower GC 

content genomic regions in M. tuberculosis (98,106,108). When there are five 

or less copies of IS6110, this DNA fingerprinting technique is however not 

very reliable. So the use of polymorphic GC rich repetitive sequences 

(PGRSs) were highlighted along with DR spoligotyping and 16S rRNA 

sequences in tandem to identify strains containing few copies of IS6110, as 

in M. bovis or strains with no copy of IS6110 in their genomes (107,109) Dale 

et al. (107) suggests that there could be a low mobility rate of transposition in 

strains with low copy numbers. 

1.8.2 PGRS- RFLP 

A specific 3.4kb fragment of the PGRS cloned in plasmid pTBN12 was used 

as a probe for differentiation of unrelated strains of TB and identification of 

related strains using identical banding patterns (110). Interpretation of the 

banding patterns is more difficult as it does not contain as many variations as 

other markers like IS6110 and also requires a large amount of DNA as well 

as being laborious and time consuming and so this technique is no longer 

used (111).  
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1.8.3 Spoligotyping 

All the members of the MTBC have the Direct Repeat (DR) locus in their 

genomes. The DR locus is a member of the CRISPR family (Clustered 

regularly interspaced short palindromic repeats) and is susceptible to 

polymorphic changes. This property was exploited for a genetic strain typing 

technique called spacer-oligo typing or spoligotyping (112,113). There are 43 

unique non-repetitive spacer sequences (35-45bp in length) interspersed with 

direct repeat sequences (36bp in length) known as direct variable repeat 

(DVR) sequences. Due to the loss of single or consecutive DVR sequences 

caused either by homologous recombination between neighbouring or distant 

direct repeat sequences or by the loss of sequences caused by the excision 

of the IS6110 element, this method is useful for discriminating between 

strains. As the DVR sequences are numbered 1-43 and are well conserved 

between strains, spoligotyping is quite a quick and useful method (see figure 

1-11 below) to interpret into either octal or hexadecimal codes (102,114). 
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Figure 1-11. Principle of spoligotyping and the processing of signals  

 (A) M. tuberculosis genome with well-conserved 36-bp direct repeats (DRs) which are interspersed by 35-43 bp of unique spacer sequences. Genetic diversity depends on the 
deletion of these spacer regions. The spacer regions are amplified by primers, and the presence of at least one spacer fragment shows a PCR positive reaction. On the 
membrane, 43 probes targeting each spacer are spotted, and a unique pattern of spoligotyping is visualized after hybridization with PCR product. (B) Signals of reference strain 
H37Rv. (C) A typical signal pattern of Beijing family M. tuberculosis strain. (D) To analyze signal patterns, the signals are converted to binary code of ‘on (1) and off (0)’. (E) The 
43-digit binary code is converted to a 15-digit octal (i.e., base 8, having the digits 0-7) designation by a two-step process. First, the 43-digit binary code is divided into 14 sets of 
three digits (spacers 1 through 42) plus one additional digit (spacer 43). (F) Each 3-digit binary set is converted to its octal equivalent, with the final additional digit remaining as 
1 or 0. The translation of binary numbers to octal numbers is done as follows: 000 = 0; 001 = 1; 010 = 2; 011 = 3; 100 = 4; 101 = 5; 110 = 6; and 111 = 7 (Taken from (115)).. 
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Spoligotyping is a simple PCR based reverse hybridisation blotting technique 

where the DR locus is first amplified  followed by the hybridisation with 43 

synthetic spacer oligonucleotide probes covalently bound to the nylon 

membranes is visualised using a chemiluminescence system (112,115) for 

the presence of a ‘dark’ band (presence of a spacer) or ‘no’ band (absence of 

a spacer). There are at least nine spoligotype-defined families with specific 

hybridisation signatures (Haarlem, Beijing, LAM, CAS, EAI, S,T, X and AFRI 

families as seen in figure 1.12 which can be further divided into 36 

subfamilies of the MTBC (113,116). This technique has a lower sensitivity 

than IS6110 RFLP but is useful in delineating strains with fewer than five 

IS6110 copies (117,118) and is the gold standard typing method for M. bovis 

strains lacking spacers 39-43. 

Currently there is a database which can be accessed online 

(http://www.pasteur-guadeloupe.fr.8081) containing both octal and binary (as 

seen above in figure 1.12) spoligotype descriptions for strains of the MTBC 

species isolated globally known as SpolDB4 (113) (see figure 1-12). It 

contains 1939 shared-types (STs) representing a total of 39,295 clinical 

isolates originating from 122 countries. Due to the low resolution of the 

marker when used alone, a publicly available database known as 

SITVITWEB that utilises SpolDB4 data along with MIRU-VNTRs (see section 

1.8.4 below) is in place for high-resolution epidemiological studies (119). 

 

http://www.pasteur-guadeloupe.fr.8081/
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Figure 1-12 Pictorial representation of SpolDB4 classification analysis of different TB 
lineages  

First column ST n°: Shared-type (ST) number of prototype pattern for the linage/sub lineage. Second 
column: lineage/sub lineage name. Third column: Binary spoligo display with black-white squares for 
respectively hybridizing-non-hybridizing spacers. Fourth column: Octal code (in red: defining octal rule). 
Fifth column: total absolute number of isolates of the subclass when variant ST spoligos are included 
(using SpolNet). Sixth column: same but expressed as percentage of total clustered isolates. * Total 
number and Frequency for these types are already included in their mother clade if known. 
Undesignated types are counted within the T1-ill-defined lineage. ** in red: octal rule defining the 
genotype (Taken from (113)). 



36 

 

1.8.4 MIRU-VNTR 

Mycobacterial interspersed repetitive units (MIRUs) in M. tuberculosis are 

grouped under minisatellites which are short highly repetitive DNA 

sequences and are 40-100 bp long. They are suggested to have a role in 

chromosome structure and rearrangement, tandem duplications, differential 

translation, transcriptional termination and antigenic variation (120). MIRUs 

are highly polymorphic at tandem repeat loci, and are useful in DNA typing 

studies in both prokaryotes and eukaryotes. They can also be referred to as 

variable number tandem repeats (VNTRs) and exact tandem repeats (ETRs). 

ETRs are 53-79bp long tandem repeats and another repeated region called 

Major Polymorphic Tandem Repeats (MPTRs) were first described in 1998. 

Some MIRU loci are positioned in the polycistronic operons and variability in 

copy number can affect the expression of the flanking genes (121). 

Mycobacterial Interspersed Repetitive Units (MIRU) first described by Supply 

et al., in 2000 and the Exact Tandem Repeats (ETR) both comprise MIRU-

VNTR, a typing technique useful in epidemiology, population genetics and 

phylogenetic studies (122). The technique involves the PCR amplification of 

the entire tandem repeat loci using primers in the DNA sequences flanking 

the repeats. The number of repeats or alleles is calculated from the amplicon 

sized by electrophoresis as the length of the repeats and the position of the 

primers are known.  Twelve MIRU loci (2, 4, 10, 16, 20, 23, 24, 26, 27, 31, 

39, 40) and five ETR loci have been used previously for this genetic 

fingerprinting technique. This method was widely adopted in the UK. There is 

some overlap of the nomenclature of these repeat schemes, for example 

MIRU 4 and MIRU 31 are the same loci as ETR-D and ETR-E respectively. 
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 Supply et al., Ii 2006 proposed a 24 loci typing technique comprising of 12 

MIRU loci, 3 ETR loci, six ‘Mtubs’ and three ‘QUB’loci. This was the gold 

standard typing method used in the UK until recently but now WGS has 

become the method of choice in the UK. A fifteen loci subset system with the 

highest evolutionary rates was proposed as the best system for first-line 

analysis of outbreak samples and the 24 loci subset for the phylogenetic 

studies which need higher resolution. The twelve loci subset, analysing the 

most variable regions, are also used for initial investigations along with data 

from other techniques like spoligotyping and IS6110 fingerprinting (123).The 

following table 1-4 shows the widely used MIRU-VNTR schemes worldwide. 

Table 1-4 Composition of the different MIRU-VNTR sets widely used  

(Taken from http://www.miru-vntrplus.org/MIRU/miruinfo.faces) 

Loci Alias 1 Alias 2 24 15 12 

154 MIRU02  X  X 

424 Mtub04  X X  

577 ETR-C  X X  

580 MIRU04 ETR-D X X X 

802 MIRU40  X X X 

960 MIRU10  X X X 

1644 MIRU16  X X X 

1955 Mtub21  X X  

2059 MIRU20  X  X 

2163b QUB11b  X X  

2165 ETR-A  X X  

2347 Mtub29  X   

2401 Mtub30  X X  

2461 ETR-B  X   

2531 MIRU23  X  X 

2687 MIRU24  X  X 

2996 MIRU26  X X X 

3007 MIRU27 QUB5 X  X 

3171 Mtub34  X   

3192 MIRU31 ETR-E X X X 

3690 Mtub39  X X  

4052 QUB26  X X  

4156 QUB4156  X X  

4348 MIRU39  X  X 

http://www.miru-vntrplus.org/MIRU/miruinfo.faces
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1.8.5 AFLP and FAFLP 

1.8.5.1 AFLP 

Amplified Fragment Length Polymorphism (AFLP) was designed as an 

identification and typing method developed in the nineties by the 

biotechnology company called Keygene (124,125). It is a selective restriction 

fragment amplification technique based on the ligation of adapters to 

genomic restriction fragments and PCR amplification with adapter specific 

primers. A small amount of genomic DNA is digested with two restriction 

enzymes and then ligated with double-stranded oligonucleotide adapters 

designed specifically with a point mutation so that the initial restriction is not 

restored after ligation. With the aid of stringent PCR conditions and adapter-

specific primers at the 3’ ends, one of the three nucleotides is extended from 

the unknown restricted genome fragment. The primers initially were 

radioactive labelled for easy identification of the fragments in polyacrylamide 

gels which were later replaced by fluorescently labelled primers for 

visualisation in automated platforms (125–127). 

Since then, AFLP has been used as a diagnostic tool in plants and  animals 

in the field of genetic mapping, phylogenetic studies, microbial typing and for 

diagnostic purposes (124,128,129). 

1.8.5.2 FAFLP 

Fluorescent Amplified Fragment Length Polymorphism (FAFLP) exploits the 

use of fluorescently labelled primers and the resulting genomic restriction 

fragments are visualised using an automated platform. Since the restricted 

fragments with base substitutions are visualised using a platform such as the 
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ABI Genetic Analyser (Life Technologies, UK), this technique can give a snap 

shot of the insertion variation on a genomic level. It has been shown that a 

single fragment difference (± 1 bp) in the FAFLP profile signifies a new strain 

(130). FAFLP should, like all other techniques, be considered in tandem with 

epidemiological data if available. FAFLP has been successfully applied to 

several organisms and some of them have been shown below in the form of 

a table (see table 1-5). It has also been used in the identification of plant 

species with 98% accuracy (131). 
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 Table 1-5 List of some common microorganisms studied using FAFLP analysis 

Microorganism References 

Campylobacter jejuni (132) 

Escherichia coli K12 MG1655 (127) 

Escherichia coli O157  (127,133) 

Listeria monocytogenes (134) 

Mycobacterium tuberculosis (130,135) 

Neisseria gonorrhoeae (136) 

Neisseria meningitides (137) 

Streptococcus pyogenes serotype M1 (126) 
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Staphylococcus aureus (138) 

Bacillus thuringiensis (139) 

Candida tropicalis  (140) 

Acanthamoeba Sp. (141) 

Salmonella enteritidis (142) 

Leptospira borgpetersenii serovar Arborea (143) 

Pseudomonas aeruginosa (144) 

Legionella pneumophila serogroup 1 (145) 
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1.8.5.3 FAFLP for TB 

1.8.5.3.1 IS6110 FAFLP 

IS6110 RFLP is a time consuming and low-throughput technique. To 

overcome these drawbacks and utilise the superior resolution property of 

IS6110, IS6110 FAFLP was developed. FAFLP derived sequence data is 

congruent with the IS6110 typing of Mycobacterium tuberculosis but it should 

be used along with other techniques like spoligotyping and MIRU-VNTR to 

supplement epidemiological data (Goulding, Stanley, et al. 2000; Thorne et 

al. 2007). In a study by Thorne et al, in 2007, it was noticed that the FAFLP 

results of 57 (97%) of the 59 clustered isolates were congruent with the 

RFLP results. Use of coloured fluorescent primers can differentiate between 

recent transmission of strains and epidemiologically unrelated but genetically 

related strains (147). IS6110 FAFLP has been used recently to identify 

common fragments in MTBC that likely evolved from common ancestors and 

were thereby able to differentiate the strains phylogenetically into different TB 

lineages (135). This study also indicated that IS6110 FAFLP contains a 

strong phylogenetic signal in modern TB lineages by assigning common 

fragments to their respective spoligotypes/Principal Genetic Groups (PGGs).  

1.8.5.4 DNA Sequencing 

From Sanger sequencing to Next generation sequencing technologies, there 

are different sequencing methodologies that can be used to generate data for 

molecular epidemiological studies of tuberculosis (148). Due to the high cost 

and low quality of the sequences both in the first 15-40bp and after 700bp of 

sequenced product, Sanger sequencing is being replaced by Next 

Generation Sequencing (NGS), also known as Whole Genome Sequencing 
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(WGS). Over the last ten years, platforms including, Illumina, Roche, ABI 

SOLID, ION PGM, Heliscope, Pacific Biosciences Single Molecule Real Time 

(SMRT) and the Nanopore MinION (149) have been used. WGS is likely to 

become the gold standard approach in the future but specialist software to 

analyse the data and a skilled workforce are still required to interpret the 

results. 

1.9 Global TB lineages 

New species of mycobacteria have evolved over the years by many adaptive 

changes to different niches (6). This has led to the reduced function or 

inactivation of certain genes. A classic example is M. leprae which has 

transformed to become an obligate intracellular pathogen by losing many 

genes involved in metabolic and respiratory pathways (150). Genes can also 

be acquired by some species like M. abscessus which is one of the 

organisms responsible for causing infection in those suffering from cystic 

fibrosis. This organism was thought to originally be a soil saprophyte, and 

has acquired essential genes to survive phagocytosis enabling intra-

cellularisation in host organisms. Recently it has been shown that M. 

abscessus has acquired resistance to arsenic and mercury which are 

typically found in resistance plasmids of environmental organisms like M. 

marinum through horizontal gene flux (151). 

All the members of the MTBC share identical 16S rRNA sequences and more 

than 99% similarity at the genomic level and yet are phenotypically different 

causing different pathologies in different host species. M. canetti is unique in 

this group in that it does not share homogeneity with the MTBC in some 
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house-keeping genes, Insertion Sequence 1081 copy number, colony 

morphology and lipid content of the cell. Brosch et al., in 2002 showed that 

M. canetti might have diverged directly from the common ancestor of MTBC 

some 30,000 to 40,000 years ago as it has Regions of Difference (RD), 

H37Rv related deletions- RvD and TB specific deletions-TbD1 that are 

absent in the other six members (114) (fig1-6). Thus genetic polymorphism 

can occur in MTBC either due to a single nucleotide mutation in specific gene 

coding regions, or by the presence or absence of a gene or region, thereby 

altering the gene content of the microorganisms (fig. 1.13). Linkage 

Disequilibrium (LD) studies now support the theory that M. tuberculosis has 

evolved clonally (152,153). LD refers to the non-random association of alleles 

at two different loci, which are not independent of one another (154).
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Figure 1-13 Novel evolutionary scenario of MTBC proposed by Brosch et al in 2002 based on the regions of difference (RD) and sequence 
polymorphisms within five genes.  

Blue arrows indicate strains that are characterised as group one organisms, the green arrow is group two and the red arrow group three, as defined by katG463 
and gyrA95 codon sequence polymorphisms as described by Sreevatsan et al., in 1997 (153) as shown in figure 1.4 (Taken from .(114)) 
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Several clonal species of mycobacteria are not identifiable when they are 

isolated on solid media as they are thought to have descended from a 

common ancestor and MTBC fall under this category as previously 

discussed. 

1.9.1 Major Genetic Groups of MTBC and its global distribution 

Major Genetic Groups (MGG) classification is based on single nucleotide 

mutations or polymorphism (SNP). Generally, there are two types of SNPs 

synonymous and non-synonymous. The former are important to study 

evolution as they are not prone to divergence whereas the latter refers to 

translational changes that are not evolutionarily informative (155). 

Sreevatsan et al., in 1997 identified two SNPs; one in the catalase 

peroxidase (katG codon 463) and one gyrase A (gyrA codon 95) encoding 

genes and classified MTBC into three Major Genetic Groups (MGGs) or 

Principal Genetic Groups (PGGs). Here they showed that there are three 

MGGs- MGG1, MGG2 and MGG3 where MGG3 is derived from MGG2 and 

MGG2 from MGG1. An M. tuberculosis precursor or common ancestor would 

have given rise to MGG1 (153) (fig 1-14). 
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Figure 1-14 Evolutionary scenario proposed by Sreevatsan et al, in 1997 based on 
SNP polymorphism  

(Taken from.(153)) 

 

Several other studies by Gutacker et al., 2006, Baker et al., 2004, Rad et al., 

2003 have all classified the MTBC into different lineages either based on 

SNPs or the presence or absence of TB specific deletion regions (TbD1) 

(155–157). Brosch et al. in 2002 showed that the MTBC diverged from the 

most recent common ancestor over thousands of years by losing regions of 

deletion (RD) or due to large sequence polymorphisms (LSPs) in house-

keeping genes. It is important to note that the TbD1 deletion is common to all 

‘modern’ TB strains which include the Haarlem, Beijing and CAS spoligotype 

strains and that this deletion is irreversible because of the lack of DNA 

recombination between strains of the MTBC. The TbD1 deletion is therefore 

absent from ancient strains such as the East African-Indian (EAI) strains. The 

division of modern and ancient families (where DNA markers characterised, 

not the genomes themselves, are thought to be similar to those found in 
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modern or ancient strains) is based on spoligotyping, identifying the deletions 

or polymorphism in the DR locus (DVR24) in M.tuberculosis genomes (112). 

Different spoligotypes or families derived by adopting this technique, based 

on detection of the presence or absence of 43 unique sequences in the 

Direct Repeat region, are given below in the table 1-6.  

Table 1-6 Table showing the distribution of M. tuberculosis complex (MTBC) strains 
with respect to the Principal Genetic Groups (PGGs) and the TB spoligotypes families 
/ lineages 

Principal 

Genetic Groups 

Mycobacteria TB Spoligotype family / 

lineage 

PGG1 M. microti, M. africanum, M. 

tuberculosis and M. bovis 

Central Asian Strain 

(CAS) 

Beijing 

PGG2 M. tuberculosis S  

X 

T-Uganda 

Haarlem 

Latin American 

Mediterranean (LAM) 

PGG3 M. tuberculosis T 



49 

 

 

Due to the inclusion of various sub-species of MTBC (4) including the 

classification of TB genetic lineages according to the geographical migration 

(158), the evolutionary scenario originally proposed by Sreevatsan et al. in 

1997 and Brosch et al. in 2002 has been combined as shown in fig 1.15 

below. 
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Figure 1-15 Schematic representation of the proposed phylogenetic relationships between members of MTBC.  

The phylogeny is based on presence or absence of Region of Difference (RD) (114), SNPs (153) and Large Sequence Polymorphism (LSP) (159). (Taken 
from (4)). 
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1.9.2 Global distribution of TB genetic lineages including Co-Evolution 

of TB and Humans 

It has been suggested that M.tuberculosis might have co-evolved with the 

human host  and have followed the ‘out-of-and-back-to-Africa’ evolutionary 

scenario (159–161). In 2006, Gagneux and his colleagues addressed the co-

evolutionary scenario of both human and TB populations for the first time and 

also proposed six phylogeographical lineages (fig 1-16) (158). 
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Figure 1-16 The phylogeographical distribution of M. tuberculosis and its lineages  

(a) LSPs define a global phylogeny for M. tuberculosis. The names of the lineage-defining LSPs or regions of difference are shown in rectangles. The 
geographic regions associated with specific lineages are indicated. (b) The six main lineages of M. tuberculosis are geographically structured. Each dot 
corresponds to 1 of 80 countries represented in the global strain collection. The colours of the dots relate to the six main lineages defined in (a) and indicate 
the dominant lineage(s) in the respective countries (Taken from (158)) 
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1.9.3 Molecular Clocks in the evolution of M.tuberculosis 

Using different molecular markers (SNPs, RDs, TbD1 and spoligotypes), a 

time line of evolutionary events can be generated that strongly suggests that 

the currently circulating MTBC isolates might have originated from a common 

ancestor as shown in figure 1-17 below (162) as discussed in section 1.11 

and shown in fig 1-13 by Brosch et al (114).  

 

 Figure 1-17 Timeline of evolutionary events in Mycobacterium tuberculosis  

(Taken from (162)) 

 

Over recent years, data have accumulated suggesting that the different 

MTBC lineages might have adapted to different human populations and thus 

showing predominance in certain regions like CAS in Northern India (163) 

and Beijing in Tibet and China (164). Not only does MTBC exhibit a global 
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biogeographic population structure, but the associations between the 

particular MTBC lineages and human populations are maintained in 

cosmopolitan settings where human populations and their associated MTBC 

strains experience at least some degree of intermingling (161,165,166). 

