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ABSTRACT
We explore two methods of compressing the redshift-space galaxy power spectrum and bispec-
trum with respect to a chosen set of cosmological parameters. Both methods involve reducing
the dimension of the original data vector (e.g. 1000 elements) to the number of cosmological
parameters considered (e.g. seven ) using the Karhunen–Loève algorithm. In the first case,
we run MCMC sampling on the compressed data vector in order to recover the 1D and 2D
posterior distributions. The second option, approximately 2000 times faster, works by orthog-
onalizing the parameter space through diagonalization of the Fisher information matrix before
the compression, obtaining the posterior distributions without the need of MCMC sampling.
Using these methods for future spectroscopic redshift surveys like DESI, Euclid, and PFS
would drastically reduce the number of simulations needed to compute accurate covariance
matrices with minimal loss of constraining power. We consider a redshift bin of a DESI-like
experiment. Using the power spectrum combined with the bispectrum as a data vector, both
compression methods on average recover the 68 per cent credible regions to within 0.7 per cent
and 2 per cent of those resulting from standard MCMC sampling, respectively. These confi-
dence intervals are also smaller than the ones obtained using only the power spectrum by
81 per cent, 80 per cent, and 82 per cent respectively, for the bias parameter b1, the growth rate
f, and the scalar amplitude parameter As.

Key words: methods: analytical – methods: data analysis – methods: statistical –
cosmological parameters – large-scale structure of Universe – cosmology: miscellaneous.

1 IN T RO D U C T I O N

In recent years, the number of available large data sets to be used
for cosmological analysis has drastically increased (Planck, 1 Ade
et al. 2014 ; Sloan Digital Sky Survey, 2 Eisenstein et al. 2011;
DES, The Dark Energy Survey Collaboration 20053) and will do
even more so in the near future (DESI, 4 Levi et al. 2013; Euclid, 5

Laureijs et al. 2011; PFS, 6 Takada et al. 2014). Improving current
analysis techniques to extract as much information as possible from
these catalogues has become highly relevant. Up to now, most work
has been done using two points (2pt) statistics like the two points
correlation function or its Fourier transform, the power spectrum.

� E-mail: davide.gualdi.14@ucl.ac.uk
1 http://sci.esa.int/planck/
2 http://www.sdss3.org/surveys/boss.php
3 https://www.darkenergysurvey.org
4 http://desi.lbl.gov
5 http://sci.esa.int/euclid/
6 http://pfs.ipmu.jp

However, gravity increases the level of non-linearity in the mat-
ter distribution field, creating non-Gaussian features which are not
constrained by the sole use of 2pt statistics. Higher order statis-
tics like the three points (3pt) correlation function or its Fourier
transform, the bispectrum, have already been studied in the past
in order to capture the non-Gaussian part of the statistical infor-
mation contained in the large-scale structure galaxy field. The first
measurements of the 3pt correlation function and the bispectrum
on a galaxy catalogue were performed by Peebles & Groth (1975),
Groth & Peebles (1977), and Fry & Seldner (1982). Fry (1984)
studied the relation between the cosmological and bias parameters,
modelling the relation between luminous and dark matter, which
affects the amplitude and the shape of the bispectrum. Integrated
3pt statistics like the skewness were introduced in order to reduce
the complexity and number of modelling parameters (Peebles 1980;
Fry & Scherrer 1994; Bernardeau 1994; Juszkiewicz, Hellwing &
van de Weygaert 2013). The modelling of redshift-space distortions
into the 3pt statistics was later introduced and studied by Matarrese,
Verde & Heavens (1997a), Verde et al. (1998), Heavens, Matarrese
& Verde (1998), Scoccimarro et al. (1998), and Scoccimarro (2000).
Different 3pt statistics have also been proposed as useful tools to
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quantify deviations from GR (Borisov & Jain 2009; Bernardeau
& Brax 2011) and to measure primordial non-Gaussianities (Fry
& Scherrer 1994; Gangui et al. 1994; Verde et al. 2000; Liguori
et al. 2010; Tellarini et al. 2016). In the last 20 yr, these statistics
have received increasing attention especially for the benefit of lift-
ing degeneracies present in 2pt statistics between cosmological and
nuisance parameters in data sets produced by spectroscopic redshift
surveys like BOSS. The most recent measurement on this data set
for the bispectrum was made by Gil-Marı́n et al. (2016) and for the
3pt correlation function by Slepian et al. (2015), obtaining also the
first significant BAO detection using 3pt statistics (Slepian et al.
2017).

When studying the power spectrum and the bispectrum, it is
necessary to subdivide the range of possible k-vectors in Fourier
space into bins . By doing this, one defines the number of possible
elements for both the power spectrum and bispectrum data vectors.
While in Fourier space, the number of possible elements for the
power spectrum data vector is the same as the number of bins, for
the bispectrum, it corresponds to the number of triangles that can
be formed by triplets of the available k-vectors (less than ∼n3

bins).
This difference becomes even larger when redshift-space distortions
(Kaiser 1987), described in Section 2.2, are included in the analysis.
In addition, as explained in Appendix B, not only the modulus of the
three k-vectors but also the orientation of the triangle with respect
to the line of sight becomes relevant. Consequently, a fine binning
in k-space corresponds to a very large number of possible triangles.
While for the power spectrum in redshift space, there are ∼n2

bins

possible data-vector elements, for the bispectrum there are slightly
less than ∼n5

bins possible triplets, since the vectors need to satisfy
the triangle condition.

The problem is that when doing parameter estimation using a data
vector for a given statistic, the corresponding covariance matrix is
needed. This can either be computed analytically, which requires
the evaluation of several multidimensional integral expressions, or
it can be estimated from simulations. However, in order to obtain
a precise and accurate estimate of the covariance using numeri-
cal simulations, the number of realizations must be larger than the
number of elements of the data vector (Hartlap, Simon & Schneider
2007; Taylor & Joachimi 2014). Therefore, numerically estimating
the covariance matrix of a 3pt statistic from simulations could be-
come very expensive in terms of simulations required to predict it
accurately. Indeed, one usually sacrifices the stronger constraining
power achievable by considering a larger number of triangle con-
figurations for a more accurate estimate of the covariance matrix
obtained using only a subset of all the possible triangles. Com-
pressing the original data vector is an efficient method to avoid
losing access to part of the constraining power contained in the 3pt
statistics. Alternatives to the full bispectrum have been proposed
in the last few years. For example Schmittfull, Baldauf & Seljak
(2015) substituted to the tree level matter bispectrum, functions of
the cross-power spectrum between δ2(x) and δ. The performances
of some of them, including the modal decomposition proposed by
Schmittfull, Regan & Shellard (2013), have been recently studied
by Byun et al. (2017). We will compare their results with ours in
the conclusions.

Therefore, one can reduce the original number of data-vector
elements either by performing a selection of triangles based on
some criteria or by compressing the data vector. This paper is about
this second option, where we present an application of a linear
compression mechanism by Karhunen and Loève (K-L) used in
Tegmark, Taylor & Heavens (1997) for the first time in a cosmolog-
ical context to compress with respect to multiple parameters. The

Figure 1. Diagram highlighting the two compression methods presented in
this work, including the respective advantages with respect to the uncom-
pressed data vector.

underlying principle is to assign a vector, such that the weights are
proportional to the sensitivity of each element to the variation of a
model parameter. When the covariance matrix can be assumed to
be parameter independent, the dimension of the compressed data
vector corresponds to the number of considered model parameters.

We use this prescription in two ways to do parameter inference,
which are summarized in Fig. 1. In our first method, we run an
MCMC sampling for the compressed data vector (hereafter MCMC
+ KL). This has the immediate and appealing benefit for a cosmo-
logical survey of requiring fewer simulations to estimate precisely
the covariance matrix in the case of a long data vector like the bis-
pectrum (with � 103 triangles) to just 1 data-vector element for each
cosmological parameter. Indeed, in order to have a reliable estimate
of the covariance matrix, one needs a significantly larger number
of mocks than of data-vector elements. For example, in the DR12
BOSS paper studying the bispectrum (Gil-Marı́n et al. 2016), the
number of triangles used was limited to 825 out of the 6391 possible
ones, since only 2048 mocks were available (Kitaura et al. 2016).

In our second method, before compressing, we orthogonalize
the parameter space by diagonalizing the Fisher information ma-
trix (principal component analysis, hereafter PCA + KL). This en-
ables sampling from 1D posterior distributions of the new set of
parameters, to recover the full multidimensional posterior distribu-
tion for the original physical set of parameters without the need
of an MCMC sampling. This proves to be ∼103 times faster than
an MCMC run, in particular because the linear matter power spec-
trum needs to be recomputed far fewer times.

In addition to being competitive with the standard likelihood
approach, this method could be also very useful for future cosmo-
logical surveys in order to test and forecast the constraining power
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of the expected data set for several different combinations of cosmo-
logical and nuisance (e.g. bias) parameters. We apply our analysis
to the redshift-space galaxy bispectrum and to the joint data vector
formed by the galaxy power spectrum and bispectrum.

The paper is structured as follows: Section 2 describes the basis
of perturbation theory upon which the data-vector estimators and
covariance matrix terms are computed. In Section 3, we present the
covariance terms. Section 4 contains the specifics of the analysis
performed. In Section 5, the compression formalism is presented.
In Section 6, we present the results of applying the MCMC + KL
method. Section 7 describes the performance of the PCA + KL com-
pression in obtaining constraints on the cosmological parameters.
In Section 8, we comment on the added value given by jointly using
the power spectrum to the bispectrum. We conclude in Section 9. All
detailed derivations are deferred to Appendices A (redshift-space
kernels), B (estimator definition), C (covariance matrix terms), D
(compressed covariance formalism), and E (weights orthogonaliza-
tion).

2 PE RT U R BATI O N TH E O RY W I T H
REDSHIFT-SPACE DISTORTIONS

2.1 Bias model

Since luminous objects like galaxies are not exact tracers of the un-
derlying dark matter distribution, it is necessary to model their
relationship. This is commonly referred to as ‘galaxy biasing’;
the relationship could be linear/non-linear, deterministic/stochastic,
local/non-local, and a function of scale and cosmic time. Under-
standing biasing is important in its own right as a probe of galaxy
formation and evolution. Galaxy biasing was recognized when it
was noticed that different populations of galaxies (e.g. spirals and
ellipticals) have different clustering strengths.

A physical mechanism for galaxy biasing was suggested
by Kaiser (1984) and developed by Bardeen et al. (1986),
namely that galaxies would tend to form in peaks in the matter
density distribution thus being more clustered than the underlying
matter distribution. In this model, more massive (and thus rarer)
tracers are naturally more highly biased. Biasing can be non-linear
(McDonald & Roy 2009) and stochastic (Dekel & Lahav 1999).
Galaxy biasing also evolves with redshift (Clerkin et al. 2015, and
references therein), being larger at higher redshift. It is also scale
dependent at small physical scales where the non-linear effects of
galaxy formation are important, although there is almost no scale
dependence above 20–40 Mpc h−1 (Manera & Gaztañaga 2011;
Crocce et al. 2015). Another popular approach, known as the Halo
model, is to parametrize the relationship between galaxies and the
dark matter distribution by assuming that all galaxies reside in dark
matter haloes or subhaloes, discussed e.g. in Tinker et al. (2010)
and references therein. We note that biasing and the relationship
between galaxies and haloes can also be constrained through com-
binations of various observables, e.g. galaxy positions and weak
gravitational lensing.

Here, we adopt a biasing model which is a Taylor expansion of
the galaxy density fluctuations δg in terms of the matter fluctuations
δm (Fry & Gaztanaga 1993):

δg =
∞∑
i=0

bi

i!
δn.l.

i,m. (1)

where δn.l.
i,m is the non-linear matter density fluctuation.

In this work, only the first two terms of the above expansion are
considered, b1 and b2. The above bias model considers only the
local relationship between δg and δm; non-local bias terms may be
included in a more accurate modelling (Chan, Scoccimarro & Sheth
2012; Baldauf et al. 2012; Bel, Hoffmann & Gaztañaga 2015).

2.2 Redshift-space formalism

The conversion of the galaxy redshifts from surveys like BOSS
or DESI to proper distances is a cosmological model-dependent
operation. In addition, the local gravitational field influences the
peculiar velocities of galaxies producing redshift-space distortions
(Kaiser 1987) which affect the observed redshift.