Sequencing six housekeeping genes (katG, gyrB, gyrA, rpoB, hsp65 and 

sodA) and the complete 16SrRNA gene in smooth tubercle bacilli suggests 

that M. tuberculosis might have descended 3 million years ago (167). Also, 

ancient DNA studies (160) suggest that MTBC predates the arrival of the 

human population (fig 1-18), thus showing the adaptability of this ancient 

microorganism. 

 

Figure 1-18 Evolution of Mycobacterium tuberculosis complex along with human 
population  

(Taken from(160)). 
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1.9.4 Importance of genetic polymorphism 

Different markers have been used to study the phylogenetic relationships 

between the common ancestor and the currently circulating TB genetic 

lineages. As IS6110 is one of the earliest seen polymorphic changes in terms 

of evolution of TB, they could theoretically play an important role in the 

evolution of different TB genetic lineages. IS6110 insertions occur mainly in 

multi-gene families such as the PPE gene family and they could be beneficial 

for the organism to evade immunity (74) and cause disease  (168). In 

addition, several studies have suggested that drug resistance, formation of 

LSPs and high frequency of SNPs were noticed in regions flanked by IS6110 

(169). Thus, IS6110 transposition could be essential in the evolution of the 

M.tuberculosis genome.  

1.10 Molecular Epidemiology of TB in resource poor settings 

Among the estimated 9.4 million new TB cases reported in 2008, 55% and 

30% of the cases were reported in resource poor countries in Asia and Africa 

respectively (170). Depending on the availability of instruments and reagents, 

the techniques used to study the molecular epidemiology of TB are different 

in different countries. Epidemiological studies are however limited when 

compared to developed countries due to financial constraints in these areas 

despite the fact that tuberculosis is endemic. 

1.11 Currently used epidemiological tools, its suitability and 

constraints 

The tools used in a resource-limited country mainly depend on the country’s 

ability to afford equipment required for different technologies, their 
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maintenance and the availability of the skilled force to perform the 

techniques. Resource poor countries may need improved access to 

diagnosis and care (171). Without an effective surveillance strategy, TB 

control measures could be difficult to be monitored. So, routine surveillance 

methods will contribute in assessing drug resistance strains and monitoring. 

Within their limits these settings continue to contribute to the understanding 

of the molecular epidemiology of TB using the tools available to them 

including the most commonly used techniques IS6110 RFLP, MIRU-VNTR 

and spoligotyping. 

1.12 Nepal TB epidemiology 

Though the global TB burden has been falling globally in the last few years 

due to the introduction of the STOP TB programme by the WHO (1), the 

incidence of HIV-associated TB is high in Myanmar, Thailand, India and 

Indonesia. Nepal used to be one of the five countries listed in SE Asia region 

with a high burden of TB But the new global TB report from WHO (172) has 

excluded Nepal from the list of 30 high burden countries due to the effective 

STOP TB policy since 2006. But tuberculosis still remains a public health 

problem and ranked as the sixth leading cause of death among the top 20 

causes of death in Nepal according to the National Tuberculosis programme 

survey carried out in 2014 (173). 

1.12.1 TB in Nepal 

Nepal has 147,181 square kilometres of land mass area with a population of 

29 million people and is interlocked between the Indian subcontinent on three 

sides and China’s Tibet to the North. Nepal lies on the major trade route 
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between India and China (see figure.1-19) and has an 1200-km long 

controlled border with China in the north and an 1700-km long open border 

with India in the east, west and the south (174). It has been noted that 

migration across these international borders take place for reasons like  

work, study, tourism, religious purposes like pilgrimages and cultural 

exchanges like marriages. Kathmandu, the capital city of Nepal is highly 

populated with a high number of TB cases according to the Nepal’s National 

Tuberculosis programme.  

 

Figure 1-19 A map of Nepal showing the topography of Nepal interlocked between 
India (in the south, east and west of Nepal) and China (in the north)  

(Taken from http://www.echoway.org/graphic/oupartir/cartespays/nepal.gif) 

 

In 2014, the WHO estimated that 4600 (2100-7500) people died from TB in 

Nepal. Even though MDR-TB levels are low (2.2%) in new cases (high in 
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retreatment cases-15.4%), Drug-resistant TB (DR-TB) is still a major public 

health concern. The epidemiological indicators of the TB burden in Nepal 

according to the report published in 2014 by National Tuberculosis 

Programme is summarised below in the table 1-7. 

 

Table 1-7 Estimated TB burden in Nepal in 2014  

(Adapted from NTP, Nepal 2014 report) 

Epidemiology Indicators Estimated patient cases (Range) 

Prevalence 59 (27-100) x 1000 

Prevalence rate 211 (99-365) 

Incidence 43 (39-49) x 1000 

Incidence rate 156 (139-178) 

Cases notified to NTP 37025 

Annual case notification rate 136 / 100,000 

HIV negative / TB positive cases 4.6 (2.1-7.5) x1000 

HIV positive / TB positive cases 0.32 (0.17- 0.51) x1000 

 

1.12.2 Current diagnostic procedures in Nepal 

Sputum smear microscopy is used as the main method to detect TB and 

monitor treatment responses in patients. Culturing the bacteria and 
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phenotypic Drug Susceptibility Tests (DSTs) are the two principal procedures 

carried out to monitor new and relapsed cases within the 581 microscopy 

centres, two solid culture laboratory including capacity for first line drug (FLD) 

susceptibility testing (DST), first line probe assay (LPA), one liquid culture 

and one second line drug (SLD) DST facility and 26 GeneXpert centres 

spread all over this mountainous country. This is in addition to two other 

culture and DST facilities (NTC and GENETUP) functioning in Kathmandu 

valley.  

1.12.3 Constraints in diagnosis of TB in Nepal 

According to the NTCP’s annual report, the challenges faced by the 

authorities to control TB in Nepal are mainly due to the increase in MDR and 

XDR cases, low case notification by different districts, insufficient 

supervision, monitoring and evaluation of TB cases and lack of skilled labour 

(173). In a recent survey in 2014, it has been found that nearly 9.3% of new 

patients are resistant to at least one drug. Also, resistance to 

fluoroquinolones (26.4%) has led to a heavy burden of pre-XDR and XDR-TB 

among MDR-TB cases (8% of the cases were found to be XDR among MDR 

pateints). It has been speculated that it might be due to the fact that 

fluroquinolones could be purchased by the patients over the counter easily 

and also its unregulated use. Case Notification Rate (CNR) in 2015 was 123/ 

100,000 a drop of 11% compared to the previous survey in 2010 (173). 

Among different regions, there has been a drop in the CNR in the Eastern 

and the central regions of Nepal. So, an efficient, cost-effective and rapid 

epidemiological tool that can be useful in these settings was needed and thus 
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this research project aimed to develop a genomic tool box that can be easily 

used in these settings along with other techniques. 
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1.13 Aims and Objectives 

The aim of my PhD thesis is to develop a genomic tool box to aid 

epidemiological investigations using a novel IS6110 FAFLP sampling method 

for application in resource poor settings.  

1.14 Hypothesis 

Characterisation of IS6110 insertion sites in TB genomes of strains from 

poorly studied regions will give insight into the geographical distribution of 

disease and their relationships with different lineages thereby showing that 

IS6110 is not only a typing tool but also an effective evolutionary marker. 

The objectives of this thesis are as follows: 

 Chapter 1: To review the TB literature in detail focusing on the 

suitability of the technique and the sample population. 

 Chapter 2: To describe IS6110 FAFLP methodology in addition to the 

reagents needed for the technique. 

 Chapter 3: To optimise and develop the IS6110 FAFLP methodology 

using H37Rv and Nepal strains. 

 Chapter 4: To map the IS6110 insertion sites in the M. tuberculosis 

H37Rv genome and to rapidly detect TB genetic lineages using 

IS6110 FAFLP derived PCR. 

 Chapter 5: To classify the TB samples from Nepal into their different 

TB genetic lineages. 

 Chapter 6: To understand the Rifampicin resistance status in the TB 

samples from Nepal. 
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 Chapter 7: To contextualise that IS6110 FAFLP as a genomic 

mapping tool and discuss its suitability as a method to understand the 

phylogenetic relationships between TB genetic lineages and further 

indicate that IS6110 is a valuable tool to study the epidemiology and 

evolution of TB. 
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Chapter 2 General Materials and Methods 
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2.1 Bacterial samples 

2.1.1 Sample collection centres 

Sputum samples from consecutive new TB patients were collected over one 

year between 2007 and 2008 and cultured alongside routine diagnostic 

testing from two Nepalese tuberculosis reference centres located in the 

Kathmandu valley: the National Tuberculosis Centre (NTC) and the German 

Nepal Tuberculosis Project (GENETUP) (fig 2.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Geographical location of the two Nepal TB treatment centres, GENETUP 
and NTC, where samples were collected  

(Adapted from http://www.nepalntp.gov.np/index.php?view=location) 

http://www.nepalntp.gov.np/index.php?view=location


65 

 

Bacterial genomic DNA from the strains isolated from the above samples 

were extracted at the National Mycobacterial Research Laboratory (NMRL) in 

Nepal using Cetyltrimethyl Ammonium Bromide (CTAB)(175). 

2.1.2 Ethics 

Nepal Health Research Council (NHRC), the Ethics Approval Committee 

approved the research projects ongoing at MRL in general between 2006 

and 2008 when these samples were collected. During this time, the specific 

procedures including consent were approved by the Head of MRL, MRL Lab 

Manager, the Anandaban Medical Director, faculty of Tribhuvan University 

and Directors of both Tuberculosis centres where samples were collected.  

As sputum samples were classified as non-invasive samples during 

collection, written consents were not emphasised and only verbal consents 

were taken but not documented from the patients who attended the hospitals 

primarily for TB treatment. The anonymized DNA samples were then 

transported to Public Health England (PHE), Colindale in 2008 and this 

particular study started in 2011 and was solely conducted in Public Health 

England, Colindale.  

2.1.3 IS6110 Fluorescent Amplified Fragment Length Polymorphism 

(FAFLP)  

This method published by Thorne et al. (146) was optimised and developed 

as discussed in chapter 3. The method comprised of four major steps: 

Digestion of genomic DNA, Ligation of adapters, PCR and Capillary 

Electrophoresis (Figure 2-2). All reagents used in this study were risk 

assessed locally as the Genomic Services Development Unit (GSDU) 2D01 
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lab where this research was carried out already uses the FAFLP procedure 

for the day-to-day service work. 

 

Figure 2-2 Schematic representation of the IS6110 FAFLP methodology. 
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2.1.4 Genomic DNA Restriction Endonuclease digestion 

Reagents: 

1. MseI (New England Biolabs (NEB), UK) 

2. TaqI (NEB, UK) 

3. 1x MseI buffer II (NEB) 

4. Bovine Serum Albumin (BSA) , (NEB) 

5. Ribonuclease  A (RNase A) (Sigma Aldrich, UK) 

6. 1M proline (Sigma Aldrich, UK) 

7. 2mM betaine (Sigma Aldrich, UK) 

8. Molecular Biology Grade water (Fisher Scientific, UK). 

2.1.4.1 Protocol: 

Five µl of 200- 500 ng of bacterial genomic DNA quantified using Qubit 

(Thermofisher, UK) was digested with 5 U of MseI (New England Biolabs, 

UK) in a total reaction volume of 20µl containing  1x MseI buffer, 0.1mg/ml of 

bovine serum albumin, 0.5mg/ml of RNase A, 1M of L-proline and 2mM of 

betaine at 37°C for 2 h to release the DNA ready for a final digestion with 

10U of TaqI (New England Biolabs, UK) at 65°C for 3 h and the reaction was 

inactivated for endonucleases at 80°C for 10 min. 



68 

 

2.1.5 Ligation of digested DNA to double stranded adapters 

2.1.5.1 Reagents: 

1. T4 DNA Ligase (NEB, UK) 

2. 2 x T4 DNA Ligase buffer (NEB, UK) 

3. Double stranded Taq I adaptor ( Eurofins, UK) 

2.1.5.2 Protocol: 

Double stranded oligonucleotide adaptors specific to TaqI site (5’- 

TACTCAGGACTGGC) were ligated to the double- digested DNA in a total 

reaction volume of 25µl containing 40U of T4 DNA ligase (New England 

Biolabs, UK), 0.2µM of double stranded TaqI adaptor and 2x T4 ligase buffer 

(NEB, UK). The reaction mixture was then incubated at 12°C overnight 

followed by heating at 65 ̊C for 10 minutes to inactivate the ligase and later 

stored at -20̊ C. 

2.1.6 PCR amplification of fragments 

2.1.6.1 Reagents: 

1. 10 x PCR reaction buffer (Thermofisher, UK) 

2. 50mM MgCl2 (Thermofisher, UK) 

3. 10mM dNTPs (Thermofisher, UK) 

4. 5µM TaqI primer (Eurofins, UK) 
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2.1.6.2 Preparation of 10µM of 4-dye labelled TaqI primer 

10µM of each selective TaqI primer labelled with 6-FAM (blue), PET (red), 

VIC (green) and NED (Black) fluorescent dyes at the 5’ end and a selective 

base either A or C or G or T nucleotide respectively according to the dye 

listed above were made from 100µM stocks with molecular biology grade 

water. 10µl of each 10uM primer i.e. 40µl in total were then mixed with 60ul 

of water to make up 10uM TaqI primer stock. 

 

5. 5uM IS6110 specific primer (Eurofins, UK) 

6. Molecular Biology Grade water (Fisher Scientific, UK) 

7. Recombinant Taq DNA Polymerase (Thermofisher, UK) 

2.1.6.3 Protocol: 

Four labelled adapter-specific forward primers, each with a single unique 

selective nucleotide (A / C / T/G) at the 3’ end which extends into the 

unknown genomic DNA sequence of the fragment, together with an IS6110 

specific reverse primer, were used to amplify the fragments. In a total volume 

of 20 µl, 1µl of the adaptor ligated DNA was added to the reaction containing 

1X reaction buffer (Invitrogen, UK), 1.5 mM MgCl2 (Invitrogen, UK), 0.2 mM 

dNTPs (Invitrogen, UK), 1 µM of labelled selective TaqI forward primer (5’-

CGATGAGTCCTGACCGA/C/T/G- (see table 2-1), 1 µM of IS6110 reverse 

primer (5’- CTGACATGACCCCATCCTTT) and 1U of recombinant Taq 

polymerase (Invitrogen, UK). The following PCR conditions were carried out 



70 

 

in a Veriti thermocycler (Applied Biosystems, UK): 94°C for 15 min followed 

by 35 cycles of 94°C for 20 s, 66°C for 30 s and 72°C for 2 min with the 66°C 

annealing temperature reducing by 1°C every cycle for nine cycles and the 

last 25 cycles at 56°C. Finally, an extension of 72°C for 60 min was carried 

out before further manipulations. 

Table 2-1 List of TaqI fluorescently labelled selective primers 

Fluorescent labelled selective 

primer 

Primer Sequence (selective base 

(135,147) 

1) TaqI- A (labelled with 6- 

FAM dye) 

5’- CGATGAGTCCTGACCGA(A)-3’ 

2) TaqI- C (labelled with PET 

dye) 

5’- CGATGAGTCCTGACCGA(C)-3’ 

3) TaqI- T (labelled with NED 

dye) 

5’- CGATGAGTCCTGACCGA(T)-3’ 

4) TaqI- G (labelled with VIC 

dye) 

5’- CGATGAGTCCTGACCGA(G)-3’ 

 

2.1.7 Capillary Electrophoresis of fragments using ABI3730xl Genetic 

Analyser 

2.1.7.1 Reagents: 

1. Hi_Di formamide (Applied Biosystems, UK) 

2. Genescan Liz600 sizing standard (Applied Biosystems, UK) 
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2.1.7.2 Protocol: 

One microlitre of the IS6110 FAFLP PCR reaction from the PCR step  was 

mixed with 10µl of Hi-Di formamide (Applied Biosystems, UK) and 0.5 µl of 

the Genescan Liz600 sizing standard (Applied Biosystems, UK). The reaction 

was denatured at 95° C for 5 min before running the reaction on the ABI 

genetic analyser 3730xl. The run module settings are given in the table 2.2 

below: 

Table 2-2 Run Module settings for capillary electrophoresis of FAFLP fragments 

Run parameters Actual setting Range 

Oven temperature 63̊̊̊C 18-70̊̊C 

Buffer temperature 35̊̊C 30-35̊̊C 

Prerun voltage 15.0 kV 0-15 kV  

Prerun Time 180 sec 1-1800 sec 

Injection voltage 1.6 kV 0-15 kV 

Injection time 15 sec 1-90 sec 

First readout time 200 ms 100-16000 ms 

Second readout time 200 ms 100-16000 ms 

Run Voltage 15 kV 0-15 kV 

Voltage no. of steps 10  0-100 steps 
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Voltage step interval 20 sec 0-180 sec 

Voltage tolerance 0.6 kV 0-6.0 kV 

Current stability 30 µA 0-2000 µA 

Ramp Delay 1 sec 1-1800 sec 

Data Delay 500 sec 1-1800 sec 

Run Time 2700 sec 300-14000 sec 
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Chapter 3 Optimisation and Development of Insertion Element 

IS6110 Fluorescent Amplified Fragment Length Polymorphism 

(FAFLP) PCR 

.  
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3.1 Introduction 

Fluorescent Amplified Fragment Length Polymorphism (FAFLP) has been widely 

used as a strain typing tool for several bacteria like Listeria monocytogenes (134), 

Legionella pneumophila (145,176) and  Salmonella enteritidis (142). Using IS6110 

as a biomarker, the global phylogeny of MTBC has been studied using FAFLP (135). 

In the era of whole genome sequencing, where repeat elements are difficult to 

sequence with short read technologies (177),  and in the absence of an alternative 

approach to their characterisation in poorer resource settings, a simple but effective 

technique would enable the facilitation of outbreak samples by not only strain typing 

the bacterial strains but also to help in the classification of TB genetic lineages in any 

geographical location. A rapid and simple method of insertion site mapping using 

IS6110 fluorescent amplified fragment length polymorphism (FAFLP) PCR was 

developed using fluorescent labelled primers (147). Borrell et al. first used four 

different fluorescent labelled primers with the selective base at the 3’ end of the TaqI 

primer for increased resolution to differentiate between epidemiologically unrelated 

TB strains. Thorne et al. used fluorescent labelled primers to further distinguish the 

fragments (135,146). To suit the demands of a resource poor setting the technique 

was modified further by utilising the resolution of the fragments derived by this 

technique, and to develop a lineage specific PCR as described in chapter 4. 

3.1.1 Aims  

The main aim of this chapter was to modify, optimise and standardise the IS6110 

FAFLP PCR methodology so that it could be used to map and classify M. 

tuberculosis samples into different lineages.  
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3.1.2 Objectives 

• To test the IS6110 FAFLP methodology using DNA from different strains of M. 

tuberculosis and different PCR reagents/conditions. 

3.1.3 IS6110 FAFLP Methodology 

The technique was optimised so that the results obtained could be easily identified 

by the presence or absence of the fragments/peaks and by their respective colours 

as shown in the figure 3-1. Each fragment indicates the point of insertion of IS6110 

in the bacterial genome and also the number of fragments indicates the number of 

IS6110 insertion sites i.e. copy number of IS6110 in the genome. The PCR amplified 

fragments were run on ABI 3730XL (Thermofisher, U.K.) and visualised using 

software called Peak Scanner (Thermofisher, U.K.).  

 

 

Figure 3-1 Pictorial representation of the IS6110 FAFLP PCR methodology  

(Coloured fragments are amplified using uniquely labelled adapter specific primers. For example, blue 

coloured fragments are amplified if the primers are labelled with 6-FAM fluorescein ‘blue’ dye, red 

coloured fragments with PET dye, green coloured fragments with VIC dye and black coloured 

fragments with NED dye). 
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3.2 Materials and Methods 

The process to optimise the IS6110 FAFLP PCR methodology consisted of testing 

the DNA samples of adapter ligated H37Rv DNA from previous study by Kremer et 

al.(178), H37Rv and Nepal TB strains with different polymerases and optimising the 

PCR conditions. Approximately 200-500ng of bacterial genomic DNA was digested 

with 5U of MseI (New England Biolabs, UK) in a total reaction volume of 20µl 

containing  1x MseI buffer, 0.1mg/ml of BSA, 0.5mg/ml of RNase A, 1M of L-Proline 

and 2mM of Betaine at 37°C for 2h to release the DNA ready for a final digestion 

with 10U of TaqI (New England Biolabs, UK) at 65°C for 3 h and the reaction was 

inactivated for endonucleases at 80°C for 10 min. Double stranded oligonucleotide 

adaptors specific to TaqI site (5’- TACTCAGGACTGGC) were then ligated to the 

double- digested DNA in a total reaction volume of 25µl containing 40U of T4 DNA 

ligase (New England Biolabs, UK), 0.2µM of double stranded TaqI adaptor and 2x T4 

ligase buffer (NEB, UK). The reaction mixture was then incubated at 12°C for 17 h 

followed by heating at 65̊ C for 10 minutes to inactivate the ligase and later stored at 

-20̊ C. In a total volume of 25µl, 2.5µl of the DNA sample was mixed with 10x Pfx 

reaction buffer, 50mM MgSO4, 10mM dNTP, 1µM of TaqI primer, 1µM of IS6110 

specific primer and 1U PfX polymerase/ 1µl of Hotstar Taq plus mastermix or 10µl of 

My Taq Premix or 1U of recombinant Taq polymerase. The following PCR conditions 

were carried out in a Veriti thermocycler (Thermofisher, U.K.): 94°C for 15 min 

followed by 35 cycles of 94°C for 20 s, 66°C for 30 s and 72°C for 2 min with the 

66°C annealing temperature reducing by 1°C every cycle for nine cycles and the last 

25 cycles at 56°C. Finally, an extension of 60°C for 30 min was carried out before 

further manipulation. When there were no peaks or there was an anomaly in the 
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electropherogram such as amplification artefacts and double peaks, then the PCR 

extension was increased from 60°C for 30 min to 72°C for 30min and a final 

adjustment was carried out from 72°C for 30min to 72°C for 60min. The criteria for 

the peak characteristics seen in an electropherogram using Peak Scanner software 

were as follows: 

a. The fragment should be a single peak (Double peaks should be avoided). Two 

peaks over 0.5 base pair difference between them will be considered as two 

separate fragments. 

b. The fragment could be identified by the colour of the fluorescently labelled dye, 

either blue for FAM or red for PET or green for VIC or black for NED according to the 

dye incorporated. 

c. The peak should be a true peak shape and size (artefacts were discarded). A 

difference of ± 0.5bp in fragment sizes was considered as non-identical fragments or 

peaks. 

d. The relative fluorescent units (rfu) on the X-axis had been assigned a cut-off of 

500rfu. 

Some of the well-characterised artefacts are as follows: 

a. Stutter peaks: Stutter artefacts are observed as multiple peaks preceding the true 

allele peak. The number of peaks and their intensities are proportional to the length 

of the repeat and the number of repeats in the PCR product (Applied Biosystems 

Fact sheet).  
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b. Plus A additions or Double peaks: Plus A additions, caused by incomplete A 

nucleotide addition, also increase the complexity of the peak pattern, which makes 

recognition of true allele peaks more difficult (Applied Biosystems Fact sheet). 

c. Bleed through or Pull-up peaks: A Bleed-through or pull-up is a typical problem in 

multichannel capillary electrophoresis, which is caused by fluorescent dye cross-talk. 

A high signal in one fluorescent channel thereby gives rise to a pull-up peak in 

another channel (Applied Maths Inc., Belgium). 

 

 The step by step procedure to achieve the standardisation of IS6110 FAFLP PCR 

assay is given in the form of flowchart below in the figure 3-2. 
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Figure 3-2 Step-by-step procedure for optimising and developing the IS6110 FAFLP 
methodology 
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3.3 Results 

The IS6110 FAFLP PCR methodology was standardised by testing different DNA 

polymerases from different PCR kits and by changing the PCR extension step as 

shown in figure 3-3 using adapter ligated H37Rv DNA from a previous study by 

Kremer et al. (178), H37Rv and Nepal TB DNA samples. The sequential procedure 

undertaken to achieve this is described below in the form of a flowchart. 
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Figure 3-3 Step-by-step procedure of standardising IS6110 FAFLP methodology including the 
accepted methodology 
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3.3.1 Amplification of DNA fragments 

Amplification of the DNA fragments was first checked for the adapter ligated DNA by 

the presence or absence of peaks (fragments) in the PeakScanner analysis 

software. Absence of peaks (figure 3-4) except for the presence of LIZ600 indicated 

that either poor quality DNA or absence of DNA. 

 

Figure 3-4 Example of a Peakscanner screenshot showing the absence of amplification of 
fragments except for Liz600 marker in orange colour. 

 

3.3.2 Validation of the PCR reagents 

Different Taq polymerases (PfX polymerase, Hotstar Taq plus mastermix, My Taq 

Premix and recombinant Taq polymerase) were subjected on both H37Rv and Nepal 

TB DNA and the results were as follows. 
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3.3.2.1 Hotstar Taq Plus mastermix (Qiagen, U.K.) 

The fragments were not amplified except for the presence of the visualisation marker 

Liz600 using this mastermix and so the next reagent was tested. 

3.3.2.2 MyTaq PCR premix (Bioline, U.K.) 

Using this mastermix, strong amplification occurred but the interpretation was difficult 

as seen in figure 3-5 due to the strong signal intensity of more than 28000 relative 

fluorescent units (rfu). 

 

Figure 3-5 Example of a Peakscanner screenshot showing strong signals of more than 28000 
rfu when MyTaq mastermix was used 
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3.3.2.3 Platinum Pfx proof-reading polymerase (Invitrogen, U.K.) 

Here, the signal intensity of the samples under analysis was optimum but the 

interpretation of the data became difficult as there was more than one coloured 

fragment at any single position as seen in figures 3-6 and 3-7. 

 

Figure 3-6 Example of a Peakscanner screenshot showing amplification of fragments with 
correct signal intensity in a sample when Platinum Pfx Polymerase proof-reading enzyme 
mastermix was used 
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Figure 3-7 Second example of the Peakscanner screenshot showing amplification of fragments 
from the sample above in the previous figure but a mixture of fragments noticed at a single 
position leading to difficult interpretation of the data when Platinum Pfx Polymerase proof-
reading enzyme mastermix was used 

 

3.3.2.4 Recombinant Taq Polymerase (Invitrogen, U.K.) 

The majority of the samples analysed using this enzyme were amplified with 

optimum signals apart from a few samples which showed stronger signal intensity 

(figure 3-8) and double peaks (figure 3-9). The electropherogram for the reference 

strain, H37Rv, was very clean and the signal intensity was normal (see figure 3-

10).The negative control, water, did not show any amplification (see figure 3-11). 
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Figure 3-8 Example of a Peakscanner screenshot showing strong raw signal intensity in H37Rv 
sample using recombinant Taq Polymerase reagents 
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Figure 3-9 Example of a Peakscanner screenshot showing double peaks (green dye- VIC) in 
H37Rv sample using recombinant Taq Polymerase reagents 
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Figure 3-10 Example of a Peakscanner screenshot showing the presence of amplified 
fragments with single peaks in an H37Rv sample when using recombinant Taq Polymerase 
reagents. 
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Figure 3-11 Peakscanner screenshot showing the absence of amplification of fragments in the 
negative sample (water) using recombinant Taq Polymerase reagents. 

 

3.3.3 H37Rv and Nepal TB DNA study samples 

Changing the PCR conditions significantly increased the efficiency of the IS6110 

FAFLP assay and, together with enzyme optimisation development, the assay was 

standardised. So, using this technique, H37RV (see figure 3-9) and the 176 Nepal 

samples were characterised (see appendix 5- raw FAFLP data stored in CD format). 

It is not possible to include the electropherograms for all the 176 samples due to 

space constraints but the example below, figure 3-12, shows the amplification of 

fragments for two samples displaying well-defined fragments without artefacts. 
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Figure 3-12 Example of an electropherogram showing two Nepal samples, N03 and N06, 
identical to each other having the same fingerprint with well-defined and easily identifiable 
coloured fragments. 

 

3.4 Discussion 

Whilst testing the samples from already adapter-ligated DNA (178), it was apparent 

that using poor quality DNA was unsuccessful as there was no amplification of 

products as this DNA was from the 1999 study. This was overcome by testing fresh 

DNA samples from H37Rv and Nepal TB strains and the FAFLP procedure was 

carried out on the samples including restriction enzyme digestion, ligation and PCR. 

Unaltered PCR conditions and reagents led to the generation of double peaks (figure 

3-8), which created difficulty in interpreting the data. It was apparent that the PCR 

conditions required optimisation, including change of PCR reagents including PCR 

enzymes. The PCR final extension step was increased from 60°C to 72°C for 15 

minutes but otherwise all other conditions remained the same. Of four PCR reagents 

tested, the fragments were not amplified using Hotstar Taq Plus mastermix. With 
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regards to MyTaq mastermix, the signal intensity of 28000rfu was high and led to the 

difficulty in interpretation of data. The signal intensity for the third PCR reagent, Pfx 

Polymerase gave optimum signal intensity and also the background noise was low 

compared to former two reagents mentioned above but there were more than one 

fragment on one given location which made the analysis difficult. The fourth reagent 

tested, recombinant Taq polymerase mastermix, gave good signal intensity but also 

produced double bands which indicated that the PCR conditions needed further 

optimisation. A final extension of 72°C for 60 minutes was carried out instead of 15 

minutes as in previous protocols and gave well-defined, easily interpretable 

fragments and thus the standardisation was complete. This technique was used in 

chapter 4 for mapping the IS6110 insertion sites in H37RV genome and in chapter 6 

for characterisation of Nepalese TB strains into different TB genetic lineages. 

3.5 Summary 

In this chapter, the IS6110 FAFLP PCR procedure was standardised and  tested 

using the adapter ligated DNA products from a global TB collection (178), H37Rv 

and followed by samples from Nepal. I selected the latter for my thesis to develop 

the genomic tool box for resource poor settings as Nepalese samples were very 

poorly characterised when this study was started in 2011. 

.  



92 

 

Chapter 4 Mapping of Insertion sites (IS6110) in the M. tuberculosis 

H37Rv reference genome and rapid definition of genetic lineages  

(This chapter was published in the Journal of Microbiological Methods) (179)  
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4.1 Introduction 

Insertion elements play a significant role in the evolution of genomes of various 

organisms (69) and can transpose within the genomes thereby altering the position 

and even the function of the adjacent genes. These transpositional changes have 

contributed to the evolution of different microorganisms thereby exhibiting a genome 

plasticity function where the genome is altered to survive in different environmental 

niches (75,180). 

Tracing the movement of insertion sites can be useful in two ways, firstly by acting 

as genetic markers to define strains of different microorganisms and thus determine  

the transmission relationship between two strains (181) and secondly by mapping 

the exact position of IEs whose transposition could alter the phenotype of the strain. 

Mapping of IS6110 sites in the Zaragoza M. tuberculosis strain  that caused a 

sudden outbreak in Spain in the years between 2001 and 2004, has offered clues of 

the adaptability and virulence of M. tuberculosis (182). The Zaragoza strain belongs 

to PGG3 and is responsible for widespread outbreaks compared to PGG1 and 

PGG2 (refer section 1.9.1 for the descriptions about PGGs) in Spain. On further 

analysis of the mapping results, Millan-Lou et al. have found that there are twelve 

copies of IS6110 in this strain and that the IS6110 insertion in the DR region is found 

3bp away from the DR sequence which is different to the compared H37Rv strain. 

Also, five of the twelve insertion points were at positions already reported by other 

scientific groups over the years. Most importantly, one of the insertion locations, in 

the Rv2823c gene was unique and specific to the Zaragoza strain which then led to 

the development of multiplex PCR assay for the rapid detection of this strain of M. 

tuberculosis (182). 
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Genomic mapping identified that there are differences between two strains of Beijing 

family, W and 210. These two strains have seventeen IS6110 insertion sites, twelve 

are identical in terms of insertion locations in the genome but five are different. Two 

unique sites were found in W strain and also one IS6110 copy was found upstream 

of the ctpD gene wherein IS6110 was providing a promoter element for the 

transcription of this gene (98). Alonso et al., found specific IS6110 insertion sites in 

the Beijing genotype that helped in the mapping of this family of TB and also showed 

that the Beijing TB lineage displayed a higher frequency of IS6110 insertions than 

other lineages (183). TB genetic lineages, as described in chapter 1 section 1.9, are 

grouped mainly into two types, either by SNP classification (153) into 3 Principal 

genetic groups (PGG1, PGG2 and PGG3) or by LSP classification (184) into seven 

genetic lineages. These genetic families or lineages are important as it has been 

suggested that there is phenotypic diversity existing between M. tuberculosis clinical 

isolates (165). Also, it has been reported that Beijing/W lineages, with their unique 

phenotypic traits, have an increased ability to cause disease (185,186). Also, this 

strain has been shown to be predominantly distributed in Eastern Asia and due to 

human migration this genotype migrated from Beijing City to the other parts of the 

world over time. However, a high number of insertions in certain strains does not 

necessarily suggest pathogenicity but that the molecular clocks of IS6110 movement 

is faster in some strains than others, as it has been shown that low copy numbers 

are also highly pathogenic (107). 

As there is a lot of ambiguity in defining a specific TB genetic lineage using the 

available epidemiological markers, and because the techniques described above are 

complex in terms of technicality, a rapid definition assay will be helpful in providing 
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information about the TB genetic lineage and possibly then allowing improved 

management of the disease caused by a particular genetic lineage. 

4.1.1 Aims and Objectives 

The aim of this chapter is to locate or map the precise genomic IS6110 insertion 

sites in the M. tuberculosis H37Rv strain using IS6110 FAFLP PCR methodology 

and define the TB genetic lineages, H37Rv (PGG3 group) and Beijing (PGG1 

group). Rapidly defining TB lineages would help in identification of TB genetic 

lineages circulating in a given area of the outbreak and thereby indirectly help in the 

informed management of the disease including control and surveillance. 

The following specific objectives are used to achieve the aim mentioned above: 

 To carry out IS6110 FAFLP PCR methodology on H37RV genomic DNA 

 To decrease the number of fragments generated by FAFLP to enable 

sequencing of individual fragments so that it is easy to interpret the insertion points 

of IS6110 in the genome. 

 To identify the sequence of individual fragments generated and map the 

insertion site IS6110 position in the reference sequence of H37Rv. 

 To develop and perform lineage specific PCR to define lineages as PGG1-

Beijing and PGG3-H37Rv. 
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4.2 Materials and Methods 

H37Rv TB DNA was subjected to IS6110 FAFLP methodology as described in 

chapter 3 (chapter 3, section 3.1.3) and the fragments generated by capillary 

electrophoresis under the run conditions described in chapter 2 (chapter 2, table 

2.2), were analysed using PeakScanner software (Thermofisher, UK). To further 

reduce the number of fragments, new two base selective primers were designed with 

an addition of another selective base at the 3’end of the existing TaqI primers (see 

table 4-1 below) and subjected to the previously used PCR conditions using IS6110 

reverse primer. One microlitre of the PCR product is used to sequence in both 

directions using the same primers. The sequence data is then subjected to BLAST 

analysis to reveal the identity of the fragment thereby allowing the fragment of 

interest to be mapped at the genome level (see Tables 4-2 and 4-3) 

Table 4-1 List of unlabelled two base selective primers 

Two base selective TaqI primer Primer Sequence (Two selective 

bases at 3’ end)  

1) TaqI- AA  5’- CGATGAGTCCTGACCGA(AA)-3’ 

2) TaqI- AC  5’- CGATGAGTCCTGACCGA(AC)-3’ 

3) TaqI- AT  5’- CGATGAGTCCTGACCGA(AT)-3’ 

4) TaqI- AG  5’- CGATGAGTCCTGACCGA(AG)-3’ 

5) TaqI- CA  5’- CGATGAGTCCTGACCGA(CA)-3’ 

6) TaqI- CC  5’- CGATGAGTCCTGACCGA(CC)-3’ 
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7) TaqI- CT  5’- CGATGAGTCCTGACCGA(CT)-3’ 

8) TaqI- CG  5’- CGATGAGTCCTGACCGA(CG)-3’ 

9) TaqI- TA  5’- CGATGAGTCCTGACCGA(TA)-3’ 

10) TaqI- TC  5’- CGATGAGTCCTGACCGA(TC)-3’ 

11) TaqI- TT  5’- CGATGAGTCCTGACCGA(TT)-3’ 

12) TaqI- TG  5’- CGATGAGTCCTGACCGA(TG)-3’ 

13) TaqI- GA  5’- CGATGAGTCCTGACCGA(GA)-3’ 

14) TaqI- GC  5’- CGATGAGTCCTGACCGA(GC)-3’ 

15) TaqI- GT  5’- CGATGAGTCCTGACCGA(GT)-3’ 

16) TaqI- GG  5’- CGATGAGTCCTGACCGA(GG)-3’ 

 

4.2.1 Rapid definition of TB genetic lineages-PGG3 (H37Rv) and PGG1 

(Beijing) 

Samples: H37Rv and samples belonging to other lineages already assigned using 

FAFLP (chapter 5) (N10, N25, N34, N46, N62, N63 N70), were selected (appendix 

1) to test the proof of principle. Based on FAFLP, the following lineages were 

assigned to these samples above (Table 4-2). 
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Table 4-2 showing the selected samples and their IS6110 FAFLP derived lineages 

Sample ID FAFLP derived lineages (PGG) 

N10 CAS – PGG1 

N25 Unassigned 

N34 T (H37Rv-like)- PGG3 

N46 Unassigned 

N62 Unassigned 

N63 Unassigned 

N70 Beijing (PGG1) 

 

Following sequence determination (and therefore specific genomic insertion sites) of 

lineage specific fragments found only in defined lineage/spoligotype groups by 

FAFLP, primers were designed to amplify common fragments from the PGG1 (5’-

gggctccccagatcaa-3’) and PGG3 (5’-gtgtgccgcgaggtgg-3’) groups and comprised a 

200bp product and a 296bp product on a gel respectively, based on the hypothesis 

that a PCR product of a known size will be generated if the IS element is inserted at 

the exact same genomic region. In a total volume of 50µl, 1µl of the DNA extracted 

was added to the reaction containing 1X PCR reaction buffer, 1.5 mM MgCl2, 0.2 

mM dNTPs (Invitrogen, UK), 5 µM of the PGG1 or PGG3 group primer, 5 µM of 

IS6110 reverse primer as described above and 1U of recombinant Taq polymerase 

(Thermofisher, UK). The following PCR conditions were carried out in a Veriti 

thermocycler (Thermofisher, UK): 96°C for 15 min followed by 30 cycles of 96°C for 
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1 min, 60°C for 1 min and 72°C for 30 seconds with a final extension of 72°C for 1 

min was carried out before cleaning up the PCR products using AMPure XP 

magnetic beads. The products were then run on a gel to check the presence of the 

fragment, 296bp product for the PGG3 group and 200bp product for the PGG1 

lineage. 

 

4.3 Results 

4.3.1 Prediction of fragments using Seqbuilder (DNASTAR Lasergene version 

8, USA) software (in silico analysis) 

The genomic sequence of H37Rv (accession no: NC_000962.2) was digested in 

silico with TaqI enzyme followed by the identification of 59 bases of IS6110 

sequence 

(CTGACATGACCCCATCCTTTCCAAGAACTGGAGTCTCCGGACATGCCGGGGC

GGTTCAG) to indicate the size of the expected product by PCR using primers with a 

two base extension at the 3’ end to reduce the number of fragments generated as 

shown in Tables 4-3 and 4-4 and Appendix 1. The table shows the presence of 

sixteen insertion sites corresponding to the presence of sixteen IS6110 copies in 

H37Rv as was reported previously by Philipp et al in 1996 (187). 

4.3.2 Identification of fragments using Peak Scanner (Thermofisher Scientific, 

UK) software (in vitro analysis) 

Sixteen fragments were mapped as seen in columns 1 and 2 in tables 4-3 and 4-4 

using their fluorescent dye colours.  
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4.3.3 Mapping the insertion site IS6110 position in the genome of M. 

tuberculosis. 

All but two, 71.5 Y and 83.8 Y as seen in tables 4-3 and 4-4 in column 1, of the 

sixteen fragments generated could be identified by this method. Two fragments 

could not because the flanking genomic data contained in the sequence was too 

short to analyse as the restriction site was too close to the end of the transposon 

sequence. Although the two base selective primers are specific and generate a 

largely specific PCR product for sequencing, a degree of mis-priming does occur. 

These non-specific extension products are generated due to mis-priming occurring in 

the PCR. The data generated for the H37Rv genome fragmented using the 4-dye 

FAFLP PCR in Tables 4-3 and 4-4 and Appendix 1 correlate with the sequencing 

data and also the in silico data generated using DNASTAR Lasergene Seqbuilder as 

described above. 

Table 4-3 Mapping of H37Rv genome using 4-dye FAFLP PCR, DNA sequencing including 
BLAST results and in silico analysis with sequence orientation 5’-3’ according to Figure 3-1 
Method Schematic 

FAFLP 

fragment 

colour and 

size in 

base 

pairs* 

Sequence 

product size 

Insertion site BLAST 

result from sequence 

data 

In silico predicted 

insertion site 

99.1 G (102) Transcriptional regulator 

for LacI family protein 

Transcriptional regulator 

for LacI family protein 



101 

 

81.0B (87) Too short to analyse Cutinase1 

173.6R (175) Conserved membrane 

protein 

Conserved membrane 

protein 

736.6R (772) IS6110 IS6110 

 

* G=Green, B= Blue, R=Red, Y=Yellow 

Table 4-4 Mapping of H37Rv genome using 4-dye FAFLP PCR, DNA sequencing including 
BLAST results and in silico analysis with sequence orientation 3’-5’ according to Figure 3-1 
Method Schematic. 