Heavens et al. (1998) have shown how to express the Fourier
transform of the redshift-space galaxy overdensity fluctuation, mea-
sured in cosmological surveys, δs

g (k) in relation to the real space
linear matter fluctuation δm (k)

δs
g [k] = F(1)

s [k] δm (k)

+ 1

(2π)3

∫
d3k1d3k2 δD (k − k2 − k1)

× F(2)
s [k1, k2] δm (k1) δm (k2)

+ 1

(2π)6

∫
d3k1d3k2d3k3 δD (k − k3 − k2 − k1)

× F(3)
s [k1, k2, k3] δm (k1) δm (k2) δm (k2) , (2)

where the redshift-space distortion kernels F(1,2,3)
s are given in Ap-

pendix A. In this work, all k-vectors are described in terms of their
components parallel k‖ and perpendicular k⊥ to the line of sight.
We define μ = k‖

i /ki. The galaxy redshift-space power spectrum is
defined as

〈δs
g (k1) δs

g (k2)〉 = (2π)3 Ps
g (k1) δD (k1 + k2) . (3)

Substituting equation (2) into equation (3) and applying Wick’s
theorem assuming that the initial perturbations are Gaussian, the
power spectrum is given by:

Ps
g (k) ≡ Ps,(1)

g + Ps,(2)
g + Ps,(3)

g

= (
b1 + f μ2

)2
Pm (k)

+2
∫

d3q

(2π)3 Pm (q) Pm (|k − q|) (F(2)
s [q, k − q]

)2

+ 6
(
b1 + f μ2

)
Pm(k)

∫
d3q

(2π)3 Pm (q) F(3)
s [q, −q, k] ,

(4)

where the growth rate is defined and parametrized as f (z) ≡
d ln D/d ln a � �γ

m(z) where �m(z) is the mass density parame-
ter function at a given redshift z, the growth index γ 
 0.55 for a
standard cosmology (Peebles 1980; Lahav et al. 1991; Linder 2005),
D(a) is the growing mode of the amplitude fluctuation, and scale
factor a = (1 + z)−1. Pm(k) is the linear matter power spectrum
defined analogously to equation (3). In this work, when consid-
ering the power spectrum data vector we stop at tree level using
only Ps

g = Ps,(1)
g . This choice is consistent with previous analyses

(Scoccimarro, Couchman & Frieman 1999; Sefusatti et al. 2006;
Song, Taruya & Oka 2015; Gagrani & Samushia 2017). The error
arising from excluding the one-loop terms (Jain & Bertschinger
1994; Bernardeau et al. 2002; Taruya, Koyama & Matsubara 2008;
Lazanu et al. 2016) is less than 10 per cent up to kmax = 0.2 hMpc−1
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increasing to 30 per cent for kmax = 0.3 hMpc−1. An accurate mod-
elling of the redshift-space galaxy power spectrum was introduced
by Taruya, Nishimichi & Saito (2010). This translates approxi-
mately into an error on the diagonal of the power spectrum co-
variance matrix computed in Section 3.1 of ∼1 per cent up to
kmax = 0.2 hMpc−1 and ∼9 per cent for kmax = 0.3 hMpc−1 when
including cosmic variance terms. For brevity, sometimes we write
Ps

g

(
k⊥

i , k‖
i

) ≡ Ps
g (ki), keeping in mind that the galaxy power spec-

trum depends on the parallel and perpendicular components of the
wave vector. Therefore, Ps

g will not depend on the second order bias
parameter b2.

Analogously, the bispectrum is defined as (Fry 1984):

〈δs
g (k1) δs

g (k2) δs
g (k3)〉 = (2π)3 Bs

g (k1, k2, k3)

× δD (k1 + k2 + k3) . (5)

The relation to the linear matter density power spectrum is at first
order:

Bs
g (k1, k2, k3) = 2Pm (k1) Pm (k2) F(1)

s [k1] F(1)
s [k2] F(2)

s [k1, k2]

+ two cyclic terms. (6)

For the redshift-space galaxy bispectrum, the most recent and accu-
rate models (up to the mild non-linear regime) were introduced by
Hashimoto, Rasera & Taruya (2017) and Raccanelli et al. (2013).

3 C OVA R I A N C E

In this section, we summarize the covariance terms at tree level for
the power spectrum and the bispectrum, including also the cross-
covariance between the two. Here are written only the final analyti-
cal expressions, while we show the full derivations in Appendix C.

3.1 CPP : power spectrum covariance matrix

The power spectrum covariance matrix is given by two terms,

CPs
g = CPP

P + CPP
T , (7)

where CPP
P is proportional to the square of the power spectrum and

CPP
T is proportional to the trispectrum. The first term is given by:

CPP
P

(
k̄1; k̄3

) = 1

V 2
s V c

1 V c
3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4)

× 〈δs
g (k1) δs

g (k3)〉〈δs
g (k2) δs

g (k4)〉 + 1p.

≈ 2π

Vsk̄
⊥
1 �k2

DP
1234 Ps

g

(
k̄1

)2 = 4π

Vsk̄
⊥
1 �k2

δK
13 Ps

g

(
k̄1

)2
,

(8)

where the integrals are over a cylindrical shell V c
i centred at

each k̄i with integral limits on: k̄‖
i − �k‖/2 ≤ k‖

i ≤ k̄‖
i + �k‖/2,

k̄⊥
i − �k⊥/2 ≤ k⊥

i ≤ k̄⊥
i + �k⊥/2 and 0 ≤ φ ≤ 2π. From the def-

inition of the power spectrum estimator given in Appendix B, the
cylindrical bins for k2 and k4 are centred respectively on k̄1 and
k̄3. When a Dirac delta δD

(
ki + kj

)
is used to simplify one of the

integrals over the cylindrical shells, it produces a Kronecker delta
δK

ij which is equal to one and not to zero only when k‖
i = k

‖
j and

k⊥
i = k⊥

j .
We have defined a combination of Kronecker deltas DP

1234 =
δK

13δ
K
24 + δK

14δ
K
23 in order to take into account the additional permu-

tation, which, given the initial Dirac deltas conditions, reduces to

DP
1234 = 2 × δK

13. Vs is the survey volume. The second term in equa-
tion (7) is proportional to the trispectrum and is given by

CPP
T

(
k̄1; k̄3

) ≈ 1

2π Vs

∫ 2π

0
dφ13 Ts

g

(
k̄⊥

1 , k̄
‖
1, k̄

⊥
3 , k̄

‖
3, φ13

)
. (9)

where φ13 is the difference between the azimuthal angles of k̄1 and
k̄3. The full expanded expression is written in Appendix C, while
the trispectrum definition is in Appendix B.

3.2 CBB: bispectrum covariance matrix

For the bispectrum covariance matrix, at leading order, only the
diagonal term proportional to the product of three power spectra is
required:

CBB
P

(
k̄1, k̄2, k̄3; k̄4, k̄5, k̄6

) = (2π)5�k
‖
3

Vs k̄⊥
1 k̄⊥

2 k̄⊥
3 �k6

�−1
123

× D123456

3∏
i=1

Ps
g

(
k̄i

)
. (10)

where � is a function defined in Appendix B which is related to the
fraction of wave-vector triplets allowed by the triangle condition
such that the bispectrum estimator (B5) is unbiased. D123456 is a
shorthand notation for the sum of all the possible permutations of
pairings of k vectors between the first and second triplets, encoded
in Kronecker deltas, e.g. δK

14 δK
25 δK

36. This is the symmetry factor
which is equal, respectively to 1, 2, and 6 in the case of scalene,
isosceles, and equilateral triangles. Full computations can be found
in Appendix C.

3.3 CBP: cross-variance matrix

The cross-variance term is also given by the sum of two parts.
The first part is proportional to the product between the power
spectrum and bispectrum. The second part is proportional to the
tetraspectrum

CBP = CBP
m1 + CBP

Te . (11)

The expression of the first term as derived in Appendix C is:

CBP
m1

(
k̄1; k̄3, k̄4, k̄5

) = 2 × (2π)2

Vs V c
1

�−1
345

(
δK

13 + δK
14 + δK

15

)
× Ps

g

(
k̄1

)
Bs

g

(
k̄3, k̄4, k̄5

)
, (12)

Where the semicolon separates the wave vector relative to the power
spectrum from the ones of the bispectrum.

The last non-vanishing term is the one proportional to the
tetraspectrum Teg

s given by the connected part of the five points
correlator

CBP
Te

(
k̄1; k̄3, k̄4, k̄5

) = (2π)2�k
‖
5

Vs
�−1

345

∏
i=1,3,4,5

∫
dV c

i

V c
i

× δD (k3 + k4 + k5) Ts
e,g (k1, k3, k4, k5) .

(13)

The definition and analytical expression for the tetraspectrum are
in Appendix B. In the appendix, it is shown that at leading order
the tetraspectrum is proportional to the fourth power of the linear
matter power spectrum. Being this one order higher than all the
terms considered in the paper, CBP

Te has not been included in the
numerical computations.
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All the terms rederived above agree with the ones derived in
the literature when considering redshift-space distortions (Sefusatti
et al. 2006; Scoccimarro et al. 1998).

3.4 Shot noise contribution

All terms of the covariance matrix have been corrected in or-
der to account for the shot noise, which is given by the average
number density of galaxies. In our analysis, we consider a DESI-
like ELGs sample with n̄g ≈ 1.175 × 10−3h3Mpc−3 and a survey
volume Vs ≈ 12.3h−3Gpc3 (Levi et al. 2013; Song et al. 2015;
DESI Collaboration et al. 2016). The only correction corresponds
to substituting the galaxy power spectrum with:

Ps
g (k) −→ Ps

g (k) + 1

n̄g
. (14)

We made the assumption that the shot noise is well approximated by
a Gaussian distribution (which is reasonable if the galaxy number
density is fairly high). In that case only second moments exist, and
thus contributions appear only in the 2pt correlators, and those yield
power spectrum contributions to the cosmic variance. If the noise
were Poisson-distributed, the corrected expressions would become
much more complicated (Matarrese, Verde & Heavens 1997b).

4 A NA LY SIS SETUP

In this section, we describe the pipeline and codes for the com-
pression and the MCMC analyses. We compressed the power spec-
trum and the bispectrum with respect to the set of parameters:
{b1, b2, f , �m, �b, As, ns} where the first two are galaxy bias
parameters, f is the linear growth rate, �m and �b are the den-
sity parameters of total matter and baryonic matter, As is the scalar
amplitude of the primordial perturbations, and ns is the scalar spec-
tral index. For both cases, the fiducial cosmology was fixed to
b1 = 1.90, b2 = 0.20, f = �m(z = 0.81)0.55, �m(z = 0) = 0.307,
�b(z = 0) = 0.0482, and As = 2.9 × 10−9 similar to the one used
in Kitaura et al. (2016) and close to the one reported in the Planck
15 results (Ade et al. 2016). The redshift used is that of the effective
redshift bin (0.6 < z < 1.0) of an ELG sample of a DESI-like survey
with zeff = 0.81.

The k-range chosen is 0.01 < k < 0.2 Mpc−1 h, 12 bins for both
parallel (linear binning) and perpendicular (logarithmic binning)
to the line-of-sight components. We have adopted a logarithmic
binning for the perpendicular components of the wave vectors in
order to better capture the different features at different scales.
A linear binning has been used for parallel to the line of sight.
For the perpendicular component, �log10k⊥ = 0.11827 while for
the parallel one �k‖ = 0.0182 Mpc−1 h. With these settings, the
resulting number of configurations satisfying the triangle condition
is Ntr = 1333 for the bispectrum and Npairs = 132 combinations of
parallel and perpendicular components for the power spectrum.

The triangle configurations for the bispectrum are generated by
a 5D loop choosing first the three perpendicular components of the
sides of the triangle and secondly two of the parallel ones. The third
parallel component is chosen such that the final triangle satisfies the
triangle condition. All sides and projections must be in the range
given above.

For the MCMC sampling, we have used 64 samplers together with
the same number of Xeon E5-2650 processors connected through
MPI (Gabriel et al. 2004), each with 2000 burn-in steps followed by
10 000 steps for the actual posterior sampling. The PYTHON package
EMCEE was used as MCMC sampler (Foreman-Mackey et al. 2013)

. Uninformative flat priors have been used both in the compression
code and MCMC sampler. We employed the CAMB code (Lewis,
Challinor & Lasenby 2000) in order to generate the linear matter
power spectrum for different cosmological parameters.

5 C OMPRESSI ON FORMALI SM

5.1 Fisher information matrix

The log-likelihood L for a Gaussian probability distribution relative
to an n-dimensional data vector x, can be written as

− 2L = n ln 2π + ln det Cov + (x − 〈x〉)ᵀ Cov−1 (x − 〈x〉) ,

(15)

where Cov = 〈(x − 〈x〉) (x − 〈x〉)ᵀ〉 is the covariance matrix
and 〈x〉 is the mean of the data vector.

From this quantity, the Fisher information matrix can be defined
as

Fij = −
〈

∂2L
∂θi∂θj

〉∣∣∣∣∣
θML

≡ −〈L,ij〉, (16)

which is a measure of the curvature around the maximum-likelihood
point θML = (θ1

ML, θ2
ML, . . . , θm

ML), where the θ ’s are the m model
parameters and the comma notation indicates the derivatives with
respect to them. In the case of a Gaussian likelihood, the Fisher
matrix can be expressed as

Fij = 1

2
Tr
[
AiAj + Cov−1Mij

]
, (17)

where the matrices Ai and Mij are defined as Ai ≡ Cov−1Cov,i and
Mij ≡ 〈x〉,i〈x〉ᵀ

,j + 〈x〉ᵀ
,i〈x〉,j.

The diagonal entries of the Fisher matrix are related to the min-
imum error attainable in estimating a parameter θ i. In particular,
in the case of single parameter estimation, the minimum attain-
able error is �θmin

i = 1/(Fii)
1
2 . When more than one parameter is

considered, the full Fisher matrix is needed to compute the min-
imum marginalized error for each parameter, which is given by
�θmin

i = (F−1
ii )

1
2 . The target of the compression is to obtain a new

data vector such that for each parameter θ i, �θmin
i is minimized. In

other words, the compression algorithm will be obtained by maxi-
mizing Fii for each parameter θ i.

5.2 Karhunen–Loève compression method

A general linear transformation of the data vector x with a transfor-
mation matrix B is given by

y = B x. (18)

The mean and the covariance matrix for y become, respectively
〈 y〉 = B〈x〉 and Cov y = BᵀCovxB.