FAFLP 

fragment 

colour 

and size 

in base 

pairs* 

Sequence 

product 

size/in 

silico 

predicted 

size in 

base pairs 

Insertion site BLAST 

result from sequence 

data 

In silico predicted gene 

insertion site 

206.4Y (201) Peroxidase BpoA Peroxidase BpoA 

140.4R (141) Molybdenum cofactor 

MoaC 

Molybdenum cofactor MoaC 

560.4B (561) PPE-family protein PPE-family protein 
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191.7R (196) Conserved hypothetical 

protein 

Conserved hypothetical 

protein 

71.5Y (58) Too short to analyse Cutinase1 

160.3Y 
(164) 

LytB related protein LytB related protein 

83.8Y (58) Too short to analyse  

Not seen 

in FAFLP 

data 

(289) Putative transposase for 

IS986 

Putative transposase for 

IS986? 

Not seen 

in FAFLP 

data 

(214) Integrase Integrase? 

329.2B (338) Glycerolphosphodiesterase Glycerolphosphodiesterase? 

124.9G (127) Transposase Transposase 

360.0R (360) Oxidoreductase Oxidoreductase 

 

* G=Green, B= Blue, R=Red, Y=Yellow 
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4.3.4 Rapid definition of TB genetic lineages- PGG3 and PGG1. 

For the seven samples tested as proof of principle, five belonged to the PGG3 

lineage: H37Rv, N25, N34, N46, N63, one belonged to the PGG1 lineage, N70 

according to FAFLP data, one belonged to the CAS lineage, N10 and one (N62) did 

not give any result (see figure. 4-1). N70 reacting to PGG3 primer shows there might 

be fragments shared by different PGG groups and needs to be looked into detail. 

 

 

A. 

  

 

 

 

 

296bp 
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B. 

 

Figure 4-1 Agarose Gel Electrophoresis showing M.tuberculosis strains , N10, N25, N34, N46, 
N62, N63, N70, H37Rv, amplified using PGG3 (A) and PGG1 (B) specific primers, amplifying 296 
bp and 200 bp products respectively 

200bp 

Generuler 

1 kb DNA ladder 
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4.4 Discussion 

Although a large number of studies have been published based on the fragment 

patterns generated by IS6110 RFLP, little or no data are available on the distribution 

of IS6110 genomic insertion sites in Mycobacterium tuberculosis complex strains. 

This will have an impact on the molecular epidemiological studies of M. tuberculosis. 

Knowledge of specific sites may lead the way to develop rapid techniques to identify 

specific lineages which could be validated in future using WGS technology. 

This technique exploits the use of selective bases at the 3’ end of primer sequences 

to reduce the fragment numbers generated during FAFLP PCR amplification. Also, 

use of differentially labelled fluorescent primers aids the identification of fragments. 

Using selective primers reduces the number of fragments amplified, which can then 

be sequenced and the position of the insertion site in the genome identified by 

BLAST analysis of the sequence. The BLAST results show that, except for the three 

fragments (81B, 71.5Y and 83.8Y) that were too short to analyse, the predicted and 

actual insertion sequence data correlate with each other and the FAFLP fragment 

size and colour. As every fragment generated always contained 75 bp of 

transposon/adaptor sequence, any fragments below 100bp were too small to identify 

flanking genomic sequence by this method. Sequencing data usually starts around 

25 bp past the sequencing primer which effectively cuts off 100bp in total. Apart from 

the fragments too small to analyse (this could be remedied by choosing an 

alternative enzyme for FAFLP), there were three fragments that were not predicted 

in silico. These were an IS986 transposase (corresponding to 289bp fragment in 

table 4-3), integrase (214bp in table 4-3) and glycerol phosphodiesterase (329.2B in 

table 4-3), involved in the glycerol metabolic process. That another transposon was 
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identified strongly suggests that a further transposition has occurred following the 

many cultural iterations of H37Rv since whole genome sequencing as seen in the 

case of IS986 transposase. If this was the case then these fragments would not be 

predicted from the genome sequence available. The predicted insertion sequences 

seen offer interesting avenues for further study, including characterisation of the 

surface genes disrupted by IS6110 including PPE and those affecting metabolism. 

The characterisation of insertion sites of this and other transposons is important for 

clonal organisms such as those belonging to the MTBC.  

In 2011 Alonso et al., showed the importance of mapping insertion sites by 

demonstrating that the IS6110 in the Beijing strains of MTBC can up-regulate 

downstream genes via an outward-directed promoter in its 3’end (Alonso et al. 

2011). Further mapping of the specific insertion sites will generate information on the 

nature of the gene disruption, whether the insertion has a detrimental effect, for 

example disrupts the proposed reading frame, or has a potentially beneficial effect 

through up regulation. The next steps for this work after it has been shown to map 

successfully the IS6110 insertion sites in H37Rv is to apply this knowledge to design 

a rapid tool for the definition of lineages.  

The principle of rapid detection of lineages was successful using the lineage specific 

fragments targeting the common fragments as described above (see figure 4.1). This 

assay needs a simple PCR thermocycler, reagents and facilities to run and visualise 

the gel and the ability to interpret the results. Direct detection from sputum would be 

a useful next step but sensitivity is likely to be low. Detection of lineages by the LSP 

or the SNP methods are time consuming as they need good quality DNA after 

bacterial DNA extraction and a bioinformatics approach to deduce the TB families. 
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They also need expensive instruments like the sequencers and extra manpower to 

accomplish the definition of lineages. Although an alternative approach would now 

be made if starting the project, the FAFLP approach was the only approach available 

at the time and as such it still forms the basis of genomic tool box development for 

the rapid assignation of TB genetic lineages based on IS6110. 

4.5 Summary 

The data presented shows that the IS6110 FAFLP PCR technique, though relatively 

simple, is robust and effective in mapping IS6110 insertion in H37Rv that could be 

applied to any bacterial species with similar repeated elements. Also in this chapter, 

rapid definition of TB genetic lineages using newly designed primers were carried out 

using PCR without the use of digestion and ligation, for the rapid detection of both 

H37Rv-like (T-group) and Beijing lineages to initiate the development of a suite of 

PCRs based on detection of lineage specific common IS6110 insertion points as a 

typing tool for resource poor settings. 
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Chapter 5 Classification of Nepalese TB clinical isolates into 

different TB genetic lineages 

(This chapter was published in the open access journal of Clinical Microbiology and 

Infectious Diseases (188).  
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5.1 Introduction  

Nepal is geographically interlocked between China and India, which together 

account for approximately a third of annual global new cases (11% and 24%, 

respectively) (WHO 2014) and is ranked 43rd in the world in terms of age-adjusted 

death rate, which is 27.80 / 100000 of the population. During the year ending of 

2014, there were 5506 deaths in Nepal due to tuberculosis that accounts to 3.5% of 

total deaths in Nepal. TB cases and deaths are more prevalent in men than women. 

In 2006 Nepal’s National Tuberculosis Programme (NTP) developed the STOP TB 

strategy to fight against tuberculosis, in line with WHO. The NTP is fully integrated 

with the national healthcare policy of the government of Nepal. The Millennium 

Development Goal (MDG), another initiative by WHO to tackle TB, was found to be 

effective in halting and reversing global TB prevalence. The prevalence rate (all per 

100,000 population) has gone down from 348 (162-602) in 1990 to 211 (99-365) in 

2015. The death rate (all per 100,000 population) has also reduced from 52 (32-70) 

in 1990 to 19 (13-25) in 2015. Due to all these efforts, Nepal is no longer in the list of 

high burden TB countries. TB programs were able to save 32,973 lives in 2014 but 

despite this progress, there were still 978 deaths. Overall treatment success rates of 

drug susceptible TB was 91.5% with 0.92 % failure rates, 2.17% failed to follow-up 

and 2.7% death rates. The proportion of MDR-TB was 2.2% among new TB cases 

and 15.4 % among retreatment cases based on a survey carried out in 2011-2012. 

New surveillance studies have not been carried out recently. There were a total of 22 

deaths among MDR cases and 3 deaths in XDR reported in 2014/15. For MDR the 

drug resistance pattern showed higher levels of resistance in fluoroquinolones and 

8% of those MDR patients further developed XDR. Sputum microscopy is still the 

gold standard method for the diagnosis of TB in Nepal. Currently there are 581 
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microscopy centres providing this smear microscopy service throughout the country. 

As a high proportion of rifampicin resistant strains are resistant to Isoniazid, 

detection of rifampicin resistance can be used as a marker for MDR-TB as described 

in chapter 1. Between 2011 and 2012, GeneXpert MTB/RIF assays were introduced 

in 3 centres and now there are 26 centres nationally (173). The STOP TB program 

has reduced the number infected from 29 million people, as estimated by WHO in 

2014, to 15 million people according to the recent report by NTC. Despite the efforts 

to control the spread of TB, there is still a long way to go to achieve the goals of 

STOP TB program as 40,000 people are infected every year, with 20,000 new 

primary cases and 5000-7000 deaths each year from tuberculosis in Nepal. 

It is important to understand the molecular diversity of the M. tuberculosis population 

in Nepal as it has been reported recently that there is a high similarity between TB 

strains in Nepal and in Northern India, with which Nepal shares an open border 

policy of human migration (189). This might indicate that the TB lineages that were 

found in India, especially the CAS lineage, have successfully established in Nepal 

due to the human migration from India into Nepal (190), enabling the TB lineages to 

be successful in any geographical location (189). 

Very limited data are available on the characterisation of Mycobacterium tuberculosis 

strains and genotypes circulating in Nepal. A recent study of 261 Nepalese isolates 

found drug resistance  in 12.8% of M. tuberculosis strains that were from new 

untreated cases, with the most frequent lineages reported as CAS/Delhi (40.6%), 

East Asian (including Beijing) (32.2%), Euro-American (15.7%) and Indo-oceanic 

(11.5%)(191). To gain further insight into the characteristics and diversity of 
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mycobacteria in Nepal, this study aimed to categorise isolates for the first time using 

IS6110 FAFLP PCR and to assign them to different genetic lineages. 

5.1.1 Aims and Objectives 

The main aim of this chapter is to classify the Nepal samples into different TB 

lineages to understand the genetic distribution of TB lineages in Nepal. 

The following objectives were used to achieve this aim: 

 To perform IS6110 FAFLP PCR on Nepal samples 

 To characterise the samples into different TB lineages 

5.1 Materials and Methods 

5.1.1 Strains 

(Refer General methods section 2.1  

Sputum samples from 176 consecutive new TB patients were collected between 

2007 and 2008 and cultured alongside routine diagnostic testing from two Nepalese 

tuberculosis reference centres located in the Kathmandu valley: the National 

Tuberculosis Centre (NTC) and the German Nepal Tuberculosis Project 

(GENETUP). The patient population represented local and referred cases from 

across Nepal. Bacterial genomic DNA from isolated strains was extracted by the 

Cetyltrimethylammonium Bromide (CTAB) method.  
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5.1.2  IS6110 FAFLP PCR, Fragment Sizing & Analysis 

(Refer to the General methods section 2.2 for IS6110 FAFLP methodology and 

fragment sizing.). The four-dye FAFLP data collected from the different profiles were 

recorded and compared with a well characterised reference collection of M. 

tuberculosis isolates (178) using BioNumerics software v6.1 (Applied Maths Inc., 

Belgium). These data were then used to build a dendrogram using the Dice 

coefficient of similarities to compare the similarity matrix and Unweighted Pair Group 

Method with Arithmetic Mean (UPGMA) derived cluster analysis with cophenetic 

correlation for the branch quality. Dice similarity coefficient and UPGMA clustering 

method was chosen because of the high correlation in terms of their similarity 

obtained (in this case, genetic similarity) between the samples to form a group or 

cluster compared to the simple matching coefficient.  

5.2 Results 

5.2.1 Analysis of Data using BioNumerics software v6.1 

Of the 176 DNA extracts from isolates analysed, the majority of the samples (97, 

55.4%) belonged to either the spoligotype-defined CAS lineage (64, 36.6%) or the 

Beijing lineage (33, 18.8%) grouping under PGG1 and the rest of the samples group 

under either PGG2 (1.7% S, 3.97% X, 7.95% Haarlem and 2.27% LAM, 2.27% T-

Uganda) or PGG3 (2.27% of T) (Table 5-1). Forty three samples (24.4%) were 

“unassigned”. Common fragments specific to different TB lineages seen were exactly 

the same as the earlier published report by Thorne et al, (2011) except for an 

additional fragment, 78.4 G, for the CAS lineage (135). These fragments specify 

different insertion points where IS6110 has inserted or transposed. A dendrogram 
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was generated using only the IS6110 FAFLP data confirming again the above 

mentioned lineages in relation to the PGGs (Fig. 5-1). 
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Table 5-1 Common fragments identified using IS6110 FAFLP PCR in TB genetic lineages of the 
176 bacterial DNA isolates in Nepal  

PGG-

spoligotype/sub-

lineage  

Common fragment 

sizes  

No. Of Nepal strains 

(Total=176) 

PGG1-CAS  78.4G, 92.0B, 

117.9R, 206.2G, 

275.1R  

64 

PGG1-Beijing  101.7B, 102.5Y, 

139.1R, 180.7Y, 

254.8G, 332.4R, 

353.5B  

33 

PGG2 –Haarlem  87.0Y, 89.4G, 

148.7B, 300.2R 

(H/X), 445.7Y  

14  

PGG2-LAM  71.5Y, 105.2R, 

116.1R  

4  

PGG2-S  88.0G, 112.9R, 

217.2R, 445.3G  

3  
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PGG2-X  83.8Y, 300.2R (H/X)  7  

PGG2-T Uganda  88.9Y, 119.5G, 

122.9Y, 228.4Y, 

266.8R  

4  

PGG3- T  81.3R, 192.4R, 360R  4  

Ungrouped  43 

(PGG represent Principal Genetic groups according to Sreevatsan et al, spoligotypes follow spolDB4 

classification and spoligotypes derived sub-lineages are grouped following Gagneux’s classification 

(153,158)). 
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Figure 5-1 UPGMA derived dendrogram showing the predominant genetic 
lineages/spoligotypes of 176 Nepalese Mycobacterium tuberculosis isolates.  

Coloured branches represent Nepalese samples following Gagneux’s global phylogeography of 
MTBC (158) and black branches represent the in-house global Mycobacterium tuberculosis collection. 
PGGs are numbered following Sreevatsan’s classification (153). PGG1 outliers share one IS6110 
copy with the PGG1 group. Those which contained one IS6110 copy but could not be assigned to any 

group (unassigned group in the figure) are shown within the green box. 
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5.3 Discussion 

Thorne et al. showed that IS6110 FAFLP PCR can be used to delineate the 

phylogeny of MTBC as shared common fragments can identify the different lineages 

in a geographical location by comparison with a reference database collection(135). 

As very limited lineage information is available from strains in Nepal (up until 2012 

there was none), the IS6110 method (published recently) was applied to map the 

IS6110 sites in H37Rv (179) and also carried out rpoB sequencing to further 

characterize strains from this important region. 

Fifty five percent of the 176 Nepalese strains analysed belong to the CAS (36.6%) 

and Beijing (18.8%) modern genetic spoligotypes (PGG1). The remaining 24.4 % of 

the samples belong to the PGG2 and PGG3 groups (Haarlem, LAM, S, X, T-Uganda 

and T). However, a limitation of this technique is its difficulty to characterise the 

samples with less than 4-5 copies of IS6110 as seen in the unassigned group 

(24.4%) in figure 5-1, which can be overcome by the use of other typing techniques 

like MIRU-VNTR(146). The geographical position of Nepal is likely to have 

influenced this distribution of lineages, with a mixture of predominantly Beijing 

lineage from the North of the Himalayas and the CAS lineage from the south (190). 

The fairly high percentage of mainly European lineages (Haarlem, LAM and T, 

12.5%) indicates that there has also been mixing of the different lineages over an 

extended time and that European travellers/migrants to South East Asia and Nepal 

may have transmitted European strains to the local population, probably due to the 

rise in globalisation leading to increased human migration between countries as 

reviewed by Soto (192). The IS6110 FAFLP data from our study supports the 
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hypothesis that the geographic location of Nepal is the key for the circulation of 

PGG1 TB lineages, CAS and Beijing, which were predominant in India and China 

respectively. This shows that the human migration from India and China into Nepal 

has helped M. tuberculosis lineages, especially Beijing and CAS, establish in this 

country. A large number of people flow between these regions due to various 

reasons,  for example cheaper medical treatment facilities, work, study, trade, 

pilgrimage and cultural visits. It has been shown that there is a high prevalence of 

CAS lineages from North India circulating in Nepal due to the migration of Indian 

population from this region into Nepal for the purposes mentioned above 

(163,189,190). Likewise, the other predominant lineage, Beijing, found widely 

distributed in China and Tibet, is seen in Nepal (164,193,194). This simple and 

informative PCR-based molecular epidemiological technique might prove useful for 

the study of outbreaks of the disease and importantly also to detect cross-

contamination between different strains or isolates in resource poor settings, aiding 

cluster investigation and possibly informing outbreak management. 

5.4 Summary 

To summarise, in this chapter I utilised the IS6110 FAFLP methodology successfully 

on DNA from TB samples from a resource poor setting, Nepal, and characterised the 

samples into different TB lineages or genotypes. This method also showed that the 

majority of the Nepal samples belonged to the PGG1 groups particularly, CAS and 

the Beijing. 
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Chapter 6 Rifampicin Resistance status in Nepalese TB 

isolates from clinical samples  

(This chapter was published in the open access journal of Clinical 

Microbiology and Infectious Diseases (188). Also, this methodology was 

employed by another PhD student from Lahore University (Pakistan) 

supervised by me in a recent paper (195) whilst determining the rifampicin 

status from clinical samples in Pakistan).  
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6.1 Introduction  

6.1.1 Drug Resistant TB in Nepal (adapted from NTC, 2015) 

A recent Drug Resistance Survey in Nepal conducted between 2011 and 

2012, has shown that DR-TB levels are increasing with nearly 9.3% of new 

patient resistant to at least one drug. The issue of increasing proportion of 

resistance to fluoroquinolones (26.4%) is a major public health concern in 

Nepal. Among MDR cases, 8% of the cases were found to be XDR due to 

the fluoroquinolones resistance. So to prevent the increased death rate due 

to XDR-TB in Nepal, the government is performing DST for second line drugs 

of all MDR-TB cases at the start of treatment (173). Early case finding is 

important to decrease human suffering, duration of disease and / or control of 

DR-TB, decrease financial burden and improve treatment outcome (23). As 

part of the STOP TB strategy in 2010, Nepal is successfully managing to 

control TB due to the presence of 581 microscopic centres, 2 solid culture 

laboratories including capacity for first line (FLD) drug susceptibility testing 

(DST), first line probe assay (LPA), one liquid culture and one second line 

drug (SLD) DST facility and 26 GeneXpert centres spread all over this 

mountainous country. This is in addition to 2 other culture and DST facilities 

(NTC and GENETUP) functioning in Kathmandu valley. 

During the course of this research work the study of 261 Nepalese isolates 

by Malla et al., found that around 8.04% of the MDR-TB cases were new 

untreated cases. (191). This study reports that the two major TB genotypes 

circulating in Nepal are CAS and Beijing. According to the NTP’s annual 

report published in 2015, the national rate of MDR is low in new cases (2.2%) 



121 

 

and high in retreatment cases (15.4%). Since rifampicin resistance has been 

widely accepted as a ‘surrogate’ marker for MDR (53,196), it is useful to 

investigate the MDR-TB status in this set of samples and compare them to 

the results of Malla et al., as they are new untreated TB cases and, 

moreover, the phenotypic drug susceptibility test results were unavailable for 

these samples. It is also been reported that the predominant strains 

circulating in India and China, CAS and Beijing, are mostly MDR-TB and the 

same strains are also found in Nepal (164,189,190,193,194). It will be 

valuable to investigate if this finding is supported with this set of samples 

using the Rifampicin Resistance detection assay targeting the RRDR region 

of the rpoB gene. 

6.1.2 Aims and Objectives 

The aim of this chapter is to determine the status of rifampicin resistance as 

an indicator of Drug Resistance in the 176 bacterial DNA samples from 

Nepal. 

6.2 Materials and Methods 

6.2.1 rpoB Analysis 

The 81bp Rifampicin Resistant Determining Region (RRDR) of the rpoB gene 

in the M. tuberculosis genome of all strains was sequenced using published 

primers (Arnold et al. 2005) and analysed in BIOEDIT software using 

ClustalW alignment parameters (see appendix 3). The PCR was carried out 

in a total volume of 50µl where 1ng of the DNA was added to the reaction 

containing 1xPCR  reaction buffer, 1.5mM MgCl2, 0.2mM dNTPs 

(Thermofisher, UK), 20µM each of both rpoB-RRDRforward (5’- 
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CGATCACACCGCAGACGTTGA) and reverse primers (5’- 

GGCACGCTCACGTGACAGACC) and 5U recombinant Taq polymerase 

(Thermofisher, UK). The following PCR conditions were carried out using a 

Veriti thermocycler (Applied Biosystems, UK): 94˚C for 2 min followed by 35 

cycles of 94˚C for 30 sec, 60˚C for 30 sec and 72˚C for 1 min. Finally, an 

extension of 72˚C for 10 min was performed before cleaning the products 

using AmpureXP magnetic beads (Beckman Coulter, UK) and sequenced 

using the forward primer, rpoB-RRDR forward. 

6.3 Results 

Of 176 DNA extracts analysed for rpoB mutations, seven samples (3.9%) 

had a single non-synonymous base change which would likely confer 

resistance (see table 6-1 and appendix 3). Six of these seven samples also 

showed a second base mutation in a codon triplet whereas sample N70 

showed a first base mutation. There were no silent mutations observed in the 

RRDR region of any of these samples.  

Table 6-1 List of mutations seen in rpoB Rifampicin Resistance- Determining Region 
(RRDR) of rifampicin resistant M. tuberculosis isolates from Nepal. 

Sample 

Mutated 

locus 

 

Nucleotide 

modification 

Amino acid 

modification 

1. N70 516 GAC > TAC (Asp>Tyr) 

2. N10 522 TCG > TTG (Ser>Leu) 
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6.4 Discussion 

Inferred Rifampicin resistance status for all the Nepal samples was 

determined using rpoB analysis. According to a recent study (191), fifty 

strains had any drug resistance and sixteen (6.1%) out of 261 isolates were 

MDR. Among the fifty any drug resistant strains, 29 cases were previously 

treated and twenty-one were new untreated cases (8.04% of 261 total strains 

and 12.8% of 164 new untreated cases). In this study, MDR-TB was tested 

by using rifampicin as the resistance marker and 7 isolates out of 176 were 

found (3.9%) from new untreated cases possessing drug resistance 

genotypes. However, their reported MDR percentage was based on the total 

number of isolates, of which 37.2% of isolates were from previously treated 

cases, which may enhance a probability of drug resistance development 

compared to untreated cases. Our results indicate that the prevalence of 

Rifampicin (RIF) resistant TB (surrogate marker for MDR) was higher than 

the nationally reported 2.2% MDR in new untreated cases. Further, our 

results are concordant with a recently conducted study by Creswell et al., 

where they have shown that the genotypic rifampicin resistance in newly 

3. N25 526 CAC > CTC (His>Leu) 

4. N63 526 CAC > CGC (His>Arg) 

5. N34 531 TCG > TGG (Ser>Trp) 

6. N46 531 TCG > TTG (Ser>Leu) 

7. N62 531 TCG > TTG (Ser>Leu) 
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diagnosed TB patients to be 3.3% in Nepal (198). In this study, the most 

common mutation site in the RRDR is at codon 531 concordant with the 

global data and parallels the findings of earlier studies (190,197). It also 

demonstrated the successful use of a surrogate rifampicin marker in analysis 

of MDR in Mycobacterium tuberculosis strains isolated from newly diagnosed 

primary TB patients originating from different regions of Nepal.  

The major circulating genotypes in Nepal according to our study have been 

shown to be CAS and Beijing in chapter 5 table 5-1 which was concordant 

with Malla’s study (191) and Sharma’s study (189). Sharma et al. reported 

that the major circulating genotype in northern India was CAS and they were 

predominantly MDR (189). As Nepal shares an open border with India in the 

south, this had contributed to the spread of the CAS lineage into Nepal and 

thereby the MDR-TB (189,190). Again the same scenario is true for the 

Beijing lineages from China contributing to the MDR burden in Nepal 

(164,189,190,193). Despite the unavailability of the drug susceptibility tests, 

this rpoB assay was able to infer the rifampicin resistance status for this set 

of samples. 

The combination of the rapid lineage specific PCR assay as discussed in 

chapter 4 along with the RIF resistant PCR assay will be more useful in 

resource limited setting as there is a reduced requirement for highly 

specialised equipment/infrastructure and staff for these molecular tests. 
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6.5 Summary 

In this chapter by utilising the rpoB PCR assay targeting the 81bp RRDR 

region, seven samples (3.9%) of the 176 Nepal samples tested were found to 

be rifampicin resistant and is concordant with the other studies as described 

above. 
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Chapter 7 Final Discussion   
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7.1 Introduction 

Control of tuberculosis in high burden countries is of paramount importance 

for a global TB prevention strategy to be successful. India and China, along 

with Indonesia, account for 45% of the new TB cases according to the global 

tuberculosis report by WHO (12). Despite recent advances in drug 

development and rapid diagnostic assays, the majority of TB diagnostic 

centres are still dependent on clinical diagnosis and interpretation of bacterial 

cultures to formulate the drug regimen and treat TB infection (12). 

7.2 Discussion of findings in this study 

The hypothesis of this research work is to substantiate the analysis of the 

position and copy number of IS6110, a bacterial transposon, as a genomic 

tool to characterise the TB genetic lineages from Nepal, one of the low and 

middle income countries. TB strain typing can support molecular 

epidemiological investigations in controlling onward transmission and 

outbreaks, by identifying patients who are linked in the same chain of TB 

transmission (PHE, 2014).  

7.2.1 Optimisation and Development of Insertion Element IS6110 

Fluorescent Amplified Fragment Length Polymorphism (FAFLP) 

PCR 

The main aim of this thesis was to develop a molecular tool box using IS6110 

FAFLP PCR that can characterise Mycobacterium tuberculosis complex 

strains genotypically and be used to understand the distribution and 

evolutionary relationships between different TB genetic lineages in resource 

poor settings in any geographical location. Various practical issues/artefacts 
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were addressed by using a recombinant Taq polymerase and by increasing 

the extension temperature from 60̊C to 72̊C and the extension time from 15 

minutes to 1 hour, as shown in chapter 3. The increase in extension 

temperature reduced mis-priming of the polymerase, producing cleaner, 

more discrete products for more effective downstream analysis. 

7.2.2 Mapping of Insertion sites (IS6110) in the M. tuberculosis H37Rv 

reference genome and rapid definition of genetic lineages 

(published work- (179)) 

To test the developed assay the reference TB genome H37Rv, was mapped 

in silico and the predicted fragment sizes compared with laboratory results. In 

this study laboratory results showed that sixteen IS6110 insertion sites were 

found in H37Rv (chapter 4 figure) using IS6110 FAFLP PCR, which 

correlates with the study by Philipp et al. in 1996 (187), who showed that 

H37Rv has sixteen IS6110 insertion sites by pulse field electrophoresis. 

Here, all sixteen fragments were identified using a fluorescently labelled dye 

as shown in table 4-2 in chapter 4, together with the position of in silico 

predicted insertion sites. 

The IS6110 insertions have predilection to insert into mainly the surface 

proteins PPE (560.4B in table 4-2), cutinase1 (71.5Y in table 4-2) and those 

affecting glycerol metabolism such as IS986 and integrase (table 4-2) which 

was recently shown in Roychowdhury’s study, where it is shown that the 

majority of the transpositions of IS6110 occur in the surface proteins 

especially the PE/ PPE family of proteins (74). IS6110 has been shown by 

Alonso et al. to upregulate downstream genes with the help of the promoter 
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at its 3’end (199). One of the important properties of IS6110 is that it carries a 

promoter element upstream of the coding region, which has the potential to 

up-regulate expression of downstream genes (74,199,200). In a recent study, 

178 unique genes belonging to mainly PPEs / transposases and 

oxidoreductases, were found to be carrying the IS6110 promoter element 

upstream of the coding regions (74). This study also found one instance of 

IS6110 insertion upstream of the trpD gene (ATP-binding cassette 

transporter), a metabolic enzyme essential for the bacterial survival in 

activated macrophages whilst colonising the lungs during infection (74,201). 

Further analysis revealed insertions in MDR-TB isolates, 75bp upstream of 

the phoP region (a transcriptional regulation factor), suggested to be 

necessary for M. tuberculosis virulence by Soto et al. in that the IS6110 

insertion upregulates the over expression of phoP gene in M. bovis B strains 

(200). IS6110 insertions have been found upstream of early secretory 

antigenic target protein 6 (ESAT-6) that has been linked with mycobacterial 

virulence (202). It has been suggested that ESAT-6 interacts with the host 

protein Beta 2 microglobulin (β2M), a serum protein found associated with 

Major Histocompatibility Complex-1 (MHC-1), thereby inhibiting the 

expression of β2M- MHC-1 and down regulating the antigen presentation 

function  of class I MHCs (202,203). The identification and confirmation of 

IS6110 insertions in silico into different genes like PPE, IS986, cutinase1, 

integrase, oxidoreductase and glycerolphosphodiesterase as shown in table 

4-2 in chapter 4, indicates that IS6110 transposition might play a role in the 

pathogenesis of TB as suggested by other groups and the work presented in 

this thesis supports that theory. 
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In addition to the insertions at different genes, common IS6110 insertion 

points or fragments occur between lineages but some of them are unique to 

specific lineages as shown in chapter 5 and reported earlier by Thorne et al. 

(135). In this study, it has been shown that there are common IS6110 

insertion points / fragments between isolates in one lineage, but not shared 

with other lineages (see table 5-1), for example Lineage 3, PGG1-CAS (78.4 

G, 92.0B, 117.9R, 206.2G, 275.1R) does not share the same fragments as 

Lineage 4, PGG2-Haarlem (87.0Y, 89.4G, 148.7B, 300.2R, 445.7Y) or 

PGG3-T (81.3R, 192.4R, 360.0R,) This work was published in 2016 (188) 

and is concordant with the earlier study by Thorne et al. In the major study by 

Roychowdhury et al., a computational pipeline was developed to analyse the 

insertion sites of 1377 whole genome sequenced M. tuberculosis isolates, 

representing the 7 major global lineages, from all publically available 

datasets. Using density distribution studies, they found that different lineages 

have different copy numbers and insertion points and these insertions are 

unique to particular lineages (74). This property was observed in this study 

prior to Roychowdhury et al., as shown in chapter 5, where common 

fragments occur between lineages, together with some unique fragments 

within lineages. Part of the work in this thesis was cited by Roychowdhury et 

al. as being the first to identify this. In the East Asian- (Lineage 2, PGG1- 

Beijing) and Indian-East African (Lineage 3, PGG1- CAS) lineages, there is a 

high level of conservation in insertion sites as well as noticeable differences. 

Lineage 2, PGG1-Beijing isolates have extra IS6110 insertions in regions like 

Rv0001-Rv0002, Rv1371 and idsB, involved in biosynthesis of membrane 

ether-linked lipids (199). In Lineage 3 isolates, there are unique intergenic 
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regions mapping to regions such as Rv0395, Rv1504c and Rv3845-3846 that 

are not present in L2 (74).  

Another point of discussion is whether the insertion sites of IS6110 occurs at 

insertional hotspots, i.e. independent insertion at the exact same point in 

different strains, with little or no phylogenetic signal, or inherited and 

relatively stable over time with significant phylogenetic signal. In this study, it 

was found that some Beijing strains have high copy numbers of IS6110 

whereas the others have low copy numbers as shown in appendix 2. It might 

be possible that the rate of transposition is high in some of the strains 

compared to the others as reported earlier by Dale et al. (107). This was not 

studied in this thesis but could be investigated in future works. It also has 

been shown by Dale et al., that these insertions of IS6110 do not occur at hot 

spots but the transposition of IS6110 is slow in low copy number strains than 

high copy strains (107). Roychowdhury et al supported the previous work of 

this thesis in that the IS6110 hotspots observed are unique insertions 

subsequently inherited by daughter strains showing vertical transmission 

within genetic lineages, and confirmed by WGS analysis.  

Following mapping of insertion sites, the IS6110 FAFLP assay paved the way 

to initiate the development of a rapid PCR assay that could identify the TB 

genetic lineages directly from DNA via identification of lineage specific 

IS6110 insertion points, without the need for performing FAFLP. This tool 

could rapidly assign lineages to the strain collection in any geographical 

setting with a basic PCR set up. The IS6110 FAFLP method, though 

relatively simple and robust, would still be challenging to implement in 
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settings with very poor resources, as the procedure has multiple steps, needs 

good quality DNA to be extracted from isolates, uses relatively expensive 

molecular biology reagents and equipment and also requires a cold chain 

infrastructure. The development of lineage specific PCR was important so 

that identification of genetic lineages directly from sputum samples would be 

possible (not tested in this project). This assay will not directly affect the 

treatment regimen of a patient but it will give an informed decision about the 

TB lineage prevalent and could help to direct the control measures for that 

particular lineage. It has been noticed that in certain regions like India, 

Pakistan, China, certain TB lineages (CAS-Delhi in India and Pakistan, 

Beijing in China) are more prevalent than other lineages (163,164) and does 

not necessarily correlate with the increased drug resistance patterns seen in 

these lineages (204) but could be to do with either a high density of human 

population in these areas (205) or the ineffective or mismanagement of the 

antibiotic usage in these countries (23). 

In chapter 4, isolates representative of PGG3 and PGG1 lineages were 

selected and tested. This PCR method with specific primers targeting unique 

IS6110 fragments was able to identify PGG3 and PGG1 genetic lineages, by 

detecting the unique 296bp product of PGG3 (360 R fragment inserted into 

oxidoreductase as shown in chapter 4, table 4-2) and a 200bp product of 

PGG1. Thus, the proof of principle was established and it would be useful to 

design PCRs to common fragments in the remaining lineages. 
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7.2.3 Classification of Nepalese TB clinical isolates into different TB 

genetic lineages (published work - (188)) 

The main function of this genomic tool is to characterise the TB strains 

studied into different TB genetic lineages from any geographical location. 

This technique was applied on readily available TB DNA samples from Nepal 

as shown in chapter 5 as there was limited or no information present on the 

genetic diversity of the circulating TB lineages in Nepal when this study 

started in 2011. However, a study published by Malla et al., in 2012, 

described the initial characterisation of these lineages and the importance of 

understanding their distribution in Nepal (191). Nepal’s position 

geographically, sharing its borders between India and China, also proved 

relevant as one third of the total human TB cases are from these two 

countries (23). This emphasised that Nepal’s location would have acted as a 

mixing pot for the strains originating from infections in India and China, 

reflected in our results in chapter 6 that 55% of the strains were either Beijing 

or CAS belonging to PGG1 group (188). 

The findings of this study corroborates Malla’s study (191) in that the majority 

of strains circulating in this geographical location in Nepal are from Lineages 

2 and 3, PGG1- CAS and Beijing. These strains are predominantly found in 

India (CAS) and China (Beijing). Migration of the human population carrying 

these strains from these countries would have settled in Nepal and mixed 

with the local population thereby passing on these successful TB lineages as 

discussed in chapter 5). In chapter 5, IS6110 FAFLP derived phylogeny also 

clearly demonstrates that in the majority of Nepalese TB patients, although 

usually infected with strains belonging to PGG1, can also be infected with a 
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range of genetic lineages. This scenario clearly shows that various TB 

genetic lineages have entered Nepal at some point of time and the most 

successful lineages among them are the Beijing and the CAS lineages. This 

again focuses the discussion on human migration between the open borders 

of India in the south and China in the north of Nepal. In Northern India, the 

CAS- Delhi lineages are commonly seen and in China, Beijing lineages are 

predominant and this is evident in this study too (163,164,190). In chapter 5, 

the distribution of Beijing and CAS lineages are shown as 18.8 % and 36.6% 

respectively as seen in table 5-1. The perfect scenario is being offered by 

Nepal for the adaptation of M. tuberculosis strains by means of human 

migration for the purposes of tourism, religious travel like the pilgrimage to 

the famous religious shrines, work, and also cheaper treatment facilities 

(190). 

In chapter 5, it was shown by IS6110 FAFLP that there are a high number of 

strains belonging to the CAS lineages compared to the Beijing lineages 

which was also the case in Malla’s study (191) where CAS lineages were 

more predominant than Beijing lineages. In Northern India, the predominant 

lineage seen is CAS and Beijing in China as shown in the figure 7-1 which 

shows that the geographical location of  Nepal has played an important role 

in the TB lineages’ distribution in Nepal (189), by being a perfect 

geographical location for the intermingling of different lineages from these 

two high burden countries. 
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A. 
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B. 

 

Figure 7-1 A. Distribution of different TB lineages in Nepal from this study and B. the distribution of different lineages seen in India, China and 
other countries near the Indian subcontinent  

(this figure has been adapted from (189)). 
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7.2.4 Rifampicin Resistance status in Nepalese TB isolates from 

clinical samples (published work - (188,195). 

Finally, as shown in chapter 6 by the rpoB PCR assay, seven of the 176 

isolates were found to be likely resistant to rifampicin and all the seven 

mutations identified were in the RRDR region of rpoB. They were found to be 

non-synonymous thereby likely affecting the sensitivity of the strain. All 176 

isolates in this study were primary untreated cases and this incidence of 

resistance seemed to be higher (3.9%) than the average national average of 

new, untreated cases (2.2%) (173,188). However the result was concordant 

with the recent study by Creswell et al., that showed the resistance as 3.3% 

(198) by analysing the resistance patterns using GeneXpert MTB/RIF kits. 

Again the increase in drug resistant TB in Nepal is probably due to the 

increase in drug resistant strains in India and China. The most frequently 

mutated codon is 531 followed by 526, 522 and 516 (see table 6-1), as 

observed by Poudel et al in his study (190). In Northern India, it has been 

reported that the majority of rifampicin mutation occur at codon 531 situated 

in the RRDR region (53,206) which reinforces the fact that the movement of 

human population helps the transmission of TB (159). One drawback of this 

technique is that it tests resistance to rifampicin by analysis of mutation in the 

RRDR only, even though sequencing of this region of rpoB has been 

suggested as a surrogate marker for MDR (53,196,207,208), it will not pick 

up 100% of mutations associated with resistance to this drug. This strategy 

will not be as useful for successful treatment of the patients if they are multi-

resistant to other TB drugs and ideally the inclusion of a test to identify katG 

315, the marker most commonly associated with isoniazid resistance, and 
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other front line drugs, could also be included in a PCR screen for optimum 

assay sensitivity directly from samples. 

Nepal, the main setting of this study is no longer classified as a high burden 

TB country (172). However it is considered as a resource limited setting due 

to the poor infrastructure in remote villages and the lack of technologically 

advanced diagnostic assays and skilled labour for analysing the results, thus 

preventing routine molecular analysis. The priority of these settings is to 

identify tuberculosis infection by collecting samples for bacterial isolation and 

to inform treatment. The period of time taken to identify TB and start patient 

specific therapy is where these settings fail to keep up pace with a resourced 

setting. An assay such as IS6110 FAFLP PCR and, in particular the rapid 

PCR lineage detection method, although not a TB diagnostic test, could be 

useful to characterise TB isolates into different TB lineages directly from the 

clinical sample and thereby aid in contact tracing and indirectly in the control 

of outbreak. The resources needed are thermal cyclers, PCR reagents and 

trained staff for analysis and interpretation of results, which are already 

available in these settings. As contamination of cultures is potentially a major 

issue in outbreak investigation, the highly specific and sensitive nature of the 

assay could aid epidemiological investigations if implemented. The rapid 

PCR assay described in chapter 5 identifies lineage related strains and, with 

an expanded panel of PCRs for epidemiological investigations, control 

measures can be implemented within 2-3 days. If more information is needed 

on drug sensitivity then additional tests could also be added to this assay. 
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Novel diagnostic methods and assays are always needed for the effective 

and timely treatment of tuberculosis in resource limited settings. As the 

expenses incurred by the patients and their families accounted to 53% of 

annual household income per capita (209), the treatment of TB patients 

becomes extremely challenging in low income/high burden TB countries. 

Different technologies evolved during the timeframe of this thesis work. WGS 

can now be performed relatively easily in high resource settings. Within a 

short period of time, strains could be identified and characterised using NGS 

technologies. In terms of rapid diagnosis however no other technology apart 

from single molecule WGS has shown promise in this area. Oxford 

Nanopore’s MinION sequencing could sequence TB genomic DNA directly 

from samples following extraction and depletion of human DNA. Currently 

however there is still an issue with the cost and availability of this technique 

in resource limited settings (148). 

The advantages and disadvantages of the IS6110 FAFLP genomic tool are 

summarised in the table 7-1. 
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Table 7-1 Brief summary of the advantages and disadvantages of IS6110 FAFLP 

Advantages Disadvantages 

High resolution marker and precise 

as 0.5bp difference can be a different 

lineage or strain (116.R is CAS and 

117.1 R is Haarlem- table 5-1 and 

figure 5-1) 

Difficult to characterise strains with 

less than 5 IS6110 copies as shown 

in table 5-1 and figure 5-1 in chapter 

5 where nearly 24% of the Nepalese 

samples were ungrouped and 

warrants another high resolution 

marker like MIRU-VNTR. 

Simple, reproducible and robust 

technique than RFLP. 

Although more rapid than RFLP, it 

can take up to several days to 

perform the technique, get the results 

and analyse them but the rapid 

lineage specific PCR described in 

chapter 4 overcomes this and the 

requirement for multiple enzymatic 

steps on extracted DNA from 

cultures. 

Variations of the assay can suit both 

a high throughput modern lab and a 

resource poor setting depending on 

the equipment available 

Basic equipment like PCR machines, 

heat blocks, gel electrophoresis and 

centrifuges are still needed, even if 

rapid tests are employed. 