In the case in which only one of the linear combinations of the
data is considered, B has only one row, B = bᵀ . Therefore the
diagonal entries of the Fisher matrix are given by:

Fii = 1

2

(
bᵀ Cov,i b
bᵀ Cov b

)2

+
(

bᵀ 〈x〉,i
)2(

bᵀ Cov b
) , (19)

where again the comma notation followed by the index i stands for
the derivative with respect to the model parameter θ i. As explained
by Heavens, Jimenez & Lahav (2000), who also derive weights
based on minimizing the Fisher matrix diagonal elements, it is a
very complex problem to find an analytical solution for b from the
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full equation (19). Only by ignoring then the first term of equation
(19), it is possible to find an analytic solution for b. This implies
assuming that the derivatives of the covariance matrix with respect
to model parameters are negligible when compared to the data vector
ones. Recently, Heavens et al. (2017) presented a method to relax
this approximation.

For both the power spectrum and bispectrum, we numerically
checked that it is reasonable to assume it to be valid, by taking
the ratio between the diagonal elements of Cov,i/

√
Cov with 〈x〉,i

[corresponding to the ratio of the first and second terms in equation
(19), respectively]. This ratio for the bispectrum case results to be
on average ≤ 10 per cent for the considered parameters. There are
peaks for few triangle configurations (≤10 for more than a thou-
sand triangles) for which the ratio is around 70 per cent−80 per cent,
while the minima are around 2 per cent.

By maximizing Fii as described in Tegmark et al. (1997) using
a Lagrange multiplier, it follows that the compressed data vector is
given by a scalar

yi = 〈x〉ᵀ
,i Cov−1 x ≡ bᵀ x, (20)

where we have defined the weighting vector b = Cov−1〈x〉,i.
For the compression, it is acceptable to use an analytic

approximation of the covariance matrix (in our case as it is de-
scribed in Section 3), as any systematic error in the covariance
would mostly degrade the compression; it would not bias the pa-
rameter inference. The compression enables then to use an accurate
simulated covariance for the actual inference. This has the advan-
tage of being able to compute weights for a data vector with an
arbitrary large dimension (e.g. number of triangles). The Fisher
matrix diagonal element can be rewritten as

Fii = 〈x〉ᵀ
,i Cov−1〈x〉,i. (21)

In order to apply the KL compression method, one needs to
choose a fiducial set of parameters at which to compute (analyt-
ically or numerically) the derivatives of the mean. In our case, the
fiducial values are reported in Section 4. We compute the numerical
derivatives using the five-point method for the first derivative in one
dimension (Abramowitz 1974).

6 MC MC O F C O MPR ESSED DATA V EC TO R S

In this section, we compare the results obtained by running the
MCMC algorithm for both uncompressed and compressed data vec-
tors. The goal is to check whether it would be possible to substitute
the original data vector for its compressed version. Even if this
would not bring any relevant advantage in terms of speed when
computing the data vector from the theoretical model, in the case of
a real cosmological survey, it will be much easier and less expen-
sive in terms of required simulations/mock catalogues to estimate
the covariance matrix of the compressed data vector rather than the
full data vector. Moreover, in the case of the bispectrum, a much
larger number of triangles could be used for the original data vector,
allowing more information to be captured, since the dimension of
the compressed covariance matrix would be reduced to the number
of parameters considered in the analysis. In order to use the com-
pression, it is necessary to convert the covariance matrix for the full
data vector to the one for the compressed data vector. This is shown
in Appendix D.

In this paper, we consider two cases for the data vector: the galaxy

bispectrum Bs
g and the joint data vector

[
Ps

g, Bs
g

]
. For the latter, we

include two further cases depending on whether or not we compress
the power spectrum Ps

g.
Fig. 2 shows the 1D and 2D marginalized posterior distributions

when only the bispectrum data vector is considered. For the con-
sidered set of parameters, there is no substantial loss of information
when the compressed data vector is used, even if some degeneracies
are present. In this case, the compressed vector has seven elements
instead of the ∼ 1000 triangles for the uncompressed bispectrum.
The 1D and 2D posteriors have been smoothed using a Gaussian
kernel density estimation procedure, for clearer visualization. Fig. 3
shows the 1D and 2D marginalized posterior distributions when we
consider both the power spectrum and the bispectrum. As can be
seen, there is no qualitative or quantitative difference on the pos-
terior distributions between compressing or not compressing the
power spectrum together with the bispectrum. The precise numbers
can be found in the summarizing Table 1.

7 PO S T E R I O R D I S T R I BU T I O N S D I R E C T LY
FROM COMPRESSED DATA V ECTO RS

It is possible to compute the 1D likelihood for each linear com-
bination yθi of the original data vector obtained compressing with
respect to the parameter θ i as done in Zablocki & Dodelson (2016):

lnL = − (yθi − ȳθi )
2

2σ 2
〈yθi 〉

with σ 2
〈yθi 〉 =

nx∑
j=1

b2
j Covjj, (22)

where ȳθi ≡ 〈ȳθi 〉 is the mean of the compressed linear combination.
Nevertheless, these 1D likelihoods would not be realistic since they
are obtained using the compressed data-scalar yθi by varying only
one parameter at a time. In reality yθi is sensitive to all the other
parameters.

In order to account for this fact, we transform the set of yθi

scalars in such a way that, at linear order, they are sensitive
only to the parameter with respect to which the original data
vector was compressed. One method to do so is to orthogonal-
ize the parameter space by diagonalizing the Fisher information
matrix. This has the advantage of obtaining realistic multidimen-
sional posteriors directly from the 1D posteriors of the new set
of model parameters (linear combinations of the original, physical
parameters).

For comparison, we include another method presented in
Zablocki & Dodelson (2016) which consists of orthogonaliz-
ing the weights in such a way that the Fisher matrix for the
compressed data vector would become diagonal; we call this
weights orthogonalization and it is described in Appendix E.
The idea behind these two slightly different orthogonalization ap-
proaches is the same, namely to diagonalize the Fisher informa-
tion matrix. The difference is that while the diagonalization in
the first method is the starting point independently from com-
pressing (or not compressing) the data vector later, in the sec-
ond method the diagonalization is a consequence of the procedure
used.

Both methods are approximations at linear level. Therefore as
anticipated earlier they both fail (even if at different levels as
it is shown later) when non-linear degeneracies are present. For
example, cases where the 2D posterior distribution of a pair of
parameters can no longer be approximated by an ellipse but has
instead a ‘banana’-shape. This breakdown of the above procedures
is in agreement with the fact that the compression method relies on
the assumption that the multidimensional posteriors are Gaussian.
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Figure 2. Bispectrum case: 1D and 2D posterior distributions for the MCMC sampling done using the full data vector (blue) and the compressed data vector
obtained through the K-L compression (orange). The contours correspond to the 68 per cent and 95 per cent confidence intervals. We see that there is no
substantial loss of information despite the presence of strong degeneracies between the parameters; this is quantified in Fig. 7 and Table 1. The 2D posterior
distributions have been smoothed using the Gaussian kernel density estimation package provided by SCIPY.

7.1 Parameter space orthogonalization – PCA

As anticipated above, the compression returns only 1D posterior dis-
tributions for each one of the parameters. Therefore, an additional
step is required in order to be able to assume that these distributions
correspond to 1D marginalizations from the original multidimen-
sional distribution. This is because the KL compression with respect
one model parameter returns a linear combination of the original
data vector which is still sensitive to the variation of the other model
parameters. Zablocki & Dodelson (2016) obtained marginalized 1D
posterior distributions by orthogonalizing the weighting vectors for
all the model parameters through a Gram–Schmidt like procedure
described in Appendix E. We label this method as ORT + KL.

In order to test whether the compression results match the ones
obtained running a MCMC sampling algorithm, we also compare
the 2D posterior distributions for different pairs of parameters. In
the case of ORT + KL, the only possibility to reconstruct the multidi-

mensional posterior is to take the outer product of the 1D marginal-
ized posteriors. However doing so would be misleading: it would
return ellipses with axes oriented at different angles to the ones
given by the MCMC sampling as it can be seen in Figs 5 and 6
looking at the difference between the 2D red (ORT + KL) and blue
(MCMC) contours. These axes orientation reflects the different de-
gree of degeneracy between the parameters.

Therefore in order to avoid this difference, instead of orthog-
onalizing the weights we perform a PCA transformation of our
parameter space before applying the KL compression. This is done
by diagonalizing the Fisher information matrix using the eigenvalue
decompositions

Fθphys. = P FθPCA Pᵀ where θPCA = Pᵀ θphys., (23)

where P is the linear transformation matrix. After having diagonal-
ized the Fisher matrix, we compress the data vector with respect to
this new set of parameters θPCA. The weights obtained doing so are
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Figure 3. Joint data vector
[

Ps
g, Bs

g

]
posteriors: the colours for the 1D and 2D posterior distributions are: the full data vector (blue), the compressed data

vector (orange), and the uncompressed power spectrum plus the compressed bispectrum (purple). The contours correspond to the 68 per cent and 95 per cent
confidence intervals. There is no substantial loss of information due to compression, which again is quantified in Fig. 7 and Table 1.

displayed in Fig. 4 for the case of the bispectrum as data vector.
The effect of a PCA decomposition is to rotate the parameter space
to the axes corresponding to the degeneracies between the original
set of parameters. Therefore taking the outer product of the 1D
posteriors of the parameters θPCA in order to get the multidimen-
sional posterior distribution should return with good approximation
the one sampled by the MCMC code. Once the multidimensional
posterior has been reconstructed by taking the outer product of the
1D posterior distributions for the θPCA set of parameters, this can be
randomly sampled in terms of the physical parameters θphys. using
the rotation matrix P in order to get the 1D and 2D marginalized
posterior distributions for the θphys. parameters. The results for the
PCA + KL method just described can be seen looking at the green
(PCA + KL) and blue (MCMC) 2D contours still in Figs 5 and 6.
The PCA + KL method recovers tilted ellipses in good agreement
with the MCMC ones.

7.2 Comparison with MCMC sampling

Fig. 7 shows the ratio and relative difference of the 68 per cent
confidence intervals of the 1D marginalized posteriors between the
compression methods MCMC + KL and PCA + KL and the stan-
dard MCMC sampling. In the bispectrum case, while MCMC +
KL tends to underestimate the 68 per cent confidence intervals ob-
tained by the MCMC, PCA + KL tends to overestimate them by
approximately the same amount (∼2.5 per cent). For the joint data
vector, MCMC + KL returns equivalent confidence intervals to the
MCMC’s ones, while PCA + KL overestimates them in average by
∼2.5 per cent (first panel) but still less than ∼1 per cent in terms of
relative difference (second panel). We consider the averages of these
ratios since at the same time the compression methods overestimate
the 68 per cent confidence intervals for some parameters while un-
derestimating them for others. In terms of the individual parameters
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Table 1. The 68 per cent confidence intervals of the 1D posteriors for the bispectrum and the joint data vector
[

Ps
g, Bs

g

]
obtained from the full data vectors

and the two possible compression applications, KL + MCMC sampling or PCA + KL compression. Since the marginalized 1D distributions are not perfectly
Gaussian (symmetric with respect to the maximum-likelihood point) in the table is reported for each parameter, the halved difference between the maximum
and minimum values included in the 68 per cent confidence interval. The four rows in the third panel show the improvement in percentage on the constraints
gained by using the joint data vector instead of the bispectrum alone for all the compression methods considered. The percentage shows indicates how much

smaller are the constraints obtained using
[

Ps
g, Bs

g

]
as data vector than the ones computed using just Bs

g. In the last panel, the percentages are relative to the

improvement obtained by adding the bispectrum to the power spectrum. The added value of the bispectrum with respect to power spectrum alone consists in
68 per cent confidence intervals ∼4 times smaller for the amplitude-like parameters b1, f, and As.

�θ = θ
68 per cent
max −θ

68 per cent
min

2

�b1 �b2 �f �109As ��m ��b �ns

Ps
g MCMC 0.251 – 0.111 0.856 0.0041 0.0009 0.0116

MCMC 0.095 0.174 0.028 0.232 0.0031 0.0008 0.0091
Bs

g MCMC + KL 0.090 0.172 0.027 0.220 0.0032 0.0008 0.0093
PCA + KL 0.101 0.173 0.029 0.249 0.0032 0.0008 0.0092

MCMC 0.047 0.132 0.022 0.151 0.0027 0.0007 0.0079[
Ps

g, Bs
g

]
MCMC + KL 0.047 0.134 0.022 0.153 0.0027 0.0007 0.0079

‘ ’ (Ps
g uncomp.) 0.048 0.134 0.022 0.152 0.0027 0.0006 0.0078

PCA + KL 0.049 0.136 0.022 0.157 0.0027 0.0007 0.0079

MCMC 51% 24% 23% 35% 13% 15% 13%
per cent

(
�θB − �θP+B

)
/�θB MCMC + KL 47% 22% 17% 31% 13% 14% 15%

‘ ’ (Ps
g uncomp.) 47% 22% 17% 31% 14% 17% 16%

PCA + KL 52% 22% 22% 37% 14% 15% 14%

MCMC 81% –% 80% 82% 34% 27% 32%
per cent

(
�θP − �θP+B

)
/�θP MCMC + KL 81% –% 80% 82% 33% 27% 31%

‘ ’ (Ps
g uncomp.) 81% –% 80% 82% 34% 29% 33%

PCA + KL 81% -% 80% 82% 33% 27% 32%

Figure 4. Logarithm of the absolute value of the weights for all the triangle configurations used in the bispectrum data vector. Each row corresponds to the
weights for the bispectrum Bs

g with respect to a specific linear combination θPCA of the original cosmological parameters obtained by diagonalizing the Fisher
information matrix. The discontinuities observed reflect the five loops used to produce the set of triangles. From left to right, the average size of the sides of
the triangles increases, from the smallest triangle up to the largest. The amplitude of the weights slightly depends on the size of the triangle (increasing from
left to right). The fluctuations are far more influenced by the shape and orientation of the triangles (which can be seen within each loop).