Continuous screening of the samples 

using the technique would aid 

contact tracing for immediate 

epidemiological intervention 

Additional sequencing or other 

mutational studies like the rpoB PCR 

assay used in chapter 6 needed as 

this study does not detect any 

mutational changes like SNP. 
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7.3 Future work 

A full toolbox of lineage specific PCRs could be developed and multiplex 

panels created. WGS may offer more information regarding the biological 

impact of IS6110 insertion. Some insertion sites have remained in lineages 

for thousands of years and it is likely that they may confer a biological 

advantage. Knowing that they are present in specific locations could inform 

disease progression or pathogenicity in certain demographic groups. 

Characterisation of these and development of rapid PCRs will be useful for 

intervention. In terms of Nepal’s story, it would be interesting to study the 

pattern of resistance in Nepal’s TB strains and compare the resistance 

between the bordering countries. This will help in understanding the 

measures taken by the organism in developing resistance in a new niche. 

Also, it would be important to study the effect of different IS6110 copy 

numbers in different TB lineages and their pathogenicity and if there is a 

relation between the two concepts. 

7.4 Summary 

The findings of all chapters have been summarised and tabulated below in 

table 7-2. 
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Table 7-2 Summary of the results from all chapters in this thesis 

Chapter Headings Aims Approach Main Findings Page 

Numbers 

1. Introduction To set the scene for the 

thesis work 

Extensive review of the 

literature 

-Several epidemiological and 

genetic markers available to 

type TB. 

-Among others, IS6110 found 

to contain phylogenetic signal 

and could therefore be used 

to develop a genomic tool 

box for resource poor 

settings. 

1-62 

2. General Materials and 

Methods 

To document the 

standard methods used 

throughout the thesis. 

Systematic approach from 

conception of idea, followed 

by development and 

implementation of the 

methods to achieve the 

IS6110 FAFLP PCR method 

using specific primers found 

to be the principal tool used 

in the project. 

63-72 
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primary aim of the project. 

3. Optimisation and 

Development of IS6110 

FAFLP PCR 

To develop and 

standardise IS6110 

FAFLP PCR that is both 

sensitive and specific. 

Test the samples using 

different conditions and 

reagents to achieve the 

desired result. 

The method was 

standardised and was ready 

to be validated. 

73-91 

4. Mapping of Insertion 

sites (IS6110) in the M. 

tuberculosis H37Rv 

reference genome and 

rapid definition of genetic 

lineage 

- To prove that IS6110 

FAFLP PCR is accurate 

and could map insertion 

sites in the completely 

sequenced H37Rv 

strain. 

- To achieve the aim of 

developing a rapid 

lineage specific PCR 

- H37Rv was subjected to 

IS6110 FAFLP and then 

insertion sites were mapped 

using two base selective 

primers. 

- Primers designed for the 

PGG1 and PGG3 strains 

were used in PCR reactions 

and tested for specificity 

- Sixteen insertion sites were 

mapped onto the H37Rv 

genome, thereby proving the 

accuracy of the technique. 

- Proof of principle was 

established by detecting 

100bp and 296bp products 

specific for PGG1 and PGG3 

groups respectively 

92-107 

(published) 

(179) 

 

 

. 

5. Classification of 

Nepalese TB clinical 

To characterise the TB 

strains from Nepal, a 

Bacterial DNA from all 176 TB 

isolates was subjected to 

-All 176 isolates were 

delineated into different TB 

108-118 

(published) 
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isolates into different TB 

genetic lineages 

resource poor setting, 

using IS6110 FAFLP 

PCR. 

IS6110 FAFLP PCR and then 

characterised using 

BioNumerics software. 

genetic lineages. 

-55% of the strains belonged 

to PGG1 group, either Beijing 

or CAS strains. 

(188) 

6. Rifampicin Resistance 

status in Nepalese TB 

isolates from clinical 

samples 

To infer the drug-

resistance status in the 

Nepalese TB samples. 

Using rpoB resistant PCR, all 

176 samples were checked 

for inferred drug-resistance by 

observing the mutations in the 

RRDR region of the rpoB 

gene. 

-Seven isolates were found to 

have mutations at the 

normally reported mutation 

sites. 

-3.9% of the strains were 

found to be MDR-TB  

-Prevalence of MDR-TB is 

high  

- Results concordant with 

previously published results 

119-125 

(published) 

(188,195) 
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7. Final Discussion To contextualise the 

results obtained and 

make judgement of the 

aims of the thesis. 

Summarise the results 

obtained and discuss the 

relevance of the results with 

respect to the aim and 

objectives of the thesis. 

-Summarised the results of 

all the chapters. 

-Discussion of different 

results sections in detail. 

-Showed the efficacy of the 

IS6110 FAFLP PCR assay as 

a genomic tool in a resource 

poor setting. 

126-146 
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7.5 Conclusions 

The aim of this thesis was to develop a genomic mapping tool using IS6110 

FAFLP that could be used in resource poor settings as an assay for the 

characterisation of M. tuberculosis strains. This aim was achieved by first 

optimising the assay (chapter 3), testing it on H37Rv (chapter 4) by mapping 

the IS6110 insertion sites followed by the delineation of Nepalese TB strains 

into different TB lineages as shown  in chapter 5.  The IS6110 FAFLP PCR 

data led to the development of the rapid lineage specific PCR assay (chapter 

4) that can identify the circulating TB genotypes in a specific geographic 

area. Though a rapid PCR assay was not developed for all the lineages or 

genotypes, the proof of principle was established by the identification of 

PGG1 and PGG3 strains. This work has successfully developed a simple, 

rapid and robust method to characterise different strains of M. tuberculosis 

complex that could aid and inform epidemiological investigation and 

intervention that could be used in resource poor settings. 
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Appendices 

Appendix 1. Sequences (genes of interest, see Table 4-1) using the 

DNASTAR Lasergene8 software where the IS6110 insertion flanks 

the genome 

1. IS6110 Sequence orientation per se in the whole genome: 

a) 1543249 to 1543307(58bp) to next TaqI site 

CCGCGCCGGCTGGCAACCGTTCCCGCT (27bp) ~102bp 

b) 1989000 to 1989058 (58bp) to next TaqI site 

AGAGGACTTCAT (12bp) ~87bp  

c) 2431414 to 2431472 (58bp) to next TaqI site 

GGGCTTCCCGAGACTGCGATTCCCAAACGATGACGCCCAAACAAAAAGCGGGA

CCGCCGATGGCTGCCCCGCTGCCGCTGGTTGCGTTCGGCTTACTCGT 

(100bp) ~ 175bp 

d) 3121821- 3121879 (58bp) to next TaqI site 

GTTTTGGGTCTGACGACTCGCGGCGAGCACGTCTCACCCAGCAGGCGGTGAG

GTTGGGTTTCCGTCCCCTCTCGGGGTTTTGGGTCTGACGACACGGACGAGCTG

GACCGCATCAGCGATGCTGAGCTGAGGGTTTCCGTCCCCTCTCGGGGTTTTGG

GTCTGACGACTTGTCTCAATCGTGCCGTCTGCGGTGACACGCTCCAAGTTTCC

GTCCCCTCTCGGGGTTTTGGGTCTGACGACCACCAGGATCAGCGCCAAGCCA

GTTAGCGCAATCCAGTTTCCGTCCCCTCTCGGGGTTTTGGGTCTGACGACCTC

CCGGACCATCTGCAGCTCGCCCGGGTCCATGCGGTTTCCGTCCCCTCTCGGG

GTTTTGGGTCTGACGACCGGAGTCATCCGCGCGGGCCGGCGCGATTGTTGCC

GGGTTTCCGTCCCCTCTCGGGGTTTTGGGTCTGACGACTGGCGATTTACGACG

CTGACGGGAACTCGTGCGAATGTTTCCGTCCCCTCTCGGGGTTTTGGGTCTGA

TCCGCGAAATTCACTGCGCGTTATTCAAGGTTTCCGTCCCCTCTCGGGGTTTTG
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GGTCTGACGACCCGAGCCGACCATCCGCATCACACCGAAAGGGTTGGCGCAA

GTTTCCGTCCCCTCTCGGGGTTTTGGGTCTGACGACACGTGGGGAGAGGGAAT

GGCAATGATGGT (697bp) ~772bp 

2. Reverse Complement of the whole genome and the IS6110 

Sequence orientation per se: 

a) 520697 to 520755 (58bp) to next TaqI site 

TCCGTATCGTCGCCGACCGCTTGGGAGACCCGCGAGCGCGTGCCGTGGTGTT

CTTGCATGGCGGTGGACAGACGCGACGCTCATGGGGTCGGGCCGCAGCCGCT

GTCGCCGAACGTGGCTGGCAAGCGGTCACGAT (136bp~201bp 

b) 701094 to 701152 (58bp) to next TaqI site 

TGTCCATAACAAGCGGTCGGTGCGGTTGACTTGTTGGACGCGCCAGATGCACT

GTTTGACTCGCGT (66bp) ~141bp 

c) 1775899 to 1775957 (58bp) to next TaqI site 

AAACTTCGGTAGCCAAAACCTGGGTAGCGGCAACATCGGCAGCACCAACGTGG

GCAGCGGCAACATCGGCAGCACCAACGTGGGCAGCGGCAACATCGGCGACAC

GAACTTCGGTAACGGAAACAACGGCAACTTCAACTTTGGTAGCGGCAATACCG

GCAGTAACAACATCGGCTTCGGAAACACCGGCAGCGGGAATTTCGGTTTCGGA

AACACGGGCAACAACAACATCGGTATCGGGCTCACCGGCGATGGTCAGATCG

GCATCGGCGGACTGAACTCGGGCAGCGGAAACATCGGTTTCGGGAACTCCGG

CACCGGAAACGTCGGTTTGTTCAACTCCGGCACCGGCAACGTAGGCTTCGGGA

ACTCCGGTACTGCGAACACTGGATTCGGGAACGCGGGCAACGTCAACACCGG

ATTTTGGAACGGCGGCAGCACAAACACTGGCCTCGCTAACGCCGGCGCCGGC

AACACAGGCTTTTT (486bp) ~561bp 

d) 2415375 to 2415433 (58bp) to next TaqI site 

GTTGCCGACCTTTGTCCTGTTGATCCTGTTGGCGGCGGTGACTGCCGTCTACG
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CACTACGCGGCGCGTTACGCGCTGCCACCTCACTCATGCGCGGCCGGCGCGG

TGCCGACCGGTAGCGT (121bp) ~196bp 

3. IS6110 Sequence orientation per se in the whole genome 

(terminal G replaced) 

a) 2785912 to 2785969 (58bp) to next TaqI site 

Too short to be seen in vitro 

b) 3796355 to 3796412 (58bp) to next TaqI site 

AATCAAGTCCCCGCGTCCGTTGCGAATCGTGGTTGTCATTGCGCGCGAACCTG

TTTGGGAAGGCCGAATCGCACCGTCTCGGTCGCTAT (89bp) ~164bp 

4. Reverse Complement of the whole genome and the IS6110 

Sequence orientation per se (terminal G replaced) 

a) 858763 to 858820 (58 bases) to next TaqI site 

AATCCGTACAACCGCGACGCGGCGGAACAGGCTGGACGGCGGAATAGAGGCT

GATCTGGACGTATGAGACCGACCGCGATGGGAGAGATTGCGACTGGTTAGCTC

ATAACCCAGAGGTCGCAGGTTCGTGAACCGCCCCGGTGAGTCCGGAGACTCT

CTGATCTGAGACCTCAGCCGGCGGCTGGTCTCTGGCGTTGAGCGTAGTAGGC

AGCCT (214bp) ~289bp 

b)         b) 1439367 to 1439424 (58bp) to next TaqI site 

GAAGATGAGCTGCGCAAGCGTGGACGTGAGCGTCGCCCGTTGGACAAGTTGC

CGCCGGGGCCCATCCCGGGCACCGGCGGTCAGCCGCTCCAACCGTTTAAACC

ATCCCGGTAGCCAGCTTCGCTGCGGGTTGCGTTGT (139bp) ~214bp 

c) 1861462 to 1861519 (58 bases) to next TaqI site 

GGTGGCGCTGGTGATCGCCTTGGGAGGGACTTGCGGTGTGGCGGATGCTTTG

CCGCTGGGCCAGACTGACGACCCGATGATTGTCGCGCATCGCGCGGGTACGC
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GCGATTTTCCCGAGAACACCGTTCTGGCGATTACCAACGCAGTCGCAGCTGGT

GTGGATGGCATGTGGCTGACCGTCCAGGTCAGCAGCGATGGCGTGCCGGTGC

TGTATCGTCCGTCCGATCTGGCAACGTTGACCGACGGCGCCGGCCCGGTGAA

TT (263bp) ~338bp 

d) 2046062 to 2046119 (58 bases) to next TaqI site 

CGCGCGGCTACAAAAAAGCTTGTATCACTAGCTAGAGTGGAGTCGGTTTGCT 

(52bp) ~127bp 

e) 3522455 to 3522512 (58 bases) to next TaqI site 

CCTCCTTCACTTGAGGGGGTGTTGAGGTTGGGCCGGTCGGCGGACACATCTC

AGTCGGGGCGAAAGCCACGCTCCTATCAAGTCACGCCGGCCGGTCCTTCTCA

CCTAGTGCCGGCAATACTGCTCAACGCCAACCCCAAGAGGACGGCAGACGCA

AAGTGAGCCAGACACCAGGTGATCCGGAACAAACCACCGCGACACGGCGTCT

GTCACACCGACACACCCACCTCGCGGCACACACAACACCGACACTGAGACATA

AAGGTCCCTTTTCGCACGGCGTGT (285bp) ~360bp 
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Appendix 2: Nepal strains 

N1-N176 

Each strain has a list of fragments that are generated from differing insertion points of the IS6110 element. Each fragment is listed 

as a size in base pairs and can be one of four colours, R = red, B = blue, G = green and Y = yellow. For example 80.4Y is an 80.0 

base pair fragment which is yellow. 

If two strains share an identical IS6110 insertion site then they will each possess a fragment of the EXACT same size and colour. 

For example, below N36 and N34 share most of the same fragments, including: 81.0B, 100.0G, 124.9G, 140.4R, 197.2B, 207.1Y, 

264.2G, 360.0R, 401.5B and 560.4B. The majority of these fragments are also shared by H37Rv and H37Ra but not all (i.e. they 

are not identical but very similar). 

Unassigned 

N102 

84.4R, 106.6G, 312.8G 

N107 
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84.4R, 106.6G, 312.8G 

N104 

84.4R, 106.6G, 312.8G 

N25 

178.1R, 237.8 G, 300.8G 

N62 

74.9Y, 78.2R 

 

PGG3 T group (H37Rv-like) 

N108 

88.9Y, 106.2G, 179.1B, 183.6R, 254.3Y, 301.5G, 312.2G, 360.0R, 443.1R 
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N36 

80.4Y, 81.0B, 83.8Y, 100.0G, 124.9G, 140.4R, 193.2R, 197.2B, 207.1Y, 264.2G, 360.0R, 401.5B, 560.4B 

N34 

81.0B, 100.0G, 124.9G, 139.1R, 140.4R, 192.4R, 197.2B, 207.1Y, 264.2G, 360.0R, 401.5B, 560.4B 

N163 

81.0B, 83.61Y, 99.4G, 119.54G, 137.58Y, 139.91R, 193.44R, 197.6B, 207.14Y, 264.24G, 312.29G, 360.71R, 561.33B 

CAS group 

N103 

78.4G, 88.2R, 92.0B, 93.5B, 114.3Y, 127.7R, 148.4R, 207.1G, 249.6G, 275.1R, 394.7R, 434.3R 

N101 

74.4G, 92.0B, 115.6B, 116.8G, 123.9B, 127.7R, 136.0Y, 157.8G, 275.1R, 316.4R, 432.9R 



188 

 

N116 

106.6G, 116.8G, 117.9R, 127.7R, 206.5G, 244.7R, 275.1R, 286.9G, 394.7R, 433.6R 

N109 

92.0B, 116.1Y, 117.9R, 171.9R, 195.8R, 206.2G, 263.2B, 268.3R, 275.1R, 341.4G, 434.3R, 461.1G 

N111 

84.4R, 106.6G, 121.6B, 142.0B, 142.5Y, 145.1R, 147.6B, 159.5Y, 186.4B, 194.2R, 240.9Y, 285.6B, 312.2G, 326.4Y 

N113 

77.3R, 83.5G, 87.0Y, 96.7B, 97.8G, 100.8R, 105.5R, 112.4G, 124.0R, 127.1R 133.7R, 169.7Y, 176.8Y, 220.5B, 320.5R, 376.5R, 

432.9R 

N114 

84.9B, 102.1B, 102.5Y, 112.4G, 127.1R, 139.5R, 158.5Y, 181.2Y, 248.3R, 255.3G, 334.9R, 354.3B, 461.1G 
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N12 

74.4G, 92.0B, 111.4G, 117.9R, 127.7R, 131.2Y, 170.7R, 206.2G, 232.3R, 275.1R, 393.0R, 432.9R, 560.0G 

N50 

78.4G, 92.0B, 117.9R, 127.7R, 131.2Y, 178.1R, 206.2G, 275.1R, 321.6R, 393.0R, 432.9R, 560.0G 

N73 

77.3G, 86.1G, 92.0B, 117.9R, 127.7R, 206.2G, 275.1R, 393.0R, 432.9R, 493.1G,  

N36 

78.4G, 83.3R, 92.0B, 127.7R, 188.9Y, 192.8R, 198.3B, 206.2G, 275.1R, 324.7G, 393.0R, 432.9R, 

N37 

78.4G, 92.0B, 117.9R, 127.7R, 206.2G, 275.1R, 393.0R, 432.9R, 

N67 
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78.4G, 92.0B, 117.9R, 127.7R, 142.6R, 150.8R, 206.2G, 275.1R, 316.4R, 318.7Y, 393.0R, 432.9R, 493.1G,  

N68 

77.3G, 92.0B, 117.9R, 127.7R, 142.6R, 150.8R, 206.2G, 275.1R, 316.4R, 318.7Y, 393.0R, 432.9R, 

N7 

77.3G, 92.0B, 106.6G, 117.9R, 127.7R, 131.1G, 150.8R, 206.2G, 247.3R, 275.1R, 316.4R, 393.0R, 432.9R, 

N18 

74.4G, 78.4G, 92.0B, 127.7R, 150.8R, 157.8G, 178.1R, 178.2Y, 206.2G, 229.5R, 275.1R, 316.4R, 321.6R, 393.0R, 432.9R, 778B 

N17 

78.4G, 92.0B, 115.6B, 116.8G, 127.7R, 136.0Y, 157.8G, 275.1R, 316.4R, 393.0R, 432.9R, 

N10 

74.4G, 92.0B, 127.7R, 149.4Y, 150.8R, 206.2G, 230.1Y, 247.3R, 275.1R, 316.4R, 379.7R, 393.0R, 432.9R, 
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N72 

78.4G, 92.0B, 127.7R, 149.4Y, 150.8R, 206.2G, 230.1Y, 247.3R, 275.1R, 316.4R, 379.7R, 393.0R, 432.9R, 

N19 

78.4G, 92.0B, 96.2R, 114.5B, 127.7R, 136.0Y, 148.0Y, 150.8R, 171.9R, 206.2G, 275.1R, 316.4R, 393.0R, 432.9R, 

N6 

77.3G, 88.2R, 92.0B, 93.5B, 114.3Y, 117.9R, 127.7R, 148.4R, 206.2G, 275.1R, 328.4G, 393.0R, 432.9R, 455.9G,  

N3 

77.3G, 88.2R, 92.0B, 93.5B, 114.3Y, 117.9R, 127.7R, 148.4R, 206.2G, 275.1R, 393.0R, 455.9G, 

N91 

78.4G, 88.2R, 92.0B, 93.5B, 114.3Y, 117.9R, 127.7R, 138.9G, 206.2G,299.2Y, 

N5 
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78.4G, 92.7B, 101.5Y, 107.1R, 116.7R, 117.9R, 183.8G, 206.2G, 251.8R, 275.1R, 321.6R, 393.0R, 432.9R, 

N56 

92.0B, 117.9R, 160.3Y, 206.2G, 318.0B, 352.9G, 393.0R, 432.9R, 

N65 

77.3G, 92.0B, 101.2B, 129.8G, 132.0R, 305.9R, 352.9G, 393.0R, 432.9R, 

N29 

78.4G, 81.0B, 92.0B, 100.5Y, 117.9R, 127.7R, 194.2R, 354.2Y,  

N69 

78.4G, 81.0B, 92.0B, 100.5Y, 117.9R, 127.7R, 194.2R, 266.1G, 275.1R, 310.6B, 316.5B, 353.7Y, 393.0R, 494.3B,  

N48 

94.8B, 117.9R, 275.1R, 296.9Y, 297.4R, 302.4G, 393.0R, 432.9R, 437.5B,  
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N58 