68 per cent confidence intervals, PCA + KL diverges at most from
the MCMC’s ones respectively by ∼7 per cent and ∼6 per cent in
the case of the bispectrum and the joint data vector. MCMC + KL
diverges at most, respectively, by ∼6 per cent and ∼4 per cent in the
case of the bispectrum and the joint data vector.

Both in the case of the bispectrum and joint data vector
[
Ps

g, Bs
g

]
,

the compression for both MCMC + KL (Figs 2 and 3) and PCA +

KL (Figs 5 and 6) methods well matches the 1-2D contours derived
from the MCMC sampling. This shows that in the bispectrum case
there is no relevant difference between MCMC + KL and PCA +
KL methods while there is a very small one in the case of the joint
data vector.

In the bispectrum case (Fig. 5) when the 2D posterior distributions
are considered, only the contours derived by orthogonalizing the
parameter space before the compression (PCA + KL) have elliptical
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Figure 5. Comparison between the MCMC-derived posteriors and the ones obtained using only the compression. The 1D and 2D posterior distributions are
relative to the data vector Bs

g, for the three different cases: MCMC (blue), KL + ORT compression (red), and PCA + KL compression (green). The contours
correspond to the 68 per cent and 95 per cent confidence intervals (Fig. 7 and Table 1 for numerical values).

shapes with the right inclination. In the case of the joint data vector
instead (Fig. 6), the KL method alone fails to recover even the 1D
posterior for the parameter As, producing an unphysical secondary
peak, while using PCA + KL returns 1D and 2D contours equivalent
to the MCMC’s ones. This shows that the orthogonalization of
the parameter space (PCA step) performs better than the weights
orthogonalization for combinations of parameters presenting strong
non-linear degeneracies. As described in the following subsection,
the compression methods PCA + KL and KL + ORT breakdown
when the kmax used drops below a certain threshold value. For
the KL + ORT method, this is ∼0.2 Mpc−1h as shown in Fig. 6,
while for PCA + KL, the threshold value is lower. Applying the
compression up to those mildly non-linear scales on real data like
the BOSS DR12 requires to modify the model in order to take into
account non-local bias terms. However, this would not require the
introduction of additional bias parameters. This is because assuming
that even if the galaxy bias is non-local in Eulerian space, it is in
Lagrangian space, and hence the additional non-local bias terms

can be related at first order to the linear bias b1 as done in Gil-Marı́n
et al. (2015).

The parameter set used in our analysis has been chosen to have
strong degeneracies in order to test the applicability of the MCMC
+ KL and PCA + KL methods. When working with real data, the
parameter set is usually designed to be less degenerate, for example
considering only σ 8 instead of �m and As or also combining σ 8

with b1, b2, and f.
In absence of non-linear (banana shape) degeneracies, the com-

pression PCA + KL can be a valid and much faster substitute to
the standard MCMC sampling since it returns realistic multidi-
mensional posterior distributions. In particular, compression could
be used to accurately forecast the constraints for different sets of
parameters. It would also be possible to qualitatively study the de-
generacies present in each set.

Running both compression algorithms (KL or PCA) takes ap-
proximately 20 min for seven parameters, with the time depend-
ing on the number of intervals for each parameter range and
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Figure 6. 1D and 2D posterior distributions using as data vector
[

Ps
g, Bs

g

]
, for the three different cases: MCMC (blue), KL + ORT compression (red), and

PCA + KL compression (green). The contours correspond to the 68 per cent and 95 per cent confidence intervals(Fig. 7 and Table 1 for numerical values). The
KL method fails to reproduce the correct contours, both 1D and 2D, since for the used value of kmax it fails to work, producing an unphysical secondary peak
for the parameter As. On the contrary, the PCA + KL method recovers with very good agreement the MCMC contours.

therefore how many times the linear matter power spectrum is
computed. As a rough estimate, if we consider 100 intervals
for each of the seven parameter ranges, Pm will be recomputed
300 times (no need to recompute the matter power spectrum
when varying only one of the parameters b1, b2, f, or As). For
a standard MCMC with 64 samplers and 104 steps instead of
300 times Pm needs to be recomputed 64 × 104 times. There-
fore, the compression is more than ∼2100 times faster than the
MCMC.

The compression PCA + KL is also much less demanding in
terms of computing resources. It can be run in few minutes on a
laptop with a single Intel i7 processor while for the MCMC we have
used 64 threads working in parallel on 64 Xeon E5-2650 processors
connected using MPI for ∼72 h.

7.3 Limitations of the compression

Unfortunately, the orthogonalization prescriptions do not work
when ‘strong’ non-linear degeneracies are present in the param-

eter space and the Fisher matrix can no longer be diagonalized in
practice. This happens because the multidimensional posterior dis-
tribution can no longer be approximated by a multivariate Gaussian
distribution. In our work, this happens when kmax is lowered, reduc-
ing the information accessible through the power spectrum and the
bispectrum.

This failure of the method manifests itself with the appearance
of unphysical secondary peaks in the posterior distributions. For
example, when the MCMC (or MCMC + KL) returns 2D posterior
contours with degeneracies that are banana-shaped, like in the case

of the joint data vector
[
Ps

g, Bs
g

]
for the parameters (b1, b2, f, σ 8), the

compression alone (KL + ORT or PCA + KL) fails to recover the 1D
and 2D posteriors. In these cases, both the KL + ORT and PCA + KL
produce unphysical secondary peaks in the posterior distribution.
However, as shown in Fig. 6, PCA + KL still works considering
only larger scales (kmax lower), where standard perturbation theory
gives more accurate predictions, than when using only the KL +
ORT method.
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Figure 7. Ratio (first panel) and relative difference (second panel) between the 68 per cent confidence intervals of the 1D marginalized posteriors for all the
cosmological parameters obtained using either the compression plus the MCMC sampling (MCMC + KL, orangle triangles) or just the compression (PCA +
KL, green hexagons) with the ones obtained running the MCMC on the full data vector. The black lines in all plots represent the reference values given by
running a MCMC sampling using the full data vector. The ratios �θ/�θMC give an idea of how much the 68 per cent confidence intervals obtained through
compression differ from the one given when using the full data vector. The relative difference (�θ − �θMC)/θ is helpful, since it scales the difference between
the compressed and full data-vector results with respect to the value of the chosen parameters. The first column shows the results when just the bispectrum Bs

g
is considered, where the largest discrepancy happens for the parameters most degenerate between each other’s (b1, f, As). Using the MCMC + KL method on
the bispectrum proves to be negligible with loss of information. In the second column, the ratios and relative differences in the case of the joint data vector[

Ps
g + Bs

g

]
are shown. In all the subplots, the horizontal lines show the averages of the ratios and relative differences of the same colour. For

[
Ps

g + Bs
g

]
, the

compression is optimal, both using MCMC + KL and PCA + KL. Compressing or not the power spectrum together with the bispectrum seems to produce no
relevant statistical difference. The bottom right subplot b2 appears to be the parameters whose divergence from the MCMC result is greater with respect to its
fiducial value.

In the case of the bispectrum, the breakdown of the PCA + KL
method happens for kmax < 0.18 Mpc−1h while for the joint data

vector
[
Ps

g, Bs
g

]
for kmax < 0.17 Mpc−1h. A potential solution to this

limitation could be the application of the Gaussianization method
proposed by Schuhmann, Joachimi & Peiris (2016) which we plan
to include in a future work. This failure also happens when Vs or ng

are one order of magnitude smaller. However, these scenarios are
below the specifications of current and future cosmological surveys.
Another solutions is to consider less parameters by either fixing to a
fiducial value one or more of the most degenerate ones or by rewrit-
ing them in terms of combinations which absorb the degeneracies
(e.g. fσ 8). It is important to note that in this paper we have on pur-
pose considered an extreme case of degenerate parameter space in
order to test the method applicability. In a realistic case, a much less
degenerate parameter space is usually considered when analysing
data. In the considered parameter space, the main cause of parame-
ters degeneracy is due to having both As, �m, and f instead of using
only σ 8 and f. It is then reasonable to assume that the method would
still work when a more complex biasing model is considered by
adding a further bias parameter b3 or the tidal bias bs2 , provided
that As and �m are substituted with σ 8. A more accurate biasing
model would be needed in an application to real data in order to
describe the bias non-local nature observed in simulations (Sheth,
Chan & Scoccimarro 2013; Modi, Castorina & Seljak 2017).

8 J O I N T DATA - V E C TO R A D D E D VA L U E

In both cases presented in this paper, either running an MCMC
sampling on the compressed data vector or doing the parameter
estimation directly from the compression (MCMC + KL or PCA
+ KL), the added value of combining the power spectrum with the
bispectrum is qualitatively (Fig. 8) and quantitatively (Fig. 7 and
Table 1) evident. This improvement obtained using the joint data

vector is particularly relevant for all the degenerate amplitude-like
parameters: b1, b2, f, and As. For the redshift bin of a DESI-like
survey considered in our analysis, the improvement for the above-
mentioned parameters obtained using the joint data vector with
respect using only the bispectrum is respectively of 52 per cent,
22 per cent, 22 per cent, and 37 per cent (using PCA + KL). The
improvement with respect to the power spectrum alone is even
greater, in particular: 81 per cent, 80 per cent, and 82 per cent for b1,
f, and As.

Comparing our results to Sefusatti et al. (2006) and in particular
their table 8 for kmax = 0.2Mpc−1h, it is possible to see a similar
effect due to including the bispectrum in the analysis together with
the power spectrum. The similarity consists in the fact that the
parameters that more benefit from this addition are the bias ones (b1,
b2) and the amplitude ones (As, σ 8). The greater improvement that
we find for certain parameters by adding the bispectrum to the power
spectrum with respect to Sefusatti et al. can be explained by the fact
that we consider redshift-space distortions, which are encoded in
the growth rate parameter f. This increases the degeneracies already
present between b1, b2, σ 8, As, and �m. Therefore, the added value
of the bispectrum in lifting the degeneracies increases. Together
with this, in Sefusatti et al.’s paper the covariance matrix of the
bispectrum includes also off-diagonal terms, which decrease the
constraining power of the bispectrum since these terms describe the
correlation between different triangle configurations.

For what concerns, the most recent bispectrum measurements
from BOSS DR12 data by Gil-Marı́n et al. (2016), it is impor-
tant to point out that the data vector considered is given by the
power spectrum monopole and quadrupoles together with the bis-
pectrum monopole. Using the bispectrum monopole implies wash-
ing out some of its information when integrating over the az-
imuthal and polar angles. This could explain the lower impact
of the bispectrum monopole with respect to the power spec-
trum monopole and quadrupole in constraining the parameters.
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Figure 8. Forecasted posteriors for the redshift bin of q DESI-like survey for what concerns the combined two- and three points statistics. 1D and 2D contours

are derived from MCMC sampling using for the three data vectors: Ps
g (grey), Bs

g (blue), and
[

Ps
g + Bs

g

]
(red). Combining two and three points statistics enables

to drastically reduce and break the degeneracies in the parameter space, in particular the ones between b1, As, and b2. This improvement obtained using the
joint data vector is therefore particularly evident for all these amplitude-like parameters (Table 1). In particular, it is qualitatively evident from this plot the
benefit of adding the bispectrum to the power spectrum. It is important to notice that for the adopted model the galaxy power spectrum does not depend on
the parameter b2. Even with one parameter less to constrain than the bispectrum, as expected, the MCMC for the galaxy power spectrum alone does not well
converge for most of the degenerate parameters.

Moreover in this case, the covariance matrix used to do parameter
inference is estimated from galaxy mocks, therefore it includes not
only of-diagonal terms describing the correlation between different
triangles, but also the noise due to the fact that it is an estimated
quantity.

Finally, in the recent paper by Byun et al. (2017) similar improve-
ment to ours have been obtained in parameter constraints (table 3),
in particular for what concerns b1 and σ 8 (proxy for As).

The efficiency of the compression PCA + KL also drastically

improves if ones considers the joint data vector
[
Ps

g, Bs
g

]
as can be

seen in Figs 3 and 6. Indeed, the combination of power spectrum and
bispectrum reduces the degeneracies between the considered pa-
rameters and the results obtained by running approximately 20 min
long compression pipeline almost perfectly match the ones given

by a three days of MCMC sampling run in parallel on 64 processors
(right-hand panel, Fig. 7).

As is well known in the literature, the degeneracy between the
bias parameters (in particular at the linear order b1) with the ampli-
tude of the dark matter perturbations σ 8 or the primordial pertur-
bations scalar amplitude As cannot be broken using only the power
spectrum. These degeneracies are even larger when redshift-space
distortions are considered. On the other hand, the bispectrum alone
can (in theory) lift these degeneracies, even if it requires including
the quadratic bias parameter b2. In any case being a 3pt statis-
tic, it is more difficult to measure and analyse from real surveys
than 2pt statistics. Therefore, combining power spectrum and bis-
pectrum is of fundamental importance in order to obtain the best
possible constraints, especially in light of the large data sets that
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are going to become available in the near future (DESI, Euclid,
PFS, etc.).

9 C O N C L U S I O N S

In this paper, we have shown that it is possible to compress the
information about cosmological parameters contained in the galaxy
power spectrum and bispectrum and to extract this information in
an efficient way. In particular, we have shown:

(i) Compressing the data vector using the K-L algorithm before
running an MCMC sampling gives negligible loss of information in
terms of parameters constraints (Figs 2, 3, and 7). In particular, run-
ning an MCMC sampling on the compressed data vector (MCMC
+ KL) returns 68 per cent confidence intervals less than 1 per cent
larger in terms of relative difference than the MCMC’s ones. This
happens in both the cases of the bispectrum and power spectrum

plus bispectrum (Bs
g and

[
Ps

g, Bs
g

]
). For real surveys, this would

allow us to drastically reduce the number of simulations needed
to numerically estimate the covariance matrix. This is because the
dimension of the compressed covariance matrix corresponds to the
number of model parameters, not the number of the original data-
vector elements.

(ii) Orthogonalizing the parameter space through the diagonal-
ization of the Fisher matrix before applying the compression (PCA
+ KL), proves to be competitive with the MCMC sampling with
minimal loss of constraining power (Figs 5 and 6). PCA + KL

returns for both Bs
g and

[
Ps

g, Bs
g

]
68 per cent confidence intervals

less than 1 per cent different in terms of relative difference from
the ones obtained running the MCMC sampling for the full data
vectors. This method cannot be applied when the parameter space
presents non-linear degeneracies, since a multidimensional Gaus-
sian posterior distribution is no longer a valid approximation. Us-

ing the joint data vector
[
Ps

g, Bs
g

]
lowers the minimum kmax nec-

essary for the only-compression method (PCA + KL) to work to
kmax 
 0.17 Mpc−1h (while in case of just the bispectrum, this
threshold is kmax 
 0.18 Mpc−1h). These values have been obtained
considering the redshift bin of a DESI-like survey. Moreover these
values can be further lowered if the parameter space we considered
is reduced to a less degenerate one, for example (b1, b2, f, σ 8).

(iii) Byun et al. (2017) reduced the covariance matrix dimension
without significant loss of information by using a proxy that aggre-
gates the matter bispectrum over a subset of Fourier configurations.
In particular, they obtained their best results in terms of constraints
on �cold dark matter parameters from combining the power spec-
trum with the modal decomposition of the bispectrum (Fergusson,
Regan & Shellard 2012; Regan et al. 2012). Their results demon-
strate that the modal bispectrum performs as well as the Fourier
bispectrum, even with considerably fewer modes ( 10 ) than Fourier
configurations ( 95 ).
The main difference with the approach presented in this work is
that we use the original full galaxy bispectrum data vector in or-
der to compress it. This does not have any limitations in terms of
original size of the bispectrum data vector. Therefore, it allows us
to access the full information content achievable through the bis-
pectrum. Moreover, the number of elements of the compressed data
vector in our case is independent of the number of elements of
the original data vector. In our case, we considered ∼1000 triangle
configurations and seven parameters which give a compression of
at least two orders of magnitude. In Byun et al. (2017), it is left

for future work to check whether the achieved compression of the
bispectrum data vector by an order of magnitude would improve if
more triangle configurations are taken into consideration.

(iv) As already quantified using real data sets like BOSS (Gil-

Marı́n et al. 2016), the use of the joint data vector
[
Ps

g, Bs
g

]
signif-

icantly increases the constraining power on the cosmological pa-
rameters compared to using only the power spectrum or bispectrum
individually. In the case of an ELGs sample for a DESI-like sur-
vey, the improvement obtaining by combining power spectrum and
bispectrum is quantified and can be visualized in the second panel
of Fig. 7 and the second and third rows of Table 1. The constraints
obtained considering power spectrum and bispectrum together are
up to 52 per cent smaller than the constraints obtained using only
the bispectrum. The difference is even greater with respect to the
power spectrum alone. Together with lifting the degeneracies be-
tween amplitude-like parameters as it can be seen in Fig. 8, the
68 per cent confidence intervals of the marginalized 1D posteriors
for the joint data vector are up to ∼5 times smaller than the power
spectrum ones.

(v) Using the compression PCA + KL as analysis method is much
faster than MCMC and less computationally demanding (few min-
utes on a single processor compared to days using several processors
working in parallel). Since it is relatively easy to implement, it can
be used to ‘sample’ different sets of parameters and obtain reliable
constraints for a given model without having to wait days for each
one of them as in the case of the MCMC.

(vi) The pre-compression PCA transformation allows us to better
capture the nature of the degeneracies between the chosen parame-
ters, returning realistic multidimensional posterior distributions that
follow closely the MCMC ones. Also in the case of ‘strong’ degen-
eracies, orthogonalizing the parameter space before compressing re-
turns contours qualitatively more realistic and closer to the MCMC
than orthogonalizing the weights after compressing.

Future work will include the study of how the compression
method applied here is affected by the choice of the set of con-
sidered parameters. Finally, we would like to test the methods pre-
sented here using BOSS data or simulations for the upcoming DESI,
Euclid, and PFS surveys. Using MCMC + KL or PCA + KL com-
pression methods has the potential of becoming a standard fast and
reliable approach to adopt when dealing with large data vector as
in the case of higher order statistics.
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APPENDIX A : R EDSHIFT-SPAC E K ERNEL S

The redshift-space kernels derived from standard perturbation theory as reported in Matarrese et al. (1997a) and used in the expression for
the power spectrum and bispectrum in this work are given by:

F(1)
s [k] = b1 + f μ2;

F(2)
s [k1, k2] = b1J

(2)
s [k1, k2] + f μ2 K (2)

s [k1, k2] + 1

2
b2 + b1f

2

[
μ2

1 + μ2
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;

F(3)
s [k1, k2, k3] = b1J

(3)
s [k1, k2, k3] + f μ2K (3) [k1, k2, k3] + b2
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, (A1)

where the K’s and J’s are given by:

J (2)
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K (3)
s [k1, k2, k3] = 3J (3)

s [k1, k2, k3] − k·k1
k2

1
J (2)

s [k2, k3] − k·(k1+k2)
(k1+k2)2 K (2)

s [k1, k2] . (A3)

In the above expressions, we defined μ = k‖
i /ki, k = k1 + k2 + k3 and μ2+3 ≡ (k‖

2 + k
‖
3)/|k2 + k3|.

APPENDIX B: ESTIMATORS D EFINITION AND UNBI ASEDNESS CHECK

In this appendix, we present the definition of the power spectrum and the bispectrum estimators, as well as the definition of the trispectrum

and the tetraspectrum, which are necessary for the computation of the full covariance matrix for the joint data vector
[
Ps

g, Bs
g

]
.

Including the effect of redshift-space distortions in our analysis requires enlarging the number of parameters needed to describe a particular
configuration of the bispectrum. In this case, it is possible to see that, considering the distant observer approximation, which consists in
assuming that all the line-of-sight vectors paired to each wave vector are parallel between each others, the natural symmetry to exploit is the
cylindrical one. In other words, what characterizes the redshift effect on the bispectrum are the parallel to the line-of-sight components of
the wave vectors, from now on labelled as k‖. Therefore, the natural set of coordinates to describe each wave vector is the cylindrical one:
(k‖, k⊥, φ) where k⊥ and φ describe the component of the wave vector laying on the perpendicular plane to the line of sight. Hence, for what
concerns the bispectrum in redshift space, from the original 9 degrees of freedom, three are cancelled by translational invariance given by the
closed triangle condition δD (k1 + k2 + k3).

Moreover, from the chosen coordinates above it is possible to see that there is a further symmetry which is the rotation along the line
of sight of a particular triangle of wave vectors. Different configurations given simply by rotating the same triangle around the line of
sight give the same value for the bispectrum. The coordinate φ describes these rotations and expresses this symmetry. As a consequence
of the symmetries mentioned, we are left with five remaining degrees of freedom, describing all possible configurations, which are given
by: {k⊥

1 , k⊥
2 , k⊥

3 , k
‖
1, k

‖
2}, from which we can derive all the other quantities (e.g. k

‖
3 = −k

‖
1 − k

‖
2). It is necessary then to define a new type of

bin for our estimator: a cylindrical anulii defined by φ ∈ [0, 2π], k̄⊥ ∈ [k̄⊥ − �k⊥/2, k̄⊥ + �k⊥/2
]

and k̄‖ ∈ [k̄‖ − �k‖/2, k̄‖ + �k‖/2
]
.

For thin anulii, the surface area is given by Ac = 2π�k k̄⊥ and hence the volume is given by V c = 2π�k2 k̄⊥. The 3D Dirac’s delta can be
decomposed as

δD (k1 + k2 + k3) = δD

(
k

‖
1 + k

‖
2 + k

‖
3

)
δD

(
k⊥

1 + k⊥
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3

)
. (B1)
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B1 Power spectrum

A standard way to define an estimator for the power spectrum is the following (Peebles 1980):

P̂s
g

(
k̄1

) = 1

Vs

∫
V c

1

dV c
1

V c
1

∫
V c

1

dV c
2 δD (k1 + k2) δs

g (k1) δs
g (k2) , (B2)

where Vs is the survey volume. Notice that both cylindrical bins are centred on k̄1 and therefore by definition k̄1 = k̄2. We specify that the
power spectrum for the redshift galaxy field depends on the wave vector, precisely on its perpendicular and parallel components to the line of
sight, and not on its module. Following the definition given in equation (B2), it is straightforward to check whether the estimator is unbiased;
one only needs to take the average
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where the standard expression for the galaxy power spectrum at leading order is given by

Ps
g(k1) = Pm(k1) F(1)

s (k1)2 . (B4)

B2 Bispectrum estimator

Proceeding now as shown in Joachimi, Shi & Schneider (2009), we define the following estimator for the bispectrum

B̂s
g

(
k̄⊥

1 , k̄⊥
2 , k̄⊥

3 , k̄
‖
1, k̄

‖
2

)
= (2π)2�k

‖
3

V
�−1

(
k̄⊥

1 , k̄⊥
2 , k̄⊥

3 , k̄
‖
1, k̄

‖
2

) 3∏
i=1

∫
V c

i

dV c
i

V c
i

δD (k1 + k2 + k3) δs
g (k1) δs

g (k2) δs
g (k3) , (B5)

where � is a function related to the fraction of wave-vectors triplets allowed by the triangle condition and defined such that the bispectrum
estimator (B5) is unbiased, which can be checked by taking the average of the estimator, which also is reported in the appendix. The expression
for � is

�
(
k⊥

1 , k⊥
2 , k⊥

3

) = 2π

∫ ∞

0
dr⊥r⊥

3∏
i=1

J0

(
k⊥

i r⊥) = 4

2
√

2k⊥
1

2
k⊥

2
2 + 2k⊥

1
2
k⊥

3
2 + 2k⊥

2
2
k⊥

3
2 − k⊥

1
4 − k⊥

2
4 − k⊥

3
4
, (B6)

if |k⊥
1 − k⊥

2 | < k⊥
3 < k⊥

1 + k⊥
2 or 0 otherwise. J0 is the zeroth-order spherical Bessel function. It is also possible to check that for the

bispectrum, the estimator is unbiased

〈B̂s
g

(
k̄⊥

1 , k̄⊥
2 , k̄⊥

3 , k̄
‖
1, k̄

‖
2

)
〉 = (2π)2�k

‖
3

Vs
�−1

(
k̄⊥

1 , k̄⊥
2 , k̄⊥

3 , k̄
‖
1, k̄

‖
2

) ∫
V c

1

∫
V c

2

∫
V c

3

(2π)3 (δD (k1 + k2 + k3))2 Bs
g

(
k⊥

1 , k⊥
2 , k⊥

3 , k
‖
1, k

‖
2

)

= (2π)2�k
‖
3�

−1
123

∫
V c

1

∫
V c

2

∫
V c

3

δD (k1 + k2 + k3) Bs
g,123, (B7)

where a shorthand notation for the bispectrum has been introduced and where we have used the approximation δ2
D 
 Vs/(2π)3δD from

Joachimi et al. (2009). Since the bispectrum is invariant under rotation around the line of sight, we integrate now the angular part, namely
over φ∫ 2π

0
dφ1

∫ 2π

0
dφ2

∫ 2π

0
dφ3 δD

(
k⊥

1 + k⊥
2 + k⊥

3

) =
∫

dφ1dφ2dφ3

∫
d2r⊥

(2π)2
e(k⊥

1 +k⊥
2 +k⊥

3 )r⊥

=
∫

d2r⊥

(2π)2

∫ 2π

0
dφ1 eik⊥

1 r⊥ cos(φ1−φr ) ×
∫ 2π

0
dφ2eik⊥

2 r⊥ cos(φ2−φr )
∫ 2π

0
dφ3eik⊥

3 r⊥ cos(φ3−φr )

=
∫

d2r⊥

(2π)2
(2π)3 J0(k⊥

1 r⊥)J0(k⊥
2 r⊥)J0(k⊥

3 r⊥) = (2π)2
∫ ∞

0
dr⊥ r⊥

3∏
i=1

J0(k⊥
i r⊥)

= 2π�(k⊥
1 , k⊥

2 , k⊥
3 ), (B8)

from which it is possible to see that in this case � depends only on the perpendicular components of the wave vectors. This agrees with the
fact that on the orthogonal plane, the wave-vectors components must form a closed triangle. In one of the steps above we used the argument
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that integrating a trigonometric function over an interval of 2π gives the same result no matter what are the extrema of integration as long as
the interval is of 2π. For completeness, the Bessel functions of order 0 are defined as