94.8B, 117.9R, 275.1R, 296.9Y, 297.4R, 302.4G, 393.0R, 432.9R, 437.5B, 

N54 

78.4G, 81.7Y, 91.0R, 92.0B, 107.5Y, 112.4G, 127.7R, 142.6R, 150.8R, 216.3R, 318.7Y, 393.0R, 

N81 

78.4G, 81.7Y, 91.0R, 92.0B, 107.5Y, 114.3Y, 127.7R, 142.6R, 150.8R, 318.7Y, 345.5R,  

N28 

78.4G, 92.0B, 129.8G, 136.1G, 206.2G, 275.1R, 283.0R, 303.3G, 354.0G, 393.0R, 432.9R, 565.5R,  

N93 

78.4G, 92.0B, 122.8B, 136.1G, 176.8Y, 185.3G, 187.0Y, 275.1R, 393.0R, 432.9R, 563.6R 

N26 
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73.4Y, 78.4G, 79.0Y, 79.4G, 87.4R, 127.7R, 206.2G, 239.3G, 256.2B, 275.1R, 321.6R, 393.0R, 432.9R, 445.3G, 868Y 

N32 

78.4G, 79.0Y, 92.0B, 127.7R, 206.2G, 239.3G, 256.2B, 273.1Y, 275.1R, 321.6R, 393.0R, 432.9R, 868Y 

N45 

87.3Y, 92.0B, 93.0G, 94.5R, 118.0G, 127.7R, 156.0Y, 206.5R, 279.5Y, 393.0R, 432.9R, 

N75 

92.0B, 115.6B, 116.8G, 127.7R, 135.9R, 151.4R, 275.1R, 317.0R, 370.5G, 393.0R, 432.9R, 461.1G,  

N61 

94.8B, 129.8G, 160.3Y, 206.2G, 275.1R, 318.0B, 353.5G, 393.0R, 432.9R, 

N78 

91.5G, 100.3R, 120.0R, 132.2Y, 152.4R, 173.2B, 206.2G, 275.1R, 317.0R, 351.9R, 393.0R, 432.9R, 
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N51 

92.0B, 93.0G, 206.5G, 593.2G 

N124 

78.21G, 84.4R, 93.09G, 96.01R, 124.97Y, 127.59R, 139.5678.21G, 84.4R, 93.09G, 96.01R, 124.97Y, 127.59R, 139.56Y, 206.16G, 

256.05Y, 275.31R, 316.82R, 326.61R, 433.6R, 445.51R 

N135 

78.25G, 83.63Y, 87.15R, 130.04G, 133.82R, 136.22Y, 138.89R, 155.07R, 167.53Y, 206.67G, 261.98B, 275.49R, 354.6G, 394.57R, 

434.01R, 450.43R 

N138 

78.15G, 92.07B, 101.69B, 115.49G, 129.93G, 306.59R, 353.9G, 394.41G, 433.88R 

N139 

78.07G, 115.02G, 129.43G, 203.71G, 305.58R, 309.28G, 352.67G, 393.1R 



196 

 

N140 

78.15G, 88.2Y, 91.65R, 95.98R, 101.58B, 110.94B, 115.58G, 129.99G, 266.22G, 274.13G, 306.57R, 353.84G, 394.28R, 433.81R 

N141 

84.48R, 86.86Y, 89.24G, 92.51R, 106.18G, 128.76G, 191.13G, 194.09R, 255.86R, 333.21G, 431.28R 

N143 

78.24G, 92.13B, 101.68B, 124.35G, 129.99G, 306.74R, 331.35G, 354.06G, 394.66R, 434.09R 

N144 

78.14G, 93.22G, 101.69B, 130.09G, 144.17G, 306.74R, 354.05G, 394.66R, 434R 

, N145, N146, N148, N155, N158, N161, N165, N167, N168, N173, N174, N176 

Haarlem 

N39 
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87.0Y, 148.7B, 149.6G, 151.4R, 224.3G, 265.6B, 300.2R, 311.0G, 445.7Y, 

N87 

87.0Y, 116.1R, 148.7B, 151.4R, 224.3G, 265.6B, 300.2R, 311.0G, 445.7Y, 787.0B 

 N110 

87.0Y, 116.1R, 148.7B, 151.4R, 167.7G, 177.5R, 224.3G, 265.6B, 301.1R, 312.2G, 446.6Y, 787.0B 

N106 

87.3Y, 89.2B, 124.0R, 149.1B, 194.2R, 224.3G, 266.1B, 301.1R, 312.8G, 446.6Y 

N137, N152, N153, N157, n160 

 

X group 

N27 
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311.0G, 300.2R 

N77 

80.4Y, 83.7Y, 301.1R 311.0G 

N42 

80.4Y, 83.7Y, 148.4R, 301.1R, 410.3R 

N129 

 

LAM group 

N53 

71.5Y, 96.7B, 105.2R, 116.1R, 121.2R, 161.2B, 164.6Y, 338.6Y, 441.9Y 

N64 
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88.6G, 96.7B, 102.4G, 105.2R, 116.1R, 136.9Y, 227.5R, 431.9R, 444.1Y,  

N9 

71.5Y, 96.7B, 103.0B, 105.2R, 191.3G, 198.6R, 256.5R, 333.9G, 431.9R, 463.2R, 606.6B 

N127 

 

Beijing 

N115 

84.5Y, 95.7Y, 101.7B, 102.5Y, 112.4G, 115.6B, 127.1R, 139.1R, 180.7Y, 195.1Y, 199.5B, 254.8G, 334.9R, 354.3B, 389.8Y, 

461.1G 

 

N24 
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84.5Y, 95.7Y, 101.7B, 102.5Y, 103.0B, 112.4G, 127.1R, 131.2Y, 139.1R, 180.7Y, 234.8G, 254.8G, 265.7G, 309.9R, 332.4R, 

353.5B, 389.8Y, 433.6B,  

N8 

80.0R, 84.5Y, 95.7Y, 101.2B, 102.5Y, 112.4G, 127.1R, 139.1R, 180.3R, 254.8G, 265.1G, 309.9R, 332.4R, 353.5B, 389.8Y, 432.7B, 

458.8G,  

N23 

84.5Y, 95.7Y, 101.7B, 102.5Y, 112.4G, 127.1R, 135.5G, 139.1R, 140.7R, 180.7Y, 254.8G, 332.4R, 353.5B, 389.8Y, 433.6B, 

460.3G,  

N70 

84.5Y, 93.5B, 95.7Y, 101.7B, 102.5Y, 112.4G, 127.1R, 139.1R, 147.7Y, 180.7Y, 201.1G, 254.8G, 266.1G, 309.9R, 332.4R, 353.5B, 

389.8Y, 433.6B, 460.3G, 

N40 
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84.5Y, 95.7Y, 101.7B, 102.5Y, 112.4G, 115.5B, 127.1R, 139.1R, 180.7Y, 254.8G, 265.7G, 309.9R, 332.4R, 353.5B, 389.8Y, 

433.6B, 460.3G,  

N33 

84.5Y, 95.7Y, 101.7B, 102.5Y, 112.4G, 127.1R, 139.1R, 180.7Y, 309.9R, 332.4R, 353.5B 

N82 

84.5Y, 95.7Y, 101.7B, 102.5Y, 112.4G, 127.1R, 135.5G, 139.1R, 140.7R, 180.7Y, 254.8G, 332.4R, 333.5R, 353.5B, 389.8Y, 

433.6B, 460.3G,  

N35 

84.5Y, 95.7Y, 101.7B, 102.5Y, 112.4G, 127.1R, 139.1R, 180.7Y, 246.5B, 254.8G, 266.1G, 309.9R, 332.4R, 353.5B, 389.8Y, 

433.6B, 460.3G 

 

N14 
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84.5Y, 95.7Y, 101.7B, 102.5Y, 107.5Y, 112.4G, 125.2Y, 127.1R, 139.1R, 180.7Y, 254.8G, 332.4R, 353.5B, 390.5Y, 434.5B, 

460.3G,  

N74 

84.5Y, 95.7Y, 101.7B, 112.4G, 127.1R, 139.1R, 180.7Y, 254.8G, 266.1G, 309.9R, 332.4R, 353.5B, 389.8Y, 433.6B, 460.3G, 

N76 

95.7Y, 101.7B, 112.4G, 114.9B, 127.1R, 139.1R, 181.2Y, 195.1Y, 253.2B, 254.8G, 266.1G, 332.4R, 309.9R, 353.5B, 389.8Y, 

433.6B, 460.3G,  

N90 

95.7Y, 101.7B, 112.4G, 127.1R, 139.1R, 181.2Y, 253.2B, 254.8G, 266.1G, 309.9R, 332.4R, 353.5B, 389.8Y, 433.6B, 460.3G,  

N47 

95.7Y, 101.7B, 112.4G, 127.1R, 129.8G, 182.8G, 254.8G, 353.5B, 433.6B, 460.3G,  

N55 
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95.7Y, 101.7B, 112.4G, 254.8G, 266.1G, 460.3G,  

N59 

95.7Y, 101.7B, 112.4G, 127.1R, 223.7G, 246.5B, 254.8G, 266.1G, 353.5B, 460.3G,  

N120, N125, N136, N130, N131, N132, N133, N134, N149, N151, N154, N175 

 

M. africanum 

N31 

87.1B, 88.6G, 134.7Y, 140.4R, 152.4R, 183.6R, 195.1R, 195.8R, 239.3Y, 287.2R, 302.5R, 598.0R 

N164 

 

PGG1 Outliers 
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N13 

87.4R, 90.2B, 95.6B, 96.4G, 187.2R, 219.8R, 311.0G, 374.6R, 445.3G,  

N20 

95.6B, 311.4G 

N21 

137.1R, 150.8G, 224.6R, 310.5G, 435.4Y 

N38 

107.3G, 117.8Y, 137.1R, 150.8G, 166.3R 

N22 

190.3R, 224.6R, 239.9B, 253.4G, 263.2G, 309.9G, 404.3G, 

N4 
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171.9B, 196.1G, 225.8Y, 253.4G, 262.7G, 272.7R, 308.7G, 356.4Y, 403.5G, 505.2Y,  

N121, N122, N123, N142, N150, N159, N162, N166, N169, N170, N171, N172 
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Appendix 3: rpoB mutations seen in the RRDR region using Clustal W alignment in BioEdit sequence alignement software 
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Appendix 4: Publications from this PhD work 
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Appendix 5: IS6110 FAFLP raw data of 176 Nepal samples _Stored in CD and attached at the back of thesis 
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Abstract
Nepal is geographically located between India and China, a region containing significant Tuberculosis (TB) and Multi-Drug Resistance (MDR-TB) burdens. 
However, limited information is available on the phylogenetic diversity of Mycobacterium tuberculosis (Mtb) in Nepal. To gain further insight into the diversity 
of Mtb in Nepal, consecutive clinical samples from 176 newly diagnosed pulmonary tuberculosis patients were collected from two hospitals in Nepal. Insertion Site 
IS6110 Fluorescent Amplified Fragment Length Polymorphism (FAFLP) PCR and rpoB sequence analysis were carried out on genomic DNA extracts of cultured 
strains to assign them to accepted genetic lineages and identify MDR-TB. In this study, the IS6110 based characterisation showed a prevalence of 36.36% Central 
Asian Strain (CAS), 18.75% Beijing, 7.95% Haarlem, 3.97% X, 2.2% each of Latin American Mediterranean (LAM), T-Uganda and T, 1.7% S and 24.4% were 
unassigned. Further, 3.9% of total M. tuberculosis isolates were of rifampicin resistant genotypes thus indicating that the prevalence of MDR could be higher than 
the country wide prevalence of MDR among new TB cases (2.2%) as reported by the national drug resistance survey carried out in 2011/2012.
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Introduction
TB is ranked as the sixth leading cause of death among the top 20 

causes of death in Nepal. According to National Tuberculosis Control 
Programme (NTCP) in Nepal, in 2014 37,025 TB cases were registered 
and among them 15,947 (43%) cases were new sputum smear positive 
TB cases. It was estimated by WHO [1] that 4.6 (2.1-7.5) thousand 
people in Nepal died from TB in 2014. Even though short course TB 
drug treatment regimen could cure around 89% of cases, TB mortality 
was still unacceptably high in Nepal. Since 2006, the STOP TB strategy 
has been adopted by NTCP. However Drug resistant TB (DR-TB) still 
threatens national TB control and is a major public health concern. The 
proportion of MDR-TB cases in new cases was 2.2% and retreatment 
cases were 15.4%. Even though the Millennium Development Goal 
(MDG) to halt and reverse TB incidence has been achieved in all six 
WHO regions, work remains to be done to prevent the deaths from this 
dreadful disease [1]. 

The identification of the number and position of Insertion 
Sequence IS6110 elements in the Mtb genome has been widely used as a 
genomic tool for the rapid fingerprinting of isolates of Mycobacterium 
tuberculosis complex (MTBC) [2]. IS6110 based Restriction Fragment 
Length Polymorphism (RFLP) is considered as the ‘gold standard’ 
typing method for strains with more than five copies [3-5]. As IS6110 
transposition is among the first genetic changes to occur in strains from 
a transmission chain [6], this marker has also been used for outbreak 
analysis [5]. 

Modification of the conventional IS6110 typing method, using 
differentially labelled primers has allowed characterisation of Mtb 
isolates into the key genetic lineages more rapidly than traditional 
methods [7]. This approach can be facilitated with automation, which 
enables this technique to be performed in a high throughput setting. 
The fragment patterns generated indicates both copy number and 
insertion site of IS6110 in the genome [8,9]. The patterns generated 
correlates directly with other independent markers and can be used 
for transmission investigation locally or internationally. Specific 
fragments are common in genetically related lineages and do not occur 
in other groups (e.g. spoligotype groups such as Beijing and the Euro-
American lineage which contain the Latin American Mediterranean 
(LAM), Haarlem, S, T and X spoligotype groups). The patterns 
generated correlate directly with other independent markers and can 
be used for transmission investigation locally/internationally. Principal 
Genetic Groups (PGGs) can be assigned to Mtb strains based on the 
combination of polymorphism located at katG codon463 and gyrA 
codon95 in the respective genomes [10] or spoligotypes [11] or global 
phylogeny classification based on whole genome sequences [12].
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Limited data are available on the characterisation of Mtb strains 
and genotypes circulating in Nepal. A key factor is the geographical 
location of Nepal, interlocked between China and India, two countries, 
which together account for approximately a third of annual global 
new cases (11% and 24%, respectively) [1]. A recent study of 261 
Nepalese isolates found any drug resistance (any drug resistance has 
been defined as resistance to isoniazid, rifampicin, streptomycin, 
ethambutol, fluoroquinolones, and/or aminoglycosides) in 12.8%% 
of Mtb strains that were new untreated cases, with the most frequent 
lineages reported as CAS/Delhi (40.6%), East Asian (including Beijing) 
(32.2%), Euro-American (15.7%) and Indo-oceanic (11.5%) [13]. To 
gain further insight into the characteristics and diversity of Mtb in 
Nepal, our study aimed to categorise isolates for the first time using 
IS6110 FAFLP PCR and to assign them to different genetic lineages. 
Secondly, the level of MDR would be characterized in the population 
using rpoB (rpoB gene encodes for the Beta subunit of bacterial RNA 
polymerase) sequencing of the Rifampicin Resistant Determining 
Region (RRDR) as a predictive surrogate [14-17].

Methods
Strains

Sputum samples from 176 consecutive new TB patients over one 
year were collected between 2007 and 2008 and cultured alongside 
routine diagnostics from two Nepalese tuberculosis reference centres 
located in the Kathmandu valley: the National Tuberculosis Centre 
(NTC) and the German Nepal Tuberculosis Project (GENETUP). The 
patient population represented local and referred cases from across 
Nepal. Bacterial genomic DNA from isolated strains was extracted by 
the Cetyltrimethylammonium Bromide (CTAB) method [18] at the 
Mycobacterial Research Laboratories (MRL) in Anandaban Hospital. 
Informed consent was not required at the time of this study, as samples 
were collected with routine clinical care and all patient identifiers were 
anonymized; however, all patients were provided an explanation and 
were only included upon provision of verbal informed consent. Study 
procedures were reviewed and approved by NTC and GENETUP. The 
results for the drug sensitivity tests were unavailable during the entire 
duration of this study.

IS6110 FAFLP PCR, Fragment Sizing and Analysis

Genomic DNA was digested with the restriction enzymes 
MseI and TaqI followed by ligation with double stranded TaqI 
restriction site specific adaptors. The adaptor ligated DNA was 
amplified following previously published PCR conditions using four 
fluorescently labelled adaptor specific TaqI forward primers - 5’- 

CGATGAGTCCTGACCGA*/C*/T*/G* each labelled with a single 
unique selective nucleotide at the 3’ end and an IS6110 sequence 
specific reverse primer- 5’- CTGACATGACCCCATCCTTT [9]. In a 
total volume of 20 µl, 1 µl of the adaptor ligated DNA was added to 
the reaction containing 1X reaction buffer, 1.5 mM MgCl2, 0.2 mM 
dNTPs (Invitrogen, UK) , 1 µM of labelled Taq I forward primer, 1 
µM of IS6110 reverse primer and 1 U of recombinant Taq polymerase 
(Invitrogen, UK). The following PCR conditions were carried out in 
a Veriti thermocycler (Applied Biosystems, UK): 94°C for 15min 
followed by 35 cycles of 94°C for 20s, 66°C for 30s and 72°C for 2 min 
with the 66°C annealing temperature reducing by 1°C every cycle for 
nine cycles and the last 25 cycles at 56°C. Finally, an extension of 72°C 
for 60min was carried out before further manipulations. The fragments 
were separated on an ABI genetic analyser 3730XL (Applied Biosystems, 
UK), sized using PeakScanner v1.0 software (Applied Biosystems) 
and identified using their fluorescent tag (Figure 1). The four-dye 
FAFLP data collected from the different profiles were then recorded 
and compared with a reference collection of Mtb isolates [19] using 
BioNumerics software v6.1 (Applied Maths Inc., Belgium). Fragments 
common to different lineages (defined as being present in >50% of 
strains in a particular genetic lineage) were recorded for each Nepalese 
strain and compared with a fully characterised global collection as 
detailed by Thorne et al. [20]. These data were then used to build a 
dendrogram using the Dice coefficient of similarities to compare the 
similarity matrix and Unweighted Pair Group Method with Arithmetic 
Mean (UPGMA) derived cluster analysis with cophenetic correlation 
for the branch quality. 

rpoB analysis

The 81 bp Rifampicin Resistant Determining Region (RRDR) of 
the rpoB gene of all strains were sequenced using published primers 
[21] and analysed in BIOEDIT software using ClustalW alignment 
parameters. The PCR was carried out in a total volume of 50 µl where 
1 µl of the DNA was added to the reaction containing 1xPCR reaction 
buffer, 1.5 mM MgCl2, 0.2 mM dNTPs (Invitrogen, UK), 20 µM each 
of both rpoB-RRDRforward (5’-CGATCACACCGCAGACGTTGA) 
and reverse primers (5’- GGCACGCTCACGTGACAGACC) and 5U 
recombinant Taq polymerase (Invitrogen, UK). The following PCR 
conditions were carried out using a Veriti thermocycler (Applied 
Biosystems, UK): 94°C for 2 min followed by 35 cycles of 94°C for 
30 sec, 60°C for 30 sec and 72°C for 1 min. Finally, an extension of 
72°C for 10 min was performed before cleaning the products using 
AmpureXP magnetic beads (Beckman Coulter, UK) according to the 
manufacturer’s protocol and sequencing using the forward primer, 
rpoB-RRDR forward.

 

Figure 1. Pictorial representation of the IS6110 FAFLP PCR methodology. Coloured fragments are amplified using uniquely labelled adapter specific primers. For example, blue coloured 
fragments are amplified if the primers are labelled with 6-FAM fluorescein ‘blue’ dye, red coloured fragments with PET dye, green coloured fragments with VIC dye and black coloured 
fragments with NED dye.
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Results 
Analysis of Data using BioNumerics software v6.1

Of the 176 DNA extracts from isolates analysed, the majority of the 
samples 97 (55.4%) belonged to either the spoligotype-defined Central 
Asian Strain (CAS) lineage (64 i.e., 36.6%) or the Beijing lineage (33 
i.e., 18.8%) grouping under PGG1 and the rest of the samples group 
under either PGG2 (1.7% S, 3.97% X, 7.95% Haarlem and 2.27% LAM, 
2.27% T-Uganda) or PGG3 (2.27% of T) (Table 1). Forty three samples 
(24.4%) grouped under “unassigned” group. Common fragments seen 
were exactly the same as the earlier published report by Thorne et al., 
(2011) except for an additional fragment, 78.4 G, for the CAS lineage. A 
dendrogram was generated using only the IS6110 FAFLP data (Figure 
2) confirming again the above mentioned lineages in relation to the 
PGGs.

rpoB Analysis

Of 176 DNA extracts analysed for rpoB mutations, seven samples 
(3.9%) had a single non-synonymous base change which would likely 
confer resistance to rifampicin (Table 2). Six of these seven samples 
showed a second base mutation in a codon triplet whereas sample N70 
showed a first base mutation. 

Discussion
It has been demonstrated previously that IS6110 FAFLP PCR 

can be used to delineate the phylogeny of MTBC as shared common 
fragments can determine the different lineages in a geographical 
location by comparison with a reference database collection [7]. As 
limited lineage information is available from strains in Nepal, we have 
applied the IS6110 method published recently on mapping the IS6110 
sites in H37Rv [9] and also carried out rpoB sequencing to further 
characterize strains from this important region.