J0(x) =
∫ 2π

0

dφ

2π
eix cos φ. (B9)

Then, inserting the expression for � (B8) into equation (B7), it is possible to verify that our estimator is unbiased

〈B̂s
g,123〉 = (2π)2�k

‖
3�

−1
123

3∏
i=1

∫
V c

i

d2k⊥
i dk‖

i

2πk̄⊥
i �k2

δD (k1 + k2 + k3) Bs
g

(
k⊥

1 , k⊥
2 , k⊥

3 , k
‖
1, k

‖
2

)

= (2π)2�k
‖
3�

−1
123

3∏
i=1

∫ k̄⊥
i + �k

2

k̄⊥
i − �k

2

∫ k̄
‖
i + �k

2

k̄
‖
i − �k

2

dk⊥
i dk‖

i k⊥
i

2πk̄⊥
i �k2

, 2π�123 δD

(
k

‖
1 + k

‖
2 + k

‖
3

)
Bs

g,123

≈ δK
123Bs

g

(
k̄⊥

1 , k̄⊥
2 , k̄⊥

3 , k̄
‖
1, k̄

‖
2

)
, (B10)

where δK is a Kronecker delta. In the last step, the thin-shell approximation has been used in order to bring out the bispectrum from the
integrals. The standard expression for the galaxy bispectrum is given by

Bs
g(k1, k2, k3) = 2 Pm(k1) Pm(k2) F(1)

s (k1) F(1)
s (k2) F(2)

s [k1, k2] + 2 p. . (B11)

B3 Trispectrum definition

The trispectrum is defined as

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)〉c = (2π)3 δD (k1 + k2 + k3 + k4) Ts
g (k1, k2, k3, k4) , (B12)

where the subscript ‘c’ indicates that trispectrum is the connected part of the four points correlation function. Therefore, the leading order
terms are of two types: Ts (2)

g and Ts (3)
g respectively characterized by the RSD perturbation kernels F(2)

s and F(3)
s . Starting from the first one, we

have that:

(2π)3δD (k1 + k2 + k3 + k4) Ts (2)
g (k1, k2, k3, k4) = 〈F(1)

s [k1] F(1)
s [k2] δk1δk2

1

(2π)3

∫
d3kad3kb δD (ka + kb − k3) F(2)

s [ka, kb] δkaδkb

×
∫

d3kcd3kd δD (kc + kd − k4) F(2)
s [kc, kd] δkcδkd 〉 + 5 p.

= 1

(2π)6
F(1)

s [k1] F(1)
s [k2]

∫
d3kad3kb δD (ka + kb − k3) F(2)

s [ka, kb]
∫

d3kcd3kd δD (kc + kd − k4) F(2)
s [kc, kd] 〈δk1δk2δkaδkbδkcδkd 〉 + 5 p..

(B13)

From the last line of the previous expression it follows that, when Wick’s theorem is applied, there are three different ways to pair the wave
vectors.

Ts (2)
g

⎧⎪⎪⎨
⎪⎪⎩

Ts (2a)
g ⇔ 〈δk1δk2 〉〈δkaδkc 〉〈δkbδkd 〉 × 2 (sym.)

Ts (2b)
g ⇔ 〈δk1δka 〉〈δk2δkc 〉〈δkbδkd 〉 × 4 (sym.)

Ts (2c)
g ⇔ 〈δk1δkc 〉〈δk2δka 〉〈δkbδkd 〉 × 4 (sym.)

The first term represents a non-connected one-loop correction to the power spectrum covariance matrix (Fry 1984; Mohammed, Seljak &
Vlah 2017). For completeness, we just show below that the simplified expression makes explicit the fact that it is an unconnected term of the
full four points correlator

(2π)3δD (k1 + k2 + k3 + k4) Ts (2a)
g (k1, k2, k3, k4)

= 2

(2π)6
F(1)

s [k1] F(1)
s [k2]

∫
d3kad3kbd3kcd3kdδD (ka + kb − k3) δD (kc + kd − k4) F(2)

s [ka, kb] F(2)
s [kc, kd]

× (2π)9 δD (k1 + k2) δD (ka + kc) δD (kb + kd) Pm
k1

Pm
ka

Pm
kb

+ 5 p.

= 2(2π)3δD (k1 + k2) Ps
g (k1)

∫
d3kad3kb F(2)

s [ka, kb] F(2)
s [−ka,−kb] δD (ka + kb − k3) δD (k3 + k4) Pm

ka
Pm

kb
+ 5 p.

= 2(2π)3δD (k1 + k2) δD (k3 + k4) Ps
g (k1)

∫
d3ka F(2)

s [ka, k3 − ka]2 Pm
ka

Pm
|k3−ka| + 5 p.

= 2(2π)3δD (k1 + k2 + k3 + k4) δD (k3 + k4) Ps
g (k1)

∫
d3ka F(2)

s [ka, k3 − ka]2 Pm
ka

Pm
|k3−ka| + 5 p.. (B14)

We then look at the first connected tree level term Tg (2b)
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(2π)3δD (k1 + k2 + k3 + k4) Ts (2b)
g (k1, k2, k3, k4)

= 4

(2π)6
F(1)

s [k1] F(1)
s [k2]

∫
d3kad3kbd3kcd3kdδD (ka + kb − k3) δD (kc + kd − k4) F(2)

s [ka, kb] F(2)
s [kc, kd]

× (2π)9 δD (k1 + ka) δD (k2 + kc) δD (kb + kd) Pm
k1

Pm
ka

Pm
kb

+ 5 p.

= 4 × (2π)3 F(1)
s [k1]F(1)

s [k2]Pm
k1

Pm
k2

∫
d3kbd3kd δD (kb − k1 − k3) δD (kd − k2 − k4)

× F(2)
s [−k1, k1 + k3] F(2)

s [−k2, k2 + k4] Pm
kb

δD (kb + kd) + 5 p.

= 4 × (2π)3 F(1)
s [k1]F(1)

s [k2]F(2)
s [−k1, k1 + k3] F(2)

s [−k2, −k1 − k3] δD (k1 + k2 + k3 + k4) Pm
k1

Pm
k2

Pm
|k1+k3|, + 5 p.. (B15)

from which it is possible to directly write the third term which result to be exactly the same

(2π)3δD (k1 + k2 + k3 + k4) Ts (2c)
g (k1, k2, k3, k4)

= 4 × (2π)3 F(1)
s [k1]F(1)

s [k2]F(2)
s [−k2, k2 + k3] F(2)

s [−k1, −k2 − k3] δD (k1 + k2 + k3 + k4) Pm
k1

Pm
k2

Pm
|k2+k3| + 5 p.. (B16)

Finally, it is possible to consider the last term T g (3)
s

(2π)3δD (k1 + k2 + k3 + k4) Ts (3)
g (k1, k2, k3, k4)

= 〈F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] δk1δk2δk3

1

(2π)6

∫
d3kad3kbd3kc δD (ka + kb + kc − k4) F(3)

s [ka, kb, kc] δkaδkbδkc 〉 + 3 p.

= 1

(2π)6
F(1)

s [k1] F(1)
s [k2] F(1)

s [k3]
∫

d3kad3kbd3kc δD (ka + kb + kc − k4) F(3)
s [ka, kb, kc] 〈δk1δk2δk3δkaδkbδkc 〉 + 3 p.. (B17)

Like we did before, we apply now the Wick’s theorem. In this case, there are two different ways to pair the wave vectors.

Ts (3)
g

{
Ts (3a)

g ⇔ (〈δk1δk2 〉〈δk3δka 〉〈δkbδkc 〉 + 2 p.
)× 3 (sym.)

Ts (3b)
g ⇔ 〈δk1δka 〉〈δk2δkb 〉〈δk3δkc 〉 × 6 (sym.)

The first option represents again a non-connected one-loop correction to the power spectrum covariance matrix.

(2π)3δD (k1 + k2 + k3 + k4) Ts (3a)
g (k1, k2, k3, k4)

= 3

(2π)6
F(1)

s [k1] F(1)
s [k2] F(1)

s [k2]
∫

d3kad3kbd3kcδD (ka + kb + kc − k4) F(3)
s [ka, kb, kc]

×(2π)9 δD (k1 + k2) δD (k3 + ka) δD (kb + kc) Pm
k1

Pm
k3

Pm
kb

+ 2 p.

= 3 × (2π)3 Ps
g (k1) F(1)

s [k3] Pm
k3

δD (k1 + k2)
∫

d3kad3kbd3kcδD (ka + kb + kc − k4) F(3)
s [ka, kb, kc]

× δD (k3 + ka) δD (kb + kc) Pm
kb

+ 2 p.

= 3 × (2π)3 Ps
g (k1) F(1)

s [k3] Pm
k3

δD (k1 + k2)
∫

d3kbd3kcδD (kb + kc − k3 − k4) F(3)
s [−k3, kb, kc] δD (kb + kc) Pm

kb
+ 2 p.

= 3 × (2π)3 Ps
g (k1) F(1)

s [k3] Pm
k3

δD (k1 + k2) δD (k3 + k4)
∫

d3kb F(3)
s [−k3, kb, −kb] Pm

kb
+ 2 p.

= 3 × (2π)3 Ps
g (k1) F(1)

s [k3] Pm
k3

δD (k1 + k2 + k3 + k4) δD (k3 + k4)
∫

d3kb F(3)
s [−k3, kb, −kb] Pm

kb
+ 2 p.. (B18)

From the last line, it is clear that this is also an unconnected term. The second term gives the tree level contribution

(2π)3δD (k1 + k2 + k3 + k4) Ts (3b)
g (k1, k2, k3, k4)

= 6

(2π)6
F(1)

s [k1] F(1)
s [k2] F(1)

s [k2]
∫

d3kad3kbd3kcδD (ka + kb + kc − k4) F(3)
s [ka, kb, kc]

× (2π)9 δD (k1 + ka) δD (k2 + kb) δD (k3 + kc) Pm
k1

Pm
k2

Pm
k3

+ 3 p.

= 6 × (2π)3 F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] δD (k1 + k2 + k3 + k4) F(3)

s [−k1, −k2, −k3] Pm
k1

Pm
k2

Pm
k3

+ 3 p.. (B19)

Therefore, the full trispectrum at tree level is given by

Ts
g = Ts (2b)

g + Ts (2c)
g + Ts (3b)

g . (B20)
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B4 Tetraspectrum definition

The tetraspectrum is defined as

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)δs
g(k5)〉c = (2π)3 δD (k1 + k2 + k3 + k4 + k5) Ts

e,g (k1, k2, k3, k4, k5) , (B21)

where the subscript ‘c’ stands for the connected part of the five points correlation function in Fourier space.
Drawing the diagrams as shown in Fry (1984), it is possible to see that the leading term of the connected part has order O

(
δ8

m

)
. There are

two possible ways through which O
(
δ8

m

)
can be reached, either by having F(2)

s
3

or F(2)
s F(3)

s terms:

(2π)3 δD (k1 + k2 + k3 + k4 + k5) Ts
e,g (k1, k2, k3, k4, k5) = 1

(2π)9
F(1)

s [k1] F(1)
s [k2]

∫
dk3

adk3
b δD (ka + kb − k3) F(2)

s [ka, kb]

×
∫

dk3
cdk3

d δD (kc + kd − k4) F(2)
s [kc, kd]

∫
dk3

edk3
f δD (ke + kf − k5) F(2)

s [ke, kf ] 〈δ1δ2δaδbδcδdδeδf〉 + 59 p.

+ 1

(2π)9
F(1)

s [k1] F(1)
s [k2] F(1)

s [k3]
∫

dk3
adk3

b δD (ka + kb − k4) F(2)
s [ka, kb]

×
∫

dk3
cdk3

ddk3
e δD (kc + kd + ke − k5) F(3)

s [kc, kd, ke] 〈δ1δ2δ3δaδbδcδdδe〉 + 19 p.. (B22)

Starting from the first term that appears in the above expansion:

(2π)3 δD (k1 + k2 + k3 + k4 + k5) Ts(a)
e,g (k1, k2, k3, k4, k5)

= 1

(2π)9
F(1)

s [k1] F(1)
s [k2]

∫
dk3

adk3
bdk3

cdk3
ddk3

edk3
f δD (ka + kb − k3) δD (kc + kd − k4) δD (ke + kf − k5)

× F(2)
s [ka, kb] F(2)

s [kc, kd] F(2)
s [ke, kf ] 〈δ1δ2δaδbδcδdδeδf〉 + 59 p.

= 8 (2π)3F(1)
s [k1] F(1)

s [k2]
∫

dk3
adk3

bdk3
cdk3

ddk3
edk3

f δD (ka + kb − k3) δD (kc + kd − k4) δD (ke + kf − k5)

× δD (k1 + kf ) δD (k2 + ka) δD (kb + kc) δD (kd + ke) F(2)
s [ka, kb] F(2)

s [kc, kd] F(2)
s [ke, kf ] Pm (k1) Pm (k2) Pm (kb) Pm (kc) + 359 p.

= 8 (2π)3F(1)
s [k1] F(1)

s [k2]
∫

dk3
bdk3

d δD (−k2 + kb − k3) δD (−kb + kd − k4) δD (−kd − k1 − k5)

× F(2)
s [−k2, kb] F(2)

s [−kb, kd] F(2)
s [−kd, −k1] Pm (k1) Pm (k2) Pm (kb) Pm (kb) + 359 p.