Fifty five percent of the 176 Nepalese strains analysed belong to 
the CAS (36.6%) and Beijing (18.8%) modern genetic spoligotypes 

(PGG1). The remaining 24.4% of the samples belong to the PGG2 and 
PGG3 groups (Haarlem, LAM, S, X, T-Uganda and T). However, a 
limitation of this technique is its difficulty to characterise the samples 
with less than 4-5 copies of IS6110 as seen in the unassigned group 
(24.4%) in figure 2, which can be overcome by the use of other typing 
techniques like Mycobacterial Interspersed Repetitive Units- Variable 
Number Tandem Repeats (MIRU-VNTR) [20]. The geographical 
position of Nepal is likely to have influenced this distribution, with 
a mixture of predominantly Beijing lineage from the North of the 
Himalayas and the CAS lineage from the south [22]. The fairly high 

PGG /spoligotype/ sub-lineage Common fragment sizes No. Of Nepal strains 
PGG1-CAS 78.4G ,92.0B , 117.9R, 206.2G , 275.1R 64/176
PGG1-Beijing 101.7B, 102.5Y, 139.1R, 180.7Y, 254.8G, 332.4R, 353.5B 33/176
PGG2 –Haarlem 87.0Y, 89.4G, 148.7B, 300.2R (H/X), 445.7Y 14/ 176 
PGG2-LAM 71.5Y, 105.2R, 116.1R 4/ 176 
PGG2-S 88.0G, 112.9R, 217.2R, 445.3G 3/ 176 
PGG2-X 83.8Y, 300.2R(H/X) 7/ 176 
PGG2-T Uganda 88.9Y, 119.5G, 122.9Y, 228.4Y, 266.8R 4/ 176 
PGG3- T 81.3R, 192.4R, 360R 4/176 
Ungrouped 43/176

Where B-Blue coloured fragment R-Red coloured fragment G-Green coloured fragment and Y-Black/ Yellow coloured fragment seen in the electropherogram. PGG represents Principal 
Genetic groups according to Sreevatsan et al. [10], spoligotypes follow spolDB4 classification[4] and sub-lineages are grouped following Gagneux’s classification [8].

Table 1: Common fragments identified using IS6110 FAFLP PCR in TB genetic lineages between the 176 bacterial DNA isolates in Nepal.

Sample Mutated locus Nucleotide modification Amino acid modification FAFLP derived
1.	 N70 516 GAC > TAC (Asp>Tyr) PGG1- Beijing group
2.	 N10 522 TCG > TTG (Ser>Leu) PGG1- CAS group
3.	 N25 526 CAC > CTC (His>Leu) PGG3 -like
4.	 N63 526 CAC > CGC (His>Arg) PGG3-like
5.	 N34 531 TCG > TGG (Ser>Trp) PGG3- T group (H37Rv-like)
6.	 N46 531 TCG > TTG (Ser>Leu) PGG3 (H37Rv-like)
7.	 N62 531 TCG > TTG (Ser>Leu) Ungrouped

* PGG represents Principal Genetic Group.

Table 2: List of mutations seen in rpoB Rifampicin Resistance-Determining Region (RRDR) of rifampicin resistant M. tuberculosis isolates from Nepal.

 
Figure 2. UPGMA derived dendrogram showing the predominant genetic lineages / 
spoligotypes of 176 Nepalese Mtb isolates. 
Coloured branches represent Nepal samples following Gagneux’s global phylogeography 
of MTBC [12] and black branches represent the in-house global Mtb collection. PGG1 
outliers share one IS6110 copy with the PGG1 group. Those which contained one IS6110 
copy but could not be assigned to any group (unassigned group in the figure) are shown 
within the green box.
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percentage of mainly European lineages (Haarlem, LAM and T, 12.5%) 
indicates that there has also been mixing of the different lineages over 
an extended time and that European travellers/migrants to South East 
Asia and Nepal may have transmitted European strains to the local 
population. According to Malla et al. [13], fifty strains had any drug 
resistance and sixteen (6.1%) out of 261 isolates were MDR. Among 
the fifty any drug resistant strains, 29 cases were previously treated 
and twenty-one were new untreated cases (8.04% of 261 total strains 
and 12.8% of 164 new untreated cases). In this study, MDR-TB was 
tested by using rifampicin as the resistance marker and 7 isolates 
out of 176 were found (3.9%) from new untreated cases possessing 
drug resistance genotypes. However, their reported MDR percentage 
was based on the total number of isolates, of which 37.2% of isolates 
were from previously treated cases, which may enhance a probability 
of drug resistance development compared to untreated cases. Our 
results indicate that the prevalence of Rifampicin (RIF) resistant TB 
(surrogate marker for MDR) was higher than the nationally reported 
2.2% MDR in new untreated cases. Further, our results are concordant 
with a recently conducted study by Creswell et al. [23], where they have 
shown that the genotypic rifampicin resistance in newly diagnosed TB 
patients to be 3.3% in Nepal [23].

Conclusions
The IS6110 FAFLP data from our study reiterates the fact that the 

geographic location of Nepal is the key for the circulation of PGG1 
TB lineages, CAS and Beijing, which were predominant in India and 
China respectively. Further the RRDR study correlates with the recent 
work by Creswell et al. showing that prevalence of MDR-TB may 
be marginally higher than the national average in new untreated TB 
cases. As the monitoring of TB is important in Nepal, this simple and 
informative PCR-based molecular epidemiological technique would 
prove useful for the study of outbreaks of the disease and also to detect 
cross-contamination between different strains or isolates in resource 
poor settings.  The most common mutation site in the RRDR is at 
codon 531 and parallels the findings of earlier studies [21,22].
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Abstract

Molecular screening of new patients suspected for TB could help in the effective control of

TB in Pakistan as it is a high TB burden country. It will be informative to understand the prev-

alence of multi drug resistance for a better drug regimen management in this geographical

area. The Rifampicin resistance determining region (RRDR) sequencing was used to iden-

tify mutations associated with drug resistance in DNA extracts from 130 known multidrug

resistant (MDR) cultured strains and compared with mutations observed in DNA extracts

directly from 86 sputum samples from consecutive newly diagnosed cases in Lahore, Paki-

stan. These newly diagnosed samples were positive for smear microscopy, chest X-ray and

presumed sensitive to first line drugs. In the known MDR group the most frequent mutations

conferring resistance were found in rpoB531 (n = 51, 39.2%). In the newly diagnosed tuber-

culosis group with no history of MDR, mutations in rpoB531 were seen in 10 of the samples

(11.6%). Collectively, all mutations in the RRDR region studied were observed in 80

(61.5%) of known MDR cases and in 14 (16.3%) of the newly diagnosed cases. Using the

RRDR as a surrogate marker for MDR, sequences for the newly diagnosed (presumed sen-

sitive) group indicate much higher levels of MDR than the 3.9% WHO 2015 global estimate

and suggests that molecular screening directly from sputum is urgently required to effec-

tively address the detection and treatment gaps to combat MDR in this high burden country.

Introduction

Pakistan is among the top 20 countries with a high TB and MDR-TB burden [1]. Chest X-ray,

acid fast bacilli (AFB) smear microscopy and culture on Lowenstein-Jensen (LJ) media are the
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conventional methods of investigation for tuberculosis [2] but require additional analysis to

define the species of Mycobacteria as well as the mechanism of drug resistance. M. tuberculosis
drug resistance detection using conventional methods is by culture of bacilli on a medium

containing antibiotic and can require several weeks. However, with the development of rapid

molecular methods it is possible to detect mutations in genes associated with resistance in a

much shorter time [3]. Resistance to two first line predominant anti-TB drugs i.e., isoniazid

(INH) and rifampicin (RIF), is termed as ‘multidrug resistance tuberculosis’ [4]. Molecular

methods for this are diverse and each method has its benefits and drawbacks; for example

PCR-RFLP [5] and allele-specific PCR [6]. Several molecular techniques have been evolved to

detect the gene mutation related to resistance. These include hybridization methods; single

strand polymorphism, DNA sequencing and other PCR based methods [5, 7, 8]. Multiplex

Allele Specific (MAS) PCR, a rapid and cost-effective method simultaneously detects INH, RIF

and Ethambutol (EMB) resistance associated genetic mutations [9]. PCR technology can pro-

vide many advantages over traditional techniques. Many PCR tests can be rapidly performed

and interpreted on the same day of submission of samples. A major advantage of PCR over tra-

ditional techniques includes the ability to rapidly identify organisms that are difficult to culture

and the DNA of interest can be amplified with the DNA from just one cell. The sensitivity of

PCR is also its major disadvantage since very small amounts of contaminating DNA (from a

different sample) can also be amplified. One major limitation of PCR is that prior information

about the target sequence is necessary in order to generate the primers that will allow its selec-

tive amplification [10]. Whole Genome Sequencing (WGS) sequences the whole genome

rather than specific genes. So, drug resistance prediction from the whole genome sequence is

possible using publically available software which rapidly analyses all known gene targets and

identifies mutations associated with resistance thus enabling targeted treatment [11] but

requires culture and is currently prohibitively expensive for high burden countries. Identifica-

tion of MDR-TB is a crucial step as treatment of multi drug resistant tuberculosis (MDR-TB)

is a considerable challenge. Globally in 2015, an estimated 3.9% (95% confidence interval [CI]:

2.7–5.1%) of new cases and 21% (95% CI: 15–28%) of previously treated cases had MDR/

RR-TB [1]. Resistance to rifampicin is the result of mutations in the rifampicin resistance

determining region (RRDR) of rpoB, particularly mutations at codons 516, 526 and 531.

MDR-TB is defined as resistance to rifampicin and isoniazid, the two most effective anti-TB

drugs. In December 2010, WHO recommended the use of the GeneXpert MTB/RIF to detect

and infer resistance to rifampicin directly from sputum [12]. In May 2016, WHO issued guid-

ance that “people with TB resistant to rifampicin, with or without resistance to other drugs,

should be treated with an MDR-TB treatment regimen.” Together with MDR-TB, these are

referred to as MDR/RR-TB.

This work was carried out in Pakistan to characterize mutations associated with rifampicin

resistance directly from sputum samples from newly diagnosed (ND) patients with no history

of drug resistance and identify their key risk factors in this setting. Identifying resistance in

presumed resistant samples and inferring resistance profiles directly from sputum may enable

a better tailored drug regimen where possible. It will also inform patient management more

rapidly and consequently reduce the rate of onward transmission of MDR tuberculosis in high

burden countries such as Pakistan.

Materials and methods

Sampling

Tuberculosis patients attending the Ghulab Devi Chest Hospital, Lahore, Pakistan in collabo-

ration with University of Health Sciences, Lahore were enrolled in this study over 18 months

Rifampicin resistant tuberculosis in Pakistan
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between 2013 and 2015, based on the following inclusion criteria. For the MDR group, patients

diagnosed previously with TB, and with a history of resistance to first line anti-tuberculosis

drugs, were included. Sputum samples were taken from this group and culture and Drug Sus-

ceptibility Testing (DST) were performed. The second group of patients included freshly diag-

nosed consecutive cases, presumed drug susceptible with clinical symptoms of TB, positive in

sputum smear microscopy AFB, chest X-ray positive and no history of resistance to any first

line tuberculosis drugs. Sputum samples were taken from this group and culture was not per-

formed. Not all individuals were included; those with clinical complications in addition to

tuberculosis were not included in this study.

Patient history

The patient’s history was collected using a proforma and included age, gender, area, economic

status (earning less than 300 US dollars per month), information of previous anti-tuberculosis

therapy, chest x-ray, AFB test and family history of TB. The environmental parameters studied

were animal contact, source of drinking water, un-boiled milk use and smoking or drug use.

GeneXpert testing

GeneXpert testing was carried out only for six samples of the MDR group only due to lack of

global funding, according to the manufacturer’s instructions. Newly diagnosed presumed sus-

ceptible samples were not tested due to the reason that these samples have no history of drug

resistance. This test was performed in order to confirm the samples of MDR group before car-

rying out DST.

Initial sputum culturing on drug free LJ medium

For the MDR group, sputum suspension of each patient was made by mixing 0.5ml sputum in

equal volume of autoclaved deionized water under aseptic conditions. 0.1ml of sputum sample

was spread on LJ medium for M. tuberculosis culture under strict aseptic conditions. The colo-

nies appeared on the LJ medium after 4–6 weeks of culturing at 37˚C.

Drug susceptibility testing (DST)

Sub culturing of M. tuberculosis colonies from the MDR group was carried out on LJ medium

containing the different first line anti-tuberculosis drugs. The concentrations of drugs added

were: rifampicin (40 μg/ml); isoniazid (0.2 μg/ml); ethambutol (2 μg/ml); pyrazinamide

(50 μg/ml) andstreptomycin (4 μg/ml). Following a sterility check by incubating the culture

bottles at 37˚C for one week, the bottles were inoculated with an M. tuberculosis suspension of

the previous culture. After 4–6 weeks incubation at 37˚C in incubator, growth on a drug-free

control medium was compared with growth on culture media containing each concentration

of anti-tuberculosis drug. Any growth of M. tuberculosis colonies on drug containing LJ media

were designated drug resistant while samples where no growth was observed on drug contain-

ing LJ media, were declared to be drug susceptible Mycobacterium tuberculosis.

DNA isolation and quantification

Sputum samples from the presumed susceptible group of patients were collected and then

DNA extraction was carried out. Both cultures (described above) and sputum samples were

extracted using the column based TIANamp genomic DNA isolation kit (TIANGEN Biotech

Beijing, China) method. Quantity and quality of the isolated genomic DNA was determined

by NanoDrop (Thermo Scientific, USA) using 1μL sample of purified DNA.

Rifampicin resistant tuberculosis in Pakistan
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rpoB analysis

The fragment containing 81bp Rifampicin Resistant Determining Region (RRDR) of the rpoB

gene of all strains were sequenced using published primers [13] and analysed in BIOEDIT

software using ClustalW alignment parameters (BioEdit version 7.2.5). The PCR was carried

out in a total volume of 50μl where 1μl of the DNA was added to the reaction containing

1xPCR reaction buffer, 1.5mM MgCl2, 0.2mM dNTPs (Invitrogen, UK), 20μM each of both

rpoB-RRDR forward (5’- CGATCACACCGCAGACGTTGA)and reverse primers (5’-GGCAC
GCTCACGTGACAGACC) and 5U recombinant Taq polymerase (Invitrogen, UK). The follow-

ing PCR conditions were carried out using a Veriti thermocycler (Applied Biosystems, UK):

94˚C for 2 min followed by 35 cycles of 94˚C for 30 sec, 60˚C for 30 sec and 72˚C for 1 min.

Finally, an extension of 72˚C for 10 min was performed before cleaning the products using

AmpureXP magnetic beads (Beckman Coulter, UK) according to the manufacturer’s protocol

and forward and reverse sequencing performed.

Ethics and consent

The present research work was approved by the ethical committee of University of the Punjab,

Lahore, Pakistan in accordance with the ethical standards of the responsible committee on

human experimentation and with the latest (2008) version of Helsinki Declaration of 1975

[14]. The purpose of the study was explained and written consents from the patients or guard-

ians were taken from all patients or from next of their kin, caretakers, or guardians/parents on

behalf of all child participants.

Results

GeneXpert testing

GeneXpert testing was positive for six of the samples of MDR group and further verified by

DST.

Drug susceptibility testing (DST)

Of the 130 MDR cultures tested for resistance to isoniazid (I), rifampicin (R), ethambutol (E),

pyrazinamide (P) and streptomycin (S), 96 were resistant to IREPS, 26 were resistant to IREP,

three were resistant to IR, two were resistant to IRES, one was resistant to IRP and two resis-

tant to IRPS. Streptomycin was added so that to kill any other bacterial contamination in the

culture in addition to drug sensitive mycobacteria.

rpoB analysis

An overview of the rpoB mutations seen in both groups is shown in Table 1. The isolated DNA

from all samples quantification was carried out by nanodrop and DNA quantity was found to

Table 1. Mutations seen in rifampicin resistance determining region (RRDR).

516 (WT = GAC- Asp) 526 (WT = CAC- His) 531 (WT = TCG- Ser)

SNP TAC GTC GGC TAC AAC CCC TTG TGG TGC

(AA change) (Tyr) (Val) (Gly) (Tyr) (Asn) (Pro) (Leu) (Trp) (Cys)

MDR group (n = 130) 8 7 2 4 2 1 49 1 1

ND group (n = 86) 2 2 0 0 0 0 8 2 0

Note: Multidrug resistant group (MDR), Newly diagnosed group (ND).

https://doi.org/10.1371/journal.pone.0183363.t001
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be in range of 70–90 ng/μl. Of the 130 MDR strains, 80 had mutations in the RRDR region of

rpoB (61.3%) (S1 Fig). In order of mutation frequency, 49 strains carried a single mutation at

position 531, TCG>TTG/Ser>Leu (65.3%), 8 strains carried a single mutation at position 516,

GAC>TAC/Asp>Tyr (10%), 7 strains carried a single mutation at position 516 GAC>GTC/

Asp>Val (8.8%), 4 strains carried a single mutation at position 526, CAC>TAC/His>Tyr

(5%), 2 strains carried a single mutation at position 516, GAC>GGC/Asp>Gly (2.5%), a fur-

ther 2 strains carried a single mutation at position 526, CAC>AAC/His>Gly (2.5%) and single

strains carried mutations at positions 526, CAC>CCC/His>Pro; 531, TCG>TGG/Ser>Trp;

TCG>TGC/Ser>Cys (all at 1.3%). The remaining mutations were as follows: one strain with

a deletion of positions 516 and 517; one strain with two mutations, the first at position 516,

GAC>GGC/Asp>Ala and the second at position 531, TCG>GCG/Ser>Ala; one strain with

two mutations, the first at position 526, CAC>CAG/His>Gln and the second at position 533,

CTG>CCG/Leu>Pro; one strain with a two amino acid deletion of 516/7 and two strains with

mutations just upstream of the RRDR.

For the ND group, 14/86 of the extracted DNAs (16.3%) carried mutations associated with

MDR status; the remainder showed wild type RRDR sequence. Of the 14, 8 DNAs carried a

single mutation at position 531, TCG>TTG/Ser>Leu (57.1%); 2 DNAs carried a single muta-

tion at position 531, TCG>TGG/Ser>Trp (14.3%); 2 DNAs carried a single mutation at posi-

tion 516, GAC>GTC/Asp>Val (14.3%) and a further 2 DNAs carried a single mutation at

position 516, GAC>TAC/Asp>Tyr (14.3%).

Discussion

Molecular screening of M. tuberculosis–containing sputum samples for drug resistance,

although recommended by the WHO, is expensive and inaccessible to many high incidence

areas such as Pakistan. To gain further information about the prevalence of MDR in newly

diagnosed patients in this area of Lahore, Pakistan, the RRDR region of the rpoB gene from

two groups was sequenced; the first group comprised extracted DNA from130 MDR strains

from patients diagnosed previously with TB, and with a history of resistance to first line anti-

tuberculosis drugs; the second group comprised 86, DNA extracts directly from sputum sam-

ples from consecutive newly diagnosed patients, with clinical symptoms of TB, positive in

sputum smear microscopy AFB, chest X-ray positive and presumed drug susceptible with no

history of resistance to any first line tuberculosis drugs. The most common mutation found in

both groups was in line with other studies, i.e. at position 531, TCG>TTG/Ser>Leu, and at

61.3% and 57.1% for MDR and ND groups respectively, at a similar prevalence.

Studies indicate that 96.1% of the rifampicin resistant strains worldwide will have rpoB

mutations (so a surrogate marker for MDR) studies [15, 16]. Comparison of the DST results

with the RRDR data from the MDR group in this study suggests that only 61.5% of strains

carry mutations in this region of the rpoB gene so sequencing the RRDR does not correlate

with rifampicin resistance as successfully. The reasons for this may be that resistance to rifam-

picin is conferred by mutations in other parts of the gene or genome or that the DST testing

was sub optimal in some way and indicated resistance when none was present, although all

patients from this group had a history of resistance to first line anti-tuberculosis drugs. Anti-

microbial resistance testing (AST) or Drug resistance testing was established in the 1960s [17]

and there is no consensus reference method for MIC determination against which the different

methods can be compared to determine common breakpoints.

The main finding of this study however is the high incidence of rifampicin resistance asso-

ciated mutations, which is often used as a surrogate marker for MDR. At 16.3%, it is consider-

ably higher than the WHO estimate of 3.9% of new cases of multi drug resistant tuberculosis
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[1]. This single piece of study needs to be justified with the help of future studies to support a

high percentage of rif resistant strains. The cost of rpoB sequencing in this study was approxi-

mately $10, the cost of a GeneXpert test in this region. The time taken to carry out rpoB

sequencing is slightly longer than GeneXpert testing but requires more complex testing and

analysis. GeneXpert testing or rpoB sequencing for detection of MDR TB in sputum samples is

much faster than waiting for results of culture and DST. The diagnosis and effective treatment

for individuals with MDR needs to be tailored and administered quickly by rapid molecular

tests and, as a consequence of that, the control of transmission of MDR tuberculosis will be

tightened. Only then will MDR tuberculosis infection and transmission be effectively con-

trolled in high incidence areas such as Pakistan, where it is most needed.
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