= (2π)3δD (k1 + k2 + k3 + k4 + k5) 8 F(1)
s [k1] F(1)

s [k2]

× F(2)
s [−k2, k2 + k3] F(2)

s [−k2 − k3, −k1 − k5] F(2)
s [k1 + k5, −k1] Pm (k1) Pm (k2) Pm (|k2 + k3|) Pm (|k2 + k3|) + 359 p.. (B23)

where the factor of 8 comes from permutations which do not influence the relations between the starting five wave vectors. On the contrary
for each the original 60 permutations, there are six for which the relation between the initial wave vectors varies. Considering now the second
term:

(2π)3 δD (k1 + k2 + k3 + k4 + k5) Ts(b)
e,g (k1, k2, k3, k4, k5)

= 1

(2π)9
F(1)

s [k1] F(1)
s [k2] F(1)

s [k3]
∫

dk3
adk3

bdk3
cdk3

ddk3
e δD (ka + kb − k4) δD (kc + kd + ke − k5)

× F(2)
s [ka, kb] F(3)

s [kc, kd, ke] 〈δ1δ2δ3δaδbδcδdδe〉 + 19 p.

= 6 (2π)3F(1)
s [k1] F(1)

s [k2] F(1)
s [k3]

∫
dk3

adk3
bdk3

cdk3
ddk3

e δD (ka + kb − k4) δD (kc + kd + ke − k5)

× δD (k1 + ke) δD (k2 + kd) δD (k3 + kb) δD (ka + kc) F(2)
s [ka, kb] F(3)

s [kc, kd, ke] Pm (k1) Pm (k2) Pm (k3) Pm (ka) + 119 p.

= 6 (2π)3F(1)
s [k1] F(1)

s [k2] F(1)
s [k3]

∫
dk3

a δD (ka − k3 − k4) δD (−ka − k2 − k1 − k5)

× F(2)
s [ka, −k3] F(3)

s [−ka, −k2,−k1] Pm (k1) Pm (k2) Pm (k3) Pm (ka) + 119 p.

= (2π)3δD (k1 + k2 + k3 + k4 + k5) 6 F(1)
s [k1] F(1)

s [k2] F(1)
s [k3]

× F(2)
s [k3 + k4, −k3] F(3)

s [−k3 − k4, −k2, −k1] Pm (k1) Pm (k2) Pm (k3) Pm (|k3 + k4|) + 119 p.. (B24)

where the factor of 6 comes from permutations which do not influence the relations between the starting five wave vectors. On the contrary
for each the original 19 permutations, there are six for which the relation between the initial wave vectors varies. From the above expressions
of both Ts(a)

e,g and Ts(b)
e,g , it is possible to see that at leading order the tetraspectrum has order O

(
δ8

m

)
. In other words, it is proportional to the

fourth power of the linear matter power spectrum.
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B5 Unconnected part of the five points correlation function

If one looks at the unconnected part of the five-point correlation function, the leading term has order O
(
δ6

m

)
. Below are derived the analytical

expression for this unconnected part.

Us
5p,g (k1, k2, k3, k4, k5) = 1

(2π)3

4∏
i=1

F(1)
s [ki]

∫
dk3

adk3
b δD (ka + kb − k5) F(2)

s [ka, kb] 〈δ1δ2δ3δ4δaδb〉 + 5 p.. (B25)

Using Wick’s theorem, the six-points correlator can be approximated using in products of two points correlators. For example, for the first
permutation one obtains

〈δ1δ2δ3δ4δaδb〉 = 2 × 〈δ1δa〉〈δ2δb〉〈δ3δ4〉 ↔ U1
5p

+ 2 × 〈δ1δa〉〈δ3δb〉〈δ2δ4〉 ↔ U2
5p

+ 2 × 〈δ1δa〉〈δ4δb〉〈δ2δ3〉 ↔ U3
5p

+ 2 × 〈δ2δa〉〈δ3δb〉〈δ1δ4〉 ↔ U4
5p

+ 2 × 〈δ2δa〉〈δ4δb〉〈δ1δ3〉 ↔ U5
5p

+ 2 × 〈δ3δa〉〈δ4δb〉〈δ1δ2〉 ↔ U6
5p. (B26)

Since all these terms are similar to each other, we compute below only the first one of them as an example on how to derive the others.

(2π)3 δD (k1 + k2 + k3 + k4 + k5) U1
5p

= 2

2(π)3

4∏
i=1

F(1)
s (ki)

∫
dk3

adk3
b δD (ka + kb − k5) F(2)

s [ka, kb] (2π)9δD (k1 + ka) δD (k2 + kb) δD (k3 + k4) Pm (k1) Pm (k2) Pm (k3)

= 2 × (2π)6F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] F(1)

s [k4] F(2)
s [k1, k2] δD (k3 + k4) δD (k1 + k2 + k5) Pm (k1) Pm (k2) Pm (k3)

= 2 × (2π)6F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] F(1)

s [k4] F(2)
s [k1, k2] δK

125 δD (k3 + k4) δD (k1 + k2 + k3 + k4 + k5) Pm (k1) Pm (k2) Pm (k3) , (B27)

where it is important to note that, in the last line, when substituting the Dirac’s delta for the sum of three wave vectors with the sum of all five
of them, a Kronecker’s delta must be added to keep track of the original relation between the three k’s. From the last line, one can immediately
write another one of the six terms

(2π)3 δD (k1 + k2 + k3 + k4 + k5) U5
5p (k1, k2, k3, k4, k5)

= 2(2π)6F(1)
s [k1] F(1)

s [k2] F(1)
s [k3] F(1)

s [k4] F(2)
s [k2, k4] δK

245 δD (k1 + k3) δD (v1 + v2 + k3 + k4 + k5) Pm (k2) Pm (k4) Pm (k3) . (B28)

Therefore, it is possible to write down the complete expression that takes into account all the permutations and terms as follows

Us
5p,g (k1, k2, k3, k4, k5) =

5∑
i=1

Us
5p,g

(
δ(2)

i

)
where Us

5p,g

(
δ(2)

i

) = U1
5p + U2

5p + U3
5p + U4

5p + U5
5p + U6

5p. (B29)

The argument δ(2)
i identifies which wave vectors corresponds to the second-order perturbation expansion for each term.

A P P E N D I X C : C OVA R I A N C E T E R M S D E R I VAT I O N

In this appendix, we present the derivation of the covariance terms, starting from the power spectrum one.

C1 Covariance term: CPP

As stated in the main text, the covariance matrix element can be computed as

CPs
g ≡ Cov

[
Ps

g

(
k̄1

)
, Ps

g

(
k̄3

)] =
〈(

P̂s
g,1 − 〈P̂s

g,1〉
)〉〈(

P̂s
g,3 − 〈P̂s

g,3〉
)〉

= 〈P̂s
g,1P̂s

g,3〉 − P̂s
g,1P̂s

g,3. (C1)

The computation of the covariance matrix involves a four points correlator of δs
g that can be expanded into its connected parts

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)〉 = 〈δs
g(k1)δs

g(k2)〉c〈δs
g(k3)δs

g(k4)〉c + 2 perms. + 〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)〉c. (C2)

In this work, the following shorthand for the integrals will be also adopted∫
V c

k̄i

dφidk⊥
i dk‖

i k⊥
i

2πk̄⊥
i �k2

≡
∫

i
. (C3)
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C1.1 CPP
P term

Starting from the first term CPP
P in the particular case in which the pairs are made of identical wave vectors (in this case, from the power

spectrum estimator definition: k1 = k2 and k3 = k4), we have that

CPP
P

(
k̄1; k̄3

) = 1

V 2
s V c

1 V c
3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4) 〈δs
g (k1) δs

g (k2)〉〈δs
g (k3) δs

g (k4)〉, (C4)

it is straightforward to see that this terms cancels the second term of equation (C1). Considering now the other two possibilities for CPP
P

CPP
P

(
k̄1; k̄3

) = 1

V 2
s V c

1 V c
3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4) 〈δs
g (k1) δs

g (k3)〉〈δs
g (k2) δs

g (k4)〉 + 1p.

= (2π)6

V 2
s V c

1 V c
3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4) δD (k1 + k3) δD (k2 + k4) Ps
g (k1) Ps

g (k2) + 1p.

= (2π)6

V 2
s V c

1 V c
2

(
δK

13δ
K
24 + δK

14δ
K
23

) ∫
dV c

1

∫
dV c

2 δD (k1 + k2)2 Ps
g (k1) Ps

g (k2)

= (2π)3

Vs V c
1 V c

2

DP
1234

∫
dV c

1

∫
dV c

2 δD (k1 + k2) Ps
g (k1) Ps

g (k2)

= (2π)3

Vs V c
1

DP
1234

∫ k̄⊥
1 + �k

2

k̄⊥
1 − �k

2

∫ k̄
‖
1+ �k

2

k̄
‖
1− �k

2

dk⊥
1 dk

‖
1 k⊥

1

k̄⊥
1 �k2

Ps
g (k1)2

≈ (2π)2

Vsk̄
⊥
1 �k2

DP
1234 Ps

g

(
k̄1

)2 = 2 × (2π)2

Vsk̄
⊥
1 �k2

δK
13 Ps

g

(
k̄1

)2
, (C5)

where DP
1234 = δK

13δ
K
24 + δK

14δ
K
23 has been defined in order to take in account the additional permutation from the initial Dirac’s deltas conditions,

which now reduces to DP
1234 = 2 × δK

13. If, when obtaining an expression for the trispectrum, one considers also one-loop corrections, in
addition to this Gaussian term on the diagonal of the power spectrum covariance matrix, one should add the unconnected terms encountered
in Appendix B, Ts (2a)

g and Ts (3a)
g . This has been recently well described in Mohammed et al. (2017). As stated in Section 2.2, the error

made with this tree level approximation for the diagonal term (C5) is around ∼1 per cent for kmax = 0.2 Mpc−1h and up to ∼9 per cent for
kmax = 0.3 Mpc−1h (Taruya et al. 2008).

C1.2 CPP
T term

Proceeding in the same way, it is possible to compute as well the other term of the cross-correlation matrix, the one containing the trispectrum
contribution.

CPP
T

(
k̄1; k̄3

) = 1

V 2
s V c

1 V c
3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4) 〈δs
g (k1) δs

g (k3) δs
g (k2) δs

g (k4)〉

= (2π)3

V 2
s V c

1 V c
3

4∏
i=0

∫
dV c

i δD (k1 + k2) δD (k3 + k4) δD (k1 + k2 + k3 + k4) Ts
g (k1, k2, k3, k4)

= (2π)3

V 2
s V c

1 V c
3

δK
34

∫
dV c

1 dV c
2 dV c

3 δD (k1 + k2)2 Ts
g (k1, k2, k3, −k3)

= 1

Vs V c
1 V c

3

δK
34

∫
dV c

1 dV c
2 dV c

3 δD (k1 + k2) Ts
g (k1, k2, k3, −k3)

= 1

Vs
δK

12δ
K
34

∫
dV c

1

V c
1

∫
dV c

3

V c
3

Ts
g (k1, −k1, k3, −k3)

≈ 1

2π Vs

∫
dφ13 Ts

g

(
k̄⊥

1 , k̄
‖
1, k̄

⊥
3 , k̄

‖
3, φ

−
13

)
. (C6)

Following what was done in Pielorz et al. (2010), i.e., substituting in here the previously derived expression for the trispectrum, this expression
can be ‘simplified’ at tree level to

CPP
T

(
k̄1; k̄3

) ≈ 1

2π Vs

∫
dφ13 Ts

g

(
k̄⊥

1 , k̄
‖
1, k̄

⊥
3 , k̄

‖
3, φ13

)

= 1

2π Vs

∫
dφ13

{
4 Ps

g(k1)2

[
F(2)

s [k1, −k+]2 Pm(k+) + F(2)
s [k1, k−]2 Pm(k−)

]
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+ 4 Ps
g(k3)2

[
F(2)

s [k3, −k+]2 Pm(k+) + F(2)
s [k3, −k−]2 Pm(k−)

]

+ 8 Ps
g(k1)Ps

g(k3)

[
F(2)

s [k1, −k+] F(2)
s [k3, −k+] Pm(k+) + F(2)

s [k1, k−] F(2)
s [k3, −k−] Pm(k−)

]

+ 12Ps
g(k1)Ps

g(k3)

[
Ps

g(k1)F(3)
s [k1, −k1, k3] + Ps

g(k3)F(3)
s [k1, k3,−k3]

]}
, (C7)

where k+ = k1 + k3 and k− = k3 − k1 and Pm is the linear matter power spectrum and φ13 is the difference between the two azimuthal
angles of the two wave vectors. Therefore, this is the only term that requires an integration since this angular dependence defines the relation
between the two wave vectors involved.

C2 Covariance term: CBB

By definition, the covariance matrix element can be computed as

CBs
g ≡ Cov

[
Bs

g

(
k̄⊥

1 , k̄⊥
2 , k̄⊥

3 , k̄
‖
1, k̄

‖
2

)
, Bs

g

(
k̄⊥

4 , k̄⊥
5 , k̄⊥

6 , k̄
‖
4, k̄

‖
5

)]

=
〈(

B̂s
g,123 − 〈B̂s

g,123〉
)〉〈(

B̂s
g,456 − 〈B̂s

g,456〉
)〉

= 〈B̂s
g,123B̂s

g,456〉 − B̂s
g,123B̂s

g,456. (C8)

The six-points correlation function can be decomposed into all the possible combinations of connected parts

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)δs
g(k5)δs

g(k6)〉 = 〈δs
g(k1)δs

g(k2)〉c〈δs
g(k3)δs

g(k4)〉c〈δs
g(k5)δs

g(k6)〉c + 14 perms.

+ 〈δs
g(k1)δs

g(k2)δs
g(k3)〉c〈δs

g(k4)δs
g(k5)δs

g(k6)〉c + 9 perms.

+ 〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)〉c〈δs
g(k5)δs

g(k6)〉c + 14 perms.

+ 〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)δs
g(k5)δs

g(k6)〉c. (C9)

Below we present the full derivation of the bispectrum Covariance matrix to leading order in Gaussian terms

CBB
(

k̄1, k̄2, k̄3; k̄4, k̄5, k̄6

)

= (2π)4�k
‖
3�k

‖
6

V 2
s

�−1
123 �−1

456

6∏
i=1

∫
i

dV c
i

V c
i

F(1)
s,i δD (k1 + k2 + k3) δD (k4 + k5 + k6) 〈δm(k1)δm(k4)〉〈δm(k2)δm(k5)〉〈δm(k3)δm(k6)〉 + 5 p.

= (2π)13�k
‖
3

2

V 2
s V c

1 V c
2 V c

3

�−2
123 δK

14 δK
25 δK

36

3∏
i=1

∫
i

F(1)2
s,i Pm(ki) δD (k1 + k2 + k3)2 + 5 p.

= (2π)10�k
‖
3

2

Vs V c
1 V c

2 V c
3

�−2
123 D123456

3∏
i=1

∫
i

Ps
g(ki) δD (k1 + k2 + k3)

= (2π)11�k
‖
3

2

Vs V c
1 V c

2 V c
3

�−1
123 D123456

3∏
i=1

∫ k̄⊥+ �k
2

k̄⊥− �k
2

∫ k̄‖+ �k
2

k̄‖− �k
2

dk⊥
i dk‖

i k⊥
i

V c
i

Ps
g(ki)δD

(
k

‖
1 + k

‖
2 + k

‖
3

)

= (2π)5�k
‖
3

Vs k̄⊥
1 k̄⊥

2 k̄⊥
3 �k6

�−1
123 D123456

3∏
i=1

∫ k̄⊥+ �k
2

k̄⊥− �k
2

dk⊥
i k⊥

i

k̄⊥
i �k⊥

i

2∏
j=1

∫ k̄‖+ �k
2

k̄‖− �k
2

dk
‖
j

�k
‖
j

Ps
g(ki),

(C10)

where D123456 has been used as a shorthand notation for all the possible permutations allowed by the fact that only pairs formed by wave
vectors from different triplets survive, which are in total six. For all the other steps, we have used relations described previously. Finally,
defining a bin average by using the thin shell approximation, it is possible to write down the final result

CBB = (2π)5�k
‖
3

V k̄⊥
1 k̄⊥

2 k̄⊥
3 �k6

�−1
123 D123456

∏
i=1

F(1)2
s

[
k̄⊥

i , k̄‖
i

]
Pm(k̄⊥

i , k̄‖
i ). (C11)

C3 Cross-variance term: CBP

The cross-correlation part of the covariance matrix of the joint data vector
[
Ps

g, Bs
g

]
can be computed as

CBP ≡ Cov
[
Ps

g

(
k̄1

)
, Bs

g

(
k̄3, k̄4, k̄5

)] = 〈P̂s
g,1B̂s

g,345〉 − P̂s
g,1B̂s

g,345. (C12)
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The computation of the covariance matrix involves a five points correlator of δs
g that can be expanded in its connected parts

〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)δs
g(k5)〉 = 〈δs

g(k1)δs
g(k2)〉c〈δs

g(k3)δs
g(k4)δs

g(k5)〉c

+ 〈δs
g(k1)δs

g(k3)〉c〈δs
g(k2)δs

g(k4)δs
g(k5)〉c + 5 p.

+ 〈δs
g(k3)δs

g(k4)〉c〈δs
g(k1)δs

g(k2)δs
g(k5)〉c + 2 p.

+ 〈δs
g(k3)δs

g(k4)δs
g(k1)δs

g(k2)δs
g(k5)〉c

+ 〈δs
g(k1)δs

g(k2)δs
g(k3)δs

g(k4)δs
g(k5)〉unc.

= CBP
m0 + CBP

m1 + CBP
m2 + CBP

Te + CBP
U5p

. (C13)

In the case of the five points correlation function, it has to be included also the unconnected part in the expansion. This is because while for an
even number 2n, the leading term of unconnected part of the 2n-points correlation function is proportional to the product of n power spectra,
for an odd number m this is no longer the case. As shown in last subsection of Appendix B, the unconnected part of the five points correlation
function has a leading term proportional to the product of three power spectra. Therefore, in this case, the unconnected part needs to be
considered since it has the same order of the other leading terms of the above expansion. From the last equation, it is possible to immediately
that CBP

m0 cancels out with the last term of equation (C12) and that CBP
m2 = 0 because the Dirac’s deltas combination leads to terms having

δD (k5) = 0.

C3.1 CBP
m1 term

Starting from the first term written previously, below we report the full derivation

CBP
m1

(
k̄1; k̄3, k̄4, k̄5

)

= (2π)2�k
‖
5

V 2
s

�−1
345

∫
dV c

1

5∏
i=2

∫
dV c

i

V c
i

δD (k1 + k2) δD (k3 + k4 + k5) 〈δs
g(k1)δs

g(k3)〉c〈δs
g(k2)δs

g(k4)δs
g(k5)〉c + 5 p.

= (2π)8�k
‖
5

V 2
s

�−1
345

∫
dV c

1

5∏
i=2

∫
dV c

i

V c
i

δD (k1 + k2) δD (k3 + k4 + k5) δD (k1 + k3) δD (k2 + k4 + k5) Ps
g (k3) Bs

g (k2, k4, k5) + 5 p.

= (2π)5�k
‖
5

Vs
�−1

345

∫
dV c

1

5∏
i=2

∫
dV c

i

V c
i

δD (k1 + k2) δD (k1 + k3) δD (k3 + k4 + k5) Ps
g (k3) Bs

g (k2, k4, k5) + 5 p.

= (2π)5�k
‖
5

Vs
�−1

345 δK
12

5∏
i=2

∫
dV c

i

V c
i

δD (−k2 + k3) δD (k3 + k4 + k5) Ps
g (k3) Bs

g (k2, k4, k5) + 5 p.

= (2π)5�k
‖
5

Vs V c
2

�−1
345 δK

12 δK
−23

5∏
i=3

∫
dV c

i

V c
i

δD (k3 + k4 + k5) Ps
g (k3) Bs

g (k3, k4, k5) + 5 p.

= (2π)5�k
‖
5

Vs V c
2

�−1
345 δK

12 δK
−23

5∏
i=3

∫
dk‖

i dk⊥
i k⊥

i

2πk̄⊥
i �k2

2π �345δD

(
k

‖
3 + k

‖
4 + k

‖
5

)
Ps

g (k3) Bs
g (k3, k4, k5) + 5 p.

≈ (2π)3

Vs V c
2

δK
−23 Ps

g

(
k̄3

)
Bs

g

(
k̄3, k̄4, k̄5

) + 5 p.. (C14)

Note that only three of the six permutations are different terms, since the other three are just obtained by switching k1 with k2 which does not
change the final result. Therefore, the final expression for this term can be written as

CBP
m1 = 2 × (2π)3

Vs V c
2

(
δK
−13 + δK

−14 + δK
−15

)
Ps

g

(
k̄1

)
Bs

g

(
k̄3, k̄4, k̄5

)
. (C15)

Note that the argument of the power spectrum depend on the wave vector selected by the Kronecker Delta.

C3.2 CBP
Te term

The other contribution at tree level to the connected five points correlator resulting in the cross-covariance term between power spectrum and
bispectrum is the one proportional to the tetraspectrum defined before, we get

CBP
U5p

(
k̄2; k̄3, k̄4, k̄5

) = (2π)2�k
‖
5

V 2
s

�−1
345

∫
dV c

1

5∏
i=2

∫
dV c

i

V c
i

δD (k1 + k3) δD (k3 + k4 + k5) 〈δs
g(k1)δs

g(k3)δs
g(k2)δs

g(k4)δs
g(k5)〉c

= (2π)5�k
‖
5

V 2
s

�−1
345

∫
dV c

1

5∏
i=2

∫
dV c

i

V c
i

δD (k1 + k2) δD (k3 + k4 + k5) δD (k1 + k2 + k3 + k4 + k5) Ts
e,g (k1, k2, k3, k4, k5)
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= (2π)5�k
‖
5

V 2
s

�−1
345 δK

12

5∏
i=2

∫
dV c

i

V c
i

δD (k3 + k4 + k5)2 Ts
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Since the leading order of the tetraspectrum is higher than the one considered in this work, the above covariance term has not been included in
the numerical computation. For what concerns, the unconnected part of the five-point correlation function described in the end of Appendix B,
it represents loop correction to the standard power spectrum times bispectrum cross-covariance CBP

m1. Coherently with what done in the same
case for the trispectrum, it has also not been included in the numerical computations.

APPENDIX D : C OMPRESSED C OVARIANCE MATRI X

We run the MCMC not on the original data vector, e.g. Bs
g or

[
Ps

g + Bs
g

]
but on their compressed version obtained through K-L weighting.

Given a set of parameters {θ1, . . . , θm}, a data vector x = {x1, . . . , xn} with mean 〈x〉 the set of weights with respect to each parameter θ i is
given by

bi = Cov−1〈x〉,i, (D1)

where Cov(x) is the covariance matrix relative to the data vector x. Assuming the covariance matrix to be approximately independent of the
cosmology, then for each considered parameter, the original data vector is compressed to a single scalar

yθi = bi · x. (D2)

Therefore stacking all the weighting vectors as rows of an m × n matrix B, the new m-dimensional data vector will be

y = Bx. (D3)

For what concerns, the covariance matrix for the new data vector, it will be related to the original one by

Cov y,ij = Cov
[
yi, yj

] = Cov

⎡
⎣ n∑

k

bk
i xk ,

n∑
j

bl
jxl

⎤
⎦

=
n∑
k

n∑
j

bk
i b

l
j Cov [xk, xl]

= bᵀ
i · Covx · bj, (D4)

Therefore when running the MCMC using y as data vector, the natural logarithm of likelihood will be proportional to

logL ∝ −1

2

(
y − yfid.

)ᵀ
Cov−1

y

(
y − yfid.

)
(D5)

where yfid. is the compressed data vector obtained using the fiducial values of the cosmological parameters. In our case of interest, this will

be applied to Bs
g and

[
Ps

g, Bs
g

]
. An additional option consists in leaving Ps

g uncompressed, compressing only the bispectrum. In that case, the

cross-variance term would be given by

CovPyB
ij = Cov

[
Ps

g(ki), yj

]
= Cov

[
Ps

g(ki), Bs
g

]
· bj. (D6)

Putting everything together the full covariance matrix is

Cov =
[

CovP P CovP yB

CovP yB Cov yB yB

]
, (D7)

where Cov yB yB is the covariance matrix for the compressed data vector derived in eq. (D4) in the case of x being the bispectrum.

A P P E N D I X E: W E I G H T S O RTH O G O NA L I Z AT I O N

As stated in Zablocki & Dodelson (2016), each compressed data set yi contains all the information regarding the parameter θ i, but at the same
time, it will have some sensitivity to the other parameters. It is possible to remove this sensitivity by marginalizing at linear level over these
other parameters. This is done by orthogonalizing the weighting vectors for all the individual parameters. If the model is parametrized by m
parameters θ i, compressing with respect to all these will return m different linear combinations yi (or in other words m weighting vectors).
Therefore, it is possible to define another set of new scalars y ′

i given by a linear combination of the original ones, for example:

y ′
1 = c1y1 + c2y2 + · · · + cmym, (E1)
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with the constants ci such that y ′
1 contains all the information regarding θ1, while at the same time removing all the sensitivity with respect

to the other parameters at linear level. This means that when taking the derivative with respect to the second parameter θ2 we are looking for
c coefficients such that:

dy ′
1

dθ2
= c1

dy1

dθ2
+ c2

dy2

dθ2
+ . . . + cm

dym

dθ2
= c1

∑
j

b
j
1

dxj

dθ2
+ c2

∑
j

b
j
2

dxj

dθ2
+ . . . + cm

∑
j

bj
m

dxj

dθ2
= c1F12 + c2F22 + . . . + cmFm2 = 0, (E2)

where for the Fisher information matrix elements, it has been used equation (21) together with the expression for the weights bi = Cov−1〈x〉,i.
Imposing this for the derivative with respect to all the m − 1 parameters beside θ1, it gives the following matrix problem to be solved in order
to get the m − 1 coefficients needed to compute y ′

1:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F22 F23 . . . F2m

F32 F33 . . . F3m

. . . .

. . . .

. . . .

Fm2 Fm3 . . . Fmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c2

c3

.

.

.

cm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−F12

−F13

.

.

.

−F1m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (E3)

Solving this equation returns m − 1 unique constants for the ci with i > 1. c1 can be set equal to one. Once the c’s are known, y ′
1 can be

obtained using equation (E1), which corresponds to defining the new weighting vector for the parameter θ1:

b′
1 = b1 + c2b2 + ... + cmbm, (E4)

where b′
1 is the orthogonalized weighting vector for θ1. The same procedure can be repeated for all the other parameters and relative weighting

vectors. In general, for the mode with i = α, the coefficients are determined by the general equation:∑
j

F′
α,ijcj = −Fαi, (E5)

where F′
α is the Fisher matrix with row and column α removed.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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